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2.2 Robert O. Jones

1 Introduction

Density Functional Theory:

“Almost the right answer, for almost the right reason, at almost the right price,
for almost all systems of interest”

(J.P. Perdew) [1, p. 194]

There will be people in the audience who will say immediately that “strongly correlated” sys-
tems must be exceptions, since they are often viewed as those that are not described well by
electron density functional theory (DFT) theory. Many seminars and publications on the sub-
ject mention at the outset the widespread use of DFT in materials, and they may even quote
Walter Kohn: “For periodic solids it is sometimes referred to as the standard model” [2]. It is
then a short step to listing the systems where DF results with standard approximations are un-
acceptable (a “metallic” transition metal oxide insulator, almost anything to do with rare earth
or actinide elements, ... ), emphasizing the importance of describing such “strongly correlated”
materials correctly [3]." DFT is nevertheless an essential part of this school. It is used widely in
materials science and chemistry and provides useful results for countless systems for which the
exact wave function cannot be computed. We shall see that physical insight can be obtained and
why approximations used in DF calculations can give sensible answers far from their regions
of obvious validity. Some features of the results, particularly the orbitals, are essential input
for “strongly correlated” methods. We shall also see that improvements in the approximations
needed in density functional calculations are now closing the distance to the strongly correlated
world.

The origins of DF theory go back to the early years of quantum mechanics in the late 1920s.
Thomas [4] and Fermi [5] recognized the electron density as a basic variable, and Dirac [6]
showed already in 1930 that the state of an atom can be determined completely within Hartree-
Fock theory by its one-particle reduced density matrix; we do not need to specify the wave
function. We follow here the early history of density-related methods to the single-particle
equations of Kohn and Sham in 1965. In its modern form, the DF formalism shows that ground
state properties of a system of electrons in an external field can be determined, in principle,
from a knowledge of the density distribution n(r) alone. Much of the work in materials science
and chemistry focuses on the structure and cohesive energies and on a property for which DF
calculations are particularly valuable: the total energy £ of a system of electrons in the presence
of ions located at R;.

Accurate calculations of the entire energy surface £(Rj) are possible only for systems with very
few atoms, and this function generally has vast numbers of maxima and minima at unknown
locations. The lowest energy, however, corresponds to the ground state structure, and paths
between minima are essential to our studies of chemical reactions, including their activation

'An example can be found in the Preface of the 2012 Autumn School: “Density functional theory (DFT)
is considered the Standard Model of solid state physics. The state-of-the-art approximations to DFT, the local-
density approximation (LDA) or its simple extensions, fail, however, even qualitatively, for strongly correlated
systems.”



DFT for the Sceptical 2.3

barriers. When I read the autobiography of Francis Crick [7], I was taken by his observation
“If you want to understand function, study structure.”

and have used it ever since. This relationship may be self-evident to molecular biologists and
most chemists, but it is also true in other areas. The DF approach allows us to calculate E'(Ry),
and hence the structure and many related properties, without using experimental input. If you
are more interested in “real materials” than in mathematical models, this is a crucial advantage
for strongly correlated materials as well.

Density functional theory is seen today as “the workhorse of quantum chemistry and materials
science” [8], and it remains uncertain as to why it was resisted by the chemical community
with great stubbornness for several decades. I have written about this matter elsewhere [9, 10]
and shall not discuss it further here. However, a recent conference (Stockholm, 7-8 November
2024) was devoted to this question, and the seminars of leading DFT experts (Perdew, Baerends,
Becke, Burke, Grimme, Head-Gordon, Savin,...) can be viewed online [11]. If you want to find
out what really happened in the bleak years until DFT broke through in chemistry, watch [12].

There are many books and review articles on density functional theory, and I mention just two
where I was involved [10, 13]. A long article with 70 authors, including many who played
important roles in the development of DFT, surveys many important problems [8]. The focus
in the present article is on electron density functional theory; DF methods in classical systems
and nuclei are surveyed briefly in [10]. Symmetry breaking in density functional theory, in
combination with the continuing improvement in approximate functional forms, may provide a
direct link to the strongly correlated world and is discussed in Sec. 6.

2 The electron density as basic variable

The development of quantum mechanics after its introduction in 1925 was extremely rapid.
Methods for finding approximate solutions of the Schrodinger equation followed soon after the
equations were published in 1926 and have had a profound effect on chemistry and condensed
matter physics ever since.

The “Hartree approximation” to the many-electron wave function is a product of single-particle
functions,

W(ry,ra,...) =Yi(r1) - n(ry) (1
where each 1;(r;) satisfies a one-electron Schrodinger equation with a potential term arising
from the average field of the other electrons. Hartree [14] introduced the idea of a “self-
consistent field”, with specific reference to the core and valence electrons, but the approximation
(1) is not mentioned in any of his papers. Slater [15] and Fock [16] recognized immediately,
however, that the product wave function (1) in conjunction with the variational principle led to
a generalization of the method that would apply to systems more complex than atoms. They
showed that replacing (1) by a determinant of such functions [15, 16] led to equations that were
not much more complicated than those of Hartree, while satisfying the Pauli exclusion prin-
ciple. These determinantal functions, which had been used in discussions of atoms [17] and
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ferromagnetism [18], are known today as “Slater determinants”, and the resulting “Hartree-
Fock equations” have formed the basis of most discussions of atomic and molecular structure
since.

In 1929 Dirac wrote [19]:

“The general theory of quantum mechanics is now almost complete... The underlying
physical laws necessary for the mathematical theory of a large part of physics and the whole
of chemistry are thus completely known, and the difficulty is only that the exact application
of these laws leads to equations much too complicated to be soluble. It therefore becomes
desirable that approximate practical methods of applying quantum mechanics should be de-
veloped, which can lead to an explanation of the main features of complex atomic systems

without too much computation.”

I cannot think of a better short description of density functional theory than an “approximate
practical method of applying quantum mechanics” to explain “complex atomic systems”. I was
not the only one who ignored the point “without too much computation.”

