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what it the aim?

understand emergent phenomena 
in electronic systems
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emergence in physics

phase transitions

ferromagnetism  Mott metal-insulator transition

Fe3O4

TC=858 K
1000 BC ?

G. Kotliar and D. Vollhardt, 
Physics Today 57, 53 (2004)

Magnetite
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cannot be described in independent 
component picture

(photos from wikipedia)

human brain

is different from N non-interacting neurons swimming  
in an average see of information



emergent phenomena arise from  
strong correlations



what are strong correlations?
when simple interactions among many particles 

lead to co-operative behavior

more is different
Philip Warren 

Anderson
Nobel Prize in Physics 1977

(1972)



the classical N body problem

(physics/engineering bachelor)



the classical case
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interacting classical 2-body problem
two bodies: analytically solvable problem

center of mass and relative coordinates
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Oscar H's Prize Competition 
and the Error in Poincard's Memoir 

on the Three Body Problem 

JUNE BARROW-GREEN 

Communicated by JESPER L~TZEN 

Introduction 

In the autumn of 1890 HENRI POINCARt;'S memoir on the three body problem 
[-11 was published in the journal Acta Mathematica as the winning entry in 
the international prize competition sponsored by OSCAR II, King of Sweden and 
Norway, "to mark his 60 th birthday on January 21, 1889. Today POINCARI~'S 
published memoir is renowned both for providing the foundations for his 
celebrated three-volume M&hodes Nouvelles de la Mdcanique Cbleste [-21 and for 
containing the first mathematical description of chaotic behavior in a dynamical 
system. 

A combination of royal patronage and carefully planned public relations 
meant that the competition achieved the unusual distinction of gaining recogni- 
tion that stretched well beyond the world of mathematics. However, despite 
appearances to the contrary, correspondence preserved at the Institut Mit- 
tag-Leffler reveals that the competition was in fact beleaguered by difficulties 
throughout. In particular, it has emerged that only weeks before the prize- 
winning memoir was due to be published PO~NCAR~ discovered an error in his 
work which was of such grave consequence that he was forced to make very 
substantial changes. Indeed it was only as a result of correcting the error that 
he discovered the existence of what today are known as homoclinic points. As 
a result the memoir which eventually appeared in Acta was remarkably different 
from the one which had actually won the prize almost two years earlier. 

The following is an account of the troubled history of the competition 
together with an explanation of the error in POINCARE'S memoir. 

The competition 

By the late 19 th century, mathematical prize competitions were a well estab- 
lished method for seeking solutions to specific mathematical problems. These 
competitions usually emanated from the national Academies, notably Berlin and 
Paris, and although the prizes offered were generally financial in nature, they 

classical 3-body problem



interacting classical 3-body problem
chaotic behavior is possible

butterfly effect: behavior highly sensitive to initial conditions

the present determines the future, 
but the approximate present does not approximately determine the future 

(Edward Lorenz)



Sundmann series solution (1907-1912)

For the 3-body problem there is 
series solution in powers of t1/3 which 
converges for any t(*)  

(*) with exception of some initial conditions

The Solution of the n-body Problem* 
Florin Diacu 

The wind scrambles and thunders over hills 
with a voice far below what we can hear. 
Whalesong, birdsongs boom and twitter. 
Sea, air, everything's a chaos of signals 
and even those we've named veer and fall 
in pieces under our neat labels. Waves-- 
how to speak of the structure of waves 
when all disperses and there's nothing fixed to tell? 

--Philip Holmes, Background Noise 

Folk-Mathematics 

A folk-tale is a popular story uttered from one genera- 
tion to the next. The main source of culture in times of 
old, oral tradition plays a marginal role in spreading sci- 
entific information today. Still, its significance is by no 
means negligible, and all domains of human activity are 
more or less influenced by it. Mathematics is no excep- 
tion. We all know theorems we have never read in books 
or papers or learned about at formal presentations. We 
often don't know a reference, have no idea who proved 
that result, how, and when. Usually a colleague men- 
tioned it at some conference dinner, during a coffee- 
break or in a friendly discussion in our Department. It 
is striking, it sticks to our mind, and after a while it is 
part of our mathematical heritage---we just know it. 
Then we tell it further under similar circumstances, and 
so the wheel turns on. We will call this component of 
our knowledge folk-mathematics. 

Without denying the positive role folk-mathematics 
plays in spreading information, we must admit that re- 
sults gathered through it are sometimes misleading or 
misunderstood. A typical example is the Cantor set. 
Everybody knows that the middle-third Cantor set has 
zero Lebesgue measure, and many believe that the mid- 
dle-fifth analogue has positive measure. Intuitively this 
sounds plausible: if we remove each time a smaller seg- 
ment, the remaining quantity should be larger. Unfor- 
tunately, the intuition leads us astray this time. For any 

k, the middle-kth Cantor set has zero measure. Though 
a simple computation would show this, few do it, so the 
mistake propagates from one mathematician to the 
other. We can indeed obtain a Cantor set of positive 
measure by assigning a variable removal step. Delete 
first the middle-third segment, then the middle-ninth, 
then the middle-twenty-seventh, and so on. This algo- 
rithm will lead us to the desired result. 

The above example is easy to check, but what are we 
up against when a more complicated folk-mathematical 
situation appears? Physicists and mathematicians less 
familiar with celestial mechanics, have asked me at dif- 
ferent occasions to provide details about the "impossi- 
bility of solving the n-body problem." Some had heard 
that Poincar6 had proved the result, others recalled only 
that such a theorem exists somewhere in the literature. 
After all, this is a natural question. Since Abel and Galois 
proved the impossibility of solving algebraic equations 

*Dedicated to Phil ip  Ho lmes ,  for his  deep  ma themat i c s ,  for his  w a r m  
and  candid poetry,  and  for the  i m m e n s e  intellectual  joy he  has  in- 
stilled in me  du r ing  the  t ime our  book took shape.  
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Karl Frithiof Sundman

Finnish



what about N > 3 ?

used reductio ad absurdum as a method of proof. This led 
to a scandal. The editorial board held an emergency 
meeting to save the reputation of the journal. The board 
resigned as a whole and reelected itself, except Brouwer. 
Offended by his colleagues' attitude and supported by 
his government, Brouwer immediately established a ri- 
val journal in Holland [G]. 

That embarrassing incident marked the beginning of 
a long fight between intuitionism and formalism, the main 
schools of mathematical-philosophical thought at the 
beginning of our century, each claiming to have found--  
against the other--the only viable way  of laying the 
foundations of mathematics. The building of founda- 
tions had come to seem urgent due to the antinomies, 
known already by the Greeks, but which had now 
started to embarrass the recently established set theory. 

The main objection of Brouwer's intuitionism against 
Hilbert's formalism concerned existence theorems. 
Brouwer considered that a nonconstructive argument 
cannot be accepted as proof of existence, so reductio ad 
absurdum seemed to him a good point to start the 
polemic. On the other hand Hilbert, who took Brouwer's 
action personally, attempted to show that every theo- 
rem can be deduced by logical steps from the postulates 
of a given axiomatic system. Unfortunately, in this re- 
spect the German mathematician was wrong. 

In 1931, Hilbert's formalism received a sharp blow 
when the Austrian logician Kurt G6del published his 
incompleteness theorem [G6]. G6del proved that any 
sufficiently rich, sound, and recursively axiomatizable theory 
is incomplete. A recent paper [CJZ] goes even further by 
showing that, in a quite general topological sense, in- 
completeness is a common phenomenon: with respect to 
any reasonable topology, the set of true and unprovable state- 
ments is dense in the set of all statements. This re- 
sult has persuaded some mathematicians that the fu- 
ture of mathematics is not with proving theorems but 
with trying to estimate the probability that a result is true. 

On the other hand, Brouwer's intuitionism--though 
never fully refuted by any other theory and still the ob- 
ject of some research--fell into oblivion, because it 
raised barriers which the mathematical community re- 
fused to acknowledge. Mathematics has developed al- 
most undisturbed by the fight for its foundations. 

We will further see, however, that the main idea of 
intuitionism is off target. In certain cases a constructive 
proof of existence brings no more information than a 
nonconstructive one. This is surprising, and the exam- 
ple I offer is the n-body problem. 

The Series Solution 

In 1913, when he launched the attack that would de- 
prive him of editorial membership at the Mathematische 
Annalen, Brouwer was not aware of a paper published 

in Acta Mathematica a few months before by a Finn of 
Swedish origin, Karl Sundman. If he had known and 
understood Sundman's work, Brouwer would probably 
never have developed his intuitionism. 

Sundman's paper [Su3] revisited and republished 
some of his own results (inspired by a previous work 
of the Italian mathematician Giulio Bisconcini [Bi]) that 
had appeared in 1907 [Sul] and 1909 [Su2] in a Finnish 
journal of lesser fame and circulation. One of Sundman's 
achievements was to find, for almost all admissible ini- 
tial data, a series solution of the 3-body problem. If he 
had gotten this result 22 years earlier, he would have 
probably been awarded King Oscar's prize. 

