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Matter – a collective phenomenon
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Motivation – a paradigm

interacting 

many-body system

Spontaneous symmetry breaking

• ground state has less symmetry than Hamiltonian


• local order parameter 


• phase transition / Landau-Ginzburg-Wilson theory
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Beyond the paradigm – frustrated magnets
Insulating magnets with competing interactions.

How can we quantify ‘frustration’ ?
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Why we should look for the misfits

interacting 

many-body system
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Some of the most intriguing phenomena in condensed matter 
physics arise from the splitting of ‘accidental’ degeneracies.
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When do interesting things happen?

But they are also notoriously difficult to handle, due to
•  multiple energy scales
•  complex energy landscapes / slow equilibration
•  macroscopic entanglement
•  strong coupling

interacting 

many-body system
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degeneracy

residual effects
select ground state

Some of the most intriguing phenomena in condensed matter 
physics arise from the splitting of ‘accidental’ degeneracies.
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Frustration
Competing interactions lead to frustration. 


We will see that frustration can originate interesting spin liquid behavior.
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The Kitaev model

Its quantum mechanical cousin is well known for its rare combination  
of a model of fundamental conceptual importance and an exact analytical solution.

A. Kitaev, Ann. Phys. 321, 2 (2006)

x y
z

But to a good extent this is also true for the classical model (though much less known).

Ising-like* interaction
* preferred direction of spin alignment 
depends on spatial direction of bond
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A first step – numerical simulation
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Ising-like* interaction
* preferred direction of spin alignment 
depends on spatial direction of bond

Frustration in the Kitaev model

x y
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Observation: no spin configuration can simultaneously satisfy all exchange terms.

T=0 spin configuration

Every spin can minimize its energy by 
pointing parallel to precisely one neighbor.
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Emergent magnetostatics

T=0 spin configuration dimer covering divergence-free field 

div ~B = 0
every spin is parallel to

precisely one neighbor

every site is part of

precisely one dimer

= êij

= �êij/2
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Long-range correlations

divergence-free field 

div ~B = 0

X

i

~bi = � ~M

X

i

~bi = ~M

An immediate consequence from the strictly enforced local constraint of a 
divergence-free field is the emergence of long-range correlations.
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Emergent magnetostatics – Coulomb phase

divergence-free field 

div ~B = 0

= êij

= �êij/2

look also at D.A. Huse et al., Phys. Rev. Lett. 91, 167004 (2003)

dimer-dimer correlations

hn(~r)n(0)i / 1

r2

... and in Fourier space
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Emergent magnetostatics – Coulomb phase

Such analogies to electromagnetism have also been exploited to discuss

the frustrated magnetism in spin ice materials and 
the physics of skyrmion lattices in chiral magnets.
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these configurations and the positions of protons in the tetrahedrally 
coordinated O2− framework of water ice10.

When kBT << Jeff, the system fluctuates almost entirely within the 
two-in and two-out manifold of states. It turns out that the number of 
such states is exponentially large, so a low-temperature entropy remains 
even within this limit. This entropy, first estimated by Pauling in 1935 
(ref. 11), has been measured in spin ice10. Although the spins remain 
paramagnetic in this regime, the ‘ice rules’ imply strong correlations: 
for instance, if it is known that two spins on a tetrahedron are pointing 
out, then the other two spins must point in. The correlated paramagnet 
is a simple example of a classical spin liquid. A key question is whether 
the local constraints have long-range consequences: is the spin liquid 
qualitatively distinguishable from an ordinary paramagnet? Interest-
ingly, the answer for spin ice is ‘yes’.

Analogies to electromagnetism
To understand how long-range effects arise from a local constraint, 
it is helpful to use an analogy to electromagnetism. Each spin can be 
thought of as an arrow pointing between the centres of two tetrahedra 
(Fig. 2b). This defines a vector field of flux lines on the lattice, which 

because of the two-in, two-out rule is divergence free. In this sense, the 
vectors de fine an ‘artificial’ magnetic field, b, on the lattice (the field can 
be taken to have unit magnitude on each link, with the sign determined 
by the arrows). Because the spins are not ordered but fluctuating, the 
magnetic field also fluctuates. However, because the magnetic field lines 
do not start or end, these fluctuations include long loops of flux (Fig. 2b) 
that communicate spin correlations over long distances.

The nature of the long-distance spin correlations was derived by Young-
blood and colleagues in a mathematically analogous model of a fluctuating 
ferroelectric, in which the electric polarization is similarly divergence-
less12; this was subsequently rederived for spin ice13. The result is that the 
artificial magnetic field, at long wavelengths, fluctuates in equilibrium just 
as a real magnetic field would in a vacuum, albeit with an effective mag-
netic permeability. For the spins in spin ice, this implies power-law ‘dipo-
lar’ correlations that are anisotropic in spin space and decay as a power 
law (~1/r3, where r is the distance between the spins) in real space. It is 
remarkable to have power-law correlations without any broken symmetry 
and away from a critical point. After Fourier transformation of these cor-
relations on the lattice, a static spin structure factor with ‘pinch points’ at 
reciprocal lattice vectors in momentum space is obtained12–14.

Such dipolar correlations have recently been observed in high 
resolu tion neutron-scattering experiments by Fennell and colleagues15. 
At the pinch points, if the ice rules are obeyed perfectly, a sharp singular-
ity is expected, as well as a precise vanishing of the scattering intensity 
along lines passing through the reciprocal lattice vectors. The rounding 
of this singu larity gives a measure of the ‘spin-ice correlation length’, 
which is estimated to grow to 2–300 Å (a large number) at a temperature 
of 1.3 K. In the future, it may be interesting to see how this structure 
changes at even lower temper atures, at which spin ices are known to 
freeze and fall out of equilibrium. Although the argument of Young-
blood and colleagues12 and the model outlined above rely on equilib-
rium, arguments by Henley suggest that the pinch points could persist 
even in a randomly frozen glassy state14.

Magnetic monopoles
Interestingly, the magnetostatic analogy goes beyond the equilibrium 
spin correlations. One of the most exciting recent developments in this 
area has been the discovery of magnetic monopoles in spin ice16. These 
arise for simple mi croscopic reasons. Even when kBT << Jeff, violations of 
the two-in, two-out rule occur, although they are costly in energy and, 
hence, rare. The sim plest such defect consists of a single tetrahedron 
with three spins pointing in and one pointing out, or vice versa (Fig. 2c). 
This requires an energy of 2Jeff relative to the ground states. From a 
magnetic viewpoint, the centre of this tetrahedron becomes a source or 
sink for flux, that is, a magnetic monopole. A monopole is a somewhat 
non-local object: to create a monopole, a semi-infinite ‘string’ of spins 
must be flipped, starting from the tetrahedron in question (Fig. 2c). 
Nevertheless, when it has been created, the monopole can move by 
single spin flips without energy cost, at least when only the dominant 
nearest-neighbour exchange, Jeff, is considered.

Remarkably, the name monopole is physically apt: this defect carries 
a real ‘magnetic charge’16. This is readily seen because the physical mag-
netic moment of the rare-earth atom is proportional to the pseudo-
magnetic field, M = gμBb, where g is the Landé g factor and μB is the Bohr 
magneton. Thus, a monopole with the non-zero divergence =•b also 
has a non-zero =•M. The ac tual magnetic charge (which measures the 
strength of the Coulomb inter action between two monopoles) is, how-
ever, small: at the same distance, the magnetostatic force between two 
monopoles is approximately 14,000 times weaker than the electrostatic 
force between two electrons. Nevertheless, at low temperatures, this is 
still a measurable effect.

A flood of recent papers have identified clear signatures of magnetic 
monopoles in new experiments and in previously published data. Jaubert 
and Holdsworth showed that the energy of a monopole can be extracted 
from the Arrhe nius behaviour of the magnetic relaxation rate17. They 
found that in Dy2Ti2O7 the energy of a monopole is half that of a single 
spin flip, reflecting the fractional character of the magnetic monopoles. 

Figure 1 | Frustrated magnetism on 2D and 3D lattices. Two types of 2D 
lattice are depicted: a triangular lattice (a) and a kagomé lattice (b). The 3D 
lattice depicted is a pyrochlore lattice (c). In experimental ma terials, the 
three-fold rotational symmetry of the triangular and kagomé lattices may 
not be perfect, allowing different exchange interactions, J and Jʹ, on the 
horizontal and diagonal bonds, as shown. Blue circles denote magnetic ions, 
arrows indicate the direction of spin and black lines indicate the shape of the 
lattice. In b, ions and spins are depicted on only part of the illustrated lattice. 
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spin ice on the pyrochlore lattice
Skyrmions & monopoles, Achim Rosch MMM, Chicago 1/13

Dynamics and emergent electromagnetism of 
magnetic whirls in chiral magnets:
skyrmions and magnetic monopoles

� topology & skyrmion phase
in chiral magnets

� Berry phases & emergent 
electric and magnetic fields

� changing topology:
emergent magnetic monopoles

Achim Rosch
Institute for Theoretical Physics
University of Cologne, Germany

skyrmion lattice in MnSi

Moessner group

MPI-PKS Dresden

Rosch group

University of Cologne
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degeneracy – the imprint of frustration

dimer covering

every site is part of

precisely one dimer

The number of dimer coverings 

for the hexagonal lattice grows as

(for periodic boundary conditions)
G.H. Wannier, Phys. Rev. 79, 357 (1950)


P.W. Kasteleyn, J. Math. Phys. 4, 287 (1963)

V. Elser, J. Phys. A: Math. Gen 17, 1509 (1984)

degeneracy @ T = 0

At finite temperature 
this degeneracy will be immediately lifted.


Monomer defects are introduced (and screened).

screened Coulomb phase
= high-temperature paramagnet

Z / 1.402581N
<latexit sha1_base64="yqerRPe+81enauGZ9w3b+bpq7hU=">AAAB/XicdVDLSgMxFM34rPU1PnZugkVwNcyMFbssuHElFewD27Fk0kwbmsmEJCPUofgrblwo4tb/cOffmGkr+DwQcjjnXu69JxSMKu2679bc/MLi0nJhpbi6tr6xaW9tN1SSSkzqOGGJbIVIEUY5qWuqGWkJSVAcMtIMh6e537whUtGEX+qRIEGM+pxGFCNtpK69ewU7QiZCJ9Bzyq5/XPGuz7t2yXV8Nwf8TTxn8rslMEOta791eglOY8I1ZkiptucKHWRIaooZGRc7qSIC4SHqk7ahHMVEBdlk+zE8MEoPRok0j2s4Ub92ZChWahSHpjJGeqB+ern4l9dOdVQJMspFqgnH00FRyqC5NY8C9qgkWLORIQhLanaFeIAkwtoEVjQhfF4K/ycN3/GOHP+iXKpWZnEUwB7YB4fAAyegCs5ADdQBBrfgHjyCJ+vOerCerZdp6Zw169kB32C9fgCIZ5NM</latexit>
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Triangular lattice Ising model
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precisely one frustrated bond

per triangle

T=0 spin configuration

antiferromagnetic

G.H. Wannier, Phys. Rev. 79, 357 (1950)

http://www.thp.uni-koeln.de/trebst/
http://prola.aps.org/abstract/PR/v79/i2/p357_1


©  Simon Trebst

Triangular lattice Ising model
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antiferromagnetic

T=0 dual dimer configuration
precisely one dimer per site 
on dual honeycomb lattice

G.H. Wannier, Phys. Rev. 79, 357 (1950)

Coulomb correlations
hSz(~r)Sz(0)i / 1

r2

precisely one frustrated bond

per triangle

T=0 spin configuration

degenerate spin configurations
Z / 1.402581N
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quantum  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Kitaev model

gapped spin liquid

gapless spin liquid
Majorana metal
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gapped spin liquid

gapless spin liquid
Majorana metal

Kz

Ky

Kx

Kx + Kz + Ky =  const.

KzKy

Kx

Represent spins in terms of  
four Majorana fermions

�↵ = ia↵c

Bond operators  

                        
realize a Z2 gauge field

ûjk = ia↵j a
↵
k

The Z2 gauge fields are static 
degrees of freedom.


