continuity equation for probability density

time-dependent Schrodinger equation
owv(r,t
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Born interpretation:
|¥(r,1)|? is probability density for finding particle at time t at position r

continuity equation for probability density
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probability-density current
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842 Chapter 18.  Partial Differential EQuations
and the heunstic stability criterion is
. T Ax)?
At < - 19.2.21
A m])n 20,172 ( }

The Crank-Nicolson method can be generalized similarly

The second complication one can consider 15 a nonline
for example where 1) = D(%). Explicit schemes can be gene
way. For example, in equation {19.2.19) write
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Implicit schemes are not as easy. The replacement (19.2.22) v
us with a nasty set of coupled nonlinear equations to solve at
there is an easier way: If the form of D(u) allows us to inte

dz = D{u)du 1 5

1+ <iHAt
analytically for z(u), then the right-hand side of (19.2.1) bect 2

we difference implicitly as
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(19.2.24)

Now lineanize each term on the right-hand side of equation (19.2.24), for example
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" {19.2.25)
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This reduces the problem to widiagonal form again and in practice usually retains
the stabality advantages of fully implieit differencing,

Schrédinger Equation

Sometimes the physical problem being solved imposes constraints on the
differencing scheme that we have not yet taken into account. For example, consider
the time-dependent Schridinger equation of quantum mechanics. This is basically a
parabolic equation foe the evolution of a complex quantity «. Foe the scattering of 2
wavepacket by a one-dimensional potential V(x), the equation has the form

e e
f— = ——— + V{rpe {19.2.26
ot hrs ' ' '
(Here we have chosen units so that Planck's constant /i = | and the particle mass
mo=1/2) One is given the imtial wavepacket, o(=, ¢t = 0), together with boundary
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separation of variables

Lov(rt) [ h -, . .
In At — <—%V +V(r)) \U(I’, t)

time-independent potential
ansatz: W(r, t) = A(t)p(r)

25 0(P) = A E0l7) = A(t) (- 552 + V(D) 0()
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time-independent Schrodinger equation
(eigenvalue problem)

general solution: linear combination of eigenstates

W) = ane B (7



free wave packets

A d?
free time-independent Schrodinger equation: — x) = Ep(x
p ger eq 2mdxzé@() ©(x)
_ 7’_72/(2
eigenfunctions and -values: @, (x) = Ce'*™: E, = >
0.9
normalization: /dx|(pk(x)\2 = C2/ dx =77
—00
1 .
improper wave functions: @, (x) = — e'*¥
Pi(x) VT
with ‘normalization’ as in Fourier transform:
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wave packet: normalizable linear combination of plane waves

1 .
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approximation to Dirac delta function
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Gaussian wave packet

(,5(/() _ 1 e—(k—ko)2/4ai
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| N(k)\Q probability density for finding momentum hk
P is Gaussian of width ok, centered at ko

V(x,t) = 1 /dk o~ (k—ko)? /4oy Li(kx—w(k)t)
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with o, (t):=0y 1+/? , ax::ftk, To:= . and vg:=hko/m
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spreading of wave packet
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