Reading Sundman's paper we see that he obtained 
a series solution in powers of t 1/3 for the 3-body prob- 
lem, a series convergent for all real t, except for a neg- 
ligible set of initial conditions, namely, those for which 
the angular momentum is zero. Indeed, Sundman proved 
first the convergence of the series as long as no colli- 
sions take place. (The importance of the method devel- 
oped in that paper, which is based on the theory of func- 
tions of a complex variable, is analyzed in a nice article 
by Donald Saari [S].) Sundman also surmounted the 
impediment of binary collisions through a process 
he called regularization, which means to analytically ex- 
tend the solution beyond the collision singularity, and 
which physically corresponds to an elastic bounce. In 
this case, his series still proves convergent for all real 
values of the time variable. Unfortunately he could not 
apply the same method if a triple collision occurs, but 
he showed that such a collision can take place only if 
the angular momentum cancels, hence for a set of ini- 
tial data having measure zero. (Even within this set, the 
subset of initial data leading to triple collisions has mea- 
sure zero, as one of Saari's students has shown in his 
Ph.D. thesis [U].) In 1941, Carl Ludwig Siegel proved 
that such a regularization is possible only for a negligi- 
ble set of masses, so indeed, the analytic continuation 
of triple collisions is generically impossible [Si]. 

Sundman's method failed to apply to the n-body 
problem for n > 3. It took about 7 decades until the gen- 
eral case was solved. In 1991, a Chinese student, 
Quidong (Don) Wang, published a beautiful paper 
[Wa], [D1], in which he provided a convergent power 
series solution of the n-body problem. He omitted only 
the case of solutions leading to singularities--collisions 
in particular. (To understand the complications raised 
by solutions with singularities, see [D2].) 

Did this mean the end of the n-body problem? Was 
this old question--unsuccessfully attacked by the great- 
est mathematicians of the last 3 centuries--merely 
solved by a student in a moment of rare inspiration? 
Though he provided a solution as defined in sophomore 
textbooks, does this imply that we know everything 
about gravitating bodies, about the motion of planets 
and stars? Paradoxically, we do not; in fact we know 
nothing more than before having this solution. 
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more or less influenced by it. Mathematics is no excep- 
tion. We all know theorems we have never read in books 
or papers or learned about at formal presentations. We 
often don't know a reference, have no idea who proved 
that result, how, and when. Usually a colleague men- 
tioned it at some conference dinner, during a coffee- 
break or in a friendly discussion in our Department. It 
is striking, it sticks to our mind, and after a while it is 
part of our mathematical heritage---we just know it. 
Then we tell it further under similar circumstances, and 
so the wheel turns on. We will call this component of 
our knowledge folk-mathematics. 

Without denying the positive role folk-mathematics 
plays in spreading information, we must admit that re- 
sults gathered through it are sometimes misleading or 
misunderstood. A typical example is the Cantor set. 
Everybody knows that the middle-third Cantor set has 
zero Lebesgue measure, and many believe that the mid- 
dle-fifth analogue has positive measure. Intuitively this 
sounds plausible: if we remove each time a smaller seg- 
ment, the remaining quantity should be larger. Unfor- 
tunately, the intuition leads us astray this time. For any 

k, the middle-kth Cantor set has zero measure. Though 
a simple computation would show this, few do it, so the 
mistake propagates from one mathematician to the 
other. We can indeed obtain a Cantor set of positive 
measure by assigning a variable removal step. Delete 
first the middle-third segment, then the middle-ninth, 
then the middle-twenty-seventh, and so on. This algo- 
rithm will lead us to the desired result. 

The above example is easy to check, but what are we 
up against when a more complicated folk-mathematical 
situation appears? Physicists and mathematicians less 
familiar with celestial mechanics, have asked me at dif- 
ferent occasions to provide details about the "impossi- 
bility of solving the n-body problem." Some had heard 
that Poincar6 had proved the result, others recalled only 
that such a theorem exists somewhere in the literature. 
After all, this is a natural question. Since Abel and Galois 
proved the impossibility of solving algebraic equations 

*Dedicated to Phil ip  Ho lmes ,  for his  deep  ma themat i c s ,  for his  w a r m  
and  candid poetry,  and  for the  i m m e n s e  intellectual  joy he  has  in- 
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exact solution does not help

The following section deals with this apparent para- 
dox. 

The Foundat ions  of Mathematics 

ing the fundamentals of differential equations theory, 
the structure on which a significant part of modern sci- 
ence and technology is based. Do we have an answer to 
this last challenge? 

What Sundman and Wang did is in accord with the way 
solutions of initial value problems are defined; every- 
thing is apparently all right; but there is a problem, a [A] 
big one: these series solutions, though convergent on the 
whole real axis, have very slow convergence. One [BG] 
would have to sum up millions of terms to determine 
the motion of the particles for insignificantly short in- 
tervals of time. The round-off errors make these series 
unusable in numerical work. From the theoretical point [B] 
of view, these solutions add nothing to what was pre- [Bi] 
viously known about the n-body problem. 

This unusual situation makes us think once more about [Br] 
the foundations of our discipline. First of all, it illustrates 
that even a constructive solution can be useless from the [CJZ] 
practical point of view. Then why stick to it, why give in- 
tuitionism any concern? Well, this difficulty would still [D1] 
not keep us from sleeping soundly. How many of us re- 
ally care about intuitionism when doing mathematics? [D2] 

Unfortunately, doubt is also cast on the definition of 
[DH] a solution for an initial value problem attached to a dif- 

ferential equation. If our definition is meaningful, then 
shouldn't it exclude totally useless solutions? In certain [Di] 
cases all our efforts toward finding and writing down 

[G] solutions might be as futile as Sisyphus's work; more- 
over, we have no way of knowing in advance when this [G6] 
will be the case. What to do then? Eliminate power se- 
ries solutions from our definition? This would mean to 
negate two centuries of mathematics and throw many 

[P] achievements away. Clearly there is no simple answer. 
The third problem is connected to what "good" math- 

ematics means. Consciously or not, we usually under- IS] 
stand by this the mathematics promoted by famous 
mathematicians. No one would doubt that the mathe- 
matics of Weierstrass, for example, was and remains [Si] 
"good." But Weierstrass stated the first problem of King [Sul] 
Oscar's prize, a problem tackled by the sharpest minds 
of the time. It was eventually solved exactly as the 
German mathematician had wished; still, a hundred [Su2] 
years later, its solution presents only historical interest. 
Fortunately, the genius of Poincar6 steered our disci- [Su3] 
pline in the right direction--at least this is what we be- 
lieve today. But how will mathematicians think a hun- [U] 
dred years from now? 

The n-body problem--a bulwark against the flow of 
time, a reliable landmark on the map of mathematics-- [Wa] 
has posed and continues to pose new challenges. Almost [W] 
untouched, mysterious as in the beginning, it has sur- 
vived 300 years of siege. It has kindled and witnessed 
a few revolutions: the beginnings of calculus, of quali- 
tative methods, of relativity, of chaos; tackled numeri- 
cally, it has contributed to the launch of satellites and 
to the first human step on the moon. Now it is disturb- 
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The Solution of the n-body Problem* 
Florin Diacu 

The wind scrambles and thunders over hills 
with a voice far below what we can hear. 
Whalesong, birdsongs boom and twitter. 
Sea, air, everything's a chaos of signals 
and even those we've named veer and fall 
in pieces under our neat labels. Waves-- 
how to speak of the structure of waves 
when all disperses and there's nothing fixed to tell? 

--Philip Holmes, Background Noise 

Folk-Mathematics 

A folk-tale is a popular story uttered from one genera- 
tion to the next. The main source of culture in times of 
old, oral tradition plays a marginal role in spreading sci- 
entific information today. Still, its significance is by no 
means negligible, and all domains of human activity are 
more or less influenced by it. Mathematics is no excep- 
tion. We all know theorems we have never read in books 
or papers or learned about at formal presentations. We 
often don't know a reference, have no idea who proved 
that result, how, and when. Usually a colleague men- 
tioned it at some conference dinner, during a coffee- 
break or in a friendly discussion in our Department. It 
is striking, it sticks to our mind, and after a while it is 
part of our mathematical heritage---we just know it. 
Then we tell it further under similar circumstances, and 
so the wheel turns on. We will call this component of 
our knowledge folk-mathematics. 

Without denying the positive role folk-mathematics 
plays in spreading information, we must admit that re- 
sults gathered through it are sometimes misleading or 
misunderstood. A typical example is the Cantor set. 
Everybody knows that the middle-third Cantor set has 
zero Lebesgue measure, and many believe that the mid- 
dle-fifth analogue has positive measure. Intuitively this 
sounds plausible: if we remove each time a smaller seg- 
ment, the remaining quantity should be larger. Unfor- 
tunately, the intuition leads us astray this time. For any 

k, the middle-kth Cantor set has zero measure. Though 
a simple computation would show this, few do it, so the 
mistake propagates from one mathematician to the 
other. We can indeed obtain a Cantor set of positive 
measure by assigning a variable removal step. Delete 
first the middle-third segment, then the middle-ninth, 
then the middle-twenty-seventh, and so on. This algo- 
rithm will lead us to the desired result. 