Dirac [19] also sought to improve the model of Thomas [4] and Fermi [5] for calculating atomic
properties based purely on the electron density n(r). In the first “density functional theory”,
Thomas and Fermi assumed that the electrons form a homogeneous electron gas satisfying
Fermi statistics and the kinetic energy has a simple dependence on the density n(r). The TF
equations are:

5 2
gC’kTL(I')g —+ 62/dr/ —_— + ‘/ext(r) + A= 07 (2)

v —r'|

2

where C}, = 3h%(372)? /(10m), Ve is the external potential, and ) is the Lagrange multiplier
related to the constraint of constant particle number. Dirac noted the necessity of incorporating
“exchange” phenomena, as in the Hartree-Fock approach [19], and he included these effects in
the “Thomas atom” [6] by means of the potential

ybirac — (%) (37r2n(r))%. (3)
This term was derived for a homogeneous gas of density n and should be valid for weak spatial
variations of n(r).> The modified TF equation is often referred to as the “Thomas-Fermi-Dirac”
equation.

The Thomas-Fermi method is a genuine “density functional” theory, in that the energy is related
directly to the electron density. With its extensions, it provides a rough description of the
charge density and the electrostatic potential of atoms, and its mathematical properties have
attracted considerable attention [20,21]. However, it has severe deficiencies: The charge density
is infinite at the nucleus and decays as r % not exponentially, far from it. Teller [22] and others
also showed that TF theory does not bind atoms to form molecules or solids, which rules out its

use in chemistry or materials science. There is also no shell structure in the TF atom, so that the

2The exchange energy in a homogeneous (spin-polarized!) electron gas had been derived by Bloch [18] in
1929.
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1.2

In n(r)

r/d

Fig. 1: (left) Logarithm of spherical average of density in ground state of C atom as a function of
the distance from the nucleus (atomic units [13]; (right) Probability that electrons in Na metal
with parallel spins are r/d’ apart (d"* = Vy/(372), Vy, is the atomic volume). After Wigner and
Seitz [25].)

periodic variation of many properties with changing atomic number Z cannot be reproduced,
no ferromagnetism [13], and atoms shrink with increasing Z (as Z~'/3) [23]. Nevertheless, it
may be useful in the context of very dense matter [10].

One point made by Dirac [6], however, has been emphasized by many advocates of the DF
method over the years, even if we were unaware of his words of over 80 years ago:

“Each three-dimensional wave function will give rise to a certain electric density. This
electric density is really a matrix, like all dynamical variables in the quantum theory. By
adding the electric densities from all the wave functions we can obtain the total electric
density for the atom. If we adopt the equations of the self-consistent field as amended for
exchange, then this total electric density (the matrix) has one important property, namely,
if the value of the total electric density at any time is given, then its value at any later time
is determined by the equations of motion. This means that the whole state of the atom is
completely determined by this electric density; it is not necessary to specify the individual
three-dimensional wave functions that make up the total electric density. Thus one can deal

with any number of electrons by working with just one matrix density function.”

The italics are in the original. The derivation is based on the “self-consistent field” or Hartree-
Fock approximation, and the “matrix density function” is known today as the one-particle re-
duced density matrix, but the observation that the density follows the equations of motion is
much in the spirit of the theorem of Ehrenfest, who had proved in 1927 that the acceleration of
a quantum wave packet that does not spread satisfied Newton’s equations of motion [24].
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The central role played by the density means that we must know what it looks like in real sys-
tems. Fig. 1 shows that the spherically averaged density in the ground state of the carbon atom
falls monotonically from the nucleus and does not show the radial oscillations that occur if we
plot 72n(r). The charge density in small molecules is also rather featureless, with maxima at the
nuclei, saddle points along the bonds, and a generally monotonic decay from both. The electron
density in molecules and solids also shows relatively small departures from the overlapped den-
sities of the constituent atoms. Energy differences, including binding, ionization, and cohesive
energies, are the focus of much DF work and result from subtle changes in relatively featureless
density distributions.

3 An ‘“approximate practical method”

The basis of a quantum theory of atoms, molecules, and solids was in place at the beginning of
the 1930’s. Hans Bethe was another participant in this adventure and looked back on the time
in this way:

“The basic structure of quantum mechanics, quantum mechanics without relativity, that
basic structure is finished ... The understanding of atoms, molecules, the chemical bond,
and so on, that was all complete by 1928.” [26, p. 78]

Linear combinations of atomic orbitals formed molecular orbitals, from which determinantal
functions could be constructed, and linear combinations of determinants (“‘configuration inter-
action”) would provide approximations to the complete wave function. Dirac had noted already,
however, that this procedure could not be implemented in practice, so that approximations are
essential. Furthermore, numerical techniques for solving the Schrédinger equation in extended
systems were still to be developed.

Wigner and Seitz [25] developed a method for treating the self-consistent problems in crystals,
and the “Wigner-Seitz cell” is known to all condensed matter physicists. The first application to
metallic sodium used a pseudopotential for the Na ion, and calculations of the lattice constant,
cohesive energy, and compressibility gave satisfactory results. Of particular interest for our
purposes, however, is the calculation of the probability of finding electrons with parallel spins
a distance r apart (Fig. 1 (right)). This function obtains its half-value for » = 1.79d’ or 0.460 d
for a body-centered cubic lattice with cube edge d, which is close to the radius of the “Wigner-
Seitz sphere” (3/ 87?)% d = 0.492 d. The exclusion principle means then that two electrons with
parallel pins will very rarely be at the same ion. This argument does not depend significantly on
the potential and should apply to a Fermi gas subject to periodic boundary conditions [25]. The
corresponding curves for spin up and spin down electrons, as well as for both spins combined,
were discussed in the 1934 review article of Slater [27].

