Spin-Orbital Entanglement in Mott Insulators

Andrzej M. Oleś Institute of Theoretical Physics Jagiellonian University

1

	1	Entangled superexchange: SU(2) ⊗ SU(2) model 1.1 Spin-orbital Hilbert space in a Mott insulator 1.2 Modifications due to finite spin-orbit coupling λ							
	2	Orbital physics for partly filled e_g orbitals	5						
	3 Coulomb interactions in spin-orbital Hilbert space								
		3.1 Kanamori parameters: Coulomb U and Hund's exchange J	9						
		3.2 Goodenough-Kanamori rules	14						
	4	Kugel-Khomskii model for Mott insulators							
		4.1 Kugel-Khomskii model: 3D for KCuF ₃ and 2D for K_2CuF_4	16						
		4.2 Entanglement in the ferromagnetic excitations of K_2CuF_4	20						
		4.3 Weak spin-orbital entanglement for large spins $S=2$ in LaMnO ₃	22						
	5 Spin-orbital entanglement in t_{2g} electron models								
		5.1 Entangled phases of $LaVO_3$ and YVO_3	24						
		5.2 Spin-orbital entanglement on a triangular lattice	27						
SOE 1	6	Experimental consequences of spin-orbital entanglement	30						
	7	Summary							

Outline

Motivation: spin-orbital physics Orbital models: quantum frustration e_g orbital model & spin order: thermodynamic order at $T < T_c$ Kugel-Khomskii model in KCuF₃ and K₂CuF₄ t_{2g} orbital models: LaVO₃, triangular lattice, Kitaev ... Experimental manifestations of entanglement

Thanks to:

- Wojciech Brzezicki
 - Jacek Dziarmaga
 - Dorota Gotfryd
 - Mateusz Snamina
 - Krzysztof Wohlfeld
 - Lou-Fe' Feiner
 - Peter Horsch
 - Giniyat Khaliullin
 - Adolfo Avella
 - Mario Cuoco

Jagiellonian University, Krakow, Poland Jagiellonian University, Krakow, Poland University of Warsaw, Warsaw, Poland Jagiellonian University, Krakow, Poland University of Warsaw, Warsaw, Poland Technical University, Eindhoven, Netherlands Max-Planck-Institut FKF, Stuttgart, Germany Max-Planck-Institut FKF, Stuttgart, Germany Universita degli Studi di Salerno, Italy Universita degli Studi di Salerno, Italy

Interplay of **spin**, **orbital**, charge, lattice degree of freedom

Inventors of spin-orbital physics at Blois (*France, 2006***)**

[4] K.I. Kugel and D.I. Khomskii, Sov. Phys. Usp. 25, 231 (1982) ⁴

Intrinsic frustration of orbital interactions due to directionality

Interaction depends on the bond direction => *frustration* on a square lattice

Spin-orbital physics

Goodenough-Kanamori rules:

AO order supports FM spin order

FO order supports AF spin order

Are these rules sufficient?

spin-orbital entanglement no entanglement for FM bonds ₆

[AMO, J. Phys.: Condensed Matter 24, 313201 (12)]

Entanglement entropy (Bipartite)

- Two subsystems: A and B
- Wave function:
- Product state:
- Entangled state:
- Taking trace over **B** leads to

$$\Psi_{AB} = \sum_{mn} C_{mn} \Psi_A^{(m)} \Psi_B^{(n)}$$
$$C_{mn} \stackrel{mn}{=} C_m C_n$$
$$C_{mn} \neq C_m C_n$$

$$\mathcal{H} = \mathcal{H}_{A} \otimes \mathcal{H}_{B}$$

$$\rho_A^{(0)} = \mathrm{Tr}_B |\Psi_0\rangle \langle \Psi_0 \rangle$$

Entanglement is measured by von Neumann entropy in the ground state

$$\mathcal{S}_{\mathrm{vN}}^{0} \equiv -\mathrm{Tr}_{A} \{\rho_{A}^{(0)} \log_{2} \rho_{A}^{(0)}\}$$

Here **A** and **B** are spin and orbital degrees of freedom of the system SOE 18 Sep 7

1D entangled spin-orbital model

To illustrate these concepts, we begin with a study of a one-dimensional (1D) spin-orbital superexchange model \mathcal{H}_{SE} defined in a Mott insulator with on-site repulsion U by the spin-orbital Hilbert space spanned by the eigenstates $\{|\uparrow\rangle, |\downarrow\rangle\}$, of spin S = 1/2, and orbital (pseudospin) operator T = 1/2, with the eigenstates $\{|+\rangle, |-\rangle\}$. Such states at two neighboring sites i and i+1 are coupled by 1D spin-orbital ('Kugel-Khomskii') superexchange [4–6],

$$\mathcal{H}_{\rm SE} = J \sum_{i} \left[\left(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \alpha \right) \left(\mathbf{T}_{i} \cdot \mathbf{T}_{i+1} + \beta \right) - \alpha \beta + \varepsilon_{z} \sum_{i} \tau_{i}^{(c)} \right], \tag{1}$$

where $\tau_i^{(c)} = T_i^{(c)} = \sigma_i^z/2$, and we take the orbital splitting $J\varepsilon_z = E_z = 0$. antiferromagnetic (AF) superexchange $J = \frac{4t^2}{U}$.