The above example is easy to check, but what are we 
up against when a more complicated folk-mathematical 
situation appears? Physicists and mathematicians less 
familiar with celestial mechanics, have asked me at dif- 
ferent occasions to provide details about the "impossi- 
bility of solving the n-body problem." Some had heard 
that Poincar6 had proved the result, others recalled only 
that such a theorem exists somewhere in the literature. 
After all, this is a natural question. Since Abel and Galois 
proved the impossibility of solving algebraic equations 
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emergent behavior: novel approaches

(from NASA website)

Kolmogorov–Arnold–Moser theorem 
If masses, eccentricities, and inclinations of planets are small enough, 
many initial conditions lead to quasiperiodic planetary trajectories



and in quantum mechanics?



the quantum N-body problem

•uncertainty principle �x�v � 1
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• described via wavefunction 

already 1 body is difficult

• eigenvalue problem & discrete energies
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quantum N-body problem, no interaction

(classical/mean field)
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(Slater determinant)

Fermi gas
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the Schrödinger equation

Erwin Rudolf Josef Alexander Schrödinger
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Ĥ =
X

i

Ĥ
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the interacting quantum N-body problem

electron-electron interaction

the theory of almost everything

In so far as quantum mechanics is correct, chemical questions 
are problems in applied mathematics 
H. Eyring, J.E. Walter and E. Kimball, Quantum Chemistry, 1949 
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can we solve this problem?



if yes, can we make a Great Dream Machine?

all physics

equations + computer  

Z, M, e…

however, quantum N-body problem: no exact solution



… and the exact solution would be useless

If one had a great calculating machine, one might 
apply it to the problem of solving the Schrödinger 
equation for each metal […] It is not clear, however, 
that a great deal would be gained by this. Presumably 
the results would agree with the experimentally 
determined quantities and nothing vastly new would be 
learned from the calculation. [. . . ].  

E. Wigner and F. Seitz

On the other hand, the exact solution of a many-body 
problem is really irrelevant since it includes a large 
mass of information about the system which although 
measurable in principle is never measured in practice.   
[..] An incomplete description of the system is 
considered to be sufficient if these measurable 
quantities and their behavior are described correctly.  

H.J. Lipkin

E. Pavarini and E. Koch, Autumn School on Correlated Electron 2013, Introduction



the Practical Great Dream Machine

answer to relevant questions

Z, M, e…

equations + computer  
+ many different approaches



why do atom exist? how can we explain the periodic table?

why are some systems metals and other insulators?
what is the mechanism of high-Tc superconductivity?

what is the mechanism of orbital ordering?

no two samples are identical: generic features only

the Practical Great Dream Machine



the Practical Great Dream Machine

answer to relevant questions

Z, M, e…

equations + computer  
+ many different approaches



give up exact solutions

minimal model for a given class of phenomena

& find approximate methods that work
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as system-specific as possible



minimal models that capture the phenomenon



which phenomena?



open challenges
high-temperature superconductivity

orbital order order-to-disorder

HgBa2CuO4

unconventional superconductivity

et al.13 In addition the tilt and rotation angles together with
the deformation of the octahedron basal plane are depicted.
At low temperature and for decreasing Sr concentration, one
passes from the undistorted K2NiF4 structure in pure
Sr2RuO4, space group I4/mmm , to a simple rotation
I41 /acd in agreement to the low lying rotation mode in the
pure compound.24 An estimated boundary is included in the
diagram in Fig. 10, though the transition is found to exhibit
order-disorder character. For a Sr concentration of x!1.5
only diffuse scattering representative of a short range rota-
tional distortion is present. For x!1.0 the rotational angle
already amounts to 10.8°; the rapid suppression of the struc-
tural distortion in Sr-rich samples appears to be extraordi-
nary it might hide some further effect. For much smaller Sr
content, near x!0.5, a combination of rotation and small tilt
is found. This is realized either in a subgroup of I41 /acd or
in Pbca . Further decrease of the Sr-content leads finally to

the combination of the rotation and the large tilt in the
S-Pbca phase. The Sr dependence of the tilt and rotation
angles is resumed in Fig. 11. Most interestingly all these
structural transitions are closely coupled to the physical
properties.
The purely rotational distortion should be related to the

c-axis resistivity since it modifies the overlap of the O orbit-
als in the c direction. This rotation phase becomes unstable
against the tilt for Sr concentrations lower than 0.5, since in
the single crystal with x!0.5 only a minor distortion has
been observed, which remained undetectable in the powder
sample. For the Sr concentration of x!0.2 we already find
tilt angles of about 7° at low temperature by powder neutron
diffraction. Near x!0.5 there is hence the quantum critical
point of the continuous tilt transition which coincides with a
maximum in the low temperature magnetic susceptibility.
For x!0.5, Nakatsuji et al. report a low-temperature mag-
netic susceptibility about 100 times larger than that of pure
Sr2RuO4.13 This suggests that the low-lying tilt modes are
strongly coupled to the magnetism. This interpretation is fur-
ther supported by the fact that in all magnetically ordered
structures x!0.0, x!0.1, and in Ca2RuO4.07, the spin direc-
tion is parallel to the tilt axis in spite of a different octahe-
dron shape as it is schematically drawn in Fig. 10. Decrease
of the Sr content below x!0.5 stabilizes the tilt and causes a
maximum in the temperature dependence of the susceptibil-
ity at T!TP , indicated in Fig. 10.13 TP , however, does not
coincide with the structural transition from I41 /acd to the
tilted phase but is much lower. We speculate that the suscep-
tibility maximum arises from an increase of antiferromag-
netic fluctuations induced by the tilt.
There is another anomalous feature in the temperature de-

pendent susceptibility of samples with 0.2"x"0.5: Nakat-
suji et al. find a strong magnetic anisotropy between the a
and b directions of the orthorhombic lattice.13 In relation to
the magnetic order in the insulating compounds it appears
again most likely that the tilt axis, which is parallel b, is the
cause of the huge anisotropy. However, there might be an

FIG. 10. Phase diagram of Ca2#xSrxRuO4 including the differ-
ent structural and magnetic phases and the occurrence of the
maxima in the magnetic susceptibility !Ref. 13". In the lower part,
we schematically show the tilt and rotation distortion of the octa-
hedra #only the basal square consisting of the Ru !small points" and
the O!1" !larger points" is drawn$ together with the elongation of
the basal planes. Note that all phases are metallic except for
S-Pbca .

FIG. 11. The Sr concentration dependence of the tilt %-O!1"
and %-O!2" and rotation angle & in Ca2#xSrxRuO4. The filled sym-
bols denote the results obtained at T!300 K !those with brackets
are obtained at T!400 K" and the open symbols are those at T
!10 K, the dashed line indicates the critical concentration below
which one observes the insulating S-Pbca phase at low tempera-
ture.

O. FRIEDT et al. PHYSICAL REVIEW B 63 174432

174432-8

the metal-insulator transition

crystals using Siemens !!2! and !!! diffractometers
with low- and high-temperature attachments. The metric re-
finement was carried out using 21 reflections. Resistivity was
measured with a standard four probe technique and magne-
tization with a commercial superconducting quantum inter-
ference device magnetometer. All results of x-ray diffraction
and energy dispersive x-ray "EDX# indicate that the crystals
studied are pure, without any second phase.
Shown in Fig. 1"a# is the temperature dependence of the

lattice parameters for 90"T"400K revealing a sharp tran-
sition near TM#357K from a low-temperature orthorhombic
phase to a high-temperature tetragonal phase. The results for
T"300K agree reasonably well with those described in Ref.
9, which were derived from neutron measurements on poly-
crystalline Ca2RuO4 for 11"T"300K. The phase transition
is well characterized by splittings of (l00) or "0k 0# peaks in
the temperature-dependent diffraction patterns. Below TM ,
the a axis decreases whereas the b axis increases. As tem-
perature decreases over the interval from 400 to 90 K, the a
axis contracts by 1.5% and the b axis expands by 3%. The
positive and negative thermal expansion coefficients derived
from the temperature dependence of the lattice parameters
not only indicate an increasingly strong orthorhombic distor-
tion in the Ru-O plane but also are conspicuously large, i.e.,
one order of magnitude larger than those for other related
compounds such as Sr2IrO4,11 and SrRuO3,12 CaRuO3,12 and
Sr2RuO4,13 which do not undergo first-order phase transi-
tions. The lattice volume is also substantially changed by
1.3% $see Fig. 1"b#%. It is therefore not surprising that such a
drastic structural change is even macroscopically visible:
The crystals shatter when heated through the transition tem-
perature. "The shattering makes the resistivity measurements
a difficult task: The measurements had to be performed on
extremely small residual pieces of shattered crystals which
are about 0.3$0.3$0.1mm3.)