The picture that results is simple and appealing: the exclusion principle means that an elec-
tron with a given spin produces a surrounding region where there is a deficiency of charge
of the same spin. This region contains unit charge and is referred to as the “Fermi” [25] or
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“exchange” hole [28]. In the Hartree-Fock scheme, the exchange hole is different for each elec-
tronic function, but Slater [28] developed a simplified “exchange potential” that depended only
on the density:

y/Stater — (;) (37?271(7’))%. 4)

T

The Slater approximation (4) was proposed at the time that electronic computers were becoming
available for electronic structure calculations and proved to be very useful in practice. Methods
for solving the Schrodinger equation had been developed—but not implemented—somewhat
earlier, including the augmented plane wave (APW) [29] and Korringa-Kohn-Rostoker ap-
proaches [30,31].

The exchange potential of Slater (4) is 3/2 times that derived by Dirac and Bloch (3) for a
homogeneous electron gas, but Slater [32] pointed out that an effective potential proportional
to the cube root of the density could be obtained by arguments based on the exchange hole
that do not depend on the free electron gas arguments used in the original derivation [28]. The
exchange hole discussed above for a spin up electron contains a single electron. If we assume
that it can be approximated by a sphere of radius RZy, then

47 3 | 3 3
() n ()

where n, is the density of spin up electrons. Since the electrostatic potential at the center of such

a spherical charge is proportional to 1/R;, the exchange potential will be proportional to n% .
This argument was used by Slater to counter a misconception (unfortunately still widespread)
that local density approximations based on the homogeneous electron gas are only appropriate
if the electron density is nearly homogeneous.

In 1954, Gaspar [33] questioned the prefactor of the effective exchange potential (Eq. 4). If
one varies the spin orbitals to minimize the total energy in the Thomas-Fermi-Dirac form, one
obtains a coefficient just % as large. Géspdar applied this approximation to the Cu™ ion and
found good agreement with Hartree-Fock eigenfunctions and eigenvalues. Slater noted that
Gaspar’s method was “more reasonable than mine” [34], but the larger value was used in most
calculations in the following years.

4 Electron density functional formalism

The variational principle on the energy was the basis of the derivation of the density functional
formalism given by Hohenberg and Kohn (HK) [35]. First, they showed that there is a one-
to-one relationship between the external potential V,,(r) and the (nondegenerate) ground state
(GS) wave function ¥, and then that there is a one-to-one relationship between ¥ and the ground
state density n(r) of an N-electron system,

n(r) = N/dr2 coedey U (ryry, . tN) (T, Ty, ., TN (6)
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where the spin coordinates are not shown explicitly. Knowledge of the density then determines
the external potential to within a constant, so that all terms in the Hamiltonian are known.
Since the Hamiltonian operator determines completely all states of the system, n(r) determines
excited states as well as the ground state.
These ideas can be applied to the total energy using the variational principle. For this purpose,
HK defined the functional F'[n(r)], which is “universal” in the sense that it is valid for any
external potential Ve,

Fn] = (U, |T + Vee ¥, (7)

and showed that the energy functional E[n, V] satisfies a variational principle:
Egs = minn(r) E[n, ‘/ext]> (8)

where
Eln, Vi] = / dr Vi (v) () + Fln]. ©)

The minimization is performed in HK over all non-degenerate densities that can be derived from
the ground state of some external potential (“V -representable”). Levy [36] generalized this to a
minimization over all densities, including degeneracies.

The generalization to finite temperatures was carried out soon after the work of Hohenberg and
Kohn [35]. Mermin [37] showed that, in a grand canonical ensemble at given temperature 7'
and chemical potential x, the equilibrium density is determined by the external potential Vi,
and the equilibrium density minimizes the grand potential. Single-particle equations can be
derived for a fictitious system with kinetic energy 7j and entropy Sy, with E\. replaced by the
exchange-correlation contribution to the free energy.

4.1 Single-particle description of a many-electron system.

The task of finding good approximations to the energy functional E[n] is simplified greatly if
we use the decomposition introduced by Kohn and Sham [38],

Eln] = Toln] + / dr n(r) (V;Xt(r) + %@(r)) + E[n]. (10)

Ty is the kinetic energy that a system with density n would have if there were no electron-
electron interactions, @ is the classical Coulomb potential for electrons, and FE,. defines the
exchange-correlation energy. 7T is not the true kinetic energy 7, but it is of comparable mag-
nitude. Its treatment without approximation removes many deficiencies of the Thomas-Fermi
approach, such as the lack of a shell structure of atoms or the absence of chemical bonding
in molecules and solids. In the expression (10) all terms other than the exchange-correlation
energy F. can be evaluated exactly, so that approximations for this term are crucial in density
functional applications.

The variational principle applied to (10) yields

on(r)  on(r)

d Eye[n]

+ Vet (r) + &(r) + () w,

(11)
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where 1 is the Lagrange multiplier associated with the requirement of constant particle number:
[ dr én(r) = 0, and the functional derivative is defined as

§F :/dr (5%))571@) . (12)

If we compare this with the corresponding equation for a system with an effective potential

V (r) but without electron-electron interactions,

OEn] 6Ty
on(r)  on(r)

we see that the mathematical problems are identical, provided that

+V(r) =pu, (13)

d Eye[n]
V = Vex P : 14
(1) = Ves6) £ 9(0) £ 5 (14)
The solution of (Eq. 13) can be found by solving the Schrodinger equation for non-interacting
particles,
1
(—§V2 + V(r)) Vi(r) = eihi(r), (15)
yielding
N
2
n(r) = fi|ui(r)] (16)
i=1

where f; are occupation numbers (0 < f; < 1) corresponding to the relevant Slater determinant.
We have mapped the original problem onto finding the solution of a non-linear equation, since
the Hamiltonian in (15) is a function of its own eigenvectors. The equation must be solved
iteratively (self-consistently) to satisfy the condition (14).