A standard measure of entanglement between two subsystems A and B in the ground state $|\text{GS}\rangle$ of a system of size L is the von Neumann entropy [13]: $S_{vN} = -\text{Tr}_A \{\rho_A \ln \rho_A\}/L$, see Fig. 1. Here our two subsystems are spins and orbitals and the entanglement concerns the entire system (in other applications the system would frequently be separated into A and B by cutting one bond). The von Neumann entropy is obtained by integrating the density matrix, $\rho_A = \text{Tr}_B |\text{GS}\rangle\langle\text{GS}|$ over subsystem B. Consequently, we use here the following definition of the von Neumann spin-orbital entanglement entropy:

$$S_{\rm vN} = -\frac{1}{L} \operatorname{Tr}_S \{ \rho_S \ln \rho_S \}, \tag{3}$$

Phase diagram of the 1D spin-orbital model

Fig. 1: Spin-orbital entanglement in the 1D SU(2) \otimes SU(2) model (1) at $E_z = 0$. Left—The von Neumann entropy per site $S_{vN}/L(3)$ for the ground state at L = 8 as a function of x and y. The phase boundaries (solid and dashed lines) are drawn to guide the eye. Right—Phase diagram of a coupled 1D spin-orbital chain. The diamond point is located at ($^{3}/_{4}$, $^{3}/_{4}$). Quantum phases are distinguished by entanglement: I, II, and III are disentangled, IV is weakly, and V& VI stronger entangled. The parameters (x, y) are the same as (α, β) in Fig. 2. Images after Ref. [6]. SOE 18 Sep

Fig. 2: The von Neumann spin-orbital entanglement entropy, $S_{vN}(3)$, calculated using ED on an L=12-site periodic chain for the spin-orbital model Eq. (5) and for the increasing value of the spin-orbit coupling λ [15]: (a) $\lambda/J = 0$, (b) $\lambda/J = 0.1$, and (c) $\lambda/J \to \infty$.

third parameter: on-site spin-orbit coupling (SOC)

$$\mathcal{H}_{\rm SOC} = 2\lambda \sum_i S_i^z T_i^z$$

From on-site to on-bond entanglement in spin-orbital model

SOE 18 Sep Fig. 3: Schematic quantum phase diagram of Hamiltonian (1) in the (α, β) plane, see Fig. 1. The colorful vertical plane shows how spin-orbital entanglement extends to the highly entangled state, with on-bond entanglement in two disentangled phases: FM \otimes AO and AF \otimes FO, see Fig. 2.

Hopping and orbital superexchange for t_{2g}

t=0

In *t_{2g}* systems (*d*¹,*d*², ...) two states

are active along each cubic axis, e.g. yz & zx for the axis c -

$$H_t(t_{2g}) = -t \sum_{\alpha} \sum_{\langle ij \rangle \parallel \gamma \neq \alpha} a^{\dagger}_{i\alpha\sigma} a_{j\alpha\sigma}$$

We introduce convenient notation

$$|a\rangle \equiv |yz\rangle, \qquad |b\rangle \equiv |zx\rangle, \qquad |c\rangle \equiv |xy\rangle$$

Orbital interactions have cubic symmetry

no hopping ||c

xy orbital called c

[A.B. Harris *et al.*, PRL **91**, 087206 (03)]

they are described by quantum operators:

$$\vec{T}_i = \{T_i^x, T_i^y, T_i^z\} \qquad T_i^x = \frac{1}{2}\sigma_i^x, \ T_i^y = \frac{1}{2}\sigma_i^y, \ T_i^z = \frac{1}{2}\sigma_i^z.$$
Scalar product $\vec{T}_i \cdot \vec{T}_j$ but for $J_H > 0$ also other terms breaking the "SU(2)" symmetry

Orbital Hubbard model for e_{α} orbitals Hamiltonian for e_q electrons couples two directional e_q -orbitals $H_t(e_g) = -t \sum \sum a_{i\zeta_\alpha\sigma}^{\dagger} a_{j\zeta_\alpha\sigma}$ Real basis: $\langle ij \rangle \| \alpha, \sigma$ $|z\rangle \equiv \frac{1}{\sqrt{6}}(3z^2 - r^2), \qquad |\bar{z}\rangle \equiv \frac{1}{\sqrt{2}}(x^2 - y^2)$ $H_t^{\uparrow}(e_g) = -\frac{1}{4}t \sum_{d \neq i\bar{z}} \left[3a_{i\bar{z}}^{\dagger}a_{j\bar{z}} + a_{iz}^{\dagger}a_{jz} \mp \sqrt{3} \left(a_{i\bar{z}}^{\dagger}a_{jz} + a_{iz}^{\dagger}a_{j\bar{z}} \right) \right] - t \sum a_{iz}^{\dagger}a_{jz}$ $\langle ij \rangle \|ab$ complex e_a orbitals $|j+\rangle = \frac{1}{\sqrt{2}} (|jz\rangle - i|j\bar{z}\rangle), \qquad |j-\rangle = \frac{1}{\sqrt{2}} (|jz\rangle + i|j\bar{z}\rangle)$ $\mathcal{H}^{\uparrow}(e_g) = -\frac{1}{2}t \sum \sum \left[\left(a_{i+}^{\dagger} a_{j+} + a_{i-}^{\dagger} a_{j-} \right) + \gamma \left(e^{-i\chi_{\alpha}} a_{i+}^{\dagger} a_{j-} + e^{+i\chi_{\alpha}} a_{i-}^{\dagger} a_{j+} \right) \right]$ $\alpha \langle ij \rangle \| \alpha$ with $\chi_a = +2\pi/3$, $\chi_b = -2\pi/3$, and $\chi_c = 0$ has cubic symmetry SOE 18 Sep with interaction $\bar{U} \sum n_{i+} n_{i-} \Rightarrow orbital Hubbard model$