Although the sensitivity of our powder x-ray diffraction
data is not sufficient to obtain a complete structural determi-
nation, the phase transition at T#357K is most likely caused
by a rotation and tilt of the RuO6 octahedra. According to the
results in Ref. 9, the presence of the orthorhombic distortion
below T#300K is due to a combination of a rotation of the
RuO6 octahedra around the c axis "11.8°# and a temperature-
dependent tilt of the Ru-O basal planes "11.2°–12.7°#. A
similar structural phase transition due to basal plane tilting is
also observed in isomorphic compounds La2NiO4 and
La2CuO4 although the orthorhombic distortion is much less
severe14 and there is no corresponding impact on the electri-
cal conductivity.
Figure 2 shows electrical resistivity, &(T), in the ab plane

as a function of temperature for 70"T"600K. "The resis-
tivity results up to room temperature as well as those of the
magnetic properties for 10"T"300K agree reasonably well
with those of Ref. 8 for the ‘‘S’’ phase.# An abrupt transition
from an insulating state to a nearly metallic state occurs at
TM#357K, simultaneous with the structural transition. The
sudden decrease in & by a factor of 3.5 at the transition
observed in several well-characterized crystals results in a
pronounced discontinuity "see inset# indicating a robust first-
order transition and unambiguously characterizes a discon-
tinuous alteration in the d-band structure typical of a metal-
insulator transition. Below the transition, &(T) rises rapidly,
increasing eight orders of magnitude over a relatively narrow
temperature interval. More remarkably, &(T) can be well fit
for 70"T"300K to variable-range hopping or the Efros-
Shklovskii mechanism given by &(T)#A exp(T0 /T)' with '
#1/2. We note a discontinuity in d&/dT at T(250K
$though not in &(T)%in the c-axis resistivity of the isostruc-
tural system (La1!xSrx)2CuO4 for x(0.10, presumably due
to a change in incoherent hopping.15
We note that the metallic state is not fully realized above

the transition. For this system, the ‘‘near’’ metallic behavior
may, in fact, be an artifact of the required method of mea-
surement, i.e., the temperature must be increased from room
temperature through TM , and some microcracking of the
sample occurs as evidenced by the inability to reproduce all
the data upon lowering the temperature. In lightly La-doped
samples, "Ca1!xLax)2RuO4 for x"0.05 "unpublished data#,
where TM is below room temperature, all samples show clear
metallic behavior as temperature is reduced through TM ,

FIG. 1. Temperature dependence of lattice parameters for 90
"T"400 K for the powdered single-crystal Ca2RuO4.

FIG. 2. Electrical resistivity &(T) for the ab plane as a function
of temperature for 70"T"600 K. Inset: Detail of the abrupt jump
in &(T) near the transition at TM#357 K.
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We report the refinement of x-ray powder diffraction together with magnetic and thermal conductivity
measurements made on the entire family of RMnO3 perovskites prepared by melt growth or under high
pressure. Analysis of the data has identified the origin of the transition from type-A to type-E magnetic
order as a competition between t-orbital and e-orbital spin-spin interactions within each Mn-O-Mn bond
in the (001) planes, the e-orbital interactions decreasing with decreasing R3!-ion size.
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From elastic-energy considerations, LaMnO3 was ini-
tially proposed to undergo a cooperative orbital ordering
below a TJT that places the e electron of high-spin
Mn3!:t3e1 in the (001) plane [1]. The predicted orbital
ordering and the consequent anisotropic magnetic cou-
plings in LaMnO3 were proven a few years ago by reso-
nance x-ray scattering [2] and neutron inelastic scattering
[3]. At T > TJT, the Jahn-Teller (JT) distortion remains
dynamic, as has been shown by x-ray absorption spectros-
copy [4], and the vibronic states are degenerate in the
(Q2; Q3) plane describing the Eg lattice-vibration breath-
ing modes of a MnO6=2 octahedron. Q2 is orthorhombic
andQ3 is tetragonal. The introduction of anharmonic terms
in the Hamiltonian changes the ‘‘Mexican hat’’ form of the
potential in the (Q2; Q3) plane into three wells separated by
!a " 120# in the (Q2; Q3) plane for an isolated molecular
complex. However, the cooperative JT distortion results in
a two-well potential in the case of LaMnO3 [5]. As pointed
out by Kanamori [6], the cooperative JT distortion in
orthorhombic LaMnO3 does not have the two potential
wells in exactly the directions of !a " 2"=3 and 4"=3
in the (Q2; Q3) plane as predicted from the classic 120#

model, but they are leaning towards the $Q2 axis. This
shift is caused by a mixing of the JT distortion modes and
an intrinsic octahedral-site distortion in the orthorhombic
perovskite structure [7]. On the other hand, the overlap
integral entering the perturbation formula J% 4b2=U of
the superexchange spin-spin interaction depends on the
(180# &!) Mn-O-Mn bond angle, which decreases mono-
tonically as the ionic radius (IR) of rare-earth R3! ion
decreases. In comparison with the perovskite RFeO3 fam-
ily where Fe3! is not JT active, the phase diagram of the
RMnO3 perovskites is more complex as is seen in Fig. 1.
Although the perovskite RMnO3 family shows a gradual
structural change as IR decreases, the orbital ordering
remaining the same as that in LaMnO3 below TJT, the
phase diagram is divided sharply into three regions:
(1) type-A spin order [ferromagnetic (001) planes coupled
antiparallel] with a TN that is extremely sensitive to IR,
(2) a phase without classic spin ordering, and (3) type-E
spin order [alternating ferromagnetic and antiferromag-

netic coupling in (001) planes] below an IR-independent
TN . How the JT and the intrinsic octahedral-site distortions
influence the magnetic coupling and whether the evolution
of the octahedral-site distortions and the Mn-O-Mn bond
angle as a function of IR are sufficient to account for the
complicated phase diagram of the RMnO3 perovskites
remain open questions for two reasons: (a) the existing
phase diagram of the RMnO3 perovskites does not cover
the heavy rare earths since some members of group II
RMnO3 (R " Y;Ho;Er; . . . ;Lu ) need to be synthesized
as perovskites under high pressure; and (b) for group I
RMnO3 (R " La; . . . ;Dy ), the available structural data
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FIG. 1 (color online). Transition temperatures versus R3!-ion
radius (IR) in the perovskite RMnO3 family. The TN values
shown by solid circles were obtained from magnetization mea-
surements in a magnetic field of 20 Oe. Open triangles mark the
temperature where the thermal conductivity #'T(shows an
anomaly. The JT transition temperatures TJT are taken from
Refs. [8–10]. See the text for the meaning of the shaded area.
Inset: Schematic drawing of the octahedral-site rotations and the
e-orbital ordering in a primary unit cell of the cubic perovskite
structure. The arrows point to axes for the unit cell of the
orthorhombic Pbnm structure. The unoccupied e orbital is
placed at site 2 along with the occupied orbital in the other sites
to illustrate the e1-O-e0 coupling in the ab plane.
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a key problem: metal or insulator?

photos from wikipedia

diamond silicon copper



independent particle picture
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low filling: 4+4  
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independent-electron picture
Pauli principle: each level is filled with max two electrons

even number of electrons per site  
might result in a gapped system (insulator)



independent-electron picture

odd number of electrons per site yield a system with no gap



independent-electron picture

metalinsulator



within this picture

photos from wikipedia

diamond silicon copper



almost empty: 2+2  

interacting particle picture



half filling (1 particle per site): 8+8  

independent particle picture



strongly correlated systems

Coulomb-induced metal-insulator transition 
heavy-Fermions 

unconventional superconductivity  
spin-charge separation 
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open challenges
high-temperature superconductivity

orbital order order-to-disorder

HgBa2CuO4

unconventional superconductivity

et al.13 In addition the tilt and rotation angles together with
the deformation of the octahedron basal plane are depicted.
At low temperature and for decreasing Sr concentration, one
passes from the undistorted K2NiF4 structure in pure
Sr2RuO4, space group I4/mmm , to a simple rotation
I41 /acd in agreement to the low lying rotation mode in the
pure compound.24 An estimated boundary is included in the
diagram in Fig. 10, though the transition is found to exhibit
order-disorder character. For a Sr concentration of x!1.5
only diffuse scattering representative of a short range rota-
tional distortion is present. For x!1.0 the rotational angle
already amounts to 10.8°; the rapid suppression of the struc-
tural distortion in Sr-rich samples appears to be extraordi-
nary it might hide some further effect. For much smaller Sr
content, near x!0.5, a combination of rotation and small tilt
is found. This is realized either in a subgroup of I41 /acd or
in Pbca . Further decrease of the Sr-content leads finally to

the combination of the rotation and the large tilt in the
S-Pbca phase. The Sr dependence of the tilt and rotation
angles is resumed in Fig. 11. Most interestingly all these
structural transitions are closely coupled to the physical
properties.
The purely rotational distortion should be related to the

c-axis resistivity since it modifies the overlap of the O orbit-
als in the c direction. This rotation phase becomes unstable
against the tilt for Sr concentrations lower than 0.5, since in
the single crystal with x!0.5 only a minor distortion has
been observed, which remained undetectable in the powder
sample. For the Sr concentration of x!0.2 we already find
tilt angles of about 7° at low temperature by powder neutron
diffraction. Near x!0.5 there is hence the quantum critical
point of the continuous tilt transition which coincides with a
maximum in the low temperature magnetic susceptibility.
For x!0.5, Nakatsuji et al. report a low-temperature mag-
netic susceptibility about 100 times larger than that of pure
Sr2RuO4.13 This suggests that the low-lying tilt modes are
strongly coupled to the magnetism. This interpretation is fur-
ther supported by the fact that in all magnetically ordered
structures x!0.0, x!0.1, and in Ca2RuO4.07, the spin direc-
tion is parallel to the tilt axis in spite of a different octahe-
dron shape as it is schematically drawn in Fig. 10. Decrease
of the Sr content below x!0.5 stabilizes the tilt and causes a
maximum in the temperature dependence of the susceptibil-
ity at T!TP , indicated in Fig. 10.13 TP , however, does not
coincide with the structural transition from I41 /acd to the
tilted phase but is much lower. We speculate that the suscep-
tibility maximum arises from an increase of antiferromag-
netic fluctuations induced by the tilt.
There is another anomalous feature in the temperature de-

pendent susceptibility of samples with 0.2"x"0.5: Nakat-
suji et al. find a strong magnetic anisotropy between the a
and b directions of the orthorhombic lattice.13 In relation to
the magnetic order in the insulating compounds it appears
again most likely that the tilt axis, which is parallel b, is the
cause of the huge anisotropy. However, there might be an

FIG. 10. Phase diagram of Ca2#xSrxRuO4 including the differ-
ent structural and magnetic phases and the occurrence of the
maxima in the magnetic susceptibility !Ref. 13". In the lower part,
we schematically show the tilt and rotation distortion of the octa-
hedra #only the basal square consisting of the Ru !small points" and
the O!1" !larger points" is drawn$ together with the elongation of
the basal planes. Note that all phases are metallic except for
S-Pbca .