The solution of this system of equations leads to the energy and density of the lowest state, and
all quantities derivable from them. The formalism can be generalized to the lowest state with
a given symmetry [39]. Instead of seeking these quantities by determining the wave function
of the system of interacting electrons, the DF method reduces the problem to the solution of a
single-particle equation of Hartree form. In contrast to the Hartree-Fock potential,

Viar ¥ (1) :/dr/ Var(r, ') (1), 17)

the effective potential, V' (r) is a local (i.e., multiplicative) operator. It is worth noting that the
non-interacting particles are still Fermions, and the Pauli principle must be satisfied.

The numerical advantages of solving the Kohn-Sham equations [38] are obvious. Efficient
methods exist for solving single-particle Schrodinger-like equations with a local effective po-
tential, and there is no restriction to small systems. With a local approximation to FEy., the
equations can be solved as readily as the Hartree equations. Unlike the Thomas-Fermi method,
where the large kinetic energy term is approximated, the valence kinetic energy and the core-
valence and valence-valence electrostatic interactions are treated exactly. However, . is the
difference between the exact energy and terms we can evaluate exactly, and approximations are
unavoidable.
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4.2 Exchange-correlation energy F,. and the xc-hole

Kohn and Sham [38] proposed using the “local density (LD) approximation”
B = / dr n(r) exc[n(r)], (18)

where £,.[n] is the exchange and correlation energy per particle of a homogeneous electron
gas with density n. This approximation is exact in the limits of slowly varying densities and
very high densities. The electron density in molecules and solids is generally far from that of
a homogeneous electron gas, and the validity of calculations based on properties of a gas of
constant density has often been questioned. We now discuss some general properties of Fi.
using arguments closely related to the “exchange hole” picture of Wigner and Seitz [25] and
Slater [28, 32].

The crucial simplification in the density functional scheme is the relationship between the inter-
acting system, whose energy and density we seek, and the fictitious, non-interacting system for
which we solve (Eq. 15, 16). This can be studied by considering the interaction \/|r—r’| and
varying A from O (non-interacting system) to 1 (physical system). This is done in the presence

of an external potential V), [39], such that the ground state of the Hamiltonian
1
Hy = —§V2 + Vet (r) + Vi + AVee (19)

has density n(r) for all A. The exchange-correlation energy of the interacting system can then
be expressed as an integral over the coupling constant A [40]:

_ 1 / 1 /
Ey. = 2/dr n(r)/dr =] Nye (T, T'—T), (20)

with .
Nye(r,¥'—1) = n(r’)/ dX (g(r,', ) —1). (21)
0

The function g(r,r’,\) is the pair correlation function of the system with density n(r) and
Coulomb interaction AV,.. The exchange-correlation hole n,. describes the fact that an electron
at point r reduces the probability of finding one at r’, and F,. is simply the energy resulting from
the interaction between an electron and its exchange-correlation hole. This is a straightforward
generalization of the work of Wigner and Seitz [25] and Slater [28] discussed above.

Second, the isotropic nature of the Coulomb interaction V. has important consequences. A
variable substitution R = r’—r in (20) yields

By = 1/dm(r)/ dR RQi/dQnm(r,R). (22)
2 0 R

Equation (22) shows that the xc-energy depends only on the spherical average of n,.(r, R), so
that approximations for F. can still give an exact value, even if the description of the non-
spherical parts of n is quite inaccurate. The energy depends on certain averages over the hole,
and this implies a systematic partial cancellation of errors in the LSD approximation. Third, the
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Fig. 2: Magnitude of exact (solid) and LSD (red, dashed) exchange holes ny.(r,r'—r) for spin
up electron in N atom forr = 0.13 a.u. (a) Hole along line through nucleus (arrow) and electron
(r—r’ = 0). (b) spherical averages of holes, and (1/R) [Eq. (24)] (from [13]).

definition of the pair-correlation function leads to a sum-rule requiring that the xc-hole contains
one electron, i.e. for all r,

/dr’ Nye(r, 1/ —1) = —1. (23)

This means that we can consider —n,.(r,r’—r) as a normalized weight factor and define the
radius of the xc-hole locally for a particular value of r,

I\ Ny (r, R)
<E>r"/dR R .

E. = —%/dr n(r) <%>]r (25)

Provided Equation (23) is satisfied, I is determined by the first moment of a function whose

This leads to

second moment we know exactly and depends only weakly on the details of ny. [39]. Provided
that the spherical average of the exchange-correlation hole is correct, approximations to F\.
can then lead to good total energies, even if other details are described very poorly. This is
shown by the example in Fig. 2, where the exchange hole in a nitrogen atom is shown for a
representative value of r for both the local density and exact (Hartree-Fock) cases. The holes
are qualitatively different: The LD hole is spherically symmetric and centred on the electron,
while the exact hole has a large weight at the nucleus and is very asymmetric. Nevertheless, the
spherical averages are very similar, and the exchange energies differ by only around 10%.

S Local density approximation (LDA) and extensions

The early expectations of the LDA were very modest. John Perdew noted:

“One of the authors (J.P.P.) was told by W. Kohn (personal communication) that he antici-
pated the LDA to be only slightly more accurate than the Hartree approximation (£, = 0)
that was widely used in condensed matter physics in 1965.” [1, p. 196]
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In fact, the original paper of Kohn and Sham [38] found good reasons for this:

“In atoms and molecules one can distinguish three regions: (1) ..., (2) ... (3) The ‘surface’
of atoms and the overlap regions in molecules. Here our approximation [LDA] has no
validity and therefore we expect this region to be the main source of error. We do not

expect an accurate description of chemical binding ” [38].
Hindsight is always much sharper, of course, but Kohn was certainly correct in noticing:

“I believe that formal DFT would have been of very little interest if there had not been a
simple and very practical approximation for F,., the LDA, which has yielded surprisingly

accurate results” [41].

5.1 Three examples

We discuss here three cases where the LDA and a simple extension gave interesting and unex-
pected results.