Orbital models

$$\begin{array}{ll} t_{2g} \text{ orbitals: } & |a\rangle \equiv |yz\rangle, & |b\rangle \equiv |zx\rangle, & |c\rangle \equiv |xy\rangle \\ H_t(t_{2g}) = -t \sum_{\alpha} \sum_{\langle ij\rangle \parallel \gamma \neq \alpha} a^{\dagger}_{i\alpha\sigma} a_{j\alpha\sigma}, \end{array}$$

e_g orbitals: $|z\rangle \equiv \frac{1}{\sqrt{6}}|3z^2 - r^2\rangle$, $|\bar{z}\rangle \equiv \frac{1}{\sqrt{2}}|x^2 - y^2\rangle$,

$$H_t(e_g) = -t \sum_{\alpha} \sum_{\langle ij \rangle \parallel \alpha, \sigma} a_{i\zeta_{\alpha}\sigma}^{\dagger} a_{j\zeta_{\alpha}\sigma}.$$

real orbitals

$$H_t^{\uparrow}(e_g) = -\frac{1}{4}t \sum_{\langle mn \rangle \parallel ab} \left[3a_{i\bar{z}}^{\dagger}a_{j\bar{z}} + a_{iz}^{\dagger}a_{jz} \mp \sqrt{3} \left(a_{i\bar{z}}^{\dagger}a_{jz} + a_{iz}^{\dagger}a_{j\bar{z}} \right) \right] - t \sum_{\langle ij \rangle \parallel c} a_{iz}^{\dagger}a_{jz}.$$
(11)

More symmetric for complex orbitals with orbital phases

$$|i+\rangle = \frac{1}{\sqrt{2}} (|iz\rangle - i |i\bar{z}\rangle), \qquad |i-\rangle = \frac{1}{\sqrt{2}} (|iz\rangle + i |i\bar{z}\rangle),$$

$$\mathcal{H}_{e_g}^{\uparrow} = -\frac{t}{2} \sum_{\gamma} \sum_{\langle ij\rangle \parallel \gamma} \left[\left(a_{i+}^{\dagger} a_{j+} + a_{i-}^{\dagger} a_{j-} \right) + \gamma \left(e^{-i\chi_{\gamma}} a_{i+}^{\dagger} a_{j-} + e^{+i\chi_{\gamma}} a_{i-}^{\dagger} a_{j+} \right) \right] + \bar{U} \sum_{m} n_{i+} n_{i-}, \quad (16)$$
with $\chi_a = +2\pi/3, \quad \chi_b = -2\pi/3, \quad \text{and} \quad \chi_c = 0$

Superexchange only possible for two orbital configurations:

$$\mathcal{P}_{\langle ij\rangle}^{(\gamma)} \equiv \left(\frac{1}{2} + \tau_i^{(\gamma)}\right) \left(\frac{1}{2} - \tau_j^{(\gamma)}\right) + \left(\frac{1}{2} - \tau_i^{(\gamma)}\right) \left(\frac{1}{2} + \tau_j^{(\gamma)}\right), \quad (17)$$
SOE 18 $\mathcal{Q}_{\langle ij\rangle}^{(\gamma)} \equiv 2\left(\frac{1}{2} - \tau_i^{(\gamma)}\right) \left(\frac{1}{2} - \tau_j^{(\gamma)}\right). \quad (18)$

2D order in e_g orbital model

$$T_c^{\rm Ising} = \frac{1}{2\log(1+\sqrt{2})} \approx 0.567296.$$

[L. Longa, AMO, J. Phys. A 13, 1031 (80)]

TABLE I. The critical temperature \mathcal{T}_c and the type of order for the classical and quantum models on a square lattice: Ising model, $\frac{1}{2}$ and $\frac{2}{3}$ frustrated Ising [29], fully frustrated Villain model [30], e_g orbital model [23] and 2D compass model [22].

$2D \mod l$	order	\mathcal{T}_c/J	method	interactions
Ising	2D	0.567296	exact	Onsager
$\frac{1}{2}$ frustrated	2D	0.410	exact	С
$\frac{2}{3}$ frustrated	$2\mathrm{D}$	0.342	exact	_ B
Villain		0.0	exact	A
e_g orbital	2D	0.3566 ± 0.0001	VTNR \propto	$\frac{3}{16}\sigma_i^x\sigma_j^x$
$\operatorname{compass}$	nematic	0.0606 ± 0.0004	VTNR	$\frac{1}{4}\sigma_i^z\sigma_j^z$

 e_{α} orbital model spinless electrons

Fig. 5: Virtual charge excitations leading to the e_g -orbital superexchange model for a strongly correlated system with $|z\rangle$ and $|x\rangle \equiv |\bar{z}\rangle$ real e_g orbitals (10) in the subspace of \uparrow -spin states: (a) for a bond along the c axis $\langle ij \rangle \parallel c$; (b) for a bond in the ab plane $\langle ij \rangle \parallel ab$. In a FM plane of KCuF₃ (LaMnO₃) the superexchange favors AO state of $|AO\pm\rangle$ orbitals (not shown). (c) The transition from FOr to OL found at $d = \infty$ at finite U, and at $U = \infty$ (dashed line).