FIG. 11. The Sr concentration dependence of the tilt %-O!1"
and %-O!2" and rotation angle & in Ca2#xSrxRuO4. The filled sym-
bols denote the results obtained at T!300 K !those with brackets
are obtained at T!400 K" and the open symbols are those at T
!10 K, the dashed line indicates the critical concentration below
which one observes the insulating S-Pbca phase at low tempera-
ture.
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the metal-insulator transition

crystals using Siemens !!2! and !!! diffractometers
with low- and high-temperature attachments. The metric re-
finement was carried out using 21 reflections. Resistivity was
measured with a standard four probe technique and magne-
tization with a commercial superconducting quantum inter-
ference device magnetometer. All results of x-ray diffraction
and energy dispersive x-ray "EDX# indicate that the crystals
studied are pure, without any second phase.
Shown in Fig. 1"a# is the temperature dependence of the

lattice parameters for 90"T"400K revealing a sharp tran-
sition near TM#357K from a low-temperature orthorhombic
phase to a high-temperature tetragonal phase. The results for
T"300K agree reasonably well with those described in Ref.
9, which were derived from neutron measurements on poly-
crystalline Ca2RuO4 for 11"T"300K. The phase transition
is well characterized by splittings of (l00) or "0k 0# peaks in
the temperature-dependent diffraction patterns. Below TM ,
the a axis decreases whereas the b axis increases. As tem-
perature decreases over the interval from 400 to 90 K, the a
axis contracts by 1.5% and the b axis expands by 3%. The
positive and negative thermal expansion coefficients derived
from the temperature dependence of the lattice parameters
not only indicate an increasingly strong orthorhombic distor-
tion in the Ru-O plane but also are conspicuously large, i.e.,
one order of magnitude larger than those for other related
compounds such as Sr2IrO4,11 and SrRuO3,12 CaRuO3,12 and
Sr2RuO4,13 which do not undergo first-order phase transi-
tions. The lattice volume is also substantially changed by
1.3% $see Fig. 1"b#%. It is therefore not surprising that such a
drastic structural change is even macroscopically visible:
The crystals shatter when heated through the transition tem-
perature. "The shattering makes the resistivity measurements
a difficult task: The measurements had to be performed on
extremely small residual pieces of shattered crystals which
are about 0.3$0.3$0.1mm3.)

Although the sensitivity of our powder x-ray diffraction
data is not sufficient to obtain a complete structural determi-
nation, the phase transition at T#357K is most likely caused
by a rotation and tilt of the RuO6 octahedra. According to the
results in Ref. 9, the presence of the orthorhombic distortion
below T#300K is due to a combination of a rotation of the
RuO6 octahedra around the c axis "11.8°# and a temperature-
dependent tilt of the Ru-O basal planes "11.2°–12.7°#. A
similar structural phase transition due to basal plane tilting is
also observed in isomorphic compounds La2NiO4 and
La2CuO4 although the orthorhombic distortion is much less
severe14 and there is no corresponding impact on the electri-
cal conductivity.
Figure 2 shows electrical resistivity, &(T), in the ab plane

as a function of temperature for 70"T"600K. "The resis-
tivity results up to room temperature as well as those of the
magnetic properties for 10"T"300K agree reasonably well
with those of Ref. 8 for the ‘‘S’’ phase.# An abrupt transition
from an insulating state to a nearly metallic state occurs at
TM#357K, simultaneous with the structural transition. The
sudden decrease in & by a factor of 3.5 at the transition
observed in several well-characterized crystals results in a
pronounced discontinuity "see inset# indicating a robust first-
order transition and unambiguously characterizes a discon-
tinuous alteration in the d-band structure typical of a metal-
insulator transition. Below the transition, &(T) rises rapidly,
increasing eight orders of magnitude over a relatively narrow
temperature interval. More remarkably, &(T) can be well fit
for 70"T"300K to variable-range hopping or the Efros-
Shklovskii mechanism given by &(T)#A exp(T0 /T)' with '
#1/2. We note a discontinuity in d&/dT at T(250K
$though not in &(T)%in the c-axis resistivity of the isostruc-
tural system (La1!xSrx)2CuO4 for x(0.10, presumably due
to a change in incoherent hopping.15
We note that the metallic state is not fully realized above

the transition. For this system, the ‘‘near’’ metallic behavior
may, in fact, be an artifact of the required method of mea-
surement, i.e., the temperature must be increased from room
temperature through TM , and some microcracking of the
sample occurs as evidenced by the inability to reproduce all
the data upon lowering the temperature. In lightly La-doped
samples, "Ca1!xLax)2RuO4 for x"0.05 "unpublished data#,
where TM is below room temperature, all samples show clear
metallic behavior as temperature is reduced through TM ,

FIG. 1. Temperature dependence of lattice parameters for 90
"T"400 K for the powdered single-crystal Ca2RuO4.

FIG. 2. Electrical resistivity &(T) for the ab plane as a function
of temperature for 70"T"600 K. Inset: Detail of the abrupt jump
in &(T) near the transition at TM#357 K.
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in RMnO3 Perovskites
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We report the refinement of x-ray powder diffraction together with magnetic and thermal conductivity
measurements made on the entire family of RMnO3 perovskites prepared by melt growth or under high
pressure. Analysis of the data has identified the origin of the transition from type-A to type-E magnetic
order as a competition between t-orbital and e-orbital spin-spin interactions within each Mn-O-Mn bond
in the (001) planes, the e-orbital interactions decreasing with decreasing R3!-ion size.
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From elastic-energy considerations, LaMnO3 was ini-
tially proposed to undergo a cooperative orbital ordering
below a TJT that places the e electron of high-spin
Mn3!:t3e1 in the (001) plane [1]. The predicted orbital
ordering and the consequent anisotropic magnetic cou-
plings in LaMnO3 were proven a few years ago by reso-
nance x-ray scattering [2] and neutron inelastic scattering
[3]. At T > TJT, the Jahn-Teller (JT) distortion remains
dynamic, as has been shown by x-ray absorption spectros-
copy [4], and the vibronic states are degenerate in the
(Q2; Q3) plane describing the Eg lattice-vibration breath-
ing modes of a MnO6=2 octahedron. Q2 is orthorhombic
andQ3 is tetragonal. The introduction of anharmonic terms
in the Hamiltonian changes the ‘‘Mexican hat’’ form of the
potential in the (Q2; Q3) plane into three wells separated by
!a " 120# in the (Q2; Q3) plane for an isolated molecular
complex. However, the cooperative JT distortion results in
a two-well potential in the case of LaMnO3 [5]. As pointed
out by Kanamori [6], the cooperative JT distortion in
orthorhombic LaMnO3 does not have the two potential
wells in exactly the directions of !a " 2"=3 and 4"=3
in the (Q2; Q3) plane as predicted from the classic 120#

model, but they are leaning towards the $Q2 axis. This
shift is caused by a mixing of the JT distortion modes and
an intrinsic octahedral-site distortion in the orthorhombic
perovskite structure [7]. On the other hand, the overlap
integral entering the perturbation formula J% 4b2=U of
the superexchange spin-spin interaction depends on the
(180# &!) Mn-O-Mn bond angle, which decreases mono-
tonically as the ionic radius (IR) of rare-earth R3! ion
decreases. In comparison with the perovskite RFeO3 fam-
ily where Fe3! is not JT active, the phase diagram of the
RMnO3 perovskites is more complex as is seen in Fig. 1.
Although the perovskite RMnO3 family shows a gradual
structural change as IR decreases, the orbital ordering
remaining the same as that in LaMnO3 below TJT, the
phase diagram is divided sharply into three regions:
(1) type-A spin order [ferromagnetic (001) planes coupled
antiparallel] with a TN that is extremely sensitive to IR,
(2) a phase without classic spin ordering, and (3) type-E
spin order [alternating ferromagnetic and antiferromag-

netic coupling in (001) planes] below an IR-independent
TN . How the JT and the intrinsic octahedral-site distortions
influence the magnetic coupling and whether the evolution
of the octahedral-site distortions and the Mn-O-Mn bond
angle as a function of IR are sufficient to account for the
complicated phase diagram of the RMnO3 perovskites
remain open questions for two reasons: (a) the existing
phase diagram of the RMnO3 perovskites does not cover
the heavy rare earths since some members of group II
RMnO3 (R " Y;Ho;Er; . . . ;Lu ) need to be synthesized
as perovskites under high pressure; and (b) for group I
RMnO3 (R " La; . . . ;Dy ), the available structural data
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FIG. 1 (color online). Transition temperatures versus R3!-ion
radius (IR) in the perovskite RMnO3 family. The TN values
shown by solid circles were obtained from magnetization mea-
surements in a magnetic field of 20 Oe. Open triangles mark the
temperature where the thermal conductivity #'T(shows an
anomaly. The JT transition temperatures TJT are taken from
Refs. [8–10]. See the text for the meaning of the shaded area.
Inset: Schematic drawing of the octahedral-site rotations and the
e-orbital ordering in a primary unit cell of the cubic perovskite
structure. The arrows point to axes for the unit cell of the
orthorhombic Pbnm structure. The unoccupied e orbital is
placed at site 2 along with the occupied orbital in the other sites
to illustrate the e1-O-e0 coupling in the ab plane.
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how do we describe these phenomena?
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where to learn this: lectures SS



1. build minimal models 
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DFT Kohn-Sham ab-initio Hamiltonian
very good approach for weakly correlated systems 

where to learn this: lectures SS



density-functional theory
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Nobel Prize in Chemistry (1998)

Walter Kohn 

Kohn-Sham equations

understand and predict properties 
of solids, molecules, biological 
systems, geological systems...