Generically, one has to find its 
gapped ground-state configuration 
via educated guesses, Monte Carlo 

sampling, or for some lattices via 
Lieb’s theorem. 

present MC results in the small α region, which strongly
supports that Tc estimated from the anomaly inCv is indeed
the critical temperature between the low-T QSL and high-T
paramagnet. Meanwhile, in the limit of α → 3=2, by using
the perturbation expansion in terms of Jz=J, we find that Tc
is scaled by J4z=J3 [18]. The dashed lines in Figs. 3(a) and
3(b) represent the fitting of MC data by this asymptotic
scaling. It also well explains the MC data, supporting the
phase transition at Tc.
Figure 3(c) summarizes the MC estimates of Tc in the 3D

plot. In the entire parameter space, the low-T QSL is
separated from the high-T paramagnet by the thermody-
namic singularity at Tc. There is no adiabatic connection
between the two states, and the transition always appears
to be continuous within the present calculations. These are
in sharp contrast to the situation in conventional fluids
where liquid and gas are adiabatically connected with each
other beyond the critical end point in the phase boundary
of the discontinuous transition. Thus, the thermodynamics
of the QSLs is not understood by the conventional theory
for liquids.
Interestingly, thevalue ofTc becomesmaximumatα≃ 1:

the QSL phase is most stable against thermal fluctuations

in the isotropic case. The bond-dependent interactions
in the Kitaev model compete with each other; it is not
possible to optimize the exchange energy on the x, y,
and z bonds simultaneously. The frustration becomes
strongest at α ¼ 1. Hence, interestingly, our MC results
in Fig. 3(c) show that the frustration tends to stabilize the
QSL against thermal fluctuations. This frustration effect
is opposite to that on conventional magnetically ordered
states where frustration suppresses the critical temperatures.
In the vicinity of α ¼ 1, the ground state is the gapless

QSL. By decreasing α, the ground state changes into the
gapped QSL at the quantum critical point at α ¼ 3=4, as
shown in Fig. 1(c). However, Tc changes smoothly around
α ¼ 3=4, as shown in Fig. 3. Also, we find no singularity in
the T dependence of Cv around α ¼ 3=4 within the present
precision, except for Tc [e.g., see Fig. 4(a)]. In the low-T
limit, however, there should be some anomaly in Cv,
reflecting the change of low-energy excitations. The results
suggest that such anomaly will happen to be seen at much
lower T than 10−4.
Now let us discuss the reason why the specific heat Cv

exhibits two peaks. We show the T dependence of the
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FIG. 2 (color online). (a) Temperature dependence of the
specific heat in the isotropic case with Jx ¼ Jy ¼ Jz ¼ 1=3
(α ¼ 1). (b) The enlarged view in the vicinity of the low-
temperature peak. The calculations were performed for the
systems on the hyperhoneycomb lattice with N ¼ 4L3 spins
up to L ¼ 6. The inset in (b) shows the peak temperature T 0

c of the
specific heat as a function of the inverse of the system sizeN. The
dotted line represents the linear fit for the three largest N.
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FIG. 3 (color online). Finite-temperature phase diagram of
the 3D Kitaev model. (a) Cut of the phase diagram along the
α and α0 axes shown in the insets. Log-scale plot for (a) is shown
in (b). The solid (dashed) line is the α dependence of Tc obtained
by the perturbation expansion in terms of J=Jz (Jz=J), where
J ¼ Jx ¼ Jy. (c) 3D plot of the phase diagram in the whole
parameter space. The base triangle represents the ground state
phase diagram shown in Fig. 1(c).
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gapped spin liquid

gapless spin liquid
Majorana metal

Kz

Ky

Kx

Kx + Kz + Ky =  const.

KzKy

Kx

Represent spins in terms of  
four Majorana fermions

�↵ = ia↵c

Bond operators  

                        
realize a Z2 gauge field

ûjk = ia↵j a
↵
k

The emergent Majorana fermions 
are itinerant degrees of freedom. 

 
Generically, they form a gapless 

collective state – a Majorana metal.

Kitaev model
Rep. Prog. Phys. 75 (2012) 056501 E Y Andrei et al

Figure 6. Graphene band structure. (a) Adapted with permission from [5]. (b) Zoom in to low-energy dispersion at one of the K points
shows the e–h symmetric Dirac cone structure.

The combination of many desirable properties in
graphene: transparency, large conductivity, flexibility, and
high chemical and thermal stability, make it [77, 78] a natural
candidate for solar cells and other optoelectronic devices.

1.5. Electronic properties

Three ingredients go into producing the unusual electronic
properties of graphene: its 2D structure, the honeycomb lattice
and the fact that all the sites on its honeycomb lattice are
occupied by the same atoms, which introduces inversion
symmetry. We note that the honeycomb lattice is not a Bravais
lattice. Instead, it can be viewed as a bipartite lattice composed
of two interpenetrating triangular sublattices, A and B with
each atom in the A sublattice having only B sublattice nearest
neighbors and vice versa. In the case of graphene the atoms
occupying the two sublattices are identical and as we shall see
this has important implications to its electronic band structure.
As shown in figure 5(a), the carbon atoms in sublattice A
are located at positions !R = m!a1 + n!a2, where m, n are
integers and !a1 = a

2 (3,
√

3), !a2 = a
2 (3, −

√
3) are the lattice

translation vectors for sublattice A. Atoms in sublattice B are
at !R + !τ , where !τ = (!a2 + !a1)/3. The reciprocal lattice vectors,
!G1 = 2π

3a
(1,

√
3), !G2 = 2π

3a
(1, −

√
3) and the first Brillouin

zone, a hexagon with corners at the so-called K points, are
shown in figure 5(b). Only two of theK points are inequivalent,
the others being connected by reciprocal lattice vectors. The
electronic properties of graphene are controlled by the low-
energy conical dispersion around these K points.

Tight binding Hamiltonian and band structure. The low-
energy electronic states, which are determined by electrons
occupying the pz orbitals, can be derived from the tight binding
Hamiltonian [11] in the Hückel model for nearest neighbor
interactions:

H = −t
∑

| !R〉

(| !R〉〈 !R + !τ | + | !R〉〈 !R − !a1 + !τ |

+ | !R〉〈 !R − !a2 + !τ | + h.c.). (1)

Here 〈!r| !R〉 = #pz
( !R − !r) is a wave function of the pz orbital

on an atom in sublattice A, 〈!r| !R + !τ 〉 is a similar state on
a B sublattice atom and t is the hopping integral from a
state on an A atom to a state on an adjacent B atom. The
hopping matrix element couples states on the A sublattice
to states on the B sublattice and vice versa. It is chosen
as t ∼ 2.7 eV so as to match the band structure near the
K points obtained from first principle computations. Since
there are two Bravais sublattices two sets of Bloch orbitals are
needed, one for each sublattice, to construct Bloch eigenstates
of the Hamiltonian: |!kA〉 = (1/

√
N)

∑
!R ei!k· !R| !R〉and |!kB〉 =

(1/
√

N)
∑

!R ei!k· !R| !R + !τ 〉. These functions block-diagonalize
the one-electron Hamiltonian into 2 × 2 sub-blocks, with
vanishing diagonal elements and with off-diagonal elements
given by: 〈!kA|H |!kB〉 = −tei!k·!τ (1 + e−i!k·!a1 + e−i!k·!a2) ≡ e(!k).
The single particle Bloch energies ε(!k) = ±|e(!k)| give the
band structure plotted in figure 6(a), with ε(!k) = |e(!k)|
corresponding to the conduction band π∗ and ε(!k) = −|e(!k)|
to the valence band π . It is easy to see that ε(!k) vanishes when
!k lies at a K point. For example, at !K1 = ( !G1 + 2 !G2)/3,
e( !K) = −tei!k·!τ (1 + e−i !G1·!a1/3 + e−i2 !G2·!a2/3) = 0 where we used
!Gi · !aj = 2πδij . For reasons that will become clear, these
points are called ‘Dirac points’ (DP). Everywhere else in k-
space, the energy is finite and the splitting between the two
bands is 2|e(!k)|.

Linear dispersion and spinor wavefunction. We now discuss
the energy spectrum and eigenfunctions for k close to a DP.
Since only two of the K points—also known as ‘valleys’—are
inequivalent we need to focus only on those two. Following
convention we label them K and K ′. For the K valley,
it is convenient to define the (2D) vector !q = !K − !k.
Expanding around !q = 0, and substituting !q → −ih̄(∂x, ∂y)
the eigenvalue equation becomes [3–5]

HK#K = −ih̄vF

(
0 ∂x − i∂y

∂x + i∂y 0

) (
ψKA

ψKB

)
= ε

(
ψKA

ψKB

)
,

(2)

where vF =
√

3
2 (at/h̄) ≈ 106 m s−1 is the Fermi velocity of the

quasiparticles. The two components #KA and #KB give the

7
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Heisenberg-Kitaev model

components depending on the sublattice index. This trans-
formation results in the ~S Hamiltonian of the same form as
(1), but with effective couplings ~K ¼ K þ J and ~J ¼ #J,
revealing a hidden SUð2Þ symmetry of the model at
K ¼ #J (where the Kitaev term ~K vanishes). For the
angles, the mapping reads as tan ~’ ¼ # tan’# 1.

Phase diagram.—In its full parameter space, the KH
model accommodates 6 different phases, best visualized
using the phase-angle ’ as in Fig. 1(a). In addition to the
previously discussed [16,22,23] Néel-AF, stripy-AF, and
SL states near ’ ¼ 0, # !

4 , and # !
2 , respectively, we

observe 3 more states. First one is ‘‘AF’’ (K > 0) Kitaev
spin-liquid near ’ ¼ !

2 . Second, the FM phase broadly
extending over the third quadrant of the ’ circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ’ ¼ 3

4!, the most wanted
phase, zigzag AF, appears occupying almost a quarter of
the phase space. Thanks to the above mapping, it is under-
stood that the zigzag and Néel states are isomorphic, too.

In particular, the ’ ¼ 3
4! zigzag state is identical to the

Heisenberg-AF state of the fictitious spins [24].
To obtain the phase boundaries, we have diagonalized

the model numerically, using a hexagonal 24-site cluster
with periodic boundary conditions. The cluster is compat-
ible with the above 4-sublattice transformation and ’ $ ~’
mapping. As seen in Fig. 1(b), the second derivative of the
GS energy EGS with respect to the ’well detects the phase
transitions. Three pairs of linked transition points are
found: ’ ð88&; 92&Þ and (# 76&, #108&) for the spin
liquid-order transitions around ' !

2 , and (162&, #34&) or
the transitions between ordered phases.
The transitions from zigzag-AF to FM, and from stripy-

AF to Néel-AF are expected to be of first order by sym-
metry; the corresponding peaks in Fig. 1(b) are indeed very
sharp. The spin liquid-order transitions near ’ ¼ # !

2 lead
to wider and much less pronounced peaks, suggesting a
second- (or weakly first-) order transition [16]. On the
contrary, liquid-order transitions around ’ ¼ !

2 show up
as very narrow peaks; on the finite cluster studied, they
correspond to real level crossings. The nature of these
phase transitions remains to be clarified [25].
While at J ¼ 0 (i.e.,’ ¼ ' !

2 ) the sign ofK is irrelevant
[21], the stability of the AF- and FM-type Kitaev spin
liquids against J perturbation is very different: the SL
phase near !

2 (# !
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the !

2 SL, these are highly quantum
zigzag and Néel states, while the SL near # !

2 is sand-

wiched by more classical (FM and ‘‘fluctuation free’’ stripy
[16]) states which are energetically less favorable than the
quantum SL state.
Exchange interactions in Na2IrO3.—Having fixed the

parameter space (K > 0, J < 0) for the zigzag phase, we
turn now to the physical processes behind the model (1).
Exchange interactions in Mott insulators arise due to vir-
tual hoppings of electrons. This may happen in many
different ways, depending sensitively on chemical bond-
ing, intra-ionic electron structure, etc. The case of present
interest (i.e., strong spin-orbit coupling, t52g configuration,

and 90&-bonding geometry) has been addressed in several
papers [8,11,16,26]. There are the following four physical
processes that contribute to K and J couplings.
Process 1: Direct hopping t0 between NN t2g orbitals.

Since no oxygen orbital is involved, 90& bonding is irrele-
vant; the resulting Hamiltonian isH1 ¼ I1Si ( Sj with I1 ’
ð23 t0Þ2=U [16]. Here, U is the Coulomb repulsion between

t2g electrons. Typically, one has t0=t < 1, when compared
to the indirect hopping t of t2g orbitals via oxygen ions.
Process 2: Interorbital NN t2g # eg hopping ~t. This is

the dominant pathway in 90& bonding geometry since
it involves strong tpd" overlap between oxygen-2p
and eg orbitals; typically, ~t=t) 2. The corresponding
Hamiltonian is [11]
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leéNypirtsdiuqilMFgazgizdiuqilleéN
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circle connect the points related by the exact mapping (see text).
Open and solid circles in the insets indicate up and down spins.
The rectangular box in the zigzag pattern (top-left) shows the
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Kitaev model – magnetic field effects
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Spin-orbit coupling in condensed matter
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4d/5d transition metal compounds
Transition metal oxides with partially filled 4d/5d shells exhibit an intricate interplay of 


spin-orbit coupling, electronic correlations,  and crystal field effects 

resulting in a broad variety of metallic and insulating states.

W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents,   
Annual Review of Condensed Matter Physics 5, 57 (2014). 
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spin-orbit entangled Mott insulators

Why are these spin-orbit entangled j=1/2 Mott insulators interesting?

B.J. Kim et al. PRL 101, 076402 (2008)
B.J. Kim et al. Science 323, 1329 (2009)
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bond-directional exchange
G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009)


J. Chaloupka, G. Jackeli, and G. Khaliullin, PRL 105, 027204 (2010)
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Ba2CeIrO6

A. REVELLI et al. PHYSICAL REVIEW B 100, 085139 (2019)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

10

20

30

40

50
(a) T = 10 K

300 K

q = (1/8 1/8 10)

R
IX
S
in
te
ns
ity
[a
.u
.]