5.1.1 Group 2 dimers: He,, Bes, Mg,, Ca,, ...

The group 2 elements have a particularly simple structure of the valence electrons: a closed
shell of s-electrons, ns?. When two such atoms approach each other, there is again a closed
shell configuration o
(“bond order” zero). Prior to the first DF calculations, the accepted picture was that binding

o2, with an equal number of electrons in bonding an antibonding orbitals

was only possible in the presence of London dispersion forces, which increase as the atomic
polarizability increases. This was consistent with available experimental data at the time, which
showed an increase in binding energies from He, — Mgy — Ca,, Bes having not yet been
identified experimentally (Fig. 3). All Hartree-Fock and correlated wave function calculations
on Be, to that time gave no binding or a weak minimum at large interatomic separation (~
4.5 A).

The prediction of DF calculations that the Be,; dimer should not only exist, but should be more
stable than Mg, [42], was treated by many in the “correlated wave function” world as evidence
that DF calculations were unreliable. Nevertheless, the zigzag behavior in the binding energies
is also present in the bulk cohesive energies (Fig. 3), and a calculation one year later using
correlated wave functions [43] also gave a similar bond length, shorter than widely expected,
and a larger binding energy than in Mg,. The essential correctness of the DF prediction was
finally confirmed experimentally five years later [44]. More details of this saga are provided
in [9].

5.1.2 Phosphorus clusters: P,

The combination of DF calculations with molecular dynamics (DF/MD, Car-Parrinello method
[45] made simulations of bulk systems at elevated temperatures possible, and simulated anneal-
ing techniques could be used to study the energy surfaces of molecules and clusters. The use
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Fig. 3: (left) binding energies of diatomic molecules (left scale, eV) and cohesive energies of
bulk metals (right scale, eV per atom). Crosses: experimental values, as available ca. 1980.
(right) spectroscopic constants of group 2 dimers [42].

of molecular dynamics provides an element of randomness needed if one is to avoid biasing the
search for cluster structures.

Four-atom clusters of phosphorus were among the first atomic clusters to be studied using gas-
phase electron diffraction [46]. The most stable form of P, is tetrahedral, but a second, “butter-
fly” (Cs,) form has a much higher energy, but also a much larger region where it is the nearest
local minimum to a given arrangement of four P atoms. The only larger cluster to have been
studied in any detail was the cubic (Oy,) form of Pg. This was an obvious choice for the valence
configuration of P (3523p3), with three p-orbitals at 90° to each other, but it was noted that the
stability of this structure relative to two P, tetrahedra was remarkably low.

The reason became clear after DF calculations [47] showed that an unexpected C, structure
had a much (1.7 eV) lower energy than the cube. Other structures were found for P5 to Pg that
were confirmed by calculations with more traditional methods and by subsequent experiments.
The “butterfly” form can be seen as a component of many larger clusters.

A
W B (H) \ /J 7
@<©/J @\Q & sO_|

Fig. 4: Molecular dynamics and simulated annealing of Ps from the cubic (Oy,) to a Cs structure
to the most stable (Csy,) form [47].
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5.1.3 Liquid bismuth

An example from the condensed matter world is provided by extensive DF/MD simulations
using the PBEsol functional approximation [48] (over 500 atoms, up to 100 ps) of liquid bismuth
at four temperatures between 573 K and 1023 K). These simulations have provided details of
the dynamical structure factor, the dispersion of longitudinal and transverse collective modes,
and related properties. Agreement with available inelastic x-ray and neutron scattering data and
with previous simulations is remarkably good [49].

The density fluctuations in the liquid can be described by the intermediate scattering function

F(q,t) = <Re (n(q, t+to) n(q, to))> , (26)

where (...) denote averages over all reference times ¢y, and n(q,t) is a Fourier component of
the density,

1
n(g,t) = N > " exp(iqis). (27)

The index 7 runs over all particles, whose total number is N. The dynamical structure factor
S(q,w) is the Fourier transform of F'(q, t)

1

S(q,w) = o /dt F(q,t)exp(iwt). (28)

7
Calculations of structure factors and related functions involve averages over all equivalent ¢
vectors with q = |¢|. In Fig. 5, we compare the calculated [49] and experimental [50] structure
factors S(q,w/S(q) for liquid Bi at 573 K.
The current autocorrelation function C(g,t) can be calculated directly from the Fourier trans-
form of the particle current J(q, t), which has a longitudinal component

1
Jr(q,t) = — 7-U; exp(i1q-T; (29)
Lat) = 7= Z G-v; exp(ig'r;)
and a transverse component
1
Jr(q,t) = —= X U; exp(1q-T5). 30
r(@.1) = - Z Gx; exp(iG-s) (30)
The longitudinal component of the current autocorrelation function is
Cilg.t) = (Re (Ji(g, t+to) Jr(g, o)) ) (31)
with a transverse component
1
Cr(q,t) = 5 (Re (Jr(q, t+to) Jr(q, to))) - (32)

A variety of experimental probes, including x-rays and neutrons, couple to longitudinal density
fluctuations, but provide no direct information about transverse fluctuations. The shear viscosity
7) is a rare transport property that couples to the transverse momentum and can be calculated
from C(q, t) [49]. The results are 573 K: 1.86 (1.65) mPa s; 773 K: 1.42 (1.18) mPa s; 923 K:
1.11 (1.06) mPa s; 1023 K: 1.08 (0.94) mPa s, where the values in brackets are experimental
values interpolated from the tables of Assael ef al. [51]. Given the scatter in the experimental
data of different groups, the agreement is very satisfactory.
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Fig. 5: Ratio of dynamical to static structure factors, S(q,w)/S(q), for selected q-values at
573 K [49]. Grey: DF/MD results, blue: DF/MD with 3 meV Gaussian broadening, red:
experimental IXS [50].