Kohn-Sham auxiliary Hamiltonian
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(in practice: LDA,GGA,…)

where to learn this: lectures SS



density functional theory

Nobel Prize in Chemistry (1998)

Walter Kohn 
understand and predict properties of solids, 
molecules, biological systems, geological systems...

homogeneous electron gas

Exc[n] =

Z
dr✏LDA

xc (n(r))n(r)

The practical DFT-based Great Dream Machine
weakly correlated systems



what do the parameters contain?

vR(r) = �
X

↵

Z↵

|r �R↵|
+

Z
dr0 n(r0)

|r � r0| +
�Exc[n]

�n
= ven(r) + vH(r) + vxc(r)

Hartree

exchange-correlationpotential

ta,b = �
Z

dr a(r)


�1

2
r2 + vR(r)

�
 b(r),

<latexit sha1_base64="+FLg6jAxcmszeqidC7GE+B5Bil0="></latexit><latexit sha1_base64="+FLg6jAxcmszeqidC7GE+B5Bil0="></latexit><latexit sha1_base64="+FLg6jAxcmszeqidC7GE+B5Bil0="></latexit><latexit sha1_base64="+FLg6jAxcmszeqidC7GE+B5Bil0="></latexit>

Nobel Prize in Chemistry (1998)

Walter Kohn 

Kohn-Sham equations

understand and predict properties 
of solids, molecules, biological 
systems, geological systems...



“the labours and controversies . . . in understanding 
the chemical binding in materials had finally come to 
a resolution in favour of ‘LDA’ and the modern 
computer” (1998)

(RO Jones, DFT for emergents, Autumn School on Correlated Electrons 2013) 

a big success, new challenges

but “very deep problems” remain (1998)

origin of failures: one-electron picture



more and different



can I cure this ? No!

metalinsulator

origin of failures: one-electron picture



half filling (1 particle per site): 8+8  

find alternative one-electron pictures?

?



HgBa2CuO4
metal



electron counting argument
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half filling (1 particle per site): 8+8  

find alternative one-electron pictures?

?
modify shape?



electron counting argument
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how could I open a gap?
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works but magnetic…



can I cure this ? No!

metalinsulator

origin of failures: one-electron picture



we need a new method



1. minimal models that capture the phenomenon
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Hubbard model at half filling

minimal model for metal-insulator transition

local Coulomb produce strong correlation effects



Hubbard model at half-filling

hoppings atomicatomic
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1. t=0: collection of atoms, insulator 

2. U=0: half-filled band, metal



2. find approximate methods that work

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004)

metallic phase

dynamical mean-field theory

insulating phase

transition



Dynamical Mean-Field Theory (DMFT)



3. make it more realistic: LDA+DMFT
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basis models

method extensions
where to learn this: lectures SS+ autumn school



we need supercomputers!
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FIG. 4. Convergence of the Krylov approximation |ψ(τ )⟩r to
|ψ(τ )⟩ = e− (Hloc− E0)τ |ψ⟩ for a representative test case (five-orbital
model, half filling). The figure shows the difference #(r) =
||ψ(τ )⟩r − |ψ(τ )⟩|. Symbols (in order of increasing size) represent
τ = 0.005, 0.05, 0.5, 5, and 100.

window and truncate adaptively the outer bracket of the trace.
This further reduces the CPU time.

The performance of our CT-HYB QMC solver (Krylov and
segment version) on the Jülich BlueGene/Q, and comparison
with Hirsch-Fye QMC, is shown in Fig. 5.

3. Green’s function and occupation matrix

The partition function (2) can be seen as the sum over all
configurations c = {αiτi ,ᾱi τ̄i ,n} in imaginary time and flavors.
In a compact form,

Z =
∑

c

⟨Z⟩c =
∑

c

wc ∼
∑

{c}
sign(wc),

where in the last term the sum is over a sequence of
configurations {c} sampled by the Monte Carlo approach
using |wc| as the probability of configuration c. In the
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FIG. 5. (Color online) Scaling of our CT-HYB QMC
LDA + DMFT code on BlueGene/Q. Black line: Hirsch-Fye (HF)
solver, two orbitals. The dark and light lines are CT-HYB calculations.
Dark lines: Krylov solver with truncation of the local trace (open
symbols, K-t) and without (solid symbols, K). Results are for two
(circles) and three (triangles) orbitals. Light lines: Segment solver (S),
five-band model (pentagons). All points correspond to calculations
of high quality (and with comparable error bars) for the systems
considered in this work. For β = 70 (∼ 165 K) the five-orbital segment
solver is about as fast the three-orbital Krylov with trace truncation or
the two-orbital Krylov without trace truncation, and it is remarkably
faster than the two-orbital HF solver.

segment solver approach, we parametrize the configurations
by intervals [0,β) (time line), occupied by a sequence of
creators and annihilators, which define segments on the time
line. The basic Monte Carlo updates are addition and removal
of segments, antisegments, or complete lines.8 In the Krylov
solver approach we use the insertion and removal of pairs
of creation and annihilation operators9,10 as basic updates.
In addition, we shift operators in time8,10 and exchange the
configurations of blocks or flavors39 (global moves). Finally,
a generic observable O can then be obtained as a Monte Carlo
average:

O ∼
∑

{c}⟨O⟩c sign(wc)
∑

{c} sign(wc)
,

where ⟨O⟩c is the value of the observable for configuration c,
and c runs over the configurations visited with probability |wc|
during the sampling. The average expansion order increases
linearly with the inverse temperature. For the case of YTiO3,
at ∼ 40 K, the average expansion order is n ∼ 40.

We calculate the Green’s function matrix in two ways,
directly8,12 and via Legendre polynomials.40 In the first
approach, the Green’s function matrix is obtained as a Monte
Carlo average with ⟨O⟩c = ⟨Gαᾱ⟩c, and

⟨Gαᾱ⟩c =
Nb∑

b=1

nb∑

i,j=1

#(τ,τbj − τ̄bi)[M (nb)]bj,biδαbj αδᾱbi ᾱ.

Here M (n) = [F (n)]− 1 is the inverse of the hybridization-
function matrix, which we update at each accepted move, while
# is given by

#(τ,τ ′) = − 1
β

{
δ(τ − τ ′) τ ′ > 0,

− δ(τ − (τ ′ + β)) τ ′ < 0,

and the δ function is discretized. In the second approach, we
calculate the Legendre coefficients ⟨O⟩c = ⟨Gl

αᾱ⟩c, with

⟨Gl
αᾱ⟩c =

Nb∑

b=1

nb∑

i,j=1

Pl(τbj − τ̄bi)[M (nb)]bj,biδαbj αδᾱbi ᾱ,

Pl(τ ) = −
√

2l + 1
β

{
pl(x(τ )), τ > 0,
− pl(x(τ + β)), τ < 0,

where pl(x) is a Legendre polynomial of rank l, with x(τ ) =
2τ/β − 1, and we reconstruct the Green’s function matrix from

Gαᾱ(τ ) =
∞∑

l=0

√
2l + 1
β

pl(x(τ ))Gl
αᾱ.

Concerning occupations, in the segment solver we calculate
them from the total length of the segments of the different
flavors;8 in the Krylov solver we obtain them in two ways,
directly from the Green’s function and by explicitly inserting
the occupation number operator at the center of the oper-
ator sequence (τ = β/2) and calculating the corresponding
trace.9,11 The off-diagonal elements of the local occupation
matrix ⟨c†αcᾱ⟩, which cannot be obtained by inserting the
corresponding operators at τ = β/2,41 are extracted from the
Green’s function matrix only.
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a real-system case: VOMoO4
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Amin Kiani and Eva Pavarini, Phys. Rev. B 94, 075112 (2016)
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what can we do? 

orbital order

conductivity
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FIG. 6. VOMoO4: Static magnetic susceptibility χ (q; 0)/χA(0)
in the qx,qy plane for representative values of qz, T ∼ 380 K (T ≫
TN ) and U = 5 eV; χA(0) ∼ µ2

eff/kBT is the atomic susceptibility
in the local spin (large βU ) limit. For each value of qz, the top
panel shows the result without vertex correction and the bottom panel
that with vertex correction. The special points in the qx,qy plane are
#1 = (2π,0), X = (π,0), and M = (π,π ).

approximately given by the expression obtained by replacing
in the Green functions in Eq. (3) the self-energy with its atomic
limit, with U renormalized by a factor r0,

%(iωn) ∼ r2
0 U 2

4
1

iωn

.