Energy loss [eV]

0.5 0.6 0.7 0.8
0

20

40

60

80

100

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

(h h 10+h)h=0.5
0.4
0.3
0.2
0.1
0

l=1
0.8
0.6
0.4
0.2
0

(h h 10)
- L- K

R
IX
S
in
te
ns
ity
[a
.u
.]

- X
(0 0 10+l) h=6/8

5/8
4/8
3/8
2/8
1/8
0

(c)

Energy loss [eV]

(d)(b)

FIG. 3. RIXS data of Ba2CeIrO6. (a) RIXS peaks at 0.61 eV and
0.71 eV correspond to excitations to j = 3/2 states which are split
by a noncubic crystal field. Data at 300 K show a slightly enhanced
peak width but the same splitting as at 10 K. (b)–(d) Dispersion along
high-symmetry directions at 10 K. The dashed line denotes the peak
energy at the ! point, 0.61 eV. The largest dispersion is observed
from ! to L, i.e., along (h h h). All RIXS spectra were measured in
the Brillouin zone around (0 0 10) to achieve a scattering angle 2θ

close to 90◦ which suppresses the contribution of the elastic line at
zero energy loss.

vary from 87◦ to 93◦ [29], while Sr2IrO4 shows distorted IrO6
octahedra with Ir-O bond lengths of 1.98–2.06 Å and Ir-O-Ir
bond angles of 157◦ [32]. Despite the substantial distortions,
these compounds are widely accepted as realizations of the
j = 1/2 scenario. In contrast, strong deviations from the
j = 1/2 model are reported for Sr3CuIrO6 and CaIrO3 with
#exp = 0.23 eV and 0.6 eV, respectively [30,31].

For Ba2CeIrO6, we measured RIXS data on a polished (0
0 1) surface at the ID20 beamline at ESRF using an incident
energy of 11.215 keV with an overall resolution of 25 meV
[33,34]. The incident photons were π polarized. Our data offer
a textbook example of the spin-orbit exciton by showing two
narrow RIXS peaks on a negligible background, see Fig. 3.
Similar RIXS spectra with a slightly larger peak splitting
were reported for Rb2IrF6 [29] and Ba3Ti2.7Ir0.3O9 [35], two
compounds with well separated Ir4+ ions. In comparison, 5d5

iridates with stronger hopping such as Na2IrO3 and Sr2IrO4
show more complex RIXS features [27,28] with, e.g., further
peaks, broader linewidths, and/or a continuum contribution.
In Ba2CeIrO6, the peaks are located at about 0.61 eV and
0.71 eV, both at 10 K and at 300 K. The observation of two
peaks signals noncubic local distortions in agreement with our
analysis of the x-ray diffraction data. A fit using two peaks
with the Pearson VII line shape [36] that mimics a convolution

of an intrinsic Lorentzian line shape and a Gaussian profile
with the experimental resolution yields a splitting #exp =
(100 ± 4) meV, the smallest splitting reported thus far in L
edge RIXS for the spin-orbit exciton in iridates [27–31,35].
The peak values of 0.61 eV and 0.71 eV allow for two differ-
ent solutions of Eq. (3) with λ = 0.43 eV and #CF = 0.17 eV
or −0.15 eV, which correspond to elongation or compression,
respectively. This results in a ground-state wave function

|0〉 = 0.991
∣∣∣∣
1
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,

1
2

〉
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3
2
,

1
2

〉
(4)

in the | j, jz〉 basis for elongation, while for compression the
coefficients are 0.995 and 0.100, respectively. Note that both
solutions deviate by less than 1% from the ideal j = 1/2 case.

To probe the intersite hopping interactions, we have mea-
sured the dispersion via RIXS for q along different high-
symmetry directions. Data along !-K and !-L paths reveal
a finite dispersion of up to 15–20 meV, while peak energies
are nearly independent of q along !-X , see the lower panels
of Fig. 3. The corresponding delocalization of the j = 3/2
excited state is a clear signature of microscopic hopping pro-
cesses and intersite interactions that are closely related to the
magnetic exchange interactions between localized j = 1/2
moments [28,37]. Roughly, this common microscopic origin
is reflected in the common energy scale of 15–20 meV of the
spin-orbit exciton dispersion and the Curie-Weiss tempera-
ture, which also is a measure of the size of magnetic exchange
interactions.

V. MICROSCOPIC MODEL

A. fcc lattice with cubic site symmetry

A symmetry analysis [38–40] of exchange interactions on
the undistorted fcc lattice shows that the most general nearest-
neighbor spin Hamiltonian allows for Heisenberg coupling J1,
Kitaev coupling K , and symmetric off-diagonal exchange !.
We estimate the coupling constants using density functional
theory (GGA+U+SOC) for different magnetic configurations
and t/U perturbation theory for an effective tight-binding
model (see Appendix B). Both approaches consistently yield
an antiferromagnetic J1 ≈5–7 meV and two subdominant cou-
plings K ≈ J2 ≈0.2 J1, where J2 denotes a next-nearest neigh-
bor Heisenberg coupling. We find that !/J1!0.05 is neg-
ligible. The corresponding Curie-Weiss temperature &CW =
−(3J1 + K + 3J2/2)≈−200 K to −280 K agrees with the
experimental χ (T ); see Fig. 2. Note that we find an antifer-
romagnetic Kitaev coupling, in contrast to the ferromagnetic
ones inferred for the honeycomb-based iridates and α-RuCl3
[41]. The ferromagnetic Kitaev coupling of the latter arises
from Hund’s coupling in the virtually excited intermediate
state with two holes on the same site, favoring parallel hole
spins. For the honeycomb materials with a 90◦ Ir-O-Ir ex-
change path, this translates into a ferromagnetic coupling of
j = 1/2 pseudospins. In Ba2CeIrO6, exchange proceeds via
an Ir-O-O-Ir path with a different combination of orbitals in
the virtual state. Again, Hund’s coupling favors parallel spins
of the two holes, but for the relevant orbitals this translates
to antiferromagnetic coupling of j = 1/2 pseudospins (see
Appendix C).

085139-4

The double perovskite Ba2CeIrO6

is the best j=1/2 system we have ever seen,


but not really a “Kitaev material”.


• pristine j=1/2 physics 
 
 
 
 

• frustrated FCC magnetism, but 
Kitaev interaction relieves frustration 

• strong magneto-elastic effect
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FIG. 3. RIXS data of Ba2CeIrO6. (a) RIXS peaks at 0.61 eV and
0.71 eV correspond to excitations to j = 3/2 states which are split
by a noncubic crystal field. Data at 300 K show a slightly enhanced
peak width but the same splitting as at 10 K. (b)–(d) Dispersion along
high-symmetry directions at 10 K. The dashed line denotes the peak
energy at the ! point, 0.61 eV. The largest dispersion is observed
from ! to L, i.e., along (h h h). All RIXS spectra were measured in
the Brillouin zone around (0 0 10) to achieve a scattering angle 2θ

close to 90◦ which suppresses the contribution of the elastic line at
zero energy loss.

vary from 87◦ to 93◦ [29], while Sr2IrO4 shows distorted IrO6
octahedra with Ir-O bond lengths of 1.98–2.06 Å and Ir-O-Ir
bond angles of 157◦ [32]. Despite the substantial distortions,
these compounds are widely accepted as realizations of the
j = 1/2 scenario. In contrast, strong deviations from the
j = 1/2 model are reported for Sr3CuIrO6 and CaIrO3 with
#exp = 0.23 eV and 0.6 eV, respectively [30,31].

For Ba2CeIrO6, we measured RIXS data on a polished (0
0 1) surface at the ID20 beamline at ESRF using an incident
energy of 11.215 keV with an overall resolution of 25 meV
[33,34]. The incident photons were π polarized. Our data offer
a textbook example of the spin-orbit exciton by showing two
narrow RIXS peaks on a negligible background, see Fig. 3.
Similar RIXS spectra with a slightly larger peak splitting
were reported for Rb2IrF6 [29] and Ba3Ti2.7Ir0.3O9 [35], two
compounds with well separated Ir4+ ions. In comparison, 5d5

iridates with stronger hopping such as Na2IrO3 and Sr2IrO4
show more complex RIXS features [27,28] with, e.g., further
peaks, broader linewidths, and/or a continuum contribution.
In Ba2CeIrO6, the peaks are located at about 0.61 eV and
0.71 eV, both at 10 K and at 300 K. The observation of two
peaks signals noncubic local distortions in agreement with our
analysis of the x-ray diffraction data. A fit using two peaks
with the Pearson VII line shape [36] that mimics a convolution

of an intrinsic Lorentzian line shape and a Gaussian profile
with the experimental resolution yields a splitting #exp =
(100 ± 4) meV, the smallest splitting reported thus far in L
edge RIXS for the spin-orbit exciton in iridates [27–31,35].
The peak values of 0.61 eV and 0.71 eV allow for two differ-
ent solutions of Eq. (3) with λ = 0.43 eV and #CF = 0.17 eV
or −0.15 eV, which correspond to elongation or compression,
respectively. This results in a ground-state wave function
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in the | j, jz〉 basis for elongation, while for compression the
coefficients are 0.995 and 0.100, respectively. Note that both
solutions deviate by less than 1% from the ideal j = 1/2 case.

To probe the intersite hopping interactions, we have mea-
sured the dispersion via RIXS for q along different high-
symmetry directions. Data along !-K and !-L paths reveal
a finite dispersion of up to 15–20 meV, while peak energies
are nearly independent of q along !-X , see the lower panels
of Fig. 3. The corresponding delocalization of the j = 3/2
excited state is a clear signature of microscopic hopping pro-
cesses and intersite interactions that are closely related to the
magnetic exchange interactions between localized j = 1/2
moments [28,37]. Roughly, this common microscopic origin
is reflected in the common energy scale of 15–20 meV of the
spin-orbit exciton dispersion and the Curie-Weiss tempera-
ture, which also is a measure of the size of magnetic exchange
interactions.

V. MICROSCOPIC MODEL

A. fcc lattice with cubic site symmetry

A symmetry analysis [38–40] of exchange interactions on
the undistorted fcc lattice shows that the most general nearest-
neighbor spin Hamiltonian allows for Heisenberg coupling J1,
Kitaev coupling K , and symmetric off-diagonal exchange !.
We estimate the coupling constants using density functional
theory (GGA+U+SOC) for different magnetic configurations
and t/U perturbation theory for an effective tight-binding
model (see Appendix B). Both approaches consistently yield
an antiferromagnetic J1 ≈5–7 meV and two subdominant cou-
plings K ≈ J2 ≈0.2 J1, where J2 denotes a next-nearest neigh-
bor Heisenberg coupling. We find that !/J1!0.05 is neg-
ligible. The corresponding Curie-Weiss temperature &CW =
−(3J1 + K + 3J2/2)≈−200 K to −280 K agrees with the
experimental χ (T ); see Fig. 2. Note that we find an antifer-
romagnetic Kitaev coupling, in contrast to the ferromagnetic
ones inferred for the honeycomb-based iridates and α-RuCl3
[41]. The ferromagnetic Kitaev coupling of the latter arises
from Hund’s coupling in the virtually excited intermediate
state with two holes on the same site, favoring parallel hole
spins. For the honeycomb materials with a 90◦ Ir-O-Ir ex-
change path, this translates into a ferromagnetic coupling of
j = 1/2 pseudospins. In Ba2CeIrO6, exchange proceeds via
an Ir-O-O-Ir path with a different combination of orbitals in
the virtual state. Again, Hund’s coupling favors parallel spins
of the two holes, but for the relevant orbitals this translates
to antiferromagnetic coupling of j = 1/2 pseudospins (see
Appendix C).
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FIG. 3. RIXS data of Ba2CeIrO6. (a) RIXS peaks at 0.61 eV and
0.71 eV correspond to excitations to j = 3/2 states which are split
by a noncubic crystal field. Data at 300 K show a slightly enhanced
peak width but the same splitting as at 10 K. (b)–(d) Dispersion along
high-symmetry directions at 10 K. The dashed line denotes the peak
energy at the ! point, 0.61 eV. The largest dispersion is observed
from ! to L, i.e., along (h h h). All RIXS spectra were measured in
the Brillouin zone around (0 0 10) to achieve a scattering angle 2θ

close to 90◦ which suppresses the contribution of the elastic line at
zero energy loss.

vary from 87◦ to 93◦ [29], while Sr2IrO4 shows distorted IrO6
octahedra with Ir-O bond lengths of 1.98–2.06 Å and Ir-O-Ir
bond angles of 157◦ [32]. Despite the substantial distortions,
these compounds are widely accepted as realizations of the
j = 1/2 scenario. In contrast, strong deviations from the
j = 1/2 model are reported for Sr3CuIrO6 and CaIrO3 with
#exp = 0.23 eV and 0.6 eV, respectively [30,31].