Entanglement by on-site spin-orbit: compass and Kitaev

compass

Kitaev

FIG. 2 (color online). Two possible geometries of a TM-O-TM bond with corresponding orbitals active along these bonds. The

Which kind of e_g spin-orbital order ?

Strong in-plane anisotropy for G-AF

$$J_{ab}^z = \frac{1}{16}J$$

$$\overline{z}$$

 $|z\rangle$

spin exchange

Kanamori parameters: Coulomb U and Hund's exchange J

$$H_{int} = U \sum_{i\alpha} n_{i\alpha\uparrow} n_{i\alpha\downarrow} + \sum_{i,\alpha<\beta} \left(U'_{\alpha\beta} - \frac{1}{2} J_{\alpha\beta} \right) n_{i\alpha} n_{i\beta} - 2 \sum_{i,\alpha<\beta} J_{\alpha\beta} \vec{S}_{i\alpha} \cdot \vec{S}_{i\beta} + \sum_{i,\alpha<\beta} J_{\alpha\beta} \left(a^{\dagger}_{i\alpha\uparrow} a^{\dagger}_{i\alpha\downarrow} a_{i\beta\downarrow} a_{i\beta\uparrow} + a^{\dagger}_{i\beta\uparrow} a^{\dagger}_{i\beta\downarrow} a_{i\alpha\downarrow} a_{i\alpha\uparrow} \right).$$

$$U \equiv A + 4B + 3C,$$
(19)

inter-orbital exchange elements $J_{\alpha\beta}$ for 3d orbitals.

 $i, \alpha < \beta$

		3d orbital	xy	yz	zx	$x^2 - y^2$	$3z^2 - r^2$		
		xy	0	3B + C	3B + C	C	4B+C		
		yz	3B + C	0	3B + C	3B + C	B + C		
		zx	3B + C	3B + C	0	3B + C	B+C		
		$x^2 - y^2$	C	3B + C	3B + C	0	4B + C		
		$3z^2 - r^2$	4B + C	B + C	B + C	4B + C	0		
				TT TT					
			_	$U = U'_{\alpha}$	$_{\alpha\beta}+2J_{\alpha\beta}.$				
				$J_H^t \equiv 3$	BB + C,				
				$J_H^e \equiv J_H^e$	4B + C.				
degene	rate F	lubbard n	nodel						
$H_{int}^{(0)} = U \sum_{i\alpha} n_{i\alpha\uparrow} n_{i\alpha\downarrow} + \left(U - \frac{5}{2} J_H \right) \sum_{i,\alpha<\beta} n_{i\alpha} n_{m\beta} - 2J_H \sum_{i,\alpha<\beta} \vec{S}_{i\alpha} \cdot \vec{S}_{i\beta}$									
SOE 18		$+J_H \sum$	$\sum \left(a_{i\alpha\uparrow}^{\dagger}a_{i\alpha}^{\dagger}\right)$	$a_{i\beta\downarrow}a_{i\beta\uparrow}a_{i\beta\uparrow}$ -	$\vdash a^{\dagger}_{i\beta\uparrow}a^{\dagger}_{i\beta\downarrow}a$	$_{i\alpha\downarrow}a_{i\alpha\uparrow}$).		(24)	

19

Degenerate Hubbard model & charge excitations ($t \ll U$)

Two parameters: U – intraorbital Coulomb interaction, J_H – Hund's exchange

$$\begin{split} H_{\text{int}} &= U \sum_{i\alpha} n_{i\alpha\uparrow} n_{i\alpha\downarrow} + (U - \frac{5}{2} J_H) \sum_{i,\alpha < \beta} n_{i\alpha} n_{i\beta} - 2 J_H \sum_{i,\alpha < \beta} \vec{S}_{i\alpha} \cdot \vec{S}_{i\beta} \\ &+ J_H \sum_{i,\alpha < \beta} (d^+_{i\alpha\uparrow} d^+_{i\alpha\downarrow} d_{i\beta\downarrow} d_{i\beta\uparrow} + d^+_{i\beta\uparrow} d^+_{i\beta\downarrow} d_{i\alpha\downarrow} d_{i\alpha\uparrow}) \end{split}$$

SOE 18 Sep

FIG. 1: Energies of $d_i^m d_j^m \to d_i^{m+1} d_j^{m-1}$ charge excitations

Spin-orbital superexchange model

$$\mathcal{H} = -\sum_{n} \frac{t^2}{\varepsilon_n} \sum_{\langle ij \rangle \parallel \gamma} P_{\langle ij \rangle}(\mathcal{S}) \mathcal{O}_{\langle ij \rangle}^{\gamma}$$