5.2 Spin systems. LSD approximation

Spin plays a minor role in the systems we have just considered: the Be atom and the beryllium
dimer are closed-shell systems, as are P, and Pg clusters, and the lowest-lying state of liquid
Bi with an even number of atoms is also spin-free. The extension to spin systems [52] or
an external magnetic field requires the introduction of the spin indices « of the one-electron
operators 1, (r) and replacing Ve, by V.27 (1), and the charge density n(r) by the density matrix
Nag(r) = (LPWL(r)wa(r)hP). All ground state properties are functionals of n,s, and E is
stationary with respect to variations in n,g. The expression for the energy FE,. is analogous to
Equations (20,21).

The generalization of the LDA to spin-polarized systems is known as the local spin density
(LSD) approximation:

ELSP — / dr n(r) exclrr(r), my (1), (33)
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where ey.[n+, 1] is the exchange and correlation energy per particle of a homogeneous, spin-
polarized electron gas with spin-up and spin-down densities ny and n, respectively.®
The “Xa” approximation

EXe = —gaC/dr ((nT(r))M3 + (ni(r))él/g), (34)

where C' = 3(3/47)"/%, was used in numerous calculations in the late 1960s and 1970s. The
a-dependence of energy differences for a given atom or molecule is weak for values near 2/3,
the value of Bloch [18], Dirac [6], Gaspar [33] and Kohn and Sham [38]. The usual physical
interpretation of n4(r) and n|(r) is that ny(r)+n () is the total density n(r), and nq4(r)—n (r)
is the spin magnetization density.

5.3 Shortcomings of LD/LSD approximations

5.3.1 Self-interaction correction

A particularly obvious defect of the LDA is evident when one considers a system containing
only one electron, since the contribution to the total energy (Eq. 10) contains a spurious “self-
interaction” of the electron with itself. If we knew the exact functional F,., it would cancel
the direct Coulomb energy in (10). Perdew and Zunger [53] developed an approximation for
correcting the SIC to the LSD or any approximation to the exchange-correlation energy

ES1C = EESP(n, n) Z Soo (35)
where
By — / dr / dr’ ”“" ”“‘j (') + EESP[n. . 0] (36)
lr — /|
where EL5P is the energy functional in the LSD approximation and d,, is the SIC correction

for the orbital o with spin ¢ and charge density n,,. The last term is the LSD approximation
to the exchange and correlation energy of a fully spin polarized system with density 7,,. This
functional is exact for a one-electron system, and it was shown that it led to much better total
energies for atoms [53,54]. However, energy differences, such as the sd-promotion energies in
atoms, showed little improvement, and the substantial improvement in total energies was shown
to result from a better description of the most tightly bound core electrons [54]. These are the
least relevant for many problems, including chemical bonding.

5.3.2 Further problems

Most of the early DF calculations on small clusters and molecules used the LD (Eq. 18) and/or
LSD (Eq. 33) approximations. The results were often encouraging and provided insight into
interesting physical problems, but it was soon clear that local density calculations can lead to

3The calculation by Bloch [18] in 1929 of ferromagnetism in a free-electron model of a metal was the first

4/3 4/3

where the exchange energy was expressed as the sum of terms proportional to n,”” and n|
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unacceptable results. Examples include the overbinding of many molecules, the exchange en-
ergy difference between states with different nodal structures, e.g. the sp-promotion energies
in first-row atoms, particularly O and F, and the sd-promotion energies in transition element
atoms [55]. The Kohn-Sham eigenvalues often underestimate measured optical band gaps sig-
nificantly.

Better approximations were needed, and corrections involving density gradients were soon
available for the correlation [56, 57] and exchange energies [58], where the semi-empirical
approximation of Becke [58] had the correct asymptotic behavior for atoms. Hybrid functionals
including exact exchange were introduced by Becke in 1993 [59]. This form of E\ has three
parameters, and its combination with £ of Lee, Yang, and Parr [57] (B3LYP) is still one of the
most common approximations used in chemical applications.

Many other empirical and hybrid functionals have been developed since, with parameters usu-
ally fit to thermochemical data for particular groups of molecules. The use of experimental data
for fitting functional forms provided additional parameters that led to improvement over LD and
LSD results [60], and the use of “training sets” of atomic and molecular systems to optimize
the parameters improved the calculated results for particular sets of molecules [61]. Caution is
advised when applying “well-trained” functional forms to systems of a different nature.
Dispersion forces—the weak, non-local interactions between closed shells systems—are a par-
ticular problem for DF approximations (DFA). The long-range interaction between separated
atoms or molecules is absent, and yet the LD approximation overestimates the binding energy
in many such systems, e.g. Hes and other group 2 dimers [42]. The development of a functional
that changes seamlessly on going from weakly interacting units to a combined system remains
an important goal. Langreth and coworkers [62], for example, developed a functional that incor-
porates results for electron gas slabs and the electron gas itself and is free of experimental input.
Empirical corrections to DF results have been studied by Grimme and coworkers [63, 64, and
references therein] and are very widely used.

“Strongly correlated” systems often involve transition element or rare earth atoms, and the
potential energy can dominate over the kinetic energy. Local density approximations can lead
to poor descriptions of these materials, and ways of avoiding these problems is the topic of this
school. A common approach has been to add an on-site Coulomb repulsion (“Hubbard U”) in
the “LSD+U” scheme [65]. The parameter U can be estimated within a DF framework [66] or
fit to experiment. We shall return to these systems below.