For Ba2CeIrO6, we measured RIXS data on a polished (0
0 1) surface at the ID20 beamline at ESRF using an incident
energy of 11.215 keV with an overall resolution of 25 meV
[33,34]. The incident photons were π polarized. Our data offer
a textbook example of the spin-orbit exciton by showing two
narrow RIXS peaks on a negligible background, see Fig. 3.
Similar RIXS spectra with a slightly larger peak splitting
were reported for Rb2IrF6 [29] and Ba3Ti2.7Ir0.3O9 [35], two
compounds with well separated Ir4+ ions. In comparison, 5d5

iridates with stronger hopping such as Na2IrO3 and Sr2IrO4
show more complex RIXS features [27,28] with, e.g., further
peaks, broader linewidths, and/or a continuum contribution.
In Ba2CeIrO6, the peaks are located at about 0.61 eV and
0.71 eV, both at 10 K and at 300 K. The observation of two
peaks signals noncubic local distortions in agreement with our
analysis of the x-ray diffraction data. A fit using two peaks
with the Pearson VII line shape [36] that mimics a convolution

of an intrinsic Lorentzian line shape and a Gaussian profile
with the experimental resolution yields a splitting #exp =
(100 ± 4) meV, the smallest splitting reported thus far in L
edge RIXS for the spin-orbit exciton in iridates [27–31,35].
The peak values of 0.61 eV and 0.71 eV allow for two differ-
ent solutions of Eq. (3) with λ = 0.43 eV and #CF = 0.17 eV
or −0.15 eV, which correspond to elongation or compression,
respectively. This results in a ground-state wave function
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〉
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in the | j, jz〉 basis for elongation, while for compression the
coefficients are 0.995 and 0.100, respectively. Note that both
solutions deviate by less than 1% from the ideal j = 1/2 case.

To probe the intersite hopping interactions, we have mea-
sured the dispersion via RIXS for q along different high-
symmetry directions. Data along !-K and !-L paths reveal
a finite dispersion of up to 15–20 meV, while peak energies
are nearly independent of q along !-X , see the lower panels
of Fig. 3. The corresponding delocalization of the j = 3/2
excited state is a clear signature of microscopic hopping pro-
cesses and intersite interactions that are closely related to the
magnetic exchange interactions between localized j = 1/2
moments [28,37]. Roughly, this common microscopic origin
is reflected in the common energy scale of 15–20 meV of the
spin-orbit exciton dispersion and the Curie-Weiss tempera-
ture, which also is a measure of the size of magnetic exchange
interactions.

V. MICROSCOPIC MODEL

A. fcc lattice with cubic site symmetry

A symmetry analysis [38–40] of exchange interactions on
the undistorted fcc lattice shows that the most general nearest-
neighbor spin Hamiltonian allows for Heisenberg coupling J1,
Kitaev coupling K , and symmetric off-diagonal exchange !.
We estimate the coupling constants using density functional
theory (GGA+U+SOC) for different magnetic configurations
and t/U perturbation theory for an effective tight-binding
model (see Appendix B). Both approaches consistently yield
an antiferromagnetic J1 ≈5–7 meV and two subdominant cou-
plings K ≈ J2 ≈0.2 J1, where J2 denotes a next-nearest neigh-
bor Heisenberg coupling. We find that !/J1!0.05 is neg-
ligible. The corresponding Curie-Weiss temperature &CW =
−(3J1 + K + 3J2/2)≈−200 K to −280 K agrees with the
experimental χ (T ); see Fig. 2. Note that we find an antifer-
romagnetic Kitaev coupling, in contrast to the ferromagnetic
ones inferred for the honeycomb-based iridates and α-RuCl3
[41]. The ferromagnetic Kitaev coupling of the latter arises
from Hund’s coupling in the virtually excited intermediate
state with two holes on the same site, favoring parallel hole
spins. For the honeycomb materials with a 90◦ Ir-O-Ir ex-
change path, this translates into a ferromagnetic coupling of
j = 1/2 pseudospins. In Ba2CeIrO6, exchange proceeds via
an Ir-O-O-Ir path with a different combination of orbitals in
the virtual state. Again, Hund’s coupling favors parallel spins
of the two holes, but for the relevant orbitals this translates
to antiferromagnetic coupling of j = 1/2 pseudospins (see
Appendix C).
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FIG. 4. (a) Phase diagram for the J1-J2-K model. We find ordered phases with ordering wave vectors (100) (red), ( 1
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(blue), an incommensurate spiral phase (yellow) whose ordering wave vector continuously varies within the phase, and a spin liquid regime
(gray). The lines indicate the phase boundaries of the classical model for comparison. White and black circles mark high-degeneracy points of
the classical model (see text), their corresponding sets of q vectors are shown in (b) and (c), respectively. The star indicates the parameter set
obtained for Ba2CeIrO6. (d) The frustration parameter f = |!CW|/TN shows the suppression of ordering tendencies caused by the interplay of
geometric and exchange frustration. Gray: spin liquid regime.

To study the competition of geometric and exchange frus-
tration, we explore the minimal microscopic model

H = J1

∑

〈i, j〉

#Si · #S j + K
∑

〈i, j〉γ

Sγ
i S

γ
j + J2

∑

〈〈i, j〉〉

#Si · #S j, (5)

where 〈i, j〉γ denotes nearest-neighbor pairs in the plane per-
pendicular to axis γ (= x, y, z), 〈〈i, j〉〉 runs over next-nearest-
neighbor pairs, and the spin operators #S refer to j = 1/2
moments. We have calculated its rich phase diagram using
a pseudofermion functional renormalization group (pf-FRG)
approach [42]. This numerical scheme combines elements
from 1/S expansion [43] and 1/N expansion [44,45], allowing
it to capture both magnetic order and spin-liquid ground
states. There are four magnetically ordered phases, one of
them showing incommensurate spiral order, see Fig. 4(a).
These phases can be readily understood in the classical limit
of model (5) via a Luttinger-Tisza approach [46,47], with the
classical phase boundaries also indicated in Fig. 4(a). The
quantum model additionally exhibits a spin-liquid phase with
no magnetic order. Its origin is revealed by two points of
special interest in the classical model, see white and black
circles in Fig. 4(a): (i) J2 = K = 0, the fcc nearest-neighbor
Heisenberg antiferromagnet. It exhibits a degenerate manifold
of coplanar spin spiral ground states [48]. The corresponding
set of q vectors is shown in Fig. 4(b). (ii) J2 = J1/2, K = 0,
where three ordered phases meet in the classical model.
This point features an even larger set of degenerate copla-
nar spin-spiral ground states, depicted by the surface of q
vectors in Fig. 4(c). The presence of a considerable (but
still subextensive) manifold of (nearly) degenerate low-energy
states appears to give rise to an extended spin liquid regime
in the quantum model, centered around the classical high-
degeneracy point [49].

To further investigate the interplay of geometric and ex-
change frustration, we calculate [50] the dimensionless frus-
tration parameter f = |!CW|/TN , see Fig. 4(d), using esti-
mates of !CW and TN obtained from fits of the magnetic
susceptibility numerically obtained by FRG calculations. The
frustration parameter diverges in the spin liquid regime due
to the absence of finite-temperature order. Furthermore, f is

particularly large along the phase boundary between the (1 1
2 0)

and ( 1
2

1
2

1
2 ) phases, where both J2 and K are substantial and

antiferromagnetic. This boosts |!CW| while TN is small close
to the phase boundary. Close to the spin-liquid regime for the
parameter set estimated for Ba2CeIrO6 [cf. star in Fig. 4(d)],
we also find large values of f . However, moving away from
the spin-liquid regime the frustration is quickly reduced with
increasing strength of the Kitaev coupling. This is consistent
with a previous classical Monte Carlo study [38,39], although
such a classical analysis by itself is not reliable in the deep
quantum limit of j =1/2. Our results show that the Kitaev
coupling, in competition with the geometric frustration of the
Heisenberg exchange, indeed induces magnetic order for the
system at hand – in striking contrast to a number of j = 1/2
materials where the Kitaev coupling is primarily considered a
source of frustration [2,13].

B. Distortions

The strong frustration in Ba2CeIrO6 boosts the importance
of magnetoelastic coupling. We find theoretically that even
small local distortions severely affect the exchange couplings,
although the ground state wave function remains close to
the j = 1/2 limit, see Eq. (4). The precise character of
the local distortions cannot be determined from our x-ray
diffraction results, which show global cubic symmetry. A
putative tetragonal distortion of strength #CF gives rise to a
strong spatial anisotropy, which can be rationalized as follows.
Focusing, e.g., on the dominant contribution to exchange
within the xy plane, we find Jxy

1 to depend quadratically on
the occupation probability of the xy orbital. Comparing cubic
#CF = 0 with the distorted case #CF/λ ≈ 0.4 derived above,
the xy occupation is strongly enhanced from 1/3 to 0.46
and as a result the nearest-neighbor Heisenberg exchange
Jxy

1 increases by about a factor of two, which corresponds
to a dramatic magnetoelastic effect. In particular, #CF >0
strengthens (weakens) J1, J2, and K in the xy plane (yz and
xz planes), while #CF <0 has the reverse effect. This strong
spatial anisotropy of the couplings is sketched in Fig. 1(c).
Note that a change of the xy occupation sin2 θ has a much
more pronounced effect on the exchange, J1 ∝ sin4 θ , than
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pendicular to axis γ (= x, y, z), 〈〈i, j〉〉 runs over next-nearest-
neighbor pairs, and the spin operators #S refer to j = 1/2
moments. We have calculated its rich phase diagram using
a pseudofermion functional renormalization group (pf-FRG)
approach [42]. This numerical scheme combines elements
from 1/S expansion [43] and 1/N expansion [44,45], allowing
it to capture both magnetic order and spin-liquid ground
states. There are four magnetically ordered phases, one of
them showing incommensurate spiral order, see Fig. 4(a).
These phases can be readily understood in the classical limit
of model (5) via a Luttinger-Tisza approach [46,47], with the
classical phase boundaries also indicated in Fig. 4(a). The
quantum model additionally exhibits a spin-liquid phase with
no magnetic order. Its origin is revealed by two points of
special interest in the classical model, see white and black
circles in Fig. 4(a): (i) J2 = K = 0, the fcc nearest-neighbor
Heisenberg antiferromagnet. It exhibits a degenerate manifold
of coplanar spin spiral ground states [48]. The corresponding
set of q vectors is shown in Fig. 4(b). (ii) J2 = J1/2, K = 0,
where three ordered phases meet in the classical model.
This point features an even larger set of degenerate copla-
nar spin-spiral ground states, depicted by the surface of q
vectors in Fig. 4(c). The presence of a considerable (but
still subextensive) manifold of (nearly) degenerate low-energy
states appears to give rise to an extended spin liquid regime
in the quantum model, centered around the classical high-
degeneracy point [49].

To further investigate the interplay of geometric and ex-
change frustration, we calculate [50] the dimensionless frus-
tration parameter f = |!CW|/TN , see Fig. 4(d), using esti-
mates of !CW and TN obtained from fits of the magnetic
susceptibility numerically obtained by FRG calculations. The
frustration parameter diverges in the spin liquid regime due
to the absence of finite-temperature order. Furthermore, f is
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2 ) phases, where both J2 and K are substantial and

antiferromagnetic. This boosts |!CW| while TN is small close
to the phase boundary. Close to the spin-liquid regime for the
parameter set estimated for Ba2CeIrO6 [cf. star in Fig. 4(d)],
we also find large values of f . However, moving away from
the spin-liquid regime the frustration is quickly reduced with
increasing strength of the Kitaev coupling. This is consistent
with a previous classical Monte Carlo study [38,39], although
such a classical analysis by itself is not reliable in the deep
quantum limit of j =1/2. Our results show that the Kitaev
coupling, in competition with the geometric frustration of the
Heisenberg exchange, indeed induces magnetic order for the
system at hand – in striking contrast to a number of j = 1/2
materials where the Kitaev coupling is primarily considered a
source of frustration [2,13].

B. Distortions

The strong frustration in Ba2CeIrO6 boosts the importance
of magnetoelastic coupling. We find theoretically that even
small local distortions severely affect the exchange couplings,
although the ground state wave function remains close to
the j = 1/2 limit, see Eq. (4). The precise character of
the local distortions cannot be determined from our x-ray
diffraction results, which show global cubic symmetry. A
putative tetragonal distortion of strength #CF gives rise to a
strong spatial anisotropy, which can be rationalized as follows.
Focusing, e.g., on the dominant contribution to exchange
within the xy plane, we find Jxy

1 to depend quadratically on
the occupation probability of the xy orbital. Comparing cubic
#CF = 0 with the distorted case #CF/λ ≈ 0.4 derived above,
the xy occupation is strongly enhanced from 1/3 to 0.46
and as a result the nearest-neighbor Heisenberg exchange
Jxy

1 increases by about a factor of two, which corresponds
to a dramatic magnetoelastic effect. In particular, #CF >0
strengthens (weakens) J1, J2, and K in the xy plane (yz and
xz planes), while #CF <0 has the reverse effect. This strong
spatial anisotropy of the couplings is sketched in Fig. 1(c).
Note that a change of the xy occupation sin2 θ has a much
more pronounced effect on the exchange, J1 ∝ sin4 θ , than
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∑
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where 〈i, j〉γ denotes nearest-neighbor pairs in the plane per-
pendicular to axis γ (= x, y, z), 〈〈i, j〉〉 runs over next-nearest-
neighbor pairs, and the spin operators #S refer to j = 1/2
moments. We have calculated its rich phase diagram using
a pseudofermion functional renormalization group (pf-FRG)
approach [42]. This numerical scheme combines elements
from 1/S expansion [43] and 1/N expansion [44,45], allowing
it to capture both magnetic order and spin-liquid ground
states. There are four magnetically ordered phases, one of
them showing incommensurate spiral order, see Fig. 4(a).
These phases can be readily understood in the classical limit
of model (5) via a Luttinger-Tisza approach [46,47], with the
classical phase boundaries also indicated in Fig. 4(a). The
quantum model additionally exhibits a spin-liquid phase with
no magnetic order. Its origin is revealed by two points of
special interest in the classical model, see white and black
circles in Fig. 4(a): (i) J2 = K = 0, the fcc nearest-neighbor
Heisenberg antiferromagnet. It exhibits a degenerate manifold
of coplanar spin spiral ground states [48]. The corresponding
set of q vectors is shown in Fig. 4(b). (ii) J2 = J1/2, K = 0,
where three ordered phases meet in the classical model.
This point features an even larger set of degenerate copla-
nar spin-spiral ground states, depicted by the surface of q
vectors in Fig. 4(c). The presence of a considerable (but
still subextensive) manifold of (nearly) degenerate low-energy
states appears to give rise to an extended spin liquid regime
in the quantum model, centered around the classical high-
degeneracy point [49].