 $P_{\langle ij \rangle}(S)$ is the projection on the total spin $S = S \pm 1/2$

Spins and orbitals are entangled

orbital operators, $\hat{\mathcal{K}}_{ij}^{(\gamma)}$ and $\hat{\mathcal{N}}_{ij}^{(\gamma)}$

$$\mathcal{H}_J = J \sum_{\gamma} \sum_{\langle ij \rangle \parallel \gamma} \left\{ \hat{\mathcal{K}}_{ij}^{(\gamma)} \left(\vec{S}_i \cdot \vec{S}_j + S^2 \right) + \hat{\mathcal{N}}_{ij}^{(\gamma)} \right\}.$$
(28)

anisotropic modes; spin correlations depend on direction

$$H = J_{ab} \sum_{\langle ij \rangle \parallel ab} \vec{S}_i \cdot \vec{S}_j + J_c \sum_{\langle ij \rangle \parallel c} \vec{S}_i \cdot \vec{S}_j,$$

$$s_c = \left\langle \vec{S}_i \cdot \vec{S}_j \right\rangle_c, \qquad s_{ab} = \left\langle \vec{S}_i \cdot \vec{S}_j \right\rangle_{ab},$$
(29)

Optical sum rules follow from superexchange (*t*<<*U*)

Spin-orbital superexchange model for a perovskite, $\gamma = a, b, c$ ($J = 4t^2/U$):

$$\mathcal{H}_J = J \sum_{\gamma} \sum_{\langle ij \rangle \parallel \gamma} \left\{ \hat{\mathcal{K}}_{ij}^{(\gamma)} \left(\vec{S}_i \cdot \vec{S}_j + S^2 \right) + \hat{\mathcal{N}}_{ij}^{(\gamma)} \right\}$$

contains orbital operators, $\hat{\mathcal{K}}_{ij}^{(\gamma)}$ and $\hat{\mathcal{N}}_{ij}^{(\gamma)}$

Kinetic energy determined by charge excitation *n* along $\gamma = a, b, c$:

$$K_n^{(\gamma)} = -2\left\langle H_n^{(\gamma)}(ij) \right\rangle = \frac{2}{\pi} \frac{a_0 \hbar^2}{e^2} \int_0^\infty \sigma_n^{(\gamma)}(\omega) d\omega$$

Superexchange determines partial optical sum rule for individual subband n:

$$N_{\text{eff},n}^{(\gamma)} = -\frac{m_0 a_0^2}{\hbar^2} K_n^{(\gamma)} = -\frac{m_0 a_0^2}{\hbar^2} \langle 2H_n^{(\gamma)}(ij) \rangle$$

Each multiplet level *n* represents an upper Hubbard subband

Can spin and orbital operators be **disentangled**?

[G. Khaliullin, P. Horsch, AMO, PRB 70, 195103 (04)]

SOE 18 Sep

Goodenough-Kanamori rules

AF SO has as well FO order, while FM SO is accompanied by AO order,

Fig. 7: Artist's view of the GKR [36] for: (a) FOz and AF spin order and (b) AOz and FM spin order in a system with orbital flavor conserving hopping as alkali RO_2 hyperoxides (R = K, Rb, Cs) [38]. The charge excitations generated by inter-orbital hopping fully violate the GKR and support the states with the same spin-orbital order: (c) FOz and FM spin order and (d) AOz_{23} and AF spin order. Image reproduced from Ref. [38].

Disentanglement: Spinon-orbiton separation

Fig. 8: Schematic representation of the orbital motion and the spin-orbital separation in a 1D spin-orbital model. The first hop of the excited state $(a) \rightarrow (b)$ creates a spinon (wavy line) that moves via spin exchange $\propto J$. The next hop $(b) \rightarrow (c)$ gives an "orbiton" freely propagating as a "holon" with an effective hopping $t \sim J/2$. Image reproduced from Ref. [39].