The factor r0 can be obtained by fitting the actual self-energy.
After performing analytically the Matsubara sums, we find, in
the large βU limit (for more details see the Appendix)

χ0(q; 0) ∼ µ2
eff

U

[
1 − 1

2U

(
Jr0 (0 ) + 1

2
Jr0 (q)

)]
, (5)

where

Jr0 (q) = (χ0(q; 0 ))−1 −(χ0(0))−1 = JSPT(q)/2r2
0 ,

and µeff = gµB

√
S(S + 1)/3, where S is the effective local

spin (for fully localized moments, S = 1/2). In this expression
JSPT(q) is the magnetic coupling obtained via many-body
second-order perturbation theory, accounting, however, not
only for J1 and J2 but also for long range exchange couplings.

It is given by

JSPT(q) ∼ 4J1 cos
qx

2
cos

qy

2

[

1 + 2
J1z

J1
cos qz +

(
J1z

J1

)2
]1/2

+ 2J2(cos qx + cos qy)

+ 2Jz cos qz + 4J2z(cos qx + cos qy) cos qz + · · · ,

(6)

where Ji ∼ 4t2
i /U . For VOMoO4 we find that the renor-

malization factor r0 ∼ 1. The expression Eq. (5) shows that
χ0(q; 0) does not exhibit the Curie-Weiss temperature behavior
associated with a local-moment system, and the effective
magnetic exchange coupling extracted from χ0(q; 0) is about
a factor 2 smaller than in second-order perturbation theory.
The DMFT vertex correction has several effects. First, via
the Bethe-Salpeter equation it enhances the susceptibility in
a slightly nonuniform way. Then, it yields a high-temperature
Curie-Weiss-like behavior, so that χ (q; 0) ∼ µ2

eff/(T −Tq),
where Tq is a generalized Curie-Weiss temperature. It follows
from this that we can define the magnetic coupling as J (q) =
−Tq/µ

2
eff . In first approximation we find J (q) ∼ Jr (q) and the

value of the renormalization factor is reduced from r0 ∼ 1
to r ∼ 0.7. Thus our results show that for VOMoO4, in
first approximation, Jr (q) ∼ JSPT(q). Furthermore, we find
that the local susceptibility is close to the atomic magnetic
susceptibility, and the effective static local vertex #(0) is
approximately given by

#(0) ∼ 1
µ2

eff

[
U

(
1 + 1

2U
Jr (0 )

)
−kBT

]
.

Remarkably, in the large temperature limit the r factor can
be estimated expanding the Bethe-Salpeter equation (in the
matrix form) around the atomic limit

χ (q; 0) ∼ χA(0) − r2
0

r2
χA(0) Jr0 (q) χA(0),

where

r2
0

r2
∼ 1

β2

∑

nn′

[χA(0)Jr0 (q)χA(0)]n,n′

χA(0)Jr0 (q)χA(0)
(7)

and
[
Jr0 (q)

]
n,n

= [(χ0(q; 0))−1 −(χ0(0))−1]n,n.

The analytic expression of the atomic susceptibility matrix
is given for completeness in the Appendix. This yields for
VOMoO4 a renormalization factor r ∼ 0.7, close to the actual
value obtained from fitting the DMFT data.

The susceptibility of Li2VOSiO4 is shown in Fig. 7. The
conclusions are similar as for VOMoO4; the susceptibility
jumps from about zero without vertex correction to about 1
(in units of the atomic susceptibility) with vertex correction.
The renormalization parameters are slightly larger than in
VOMoO4, r0 ∼ 1.1 and r ∼ 0.84. For both Li2VOSiO4 and
VOMoO4 we find that at q = qX ≡ (0,π,π/2) the magnetic
susceptibility χ (qX; 0) ∼ χA(0) ∼ µ2

eff/kBT , indicating that
J (qX) is basically zero.
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many fundamental problems still open!



high-temperature superconductivity

orbital order order-to-disorder

HgBa2CuO4

unconventional superconductivity

et al.13 In addition the tilt and rotation angles together with
the deformation of the octahedron basal plane are depicted.
At low temperature and for decreasing Sr concentration, one
passes from the undistorted K2NiF4 structure in pure
Sr2RuO4, space group I4/mmm , to a simple rotation
I41 /acd in agreement to the low lying rotation mode in the
pure compound.24 An estimated boundary is included in the
diagram in Fig. 10, though the transition is found to exhibit
order-disorder character. For a Sr concentration of x!1.5
only diffuse scattering representative of a short range rota-
tional distortion is present. For x!1.0 the rotational angle
already amounts to 10.8°; the rapid suppression of the struc-
tural distortion in Sr-rich samples appears to be extraordi-
nary it might hide some further effect. For much smaller Sr
content, near x!0.5, a combination of rotation and small tilt
is found. This is realized either in a subgroup of I41 /acd or
in Pbca . Further decrease of the Sr-content leads finally to

the combination of the rotation and the large tilt in the
S-Pbca phase. The Sr dependence of the tilt and rotation
angles is resumed in Fig. 11. Most interestingly all these
structural transitions are closely coupled to the physical
properties.
The purely rotational distortion should be related to the

c-axis resistivity since it modifies the overlap of the O orbit-
als in the c direction. This rotation phase becomes unstable
against the tilt for Sr concentrations lower than 0.5, since in
the single crystal with x!0.5 only a minor distortion has
been observed, which remained undetectable in the powder
sample. For the Sr concentration of x!0.2 we already find
tilt angles of about 7° at low temperature by powder neutron
diffraction. Near x!0.5 there is hence the quantum critical
point of the continuous tilt transition which coincides with a
maximum in the low temperature magnetic susceptibility.
For x!0.5, Nakatsuji et al. report a low-temperature mag-
netic susceptibility about 100 times larger than that of pure
Sr2RuO4.13 This suggests that the low-lying tilt modes are
strongly coupled to the magnetism. This interpretation is fur-
ther supported by the fact that in all magnetically ordered
structures x!0.0, x!0.1, and in Ca2RuO4.07, the spin direc-
tion is parallel to the tilt axis in spite of a different octahe-
dron shape as it is schematically drawn in Fig. 10. Decrease
of the Sr content below x!0.5 stabilizes the tilt and causes a
maximum in the temperature dependence of the susceptibil-
ity at T!TP , indicated in Fig. 10.13 TP , however, does not
coincide with the structural transition from I41 /acd to the
tilted phase but is much lower. We speculate that the suscep-
tibility maximum arises from an increase of antiferromag-
netic fluctuations induced by the tilt.
There is another anomalous feature in the temperature de-

pendent susceptibility of samples with 0.2"x"0.5: Nakat-
suji et al. find a strong magnetic anisotropy between the a
and b directions of the orthorhombic lattice.13 In relation to
the magnetic order in the insulating compounds it appears
again most likely that the tilt axis, which is parallel b, is the
cause of the huge anisotropy. However, there might be an

FIG. 10. Phase diagram of Ca2#xSrxRuO4 including the differ-
ent structural and magnetic phases and the occurrence of the
maxima in the magnetic susceptibility !Ref. 13". In the lower part,
we schematically show the tilt and rotation distortion of the octa-
hedra #only the basal square consisting of the Ru !small points" and
the O!1" !larger points" is drawn$ together with the elongation of
the basal planes. Note that all phases are metallic except for
S-Pbca .

FIG. 11. The Sr concentration dependence of the tilt %-O!1"
and %-O!2" and rotation angle & in Ca2#xSrxRuO4. The filled sym-
bols denote the results obtained at T!300 K !those with brackets
are obtained at T!400 K" and the open symbols are those at T
!10 K, the dashed line indicates the critical concentration below
which one observes the insulating S-Pbca phase at low tempera-
ture.
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the metal-insulator transition

crystals using Siemens !!2! and !!! diffractometers
with low- and high-temperature attachments. The metric re-
finement was carried out using 21 reflections. Resistivity was
measured with a standard four probe technique and magne-
tization with a commercial superconducting quantum inter-
ference device magnetometer. All results of x-ray diffraction
and energy dispersive x-ray "EDX# indicate that the crystals
studied are pure, without any second phase.
Shown in Fig. 1"a# is the temperature dependence of the

lattice parameters for 90"T"400K revealing a sharp tran-
sition near TM#357K from a low-temperature orthorhombic
phase to a high-temperature tetragonal phase. The results for
T"300K agree reasonably well with those described in Ref.
9, which were derived from neutron measurements on poly-
crystalline Ca2RuO4 for 11"T"300K. The phase transition
is well characterized by splittings of (l00) or "0k 0# peaks in
the temperature-dependent diffraction patterns. Below TM ,
the a axis decreases whereas the b axis increases. As tem-
perature decreases over the interval from 400 to 90 K, the a
axis contracts by 1.5% and the b axis expands by 3%. The
positive and negative thermal expansion coefficients derived
from the temperature dependence of the lattice parameters
not only indicate an increasingly strong orthorhombic distor-
tion in the Ru-O plane but also are conspicuously large, i.e.,
one order of magnitude larger than those for other related
compounds such as Sr2IrO4,11 and SrRuO3,12 CaRuO3,12 and
Sr2RuO4,13 which do not undergo first-order phase transi-
tions. The lattice volume is also substantially changed by
1.3% $see Fig. 1"b#%. It is therefore not surprising that such a
drastic structural change is even macroscopically visible:
The crystals shatter when heated through the transition tem-
perature. "The shattering makes the resistivity measurements
a difficult task: The measurements had to be performed on
extremely small residual pieces of shattered crystals which
are about 0.3$0.3$0.1mm3.)