To further investigate the interplay of geometric and ex-
change frustration, we calculate [50] the dimensionless frus-
tration parameter f = |!CW|/TN , see Fig. 4(d), using esti-
mates of !CW and TN obtained from fits of the magnetic
susceptibility numerically obtained by FRG calculations. The
frustration parameter diverges in the spin liquid regime due
to the absence of finite-temperature order. Furthermore, f is

particularly large along the phase boundary between the (1 1
2 0)

and ( 1
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2 ) phases, where both J2 and K are substantial and

antiferromagnetic. This boosts |!CW| while TN is small close
to the phase boundary. Close to the spin-liquid regime for the
parameter set estimated for Ba2CeIrO6 [cf. star in Fig. 4(d)],
we also find large values of f . However, moving away from
the spin-liquid regime the frustration is quickly reduced with
increasing strength of the Kitaev coupling. This is consistent
with a previous classical Monte Carlo study [38,39], although
such a classical analysis by itself is not reliable in the deep
quantum limit of j =1/2. Our results show that the Kitaev
coupling, in competition with the geometric frustration of the
Heisenberg exchange, indeed induces magnetic order for the
system at hand – in striking contrast to a number of j = 1/2
materials where the Kitaev coupling is primarily considered a
source of frustration [2,13].

B. Distortions

The strong frustration in Ba2CeIrO6 boosts the importance
of magnetoelastic coupling. We find theoretically that even
small local distortions severely affect the exchange couplings,
although the ground state wave function remains close to
the j = 1/2 limit, see Eq. (4). The precise character of
the local distortions cannot be determined from our x-ray
diffraction results, which show global cubic symmetry. A
putative tetragonal distortion of strength #CF gives rise to a
strong spatial anisotropy, which can be rationalized as follows.
Focusing, e.g., on the dominant contribution to exchange
within the xy plane, we find Jxy

1 to depend quadratically on
the occupation probability of the xy orbital. Comparing cubic
#CF = 0 with the distorted case #CF/λ ≈ 0.4 derived above,
the xy occupation is strongly enhanced from 1/3 to 0.46
and as a result the nearest-neighbor Heisenberg exchange
Jxy

1 increases by about a factor of two, which corresponds
to a dramatic magnetoelastic effect. In particular, #CF >0
strengthens (weakens) J1, J2, and K in the xy plane (yz and
xz planes), while #CF <0 has the reverse effect. This strong
spatial anisotropy of the couplings is sketched in Fig. 1(c).
Note that a change of the xy occupation sin2 θ has a much
more pronounced effect on the exchange, J1 ∝ sin4 θ , than
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FIG. 1. (Color online) (a) Temperature dependence of magnetic
susceptibilities with a field of 0.5 T applied parallel to the c axis and
within the ab plane. Inset shows a photograph of a typical single
crystal sample used in our studies. (b) Inverse susceptibility in both
directions. Also plotted is the inverse of powder average susceptibility
χave ≡ (2χab + χc)/3.

measurement system (PPMS) with fields up to 14 Tesla.
Specific heat measurements were also carried out using the
PPMS in zero applied field. Neutron diffraction measurements
were carried out using the multiaxis crystal spectrometer
(MACS) [40] and the BT-7 triple axis spectrometer at the NIST
Center for Neutron Research (NCNR). The measurements
on MACS were conducted using a collection of 35 single
crystal samples mounted together with a mosaic width of about
10 deg and total mass of 62 mg. Incident neutron energy was
5 meV, and the sample was mounted in the (H0L) plane. The
BT-7 data were collected using a similar crystal array of 60
crystals, with a mass of 70 mg. The incident neutron energy
was 14.7 meV, and measurements were conducted in both the
(H0L) and (HHL) planes. Throughout this paper we use the
hexagonal notation of a = 5.96 Å and c = 17.2 Å [31].

The temperature dependence of the magnetic susceptibility
measured with a 0.5 Tesla field is shown in Fig. 1(a). Here
we use the notation χc to denote susceptibility measured
with field applied perpendicular to the honeycomb plane, and
χab for susceptibility measured with in-plane field. The χab

data exhibit a peak around 15 K, in agreement with earlier
reports on powder samples [37,38]. The susceptibility is highly
anisotropic; χab is almost an order of magnitude larger than
χc at low temperatures. The Curie-Weiss temperatures also
differ significantly in the two directions. In Fig. 1(b) the
inverse susceptibility data are fitted with Curie-Weiss behavior

above 200 K. The Curie-Weiss temperatures are "c ≈ −145 K
and "ab ≈ 68 K. The effective paramagnetic moments in-
ferred from the Curie constant fit of the susceptibility are
µeff ≈ 2.0µB and µeff ≈ 2.3µB for χab and χc, respectively.
These values for paramagnetic moments are consistent with
earlier reports, and are larger than the spin-only value of
1.73µB for the low-spin state (S = 1/2) for Ru3+, which
probably indicates a significant contribution from the orbital
moment. Although the Curie-Weiss temperatures obtained
in our study are different from the values reported earlier,
when we fit the powder average [χave ≡ (2χab + χc)/3], we
obtain Curie-Weiss temperature of about 40 K, more in
line with earlier studies [37,38]. The observed anisotropy
of Curie-Weiss temperature has an interesting implication in
view of the J -K-# model. According to the high temperature
expansion formula introduced in Ref. [19], the Curie-Weiss
temperature anisotropy satisfies ("c − "ab)/("c + 2"ab) =
#/(3J + K). Since we find "c ≈ −2"ab, and we assume
that # is not infinitely large, we can estimate that J ∼ −K/3
in this compound. This is quite different from Na2IrO3, for
which #/(3J + K) ∼ −0.3 [19,21]. We also note that the
susceptibility anisotropy of α-RuCl3 is opposite to that of
Na2IrO3; that is, χab < χc in Na2IrO3.
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Figure 3 | Collective magnetic modes measured with inelastic neutron scattering using 25 meV incident neutrons. a, False colour plot of the data at
T=5 K showing magnetic modes (M1 and M2) with band centres near E=4 and 6 meV. M1 shows an apparent minimum near Q=0.62 Å�1, close to the
magnitude of the M point of the honeycomb reciprocal lattice. The white arrow shows the concave lower edge of the M1 mode. The yellow ‘P’ denotes a
phonon that contributes to the scattering at an energy near that of M2, but at higher wavevectors of Q>2 Å�1. b, The corresponding plot above TN at
T= 15 K shows that M1 has disappeared, leaving strong quasi-elastic scattering at lower values of Q and E. c, Constant-Q cuts through the scattering
depicted in a and b centred at wavevectors indicated by the dashed lines. The cuts A and C are summed over the range [0.5, 0.8] Å�1, which includes the
M point of the 2D reciprocal lattice, whereas B and D span [1.0, 1.5] Å�1. The data from 2–8 meV in cut B is fitted (solid blue line) to a linear background
plus a pair of Gaussians, yielding peak energies E1 =4.1(1) meV and E2 =6.5(1) meV. d, Constant-E cuts integrated over the energy range [2.5, 3.0] meV, at
4 K (E) and 15 K (F). See text for detail. The intensity in all four panels, including the colour bars, is reported in the same arbitrary units. In c,d, the solid lines
through all the cuts A–F are guides to the eye. The error bars represent 1� (see Methods).

quantum fluctuations are weak. Although strictly speaking it is
inapplicable for strongly quantum fluctuating systems, it provides
a first starting point for estimating the approximate and relative
strengths of the couplings. In the honeycomb lattice appropriate for
↵-RuCl3, SWT predicts four branches, two of which disperse from
zero energy at the M point (1/2, 0) to doubly degenerate energies
!1 = p

K (K + J ) and !2 = |J |
p
2, respectively, at the 0 point

(0,0) (ref. 34). A large density of states in the form of van Hove
singularities is expected near !1 and !2. Figure 4a shows the SWT
and Fig. 4b the calculated powder-averaged neutron scattering.
Equating !1 and !2 with the peaks E1 and E2 yields K and J values
of (K =7.0, J =�4.6) meV (shown in Fig. 4) or (K =8.1, J =�2.9)
meV (shown in Supplementary Fig. 5), depending on whether !1
corresponds to E1 or E2. These two possibilities lie on either side
of the symmetric point K = �2J , where !1 = !2. The inset of
Fig. 4d shows each of these possibilities on theH–Kphase diagram34.
Either way, the Kitaev term is stronger and antiferromagnetic,
whereas theHeisenberg term is ferromagnetic; again consistent with
ab initio calculations26.

We note that the M1 mode has a gap of at least 1.7meV near
the M point (see Fig. 5a) that is not exhibited in the above SWT

calculations. Although such a gapless spectrum is a known artefact
of linear SWT for theH–Kmodel34, the experimentally observed gap
is too large to be accounted for within systematic 1/S corrections.
Extending the Hamiltonian to include further terms can lead to a
gap formingwithin SWT.However, calculations of the SWspectrum
(see Supplementary Fig. 5 and Supplementary Information) with
additional terms in theHamiltonian (such as0 and/or0’ terms35–39),
when su�cient to generate the observed gap, show features in
the powder-averaged scattering that are inconsistent with the
observations. Within the SW approximation, a gap can also be
generated by adding an additional Ising-like anisotropy, perhaps
at the level of 15% of J , which is also equivalent to an anisotropic
Kitaev interaction. As discussed below, the resulting SWT is still
incompatible with the data.

Although the SWTcalculation reproducesmany of the features of
the observed dynamical response, crucial qualitative disagreements
remain.Most importantly, the observed dependence of theM2 mode
on temperature and energy is incompatible with linear SWT. The
constant-wavevector cuts shown in Fig. 3c show thatM2 maintains
a totally consistent peak shape and intensity above and below TN.
Moreover, for temperatures well above TN, to at least 40K, the
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depicted. b,c, Feynman diagrams of the Raman scattering processes that correspond to a creation or annihilation of a pair of matter fermions (process (A))
(b) and a combination of creation and annihilation of the matter fermions (process (B)) (c). In process (A), a photon scattering creates two fermions with
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Figure 2 | Comparison between the numerical results and the
experimental data for ↵-RuCl3. Main panel: blue circles represent QMC
data for a L=20 cluster for the integrated Raman intensity Imid shown in
Fig. 3c. The errors evaluated by the standard deviation of the MC samplings
are su�ciently smaller than the symbol size. Red squares are the experi-
mental data in the energy window from 5 to 12.5 meV (ref. 4), from which
the non-magnetic background is subtracted (see text). Green dashed lines
represent the fitting by aM[1� f("⇤

M)]2 +bM (see caption of Fig. 3). We take
J= 10 meV in calculating Imid. Inset: red squares show the experimental raw
data and the orange curve indicates the bosonic background. Note that the
assignment of the bosonic background is slightly di�erent from that in
ref. 4. Details of the fitting procedure are given in Methods.

Jx = Jy = Jz = J ; a small anisotropy plausible in real materials does
not alter our main conclusions (see Supplementary Information).
The thermodynamic behaviour exhibits two characteristic crossover
T -scales originating from fractionalization at T ⇤/J ⇠ 0.012 and
T ⇤⇤/J ⇠ 0.38: the former is related to the condensation of flux
Majorana fermions, set by the flux gap ⇠0.06J (ref. 2), whereas
the latter arises from the formation of matter Majorana fermions
at much higher T , set by their bandwidth ⇠1.5J .