Kugel-Khomskii model							$d_i^9 d_j^9 \rightleftharpoons d_i^{10} d_i^{$	l_j^8		
We follow the general scheme: $\mathcal{H}=-\sum_n$							$\mathcal{L} = -\sum_{n} \frac{t^2}{\varepsilon_n} \sum_{\langle ij \rangle \parallel \gamma} P_{\langle ij \rangle}$	$_{j angle}(\mathcal{S})\mathcal{O}_{\langle ij angle}^{\gamma}$		
$\mathcal{H}(d^9) = \sum_{\gamma} \sum_{\langle ij \rangle \parallel \gamma} \left\{ -\frac{t^2}{U - 3J_H} \left(\vec{S}_i \cdot \vec{S}_j + \frac{3}{4} \right) \mathcal{P}_{\langle ij \rangle}^{(\gamma)} + \frac{t^2}{U - J_H} \left(\vec{S}_i \cdot \vec{S}_j - \frac{1}{4} \right) \mathcal{P}_{\langle ij \rangle}^{(\gamma)} \right\}$										
	$+\left(\frac{t^2}{U-J_H} + \frac{t^2}{U+J_H}\right)\left(\vec{S}_i \cdot \vec{S}_j - \frac{1}{4}\right)\mathcal{Q}_{\langle ij\rangle}^{(\gamma)}\right\} + E_z \sum_i \tau_i^c. (44)$								$\sum_{i} \tau_i^c. (44)$	
$\begin{array}{lll} & KK \ model \\ & \text{crystal field} \ \propto \ E_z \\ & \mathcal{E}_{\alpha} \end{array} \text{with} \mathcal{P}_{\langle ij \rangle}^{(\gamma)} \ \equiv \ \left(\frac{1}{2} + \tau_i^{(\gamma)}\right) \left(\frac{1}{2} - \tau_j^{(\gamma)}\right) + \left(\frac{1}{2} - \tau_i^{(\gamma)}\right) \left(\frac{1}{2} + \tau_j^{(\gamma)}\right), \\ & \mathcal{Q}_{\langle ij \rangle}^{(\gamma)} \ \equiv \ 2 \left(\frac{1}{2} - \tau_i^{(\gamma)}\right) \left(\frac{1}{2} - \tau_j^{(\gamma)}\right). \end{array}$										
	¹ A ₁	с	harge e	excitation		spin sta	ite		orbital state	
U+J _H	- <u> </u>	n	type	ε_n	S	$P_{\langle ij \rangle}$	(\mathcal{S})		orbitals on $\langle ij \rangle \parallel \gamma$	projection
U-J _H	- ¹ E	1	HS	$U - 3J_H$	1	$\left(\vec{S}_{i}\cdot\vec{S}\right)$	$\vec{b}_j +$	$\left(\frac{3}{4}\right)$	$ i\zeta_{\gamma}\rangle j\xi_{\gamma}\rangle\left(i\xi_{\gamma}\rangle j\zeta_{\gamma}\rangle\right)$	${\cal P}_{\langle ij angle}^{(\gamma)}$
		2	LS	$U - J_H$	0	$-\left(\vec{S}_i\cdot\vec{S}_i\right)$	$\vec{S}_j -$	$\left(\frac{1}{4}\right)$	$ i\zeta_{\gamma}\rangle j\xi_{\gamma}\rangle\left(i\xi_{\gamma}\rangle j\zeta_{\gamma}\rangle\right)$	${\cal P}_{\langle ij angle}^{(\gamma)}$
ป-3ปน	³ A ₂	3	LS	$U - J_H$	0	$-\left(\vec{S}_{i}\cdot\vec{S}\right)$	$\vec{S}_j -$	$\left(\frac{1}{4}\right)$	$ i\zeta_{\gamma}\rangle j\zeta_{\gamma}\rangle$	${\cal Q}_{\langle ij angle}^{(\gamma)}$
	d ⁸	4	LS	$U + J_H$	0	$-\left(\vec{S}_i\cdot\vec{S}_i\right)$	$\vec{S}_j -$	$\left(\frac{1}{4}\right)$	$ i\zeta_{\gamma}\rangle j\zeta_{\gamma}\rangle$	${\cal Q}_{\langle ij angle}^{(\gamma)}$

KK model

Experimental observations:

 K_2CuF_4 — the FM spin phase

KCuF₃ finite Hund's exchange η favors AO order stabilizing A-AF KCuF₃ exhibits spinon excitations for $T > T_N$

SOE 18 Sep

In this regime behaves as the 1D quantum antiferromagnet

Spin-orbital entanglement near the QCP

Example: Kugel-Khomskii (KK) model (d9)

 e_g orbitals T=1/2 spins S=1/2

Parameters: (1) $E_z/J - e_g$ orbital splitting (2) J_H/U – Hund's exchange

Quantum critical point: $(E_z, J_H) = (0,0)$

Entanglement#1: near the QCP

27

SOE 18 Sep

[L.F. Feiner, AMO, J. Zaanen, PRL 78, 2799 (97)]

Orbital Hubbard model for e_{α} orbitals Hamiltonian for e_q electrons couples two directional e_q -orbitals $H_t(e_g) = -t \sum \sum a^{\dagger}_{i\zeta_{\alpha}\sigma} a_{j\zeta_{\alpha}\sigma}$ Real basis: $\langle ij \rangle \| \alpha, \sigma$ $\begin{array}{c} & \left| |z\rangle \equiv \frac{1}{\sqrt{6}} (3z^2 - r^2), & |\bar{z}\rangle \equiv \frac{1}{\sqrt{2}} (x^2 - y^2) \right| \end{array} \\ & H_t^{\uparrow}(e_g) = -\frac{1}{4} t \sum_{d \neq z} \left[3a_{i\bar{z}}^{\dagger} a_{j\bar{z}} + a_{iz}^{\dagger} a_{jz} \mp \sqrt{3} \left(a_{i\bar{z}}^{\dagger} a_{jz} + a_{iz}^{\dagger} a_{j\bar{z}} \right) \right] - t \sum_{d \neq z} a_{iz}^{\dagger} a_{jz} \end{aligned}$ $\langle i i \rangle \|ab$ complex e_a orbitals $|j+\rangle = \frac{1}{\sqrt{2}} (|jz\rangle - i|j\bar{z}\rangle), \qquad |j-\rangle = \frac{1}{\sqrt{2}} (|jz\rangle + i|j\bar{z}\rangle)$ $\mathcal{H}^{\uparrow}(e_g) = -\frac{1}{2}t \sum \sum \left[\left(a_{i+}^{\dagger} a_{j+} + a_{i-}^{\dagger} a_{j-} \right) + \gamma \left(e^{-i\chi_{\alpha}} a_{i+}^{\dagger} a_{j-} + e^{+i\chi_{\alpha}} a_{i-}^{\dagger} a_{j+} \right) \right]$ $\alpha \langle ij \rangle \| \alpha$ with $\chi_a = +2\pi/3$, $\chi_b = -2\pi/3$, and $\chi_c = 0$ has cubic symmetry SOE 18 Sep with interaction $\bar{U} \sum n_{i+} n_{i-} \Rightarrow orbital Hubbard model$