5.4 *“Jacob’s Ladder”

An alternative path has been followed by others, particular Perdew and collaborators, who de-
veloped a sequence (“Jacob’s ladder”) of approximations without experimental input, where
each “rung” builds on the experience of lower levels and satisfies additional physical constraints
(Fig. 6). This approach is systematic and not empirical [67]. Starting with a proof of the exis-
tence of a functional, one can derive formally exact relationships that can be used as constraints
on approximate forms. If these forms are flexible enough, we can fit their free parameters to
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Fig. 6: Jacob’s ladder hierarchy of density functional approximations. For each quantity,
the spin index o equals T,]. Abbreviations: EXOA, exchange-only approximation; EXX, ex-
act exchange; GGA, generalized gradient approximation; LLMGGA, Laplacian level meta-
generalized gradient approximation; LSDA, local spin-density approximation; meta-GGA,
meta-generalized gradient approximation; SL, semi-local; xc, exchange correlation. Repro-

duced from [1], (©2023 The Authors, published by Annual Reviews)

appropriate norms of energies or densities. These should not include binding energies, which
are always susceptible to error cancellation between exchange and correlation.
If we consider the class of semilocal (SL) density functional approximations

B2t n) = [ de S, @

there are 17 known constraints that must be satisfied, with another four if we consider nonlocal
approximations, which are typically two-point functionals [1]. A detailed explanation of these
constraints is given in [1].

In this spirit, the gradient corrected form of Perdew, Burke, and Ernzerhof [68] (PBE) incor-
porates the LSD form below it, and the “meta-GGA” form of Tao, Perdew, Staroverov, and
Scuseria (TPSS) [69], where n+ and n, are joined by their gradients and the kinetic energy
density of the occupied Kohn-Sham orbitals, builds on both. The complexity of the calcula-
tions increases as one climbs the “ladder” [70], while the physical content may well seem less
transparent.
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5.5 Functional approximations: current status

Hundreds of functional approximations have been developed over the years, although the num-
ber in widespread use is limited. The LDA is still used for its simplicity, PBE is used in many
molecular calculations, PBEsol gives improved geometries in extended systems, and B3LYP
is very widely used in chemistry. A broad survey of DFA in chemistry [71] came to the con-
clusion that “ultimately, today’s state-of-the-art functionals are close to achieving the level of
accuracy desired for a broad range of chemical applications, and the principal remaining limi-
tations are associated with systems that exhibit significant self-interaction/delocalization errors
and/or strong correlation effects” [71].

Geometrical arrangements are often the goal of DF calculations, but band gaps in the energy
eigenvalue spectrum are also important. A database of 473 semiconductors and insulators has
been used to benchmark over 30 exchange-correlation energy functionals according to the cal-
culated band gaps. Meta-GGAs and hybrid functionals generally gave the best results [72].
The choice of functional approximation is not the only variable in a calculation; we must also
write a program or use one of the many now available. The reproducibility in DF calculations
in solids has been studied in some detail [73], with the reassuring conclusion that “most of the
commonly used codes and methods are now found to predict essentially identical results.”

The agreement with experiment generally improves, as we shall see in the case of the ladder
from LDA — PBE — r>SCAN [74], the most recent of the family of strongly constrained and
appropriately normed (“SCAN” [75]) functionals of Perdew and coworkers. A rather thorough
comparison of r2SCAN results with other DFA [1] provides an encouraging picture, not only for
the developers of the approximation. Formation enthalpies are improved, self-interaction errors
are reduced,* and the Hubbard-U values needed to fit experimental data are lower. SCAN
recognizes without adjustment that undoped La;CuQ, is an antiferromagnetic insulator and its
Sr-doped counterpart is metallic, which is not the case for most other DFA. r?SCAN predicts
an essentially constant magnetization as the structure of NiO is varied, which is consistent with
experiment and an improvement over the GGA functionals PBE and PBEsol [77].

Density functional calculations also predict the electronic density distribution, and Medvedev et
al. [67] noted some years ago that many (empirically fitted) functionals developed since the year
2000 lead to improved energies but densities that are further from the exact results. An extensive
study of dipole moments of small molecules calculated using coupled-cluster theory with up to
triple excitations showed that the best performing of the 88 DFA tested were of comparable
accuracy [78]. Hybrid functionals performed best, although it is a little disconcerting that some
modern DFA performed little better than LDA.

A very recent study of 26 molecules with up to four atoms compared the charge distribution in
DF calculations with Hartree-Fock and with 12 widely-used DFA with the densities obtained
from coupled-cluster (single and double excitations) calculations [79]. This work showed that
modern DFA can provide highly accurate charge densities, particularly in the case of meta-GGA

“4Recent studies of the sd-promotion energies in transition metal atoms [76] suggest that the Perdew-Zunger [53]
model for SIC induces a significant error in these atoms.
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and hybrid functionals. These DFA outperform Hartree-Fock for simple, sp-bonded molecules
near their equilibrium geometries. The only functional that was worse than Hartree-Fock was
LDA. Particularly striking was the finding that “the functionals that adhere to theoretical con-
straints, such as SCAN and r2 SCAN, produced the most consistent results across all error mea-
sures. In contrast, empirically designed functionals exhibited a significantly larger spread in at
least one error measure, emphasizing the importance of adhering to physically rigorous con-
straints for achieving consistently accurate charge densities” [79].

6 Broken symmetry. Connection to strong correlation?

“We can now propose a definition of strong correlation: Strong correlation in a
symmetry-constrained wave function is any correlation between electrons that re-
sults in an exceptionally structured electron-pair density, or is otherwise qualita-
tively different from the “normal” Coulomb correlation found in simple sp-bonded
materials in their ground states near equilibrium nuclear geometries... This defi-
nition has little in common with “everything that DFT gets wrong.”

J.P. Perdew et al. (2021) [80]

“The focus on quantum materials has raised questions on the fitness of density
functional theory for the description of the basic physics of such strongly correlated
systems. Recent studies point to another possibility: the perceived limitations are
often not a failure of the density functional theory per se, but rather a failure to
break symmetry.”

A. Zunger (2022) [81]

Can it really be true that a symmetry-broken version of density functional theory is able to
handle some “strongly correlated” problems? We now look at simple examples of symmetry
breaking in density functional calculations.