Figure 3a shows the QMC data for the Raman spectrum I(!)
at several T . At T = 0, it exhibits !-linear behaviour in the
low-energy region, due to a linear Dirac dispersion of matter
Majorana fermions7. With increasing T above T ⇤, the low-energy
part increases and the ! = 0 contribution becomes nonzero, as
shown in the figure for T/J = 0.0375. At higher T , the broad peak

in the intermediate energy range at !/J ⇠ 1 is suppressed above
T ⇠ T ⇤⇤. Indeed, the Raman spectrum at T/J = 0.75 shows no
substantial energy dependence for 0<!/J .2, as shown in Fig. 3a.
For higher T , the intermediate-to-high-energy weight gradually
decreases. The T and ! dependence of the Raman spectrum is
summarized in Fig. 3b. The result clearly shows that the broad peak
structure is slightly shifted to the low-energy side above T ⇤ and the
spectrum becomes featureless above T ⇤⇤.

For further understanding of the T dependence of the Raman
spectra, it is helpful to work in a basis of complex matter
fermions constructed as a superposition of real Majorana fermions
(see Methods). These elementary excitations determine the
T -dependence because their occupation (in a fixed background
of fluxes) is given by the Fermi distribution function. In detail,
one needs to analyse two di�erent processes contributing to
Raman scattering23: one consists of creation or annihilation of
a pair of fermions (process (A)), with the other a combination
of the creation of one fermion and the annihilation of another
(process (B)) (see Methods for details). Process (A) is proportional
to [1� f ("1)][1� f ("2)]�(!�"1 �"2), where ! is the Raman
shift, and "1 and "2 are the energies of fermions (see Fig. 1b).
Process (B) is proportional to f ("1)[1� f ("2)]�(! + "1 � "2) and
vanishes at T = 0 due to the absence of matter fermions in the
ground state (see Fig. 1c). Because of their di�erent frequency
dependence—for example, (A) vanishes for !!0 at low T—their
distinct T -behaviour can be extracted by looking at di�erent
frequency windows.

Figure 3c shows the T dependence of the integrated spectral
weight in the intermediate energy window, Imid for 0.5<!/J <1.25
(see the hatched region in Fig. 3a). The same is used in Fig. 2 in
accordance with the frequency window for the experimental data
with J = 10meV. We emphasize that the value of J is consistent
not only with the spectral width and peak position of the Raman
continuum at the lowest T (ref. 4), but also with the inelastic
neutron scattering in ↵-RuCl3 (ref. 15). As shown in Fig. 3c, Imid
has a non-monotonic change as a function of T : it grows around
T ⇤ with increasing T , but turns over to decrease above T/J ⇠ 0.1,
yielding the shift of the peak structure in I(!) to the low-energy side
shown in Fig. 3b. Note that the decrease persists up to temperatures
much higher than J due to thermal fluctuations of the itinerant
Majorana fermions. We also highlight the contributions from the
processes (A) and (B) in Fig. 3c. The result clearly indicates that Imid
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Figure 3 | Collective magnetic modes measured with inelastic neutron scattering using 25 meV incident neutrons. a, False colour plot of the data at
T=5 K showing magnetic modes (M1 and M2) with band centres near E=4 and 6 meV. M1 shows an apparent minimum near Q=0.62 Å�1, close to the
magnitude of the M point of the honeycomb reciprocal lattice. The white arrow shows the concave lower edge of the M1 mode. The yellow ‘P’ denotes a
phonon that contributes to the scattering at an energy near that of M2, but at higher wavevectors of Q>2 Å�1. b, The corresponding plot above TN at
T= 15 K shows that M1 has disappeared, leaving strong quasi-elastic scattering at lower values of Q and E. c, Constant-Q cuts through the scattering
depicted in a and b centred at wavevectors indicated by the dashed lines. The cuts A and C are summed over the range [0.5, 0.8] Å�1, which includes the
M point of the 2D reciprocal lattice, whereas B and D span [1.0, 1.5] Å�1. The data from 2–8 meV in cut B is fitted (solid blue line) to a linear background
plus a pair of Gaussians, yielding peak energies E1 =4.1(1) meV and E2 =6.5(1) meV. d, Constant-E cuts integrated over the energy range [2.5, 3.0] meV, at
4 K (E) and 15 K (F). See text for detail. The intensity in all four panels, including the colour bars, is reported in the same arbitrary units. In c,d, the solid lines
through all the cuts A–F are guides to the eye. The error bars represent 1� (see Methods).

quantum fluctuations are weak. Although strictly speaking it is
inapplicable for strongly quantum fluctuating systems, it provides
a first starting point for estimating the approximate and relative
strengths of the couplings. In the honeycomb lattice appropriate for
↵-RuCl3, SWT predicts four branches, two of which disperse from
zero energy at the M point (1/2, 0) to doubly degenerate energies
!1 = p

K (K + J ) and !2 = |J |
p
2, respectively, at the 0 point

(0,0) (ref. 34). A large density of states in the form of van Hove
singularities is expected near !1 and !2. Figure 4a shows the SWT
and Fig. 4b the calculated powder-averaged neutron scattering.
Equating !1 and !2 with the peaks E1 and E2 yields K and J values
of (K =7.0, J =�4.6) meV (shown in Fig. 4) or (K =8.1, J =�2.9)
meV (shown in Supplementary Fig. 5), depending on whether !1
corresponds to E1 or E2. These two possibilities lie on either side
of the symmetric point K = �2J , where !1 = !2. The inset of
Fig. 4d shows each of these possibilities on theH–Kphase diagram34.
Either way, the Kitaev term is stronger and antiferromagnetic,
whereas theHeisenberg term is ferromagnetic; again consistent with
ab initio calculations26.

We note that the M1 mode has a gap of at least 1.7meV near
the M point (see Fig. 5a) that is not exhibited in the above SWT

calculations. Although such a gapless spectrum is a known artefact
of linear SWT for theH–Kmodel34, the experimentally observed gap
is too large to be accounted for within systematic 1/S corrections.
Extending the Hamiltonian to include further terms can lead to a
gap formingwithin SWT.However, calculations of the SWspectrum
(see Supplementary Fig. 5 and Supplementary Information) with
additional terms in theHamiltonian (such as0 and/or0’ terms35–39),
when su�cient to generate the observed gap, show features in
the powder-averaged scattering that are inconsistent with the
observations. Within the SW approximation, a gap can also be
generated by adding an additional Ising-like anisotropy, perhaps
at the level of 15% of J , which is also equivalent to an anisotropic
Kitaev interaction. As discussed below, the resulting SWT is still
incompatible with the data.

Although the SWTcalculation reproducesmany of the features of
the observed dynamical response, crucial qualitative disagreements
remain.Most importantly, the observed dependence of theM2 mode
on temperature and energy is incompatible with linear SWT. The
constant-wavevector cuts shown in Fig. 3c show thatM2 maintains
a totally consistent peak shape and intensity above and below TN.
Moreover, for temperatures well above TN, to at least 40K, the
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Figure 5 | Disagreements with classical SWT and agreement with QSL calculations. a, Scattering from mode M1 measured using INS at T=5 K using
Ei =8 meV. Lower panel shows constant-energy cuts over the energy ranges shown, centred at the locations labelled (G,H) in the upper panel. The absence
of structured scattering below 2 meV confirms the gap in the magnetic excitation spectrum. b, Constant-E cuts of the data through the upper mode at four
di�erent temperatures, of which one curve at T=5 K is below TN (red squares) and rest above TN. The lines are guides to the eye. c, A constant-Q cut of
the Ei =25 meV, T=5 K data in the Q range shown. The blue triangles show the M2 portion of the cut B in Fig. 3c, but with the linear background term
subtracted, and the blue line is a fit to a Gaussian peak. As discussed in the text, the red line shows simulated SWT scattering and the green line shows the
scattering calculated from a Kitaev QSL response function. The shaded area represents magnetic scattering that is not captured by the SWT. The
double-ended arrow marked ‘R’ shows the full-width at half-maximum (FWHM) of the instrumental resolution of 0.5 meV at 6.5 meV. In panels a–c, the
error bars represent 1� (see Methods). d, The powder-averaged scattering calculated from a 2D isotropic Kitaev model, with antiferromagnetic K, using the
results of ref. 10, including the magnetic form factor. The upper feature is broad in energy and decreases in strength largely monotonically as Q increases.

non-dispersing high-energy band appears, centred at an energy
that corresponds approximately to the Kitaev exchange scale, K .
(For a similar calculation on the ferromagnetic Kitaev model, and
a general discussion, see Supplementary Fig. 6 and Supplementary
Information) The intensity of the upper band is strongest at Q=0,
and decreases with increasing Q.

With the Kitaev interaction dominant it is reasonable to expect
that ↵-RuCl3 is proximate to the QSL phase. The additional non-
Kitaev interactions lead to long-range order at low temperatures,
and strongly a�ect the low-energy excitations, which then exhibit
spin wave behaviour. Conversely, the high-energy spin fluctuations
native to the proximate quantum ground state are more immune,
and can persist even in the ordered state. This behaviour is well
known in coupled S= 1/2 antiferromagnetic Heisenberg chains6,
where at energies large compared to the interchain coupling the

spectrum of fractionalized excitations (spinons) of the pure chain
dominates the response above and below the magnetic ordering
temperature. This leads to a natural interpretation of the M2 mode
as having the same origin as the upper mode of the Kitaev QSL.
The broad width of the M2 mode as seen in the measurements
can be naturally explained in terms of the fractionalized Majorana
fermion excitations. The green line in Fig. 5c shows the calculated
powder-averaged QSL scattering, including the e�ects of instru-
mental resolution, with the value K =5.5meV chosen to match the
experimental peak position of M2 and the overall height chosen to
match the observed scattering. The calculatedQSL scattering profile
is wellmatched to the observed additional width of theM2 scattering
on the high-energy side. This value of K is slightly smaller than
that inferred from SWT, but it is very reasonable to expect that the
quantum description requires a renormalized parameter. The large

6

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE MATERIALS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturematerials

broad scattering continuum

fermionic contribution

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

RuCl3
neutron scattering
Banerjee et al., Nature Materials 4604 (2016) 

9 

 

Fig. 4: Comparison of the scattering with Kitaev model calculations: (a) The data at Ei=40 
meV, T=10 K integrated over range E= [4.5,7.5] meV and L = [-2.5,2.5] and symmetrized along 
the (H,H) direction. (b) The expected scattering from an isotropic AF Kitaev model at an energy 

E =1.2 KJ, taking into account the neutron polarization and the Ru3+ form factors. (c) Plot of the 
non-symmetrized data (points with error bars) along (H,H,0) at T =10 K, integrated over the 

same L and E intervals as (a) as well as ] = [-√3/10,√3/10].   The solid red line is the calculated 
scattering for an AF Kitaev model with R = 2 as discussed in the text.  The solid violet line 
represents the corresponding unmodified AF Kitaev model, and the green line the FM Kitaev 
model.  Some of the scattering at larger Q near (H,H) = ±(1,1) is due to phonons. 
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FIG. 1. (color online) (a) Temperature dependence of the spe-
cific heat, plotted as Cp/T , of ↵-RuCl3 for di↵erent magnetic
fields up to 9 T k ab. (b) As before, but showing the magnetic
contribution to the specific heat after phonon subtraction on
a log-log scale, for details see text.

plement [31] for the magnetic characterization. Specific-
heat measurements were performed on a single crystal
(m ⇠ 7 mg) between 0.4 K and 20 K using a heat-pulse
relaxation method in a Physical Properties Measurement
System (PPMS, Quantum Design), in magnetic fields up
to 9 T parallel to the ab plane.

Results: The low-T specific heat Cp/T as a function
of temperature in di↵erent applied fields is shown in Fig.
1(a). The zero-field curve reveals the good quality of the
sample, with a single magnetic transition at TN = 6.5 K
determined from the peak position. By applying a mag-
netic field the peak becomes broader and the transition
temperature is gradually suppressed. Finally no thermal
phase transition is detected for fields higher than 6.9 T,
i.e., magnetic LRO disappears.

In order to extract the magnetic contribution to the
low-T specific heat, the data were analyzed by subtract-
ing the lattice contribution from the experimental Cp(T )
data by measuring the non-magnetic structural analog
compound RhCl3 in pressed polycrystalline form. The
di↵erence of mass and volume between the Rh and Ru
compounds was accounted for by scaling the experimen-
tal specific heat curve by the Lindemann factor [32],
which was found to be 0.98. With the aim of ruling
out possible errors due to non-perfect sample coupling
during the measurements, the phononic contribution was

FIG. 2. (color online) Exponential fit of CmagT in order to
extract the excitation gap for magnetic fields (a) 5 T µ0H 
6.8 T and (b) 7 T  µ0H  9 T. The data at 6.8 T cannot be
meaningfully fit by an exponential, i.e., the gap is too small.

also calculated for RhCl3 by density-functional theory,
see supplement [31]. This approach confirmed that the
phonon subtraction based on the experimental data is
consistent with the theoretical calculations for T � 1 K.

The temperature dependence of the calculated mag-
netic contribution to the specific heat is shown in Fig.
1(b). In the lowest-T region, T  3 K, an increase of
Cmag/T with the applied field could be observed up to
µ0H = 6.8 T. Increasing the field even further, the op-
posite behavior is revealed: the magnetic contribution
starts to decrease with field up to the highest field of 9 T.
Hence, low-T entropy accumulates around 6.8� 7 T. Re-
markably, around 6.9 T the magnetic specific heat dis-
plays an approximate power-law behavior between 0.4
and 2.5 K, with Cmag / T

x with x ⇡ 2.5. Together,
these observations imply the existence of a field-induced
QCP [33, 34] at µ0Hc ⇡ 6.9 T.