Much weaker AF interactions between holes in $|z\rangle$ orbitals than in $|\bar{z}\rangle$ a quantum critical point $Q_{2D} = (-0.5, 0)$ in the $(E_z/J, \eta)$ plane 29

Entanglement: spin excitations in the FM phase

$$\omega_{\vec{k}}^{(0)} = I^{(0)} + P^{(0)}(\vec{k}) = 4J_{\Diamond}S\left(1 - \gamma_{\vec{k}}\right)$$

Variational Approximation (VA)

 $J_{\Diamond} \rightarrow J_{\blacklozenge}$, and the magnon dispersion would soften. for each value of momentum k independently.

$$\omega_{\vec{k}}(\{\theta_{iL}\}) = I(\{\theta_{iL}\}; \vec{k}) + P(\{\theta_{iL}\}; \vec{k})$$

the angles $\{\theta_{iL}\}$ are real and L = A, B refers to the sublattice

the constraint
$$\theta_i \equiv \theta_{iA} = \theta_{iB}$$

defines the Simplified Variational Approximation (SVA) exact diagonalization employing a Numerical *Ansatz* (NA) with six states per sublattice:

Entanglement: orbital background and its modification

Fig. 11: Artist's view of a spin excitation (inverted red arrow at the central site) in the FM plane of K_2CuF_4 (green arrows) and AO order of the orbitals occupied by holes at $E_z = -0.8J$, with: (a) frozen orbitals; (b) optimized orbitals at the central site and at four its neighboring sites in the square lattice, forming a quasiparticle (dressed magnon). The above value of E_z leads to the expected AO order in K_2CuF_4 , with $\theta_{opt} \simeq 71^\circ$ in Eqs. (14). When the VA is used, case (a) is still realized at $\vec{k} \simeq 0$, while case (b) represents a dressed magnon with $\vec{k} \simeq M$ where orbital states in the shaded cluster are radically different from those shown for frozen orbitals in (a).

Entanglement #3: Modified FM magnons

Fig. 12: The magnon energy $\omega_{\vec{k}}/J$ obtained for the FM state of K_2CuF_4 at $J_H/U = 0.2$ and: (a) $E_z = -0.80J$ and (b) $E_z = -0.30J$. Results are presented for four approximations: frozen orbitals (black line and grey background), the VA (green line), the SVA (red line), and the 12state NA (purple dots). The high symmetry points are: $\Gamma = (0,0)$, $X = (\pi,0)$, $M = (\pi,\pi)$.

Weak entanglement: LaMnO₃

$$\mathcal{H}_{e} = \frac{1}{16} \sum_{\gamma} \sum_{\langle ij \rangle \parallel \gamma} \left\{ -\frac{8}{5} \frac{t^{2}}{\varepsilon(^{6}A_{1})} \left(\vec{S}_{i} \cdot \vec{S}_{j} + 6 \right) \mathcal{P}_{\langle ij \rangle}^{(\gamma)} + \left[\frac{t^{2}}{\varepsilon(^{4}E)} + \frac{3}{5} \frac{t^{2}}{\varepsilon(^{4}A_{1})} \right] \left(\vec{S}_{i} \cdot \vec{S}_{j} - 4 \right) \mathcal{P}_{\langle ij \rangle}^{(\gamma)} + \left[\frac{t^{2}}{\varepsilon(^{4}E)} + \frac{t^{2}}{\varepsilon(^{4}E)} + \frac{t^{2}}{\varepsilon(^{4}A_{2})} \right] \left(\vec{S}_{i} \cdot \vec{S}_{j} - 4 \right) \mathcal{Q}_{\langle ij \rangle}^{(\gamma)} \right\} + E_{z} \sum_{i} \tau_{i}^{c}.$$

$$(49)$$

$$\mathcal{H}_t = \frac{1}{8} J\beta r_t \Big(\vec{S}_i \cdot \vec{S}_j - 4 \Big)$$

Here the optical spectra weights are reproduced by disentangled spin-orbital superexchange

Kinetic energies per bond $K_n^{(\gamma)}$

Spin-orbital superexchange in RVO₃

In t_{2g} systems (d^1, d^2) two states are active, e.g. *yz* i *zx* for the axis *c* – they are described by **quantum** operators:

$$\vec{T}_{i} = \{T_{i}^{x}, T_{i}^{y}, T_{i}^{z}\}$$
$$T_{i}^{x} = \frac{1}{2}\sigma_{i}^{x}, \ T_{i}^{y} = \frac{1}{2}\sigma_{i}^{y}, \ T_{i}^{z} = \frac{1}{2}\sigma_{i}^{z}.$$