6.1 Broken symmetry in general

We have noted that the Hamiltonian in Eq. (15) is a function of its own eigenvectors, so must
be solved iteratively to satisfy the condition (14). The non-linearity means that solutions may
not be unique and may break essential symmetries of the system, often connected with phase
transitions. Additional correlations may occur. Such considerations can suggest new physical
processes or provide new insight, but the broken-symmetry wave functions do not have the sym-
metry of the original system, so that many results cannot be compared directly with experiment.
General group-theoretical techniques that have been developed to restore the original symme-
try are reviewed in [82] and apply also to the extension of the restricted Hartree-Fock (RHF)
approach, where the single Slater determinant wave function is constrained to have the under-
lying molecular symmetry, to the unrestricted Hartree-Fock (UHF) approach, where it is not. A
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10 -

Fig. 7: Energy of the hydrogen molecule as a function of the internuclear distance. The full
curves show the results in the LD and LSD approximations, which differ for R > 3.2 The
dashed curve gives the accurate result of Ref. [84]. The upper part of the figure shows the
quantity c in Eq. (38), which gives the degree of spin polarization. For ¢ = 1, the system is
unpolarized. Reproduced with permission from [39]. (©)1976 American Physical Society.

single Slater determinant of different orbitals for different spins, for example, is not a satisfac-
tory eigenfunction of the total spin operator (S?), and the ground state can be contaminated by
excited states [83].

6.2 Symmetry-broken systems: Hs, Crs, Bes ...

One of the earliest DF calculations of a molecule, now 50 years ago, was the study of the ground
state (12;) of Hy by Gunnarsson and Lundqvist [39]. The results for several approaches are
shown in Fig. 7 and include the Hartree-Fock (HF), Heitler-London (HL), local density (LD),
and the numerically exact result [84].

The LSD curve is obtained by assuming that the two orbitals contributing to the spin density
are V;, = 9;£,, where &, is a spin function and

B;(r) = [¢i(r) + c;(r)] /(1 + 28 + )2, (i,5 = a,b,i # j) (38)

with S = [ dr ¢,(r)dy(r). This means that the spin polarization can be different for atoms a
and 0. The LSD curve follows the exact curve closely and allows dissociation into two neutral
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Fig. 8: Restricted (blue) and unrestricted (red) Hartree-Fock calculations for Be, (after [93]).
X : correlated wave function results of [43], +: LDA results [42].

H atoms with opposite spin. The degree of spin polarization is given by the value of ¢ (Fig. 7,
upper), and the symmetry-broken state has a lower energy than the LD calculation for r > 3.2 A.
The fact that a large part of correlation effects can be described by a single determinantal wave
function with broken-symmetry orbitals and projection to an eigenstate of total spin was pointed
out first by Coulson and Fischer [85].

The transition point depends on the DFA used, both for closed-shell [86] and open-shell mole-
cules [87]. This electronic instability corresponds to the Mott transition in solids [88], where the
broken-symmetry solutions are described as spin- or charge-density waves. Spin waves were
identified much earlier by Bloch [89].

The first density functional calculations on transition metal dimers [90] considered only states
with the full symmetry of the molecule, and it was difficult to make a clear prediction of the
ground state of Cro, where the balance between favoring the occupation of bonding orbitals and
having a high-spin state is delicate. This study overlooked the possibility of antiferromagnetic
coupling in these systems [91, and references therein]. It is possible to describe a ladder of spin
states by constructing states of mixed spin symmetry and lower space symmetry.

We have seen that DF calculations for the beryllium dimer [42] led to an unexpectedly short
bond length (2.57 A). Previous Hartree-Fock calculations had led to a repulsive curve and no
binding, but these were restricted HF calculations that required the wave function to have the
full molecular symmetry. Unrestricted HF calculations [92], however, showed a weak minimum
(depth 0.26 eV, interatomic separation ~ 2.3 A). In Fig. 8, we show very recent (and much
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more accurate) RHF and UHF calculations for Be, [93], as well as the minimum energies and
separations found in density functional [42] and correlated wave function calculations [43]. One
can only speculate about the course of events if the UHF result had been known before the DF
results.

The quotations at the beginning of this section suggest that the broken-symmetry ideas we
have just discussed could be useful in addressing some long-running problems in the density
functional description of strongly-correlated systems, e.g., transition metal monoxides such as
FeO and NiO. It has now been shown [77,94] that the antiferromagnetic, insulating phase in
these materials can be described well if the unit cell is chosen to allow antiferromagnetic order.
The smallest unit cell has a single transition element atom, so that the local magnetic moment
is zero, not just the global magnetization. It should be noted that the energy eigenvalues in
general and band gaps in particular do not agree with experiment. This can be improved by
adding about 20 % ‘“‘exact exchange” to the r’>-SCAN functional or by adding a Hubbard-U.

7 Concluding remarks

Density functional theory has a long and fascinating history involving some of the best known
names in physics and has become, without dispute, the “workhorse of quantum chemistry and
materials science” [8]. This is a remarkable result for a method that has experienced much
opposition. The theoretical chemistry community took many years to be convinced of its use-
fulness, and its dismissal by a leading condensed matter theorist, Philip Anderson, as the “Great
Solid State Physics Dream Machine” did little to help its establishment in the wider condensed
matter community. Its difficulties in the past to describe “strongly correlated” materials led to
their definition in terms of this failure.

I concluded my lecture at the 2013 School with the following lines:

“I end with a note of caution for the ‘strongly correlated’ community, Few the-
oretical chemists thought that DF calculations were relevant to understanding the
electronic structure of molecules, but local density approximations (and their mod-
ifications) have given far better results than anyone expected. It was shown after-
wards why approximations to £, could give good results for density distributions
far from those where they are obviously valid. Perhaps DF theory has some real
surprises in store for the ‘strongly correlated’ world.” [95]

Developments in the recent past seem to bear this out. The remarkable improvement in the
results from DFA that satisfy increasing numbers of physical constraints has been accompanied
by a new focus on broken symmetry wave functions as a way to study some of the problems
involving strong correlations. I was not expecting either development, but I am optimistic about
the future of both.
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