Excitation gap: The lowest-temperature data away
from the QCP, with a gradual suppression of Cmag(T ),
indicate the opening of a magnetic excitation gap, Fig.
1(b). The simplest model of a bosonic mode with gap �
and parabolic dispersion in d = 2 predicts that Cmag /
exp[��/(kBT )]/T , see supplement [31]. According to
this, the experimental CmagT data were fitted to a pure
exponential behavior in order to extract the energy gap.
The results are shown in Fig. 2.

Two key observations are apparent: First, the data
below about 1.5 K indeed show an exponential suppres-
sion of Cmag, and the corresponding gap is minimal near

Y. Kasahara et al., Nature 559, 227-231 (2018)

A. Banerjee et al., npj Quantum Mater. 3, 8 (2018)
A. U. B. Wolter et al., PRB 96, 041405(R) (2017)
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Fig. 2a, where H∥ = Hsinθ and H⊥ = Hcosθ are the field components 
parallel and perpendicular to the a axis, respectively, and θ is the angle 
between H and the c axis. In zero field, κxx exhibits a distinct kink at 
TN, as shown in Fig. 2a. Although this kink is observed in a perpendic-
ular field (θ = 0°) of 12 T at the same temperature, no such anomaly is 
observed in a parallel field11,12 (θ = 90°) of 7 T. In Fig. 2a, we also plot 
κxx in an applied magnetic field of 8 T, tilted away from the c axis 
(θ = 60°, µ0H∥ ≈ 7 T). As in the case of the parallel field, no kink is 

observed. Figure 1c displays the phase diagram of an α-RuCl3 sample 
in a tilted field of θ = 60°, where TN is plotted as a function of H∥. The 
inset of Fig. 2b shows TN plotted as a function of H∥ for θ = 45°, 60° and 
90°. For θ = 60°, TN agrees well with that for 90° and vanishes at the 
same critical field of µ0

∗H  ≈ 7 T, whereas for 45° TN vanishes at 
µ0H∥ ≈ 6 T. Although TN does not scale perfectly with H∥, these results 
demonstrate the quasi-2D nature of the magnetic properties. In stark 
contrast to the strong out-of-plane (a–c) anisotropy, the in-plane (a–b) 
anisotropy is very small (Extended Data Fig. 3a–c).

Above = ∗H H , where the AFM order melts, the presence of a pecu-
liar spin-liquid state has been suggested on the basis of nuclear mag-
netic resonance and neutron scattering measurements; the former show 
the presence of a spin gap25 and the latter reveal unusual continuous 
spin excitations26. These magnetic properties are consistent with those 
expected in a Kitaev-type spin-liquid state.

To study the thermal Hall effect in the spin-liquid state above 
= ∗H H , κxy is measured by sweeping fields in tilted directions and 

obtained by anti-symmetrizing the thermal response of the sample with 
respect to the field direction. In this configuration, the Hall response 
is determined by H⊥. Because the magnitude of κxy is extremely small 
compared to κxx in α-RuCl3, special care is taken to detect the intrinsic 
thermal Hall signal (see Methods). Figure 3a–d and Fig. 3e–h depict 
κxy/T at θ = 60° and 45°, respectively, plotted as a function of H⊥ above 
= ∗H H  at low temperatures. The experimental error in the detection 

of the temperature difference between Hall contacts becomes consid-
erable below 3.5 K, leading to unreliable determination of κxy in our 
setup.

In the AFM state, κxy/T is extremely small (see Extended Data Fig. 4). 
Upon entering the field-induced spin-liquid state, κxy/T, which is pos-
itive in sign, increases rapidly. The most striking feature is that κxy/T 
exhibits a plateau in the field range of 4.5 T < µ0H⊥ < 4.8–5.0 T for 
θ = 60° and 6.8 T < µ0H⊥ < 7.2–7.4 T for θ = 45°, as shown in Fig. 3a–c 
and Fig. 3e–g, respectively. The right axes represent κ /Txy

2D  in units of 
quantum thermal Hall conductance π/ k ħ( 6)( )B

2 , where κ κ= dxy xy
2D  with 

a layer distance21 of d = 5.72 Å. Remarkably, the plateau is very close to 
the half of the quantum thermal Hall conductance reported in the inte-
ger quantum Hall system27 within the error of 3%, demonstrating the 
emergence of a half-integer thermal Hall conductance plateau. Above 
µ0H⊥ ≈ 5.0 T for θ = 60° (7.4 T for θ = 45°), κ /Txy

2D  decreases rapidly 
and vanishes. We note that the half-integer quantized plateau is repro-
duced in crystal from different growth (Extended Data Fig. 5). 
Although the plateau behaviour seems to be preserved at 5.6 K, κ /Txy

2D  
slightly deviates from the quantized value. At higher temperatures, the 
plateau behaviour disappears (Fig. 3d, h).

The temperature dependence of κxy/T at magnetic fields where a 
plateau is observed is shown in Fig. 4. The half-integer thermal Hall 
conductance is observable up to about 5.5 K, above which κxy/T 
increases rapidly with T. As shown in the inset of Fig. 4, κxy/T decreases 
after reaching a maximum at around 15 K and nearly vanishes above 
about 60 K (see Extended Data Fig. 6). As the vanishing temperature 
of κxy/T is close to the Kitaev interaction, it is natural to consider that 
the finite thermal Hall signal reflects unusual quasiparticle excitations 
inherent to the spin-liquid state governed by the Kitaev interaction 
(see Methods for further discussion).

In equation (1), the coefficient q gives the chiral central charge of the 
gapless boundary modes, which propagate along one direction. The 
central charge represents a degree of freedom of one-dimensional gap-
less modes; it is unity for conventional fermions and 1/2 for Majorana 
fermions whose degrees of freedom are half of those of conventional 
fermions. An integer quantum Hall system with bulk Chern number 
ν has ν boundary modes with q = ν, whereas a Kitaev QSL with Chern 
number ν has ν Majorana boundary modes with q = ν/2. Thus, the 
observed half-integer thermal Hall conductance provides direct evi-
dence of chiral Majorana edge currents. We also note that the positive 
Hall sign is also consistent with that predicted in the Kitaev QSL1. In the 
pure Kitaev model, the excitation energy of the Z2 flux is estimated7 to 
be ∆F/kB ≈ 0.06JK/kB ≈ 5.5 K. Recent numerical results16 of the thermal 
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Fig. 1 | Chiral Majorana edge currents and temperature–magnetic field 
phase diagram of α-RuCl3. a, b, Schematic illustrations of heat 
conduction in the integer quantum Hall state of a 2D electron gas (a) and a 
Kitaev QSL state (b) in a magnetic field perpendicular to the sample plane 
(grey arrows). In the red (blue) area, the temperature is higher (lower), and 
the red and blue arrows represent thermal flow. In the quantum Hall state, 
the skipping orbits of electrons (green spheres) at the edge, which form 
one-dimensional edge channels, conduct heat and κxy is negative in sign. In 
the Kitaev QSL state, spins are fractionalized into Majorana fermions 
(yellow spheres) and Z2 fluxes (hexagons). The heat is carried by chiral 
edge currents of charge-neutral Majorana fermions and κxy is positive in 
sign. c, Phase diagram of α-RuCl3 in a field tilted at θ = 60° (see right inset, 
where green and blue arrows represent the magnetic field H and parallel 
field component H∥). Open and closed diamonds represent the onset 
temperature of AFM order with zigzag-type TN determined by the T and 
H dependences of κxx, respectively (see Fig. 2b and Extended Data Figs. 1 
and 2). Below T ≈ JK/kB ≈ 80 K, the spin-liquid (Kitaev paramagnetic) 
state appears. At µ ≈∗H 7 T0 , TN vanishes. A half-integer quantized plateau 
of the 2D thermal Hall conductance is observed in the red area. Open blue 
squares represent the fields where the thermal Hall response disappears. 
The red circle is the suggested topological phase-transition point that 
separates the non-trivial QSL state with topologically protected chiral 
Majorana edge currents from a trivial state, such as a non-topological spin 
liquid. The striped region denotes the region that was not accessible in the 
thermal Hall effect measurements. Error bars represent one standard 
deviation (error bars for the temperature are smaller than the symbols). 
The left inset shows the zigzag magnetic structure in the AFM state. The 
magnetic moments of Ru atoms represented by blue and green arrows are 
aligned antiparallel.
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Fig. 2a, where H∥ = Hsinθ and H⊥ = Hcosθ are the field components 
parallel and perpendicular to the a axis, respectively, and θ is the angle 
between H and the c axis. In zero field, κxx exhibits a distinct kink at 
TN, as shown in Fig. 2a. Although this kink is observed in a perpendic-
ular field (θ = 0°) of 12 T at the same temperature, no such anomaly is 
observed in a parallel field11,12 (θ = 90°) of 7 T. In Fig. 2a, we also plot 
κxx in an applied magnetic field of 8 T, tilted away from the c axis 
(θ = 60°, µ0H∥ ≈ 7 T). As in the case of the parallel field, no kink is 

observed. Figure 1c displays the phase diagram of an α-RuCl3 sample 
in a tilted field of θ = 60°, where TN is plotted as a function of H∥. The 
inset of Fig. 2b shows TN plotted as a function of H∥ for θ = 45°, 60° and 
90°. For θ = 60°, TN agrees well with that for 90° and vanishes at the 
same critical field of µ0

∗H  ≈ 7 T, whereas for 45° TN vanishes at 
µ0H∥ ≈ 6 T. Although TN does not scale perfectly with H∥, these results 
demonstrate the quasi-2D nature of the magnetic properties. In stark 
contrast to the strong out-of-plane (a–c) anisotropy, the in-plane (a–b) 
anisotropy is very small (Extended Data Fig. 3a–c).

Above = ∗H H , where the AFM order melts, the presence of a pecu-
liar spin-liquid state has been suggested on the basis of nuclear mag-
netic resonance and neutron scattering measurements; the former show 
the presence of a spin gap25 and the latter reveal unusual continuous 
spin excitations26. These magnetic properties are consistent with those 
expected in a Kitaev-type spin-liquid state.

To study the thermal Hall effect in the spin-liquid state above 
= ∗H H , κxy is measured by sweeping fields in tilted directions and 

obtained by anti-symmetrizing the thermal response of the sample with 
respect to the field direction. In this configuration, the Hall response 
is determined by H⊥. Because the magnitude of κxy is extremely small 
compared to κxx in α-RuCl3, special care is taken to detect the intrinsic 
thermal Hall signal (see Methods). Figure 3a–d and Fig. 3e–h depict 
κxy/T at θ = 60° and 45°, respectively, plotted as a function of H⊥ above 
= ∗H H  at low temperatures. The experimental error in the detection 

of the temperature difference between Hall contacts becomes consid-
erable below 3.5 K, leading to unreliable determination of κxy in our 
setup.

In the AFM state, κxy/T is extremely small (see Extended Data Fig. 4). 
Upon entering the field-induced spin-liquid state, κxy/T, which is pos-
itive in sign, increases rapidly. The most striking feature is that κxy/T 
exhibits a plateau in the field range of 4.5 T < µ0H⊥ < 4.8–5.0 T for 
θ = 60° and 6.8 T < µ0H⊥ < 7.2–7.4 T for θ = 45°, as shown in Fig. 3a–c 
and Fig. 3e–g, respectively. The right axes represent κ /Txy

2D  in units of 
quantum thermal Hall conductance π/ k ħ( 6)( )B

2 , where κ κ= dxy xy
2D  with 

a layer distance21 of d = 5.72 Å. Remarkably, the plateau is very close to 
the half of the quantum thermal Hall conductance reported in the inte-
ger quantum Hall system27 within the error of 3%, demonstrating the 
emergence of a half-integer thermal Hall conductance plateau. Above 
µ0H⊥ ≈ 5.0 T for θ = 60° (7.4 T for θ = 45°), κ /Txy

2D  decreases rapidly 
and vanishes. We note that the half-integer quantized plateau is repro-
duced in crystal from different growth (Extended Data Fig. 5). 
Although the plateau behaviour seems to be preserved at 5.6 K, κ /Txy

2D  
slightly deviates from the quantized value. At higher temperatures, the 
plateau behaviour disappears (Fig. 3d, h).

The temperature dependence of κxy/T at magnetic fields where a 
plateau is observed is shown in Fig. 4. The half-integer thermal Hall 
conductance is observable up to about 5.5 K, above which κxy/T 
increases rapidly with T. As shown in the inset of Fig. 4, κxy/T decreases 
after reaching a maximum at around 15 K and nearly vanishes above 
about 60 K (see Extended Data Fig. 6). As the vanishing temperature 
of κxy/T is close to the Kitaev interaction, it is natural to consider that 
the finite thermal Hall signal reflects unusual quasiparticle excitations 
inherent to the spin-liquid state governed by the Kitaev interaction 
(see Methods for further discussion).