Although the sensitivity of our powder x-ray diffraction
data is not sufficient to obtain a complete structural determi-
nation, the phase transition at T#357K is most likely caused
by a rotation and tilt of the RuO6 octahedra. According to the
results in Ref. 9, the presence of the orthorhombic distortion
below T#300K is due to a combination of a rotation of the
RuO6 octahedra around the c axis "11.8°# and a temperature-
dependent tilt of the Ru-O basal planes "11.2°–12.7°#. A
similar structural phase transition due to basal plane tilting is
also observed in isomorphic compounds La2NiO4 and
La2CuO4 although the orthorhombic distortion is much less
severe14 and there is no corresponding impact on the electri-
cal conductivity.
Figure 2 shows electrical resistivity, &(T), in the ab plane

as a function of temperature for 70"T"600K. "The resis-
tivity results up to room temperature as well as those of the
magnetic properties for 10"T"300K agree reasonably well
with those of Ref. 8 for the ‘‘S’’ phase.# An abrupt transition
from an insulating state to a nearly metallic state occurs at
TM#357K, simultaneous with the structural transition. The
sudden decrease in & by a factor of 3.5 at the transition
observed in several well-characterized crystals results in a
pronounced discontinuity "see inset# indicating a robust first-
order transition and unambiguously characterizes a discon-
tinuous alteration in the d-band structure typical of a metal-
insulator transition. Below the transition, &(T) rises rapidly,
increasing eight orders of magnitude over a relatively narrow
temperature interval. More remarkably, &(T) can be well fit
for 70"T"300K to variable-range hopping or the Efros-
Shklovskii mechanism given by &(T)#A exp(T0 /T)' with '
#1/2. We note a discontinuity in d&/dT at T(250K
$though not in &(T)%in the c-axis resistivity of the isostruc-
tural system (La1!xSrx)2CuO4 for x(0.10, presumably due
to a change in incoherent hopping.15
We note that the metallic state is not fully realized above

the transition. For this system, the ‘‘near’’ metallic behavior
may, in fact, be an artifact of the required method of mea-
surement, i.e., the temperature must be increased from room
temperature through TM , and some microcracking of the
sample occurs as evidenced by the inability to reproduce all
the data upon lowering the temperature. In lightly La-doped
samples, "Ca1!xLax)2RuO4 for x"0.05 "unpublished data#,
where TM is below room temperature, all samples show clear
metallic behavior as temperature is reduced through TM ,

FIG. 1. Temperature dependence of lattice parameters for 90
"T"400 K for the powdered single-crystal Ca2RuO4.

FIG. 2. Electrical resistivity &(T) for the ab plane as a function
of temperature for 70"T"600 K. Inset: Detail of the abrupt jump
in &(T) near the transition at TM#357 K.
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We report the refinement of x-ray powder diffraction together with magnetic and thermal conductivity
measurements made on the entire family of RMnO3 perovskites prepared by melt growth or under high
pressure. Analysis of the data has identified the origin of the transition from type-A to type-E magnetic
order as a competition between t-orbital and e-orbital spin-spin interactions within each Mn-O-Mn bond
in the (001) planes, the e-orbital interactions decreasing with decreasing R3!-ion size.
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From elastic-energy considerations, LaMnO3 was ini-
tially proposed to undergo a cooperative orbital ordering
below a TJT that places the e electron of high-spin
Mn3!:t3e1 in the (001) plane [1]. The predicted orbital
ordering and the consequent anisotropic magnetic cou-
plings in LaMnO3 were proven a few years ago by reso-
nance x-ray scattering [2] and neutron inelastic scattering
[3]. At T > TJT, the Jahn-Teller (JT) distortion remains
dynamic, as has been shown by x-ray absorption spectros-
copy [4], and the vibronic states are degenerate in the
(Q2; Q3) plane describing the Eg lattice-vibration breath-
ing modes of a MnO6=2 octahedron. Q2 is orthorhombic
andQ3 is tetragonal. The introduction of anharmonic terms
in the Hamiltonian changes the ‘‘Mexican hat’’ form of the
potential in the (Q2; Q3) plane into three wells separated by
!a " 120# in the (Q2; Q3) plane for an isolated molecular
complex. However, the cooperative JT distortion results in
a two-well potential in the case of LaMnO3 [5]. As pointed
out by Kanamori [6], the cooperative JT distortion in
orthorhombic LaMnO3 does not have the two potential
wells in exactly the directions of !a " 2"=3 and 4"=3
in the (Q2; Q3) plane as predicted from the classic 120#

model, but they are leaning towards the $Q2 axis. This
shift is caused by a mixing of the JT distortion modes and
an intrinsic octahedral-site distortion in the orthorhombic
perovskite structure [7]. On the other hand, the overlap
integral entering the perturbation formula J% 4b2=U of
the superexchange spin-spin interaction depends on the
(180# &!) Mn-O-Mn bond angle, which decreases mono-
tonically as the ionic radius (IR) of rare-earth R3! ion
decreases. In comparison with the perovskite RFeO3 fam-
ily where Fe3! is not JT active, the phase diagram of the
RMnO3 perovskites is more complex as is seen in Fig. 1.
Although the perovskite RMnO3 family shows a gradual
structural change as IR decreases, the orbital ordering
remaining the same as that in LaMnO3 below TJT, the
phase diagram is divided sharply into three regions:
(1) type-A spin order [ferromagnetic (001) planes coupled
antiparallel] with a TN that is extremely sensitive to IR,
(2) a phase without classic spin ordering, and (3) type-E
spin order [alternating ferromagnetic and antiferromag-

netic coupling in (001) planes] below an IR-independent
TN . How the JT and the intrinsic octahedral-site distortions
influence the magnetic coupling and whether the evolution
of the octahedral-site distortions and the Mn-O-Mn bond
angle as a function of IR are sufficient to account for the
complicated phase diagram of the RMnO3 perovskites
remain open questions for two reasons: (a) the existing
phase diagram of the RMnO3 perovskites does not cover
the heavy rare earths since some members of group II
RMnO3 (R " Y;Ho;Er; . . . ;Lu ) need to be synthesized
as perovskites under high pressure; and (b) for group I
RMnO3 (R " La; . . . ;Dy ), the available structural data
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FIG. 1 (color online). Transition temperatures versus R3!-ion
radius (IR) in the perovskite RMnO3 family. The TN values
shown by solid circles were obtained from magnetization mea-
surements in a magnetic field of 20 Oe. Open triangles mark the
temperature where the thermal conductivity #'T(shows an
anomaly. The JT transition temperatures TJT are taken from
Refs. [8–10]. See the text for the meaning of the shaded area.
Inset: Schematic drawing of the octahedral-site rotations and the
e-orbital ordering in a primary unit cell of the cubic perovskite
structure. The arrows point to axes for the unit cell of the
orthorhombic Pbnm structure. The unoccupied e orbital is
placed at site 2 along with the occupied orbital in the other sites
to illustrate the e1-O-e0 coupling in the ab plane.
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many fundamental problems still open!



what can be a seminar topic?



topics for seminars

• theory: the many-body problem 
• model building: tight-binding theory  
• model building: Wannier functions 
• model building: DFT/LDA bands 
• model building: Coulomb tensor 
• model solving: DMFT self-consistent loop 
• model solving: Hartree-Fock approximation  
• model solving: Monte Carlo method 
• model solving: 2-site problem, DMFT vs exact solution 
• physics: the metal-insulator transition 



seminar example

• model building: tight-binding theory 

• atomic orbitals 
• definition of hopping integrals  and overlaps

• the case of a linear chain

• the case of a square lattice: HTSCs

• the case of an hexagonal lattice: graphene

• motivation 

• outlook: build model for real material
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• model solving: Monte Carlo method 

• random numbers  and random number generators

• statistical errors

• application: integrals

• applications: Ising model
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• outlook: quantum Monte Carlo
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• interest in physics 
• interest in quantum mechanics 
• interest in computational science 
• interest in mathematics

• motivation 

• knowledge (for physics focus)  
• functions, analysis 
• linear algebra 
• basic statistical mechanics 
• one programming language 
• quantum mechanics

• knowledge (for seminar)  
• functions, analysis 
• linear algebra 
• understand programming  
• basics quantum mechanics
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Computational Many-Body Physics

http://iffwww.iff.kfa-juelich.de/~pavarini/SS/lecture.html

• Solid state physics as many-body problem 
• Second quantization 
• Electron gas 
• Hubbard model and t-J model 
• Two-site Hubbard model 
• Matsubara formalism and many-body perturbation theory 
• Green function and self-energy 
• Mean-field/Hartree-Fock method 
• Fermi-liquid theory 
• Dynamical mean field theory (DMFT) 
• Mott transition
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Correlated Electrons

Many-electrons in atoms, ions, and molecules 
direct exchange and Hund’s rules 

kinetic exchange and antiferromagnetism 

crystal-field theory 
Symmetries in solids 

JahnTeller effect 
Mott transition and the Hubbard model 

second quantization and configuration representation 

limiting cases of the Hubbard model 
Mott insulators 

t-J model and orbital ordering
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