In equation (1), the coefficient q gives the chiral central charge of the 
gapless boundary modes, which propagate along one direction. The 
central charge represents a degree of freedom of one-dimensional gap-
less modes; it is unity for conventional fermions and 1/2 for Majorana 
fermions whose degrees of freedom are half of those of conventional 
fermions. An integer quantum Hall system with bulk Chern number 
ν has ν boundary modes with q = ν, whereas a Kitaev QSL with Chern 
number ν has ν Majorana boundary modes with q = ν/2. Thus, the 
observed half-integer thermal Hall conductance provides direct evi-
dence of chiral Majorana edge currents. We also note that the positive 
Hall sign is also consistent with that predicted in the Kitaev QSL1. In the 
pure Kitaev model, the excitation energy of the Z2 flux is estimated7 to 
be ∆F/kB ≈ 0.06JK/kB ≈ 5.5 K. Recent numerical results16 of the thermal 
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Fig. 1 | Chiral Majorana edge currents and temperature–magnetic field 
phase diagram of α-RuCl3. a, b, Schematic illustrations of heat 
conduction in the integer quantum Hall state of a 2D electron gas (a) and a 
Kitaev QSL state (b) in a magnetic field perpendicular to the sample plane 
(grey arrows). In the red (blue) area, the temperature is higher (lower), and 
the red and blue arrows represent thermal flow. In the quantum Hall state, 
the skipping orbits of electrons (green spheres) at the edge, which form 
one-dimensional edge channels, conduct heat and κxy is negative in sign. In 
the Kitaev QSL state, spins are fractionalized into Majorana fermions 
(yellow spheres) and Z2 fluxes (hexagons). The heat is carried by chiral 
edge currents of charge-neutral Majorana fermions and κxy is positive in 
sign. c, Phase diagram of α-RuCl3 in a field tilted at θ = 60° (see right inset, 
where green and blue arrows represent the magnetic field H and parallel 
field component H∥). Open and closed diamonds represent the onset 
temperature of AFM order with zigzag-type TN determined by the T and 
H dependences of κxx, respectively (see Fig. 2b and Extended Data Figs. 1 
and 2). Below T ≈ JK/kB ≈ 80 K, the spin-liquid (Kitaev paramagnetic) 
state appears. At µ ≈∗H 7 T0 , TN vanishes. A half-integer quantized plateau 
of the 2D thermal Hall conductance is observed in the red area. Open blue 
squares represent the fields where the thermal Hall response disappears. 
The red circle is the suggested topological phase-transition point that 
separates the non-trivial QSL state with topologically protected chiral 
Majorana edge currents from a trivial state, such as a non-topological spin 
liquid. The striped region denotes the region that was not accessible in the 
thermal Hall effect measurements. Error bars represent one standard 
deviation (error bars for the temperature are smaller than the symbols). 
The left inset shows the zigzag magnetic structure in the AFM state. The 
magnetic moments of Ru atoms represented by blue and green arrows are 
aligned antiparallel.
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coupling of phonons will prohibit the observation of a
quantized thermal Hall effect.
There are two complementary ways to understand

quantum Hall effects: the bulk and the edge perspective.
From the first point of view, Hall effects are bulk phenom-
ena. The thermal conductivity can be calculated, e.g., from
an appropriate Kubo formula in a large system with
periodic boundary conditions. An alternative and more
intuitive point of view explains quantum Hall effects by the
presence of chiral conducting channels that exist at the edge
of the sample. The presence of the edge channels is
enforced and protected by the (insulating) bulk theory.
The resulting bulk-edge correspondence is a manifestation
of the holographic principle and intimately connected to
topological field theories and the physics of anomalies.
Charge anomalies reflect that a change of charge in the bulk
of the system (e.g., when the magnetic field is changed) can
only occur at the gapless edge of a system. The change of
magnetic field thereby induces an electric field, which
pumps charges into chiral edge modes. For the thermal Hall
effect, similar arguments exist where the electromagnetic
field is replaced by a (fictitious) gravitational field [1,3,28–
35], i.e., a change of the metric, which leads to pumping of
energy instead of charge. When discussing anomalies, one
usually assumes a gapped bulk, and it is a priori not fully
clear how the presence of gapless phonons will affect the
result and the quantization of the Hall effect.
Edge theories of the Hall effect use the fact that chiral

modes can transport charge or energy without dissipation.
The latter is, however, not valid in the presence of phonons,
which destroy ballistic edge transport. Heat leaks out from
the edge into the bulk. Therefore, recent measurements by
the Weizmann group [36,37] of the thermal transport of
(fractional) quantum Hall edge channels had to use a
refined setup that involved mesoscopic measurements of
the temperature of edge channels using noise spectroscopy.
With this setup, the authors could minimize the leakage of
heat due to phonons. In contrast, the experiments in
α-RuCl3 by Kasahara et al. [5] used macroscopic contacts
and operated in the opposite regime, where edge states and
phonons are expected to equilibrate. We will show that,
counterintuitively, the phonon leakage of heat actually
helps to observe an approximately quantized thermal
Hall effect. We will discuss both two-dimensional models
and three-dimensional systems described, e.g., by weakly
coupled layers of Kitaev models in the presence of three-
dimensional phonons.
It is obvious that, in the presence of phonons, a true

quantization of the thermal Hall effect is not possible. Here,
“true quantization” is defined as an effect that becomes
more and more quantized with exponential precision when
the temperature is lowered and the size of the system is
increased. Any insulator in a magnetic field (or in a
ferromagnetic state) is characterized by a finite thermal
Hall effect at finite temperatures, which is not exponentially

suppressed with temperature but expected to vanish with a
power law of T. Nevertheless, the observed phonon thermal
Hall effects of the insulator are typically tiny. Very few
experiments [38] exist; the first one, from 2005 [39],
reports a Hall angle of only 10−4 rad per Tesla of applied
field. Several mechanisms can explain phonon Hall effects.
In the literature, a Raman-type interaction between pho-
nons and large spins [40,41], effects of Berry curvature of
phonon bands [42,43], and a resonant skew scattering of
phonons [44] have been discussed.
In the following, we will discuss the approximate

quantization of the thermal Hall effect from the viewpoint
of the edge theory and develop a theory of an anomalous
thermal Hall effect based on the coupling of phonons to the
Kitaev model.

II. THERMAL HALL EFFECT

A. Quantized ballistic Hall effect
in the absence of phonons

We begin our discussion by recalling how the thermal
Hall effect is described in terms of a chiral edge mode in the
absence of phonons, when the bulk is a thermal insulator. In
this case, thermal transport is only possible along a chiral
edge mode. Figure 1(a) shows a sketch of such a situation.
The chiral edge mode carries a finite heat current, which is
a function of temperature, JeðTÞ. As in the absence of bulk

(a) (b)

(c) (d)

FIG. 1. Sketch of heat currents (arrows) and local temperatures
(color scale) in the presence of chiral edge channels. In the
absence of phonons, panel (a), heat is transported ballistically by
the edge channel, resulting in a quantization of κxy=T. Panel
(b) shows a regime where the sample size is smaller than the
phonon-edge scattering length, such that the edge states and
phonons have different temperatures. No quantization of κxy is
expected in this case. In the opposite limit, panel (c), the edge
channel and the phonons have the same local temperatures. The
temperature gradient imprinted by the phonons onto the edge
channel implies that a quantized heat current is injected from the
edge mode into the bulk phonons, as shown in panel (d). This
leads to quantization of κxy with high precision.
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via gapless acoustic phonons?

quantized thermal Hall effect is that the temperature is well
below the bulk gap Δb of the chiral liquid and that the
scattering length of phonons with the edge and with
themselves is smaller than the system size L. We expect
that the range of approximate quantization becomes larger in
sampleswithmore disorder, as disorderwill allow for amore
efficient phonon-phonon and phonon-edge coupling. For
α-RuCl3, we expect that the phonon correction in the
relevant temperature regime is tiny, on the permille level
or below. In this material, a pronounced maximum in κxy,
larger than the quantized value, is observed for T ∼ Δb. The
origin of this peak is an interesting open question; a possible
candidate is the coupling of chiral spin fluctuations to the
phonons. For T ≫ Δb, one expects that both the phonon and
spin contribution to κxy drop rapidly.
The observation of a quantized thermal Hall effect is the

most direct measurement proving the existence of a gapped
chiral (spin) liquid. Phonons help rather than hinder the
observation of this effect. It is an interesting question how
this physics changes close to the quantum critical points
where, e.g., as function of a magnetic field, the chiral liquid
is destroyed and phonons scatter predominately from chiral
critical fluctuations.

ACKNOWLEDGMENTS

We acknowledge useful discussion with Roser Valentí,
Yuichi Kasahara, Paul van Loosdrecht, Yuval Oreg, and
Ady Stern. Financial support by the DFG (project C02 of

CRC1238 and project A01 of CRC/TR183) is gratefully
acknowledged.

Note added.—Recently, a preprint by Ye et al. was
published on arXiv [48] that also emphasizes the impor-
tance of phonon coupling for the observation of a quantized
thermal Hall effect by investigating the hydrodynamic
equations in a finite system.

APPENDIX: PERTURBATIVE ANALYSIS
OF PHONON COUPLING
TO THE CHIRAL MODE

To corroborate the picture presented in Sec. III, we
analyze perturbatively the effect of the phonon coupling on
the heat current. We will present at the beginning a strictly
1D analysis and then, based on it, an analysis of the case
where the 1D Majorana edge mode is coupled to 2D
phonons, which will emphasize the role of χ⊥λ in Eq. (16)
and its dependence on d, the distance from the edge.

1. 1D case

In 1D where χ⊥λ ¼ 0, Eq. (16) predicts that turning on the
phonon coupling has no effect on the heat current. We will
first check this statement perturbatively. To this end, we
will calculate explicitly the different contributions to the
heat current quadratic in the phonon coupling and show that
their integrals cancel.
We consider a general 1D interacting Hamiltonian

consisting of chiral fermions coupled locally to a single
phonon band, described by H ¼

R
dxhðxÞ ¼

R
dx½h0ðxÞþ

hλðxÞ&, with

h0ðxÞ ¼
Z

dkdk0

2π
e−iðk−k

0Þxϵ½ðkþk0Þ=2&c
†
kck0

þ
Z

dqdq0

2π
e−iðq−q

0Þxω½ðqþq0Þ=2&a
†
qaq0 ;

hλðxÞ ¼
Z

dkdk0dq
2π

e−iðk−k
0−qÞxλqk;k0c

†
kck0aq þ H:c: ðA1Þ

We make no assumptions as to fermionic energy bands ϵk,
bosonic energy bands ωq, or the coupling coefficients λ

q
k;k0 .

We proceed to derive the heat current operator from the
1D continuity equation ∂xjðxÞ þ ∂thðxÞ ¼ 0 in momentum
space

jðKÞ ¼ −
1

K

Z
dxdx0e−iKx½hðxÞ; hðx0Þ&; ðA2Þ

and the total heat current is then JT ¼ limK→0jðKÞ=Lx,
with Lx ¼ δkð0Þ the size of the system. Carrying out the
commutation relations and taking the limit K → 0, we can
divide the contributions to jðKÞ into four parts, arising from
the different components of the Hamiltonian, hJTi ¼
J00 þ J0λ þ Jλ0 þ Jλλ, with

FIG. 2. Schematic plot of the T dependence of κxy per layer of a
chiral (spin) liquid coupled to phonons. An approximately
quantized Hall effect, ½ðκxyÞ=T& ¼ f½ðcr − clÞπk2B&=ð6ℏÞgþ
OðT2Þ, is observed for T much smaller than the bulk gap Δb
of the chiral liquid under the condition that the phonon-phonon
and the phonon-edge scattering length be smaller than the sample
size, lph

ph, l
e
ph ≪ L. The leading correction for clean systems

arises from an intrinsic anomalous Hall effect of phonons,
Eq. (31). At lower T, spins and phonons decouple (mean-free
path larger than system size) and one obtains a nonuniversal
result (see Sec. II B), which can be larger or smaller than the
quantized value depending on contact properties. For T ≫ Δb,
the thermal Hall effects of both the spins and the phonons are
expected to decay rapidly with increasing temperatures.
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Kitaev material RuCl3 Its Hall quantization is angle-dependent and occurs 

even for an in-plane field (anomalous thermal Hall effect).


T. Yokoi et al., Science (2021)

The Kitaev spin liquid is a chiral spin liquid,

a Chern insulator of Majoranas.

A half-quantized thermal Hall response

is direct evidence for gapless Majorana modes.

How can we distinguish whether the quantized thermal Hall effect arises from

the formation of Landau levels or a non-trivial Chern insulator?
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Kitaev materials 

• a family of spin-orbit assisted j=1/2 Mott insulators

• bond-directional exchange induces frustration

• unconventional forms of magnetism


Bond-directional exchange
• (proximate) spin liquids

• signatures of Majorana fermions and Z2 gauge field

• spin textures

Family of lattice geometries
• honeycomb – Na2IrO3, α-Li2IrO3, (H3/4Li1/4)2IrO3, RuCl3

• triangular – Ba3IrTi2O9, Ba3Ir2TiO9, Ba3Ir2InO9

• 3D – β-Li2IrO3, γ-Li2IrO3, metal-organic compounds 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