Scalar product $\vec{T}_i \cdot \vec{T}_j$ but for $\eta > 0$ also: $\vec{T}_i \otimes \vec{T}_i \equiv T_i^x T_i^x - T_i^y T_i^y + T_i^z T_i^z$

Orbital interactions have cubic symmetry

Orbital SU(2) symmetry is broken !

$$|a\rangle \equiv |yz\rangle, \qquad |b\rangle \equiv |zx\rangle, \qquad |c\rangle \equiv |xy\rangle.$$

Spin-orbit superexchange in $RVO_3 d^2$ (S = 1):

$$\mathcal{H}_0 = \frac{1}{2} J \sum_{\langle ij \rangle \parallel \gamma} (\vec{S}_i \cdot \vec{S}_j + 1) \left(\vec{\tau}_i \cdot \vec{\tau}_j + \frac{1}{4} n_i n_j \right)^{(\gamma)}$$

Entanglement expected !

SOE 18 Sep

Optical spectra: HS (n=1) and LS (n=2,3) weights

charge excitations ε_n arising from the transitions to [see Fig. 6(b)]:

- (i) a high-spin state ${}^{4}A_{2}$ at energy $U-3J_{H}$,
- (ii) two degenerate low-spin states ${}^{2}T_{1}$ and ${}^{2}E$ at U, and
- (iii) a ${}^{2}T_{2}$ low-spin state at $U+2J_{H}$ [16].

One derives a HS contribution $H_1^{(c)}(ij)$ and $H_1^{(ab)}(ij)$

 $\begin{aligned} \frac{1}{3}(\vec{S}_{i} \cdot \vec{S}_{j} + 2) \text{ is the projection operator on the HS state for } S &= 1 \text{ spins} \\ H_{1}^{(c)}(ij) &= -\frac{1}{3}Jr_{1}(\vec{S}_{i} \cdot \vec{S}_{j} + 2)\left(\frac{1}{4} - \vec{\tau}_{i} \cdot \vec{\tau}_{j}\right), \\ H_{1}^{(ab)}(ij) &= -\frac{1}{6}Jr_{1}(\vec{S}_{i} \cdot \vec{S}_{j} + 2)\left(\frac{1}{4} - \tau_{i}^{z}\tau_{j}^{z}\right). \end{aligned}$

Energies of charge excitations ε_n

LS excitations (n = 2, 3) contain instead the spin operator $(1 - \vec{S}_i \cdot \vec{S}_j)$

$$\begin{split} H_{2}^{(c)}(ij) &= -\frac{1}{12} J \left(1 - \vec{S}_{i} \cdot \vec{S}_{j} \right) \left(\frac{7}{4} - \tau_{i}^{z} \tau_{j}^{z} - \tau_{i}^{x} \tau_{j}^{x} + 5 \tau_{i}^{y} \tau_{j}^{y} \right), \\ H_{3}^{(c)}(ij) &= -\frac{1}{4} J r_{5} \left(1 - \vec{S}_{i} \cdot \vec{S}_{j} \right) \left(\frac{1}{4} + \tau_{i}^{z} \tau_{j}^{z} + \tau_{i}^{x} \tau_{j}^{x} - \tau_{i}^{y} \tau_{j}^{y} \right), \\ H_{2}^{(ab)}(ij) &= -\frac{1}{8} J \left(1 - \vec{S}_{i} \cdot \vec{S}_{j} \right) \left(\frac{19}{12} \mp \frac{1}{2} \tau_{i}^{z} \mp \frac{1}{2} \tau_{j}^{z} - \frac{1}{3} \tau_{i}^{z} \tau_{j}^{z} \right), \\ H_{3}^{(ab)}(ij) &= -\frac{1}{8} J r_{5} \left(1 - \vec{S}_{i} \cdot \vec{S}_{j} \right) \left(\frac{5}{4} \mp \frac{1}{2} \tau_{i}^{z} \mp \frac{1}{2} \tau_{j}^{z} + \tau_{i}^{z} \tau_{j}^{z} \right), \\ \text{SOE 18 Sep} \end{split}$$

Spin-orbital order in a t_{2g} system

$$\begin{split} J_c &= \frac{1}{2}J\left\{\eta r_1 - (r_1 - \eta r_1 - \eta r_5)(\frac{1}{4} + \langle \vec{\tau}_i \cdot \vec{\tau}_j \rangle) - 2\eta r_5 \langle \tau_i^y \tau_j^y \rangle\right\},\\ J_{ab} &= \frac{1}{4}J\left\{1 - \eta r_1 - \eta r_5 + (r_1 - \eta r_1 - \eta r_5)(\frac{1}{4} + \langle \tau_i^z \tau_j^z \rangle)\right\}, \end{split}$$

In the orbital sector one finds at the same time,

$$\begin{split} H_{\tau} &= \sum_{\langle ij \rangle_c} \left[J_c^{\tau} \vec{\tau}_i \cdot \vec{\tau}_j - J(1 - s_c) \eta r_5 \tau_i^y \tau_j^y \right] + J_{ab}^{\tau} \sum_{\langle ij \rangle_{ab}} \tau_i^z \tau_j^z, \\ J_c^{\tau} &= \frac{1}{2} J \left[(1 + s_c) r_1 + (1 - s_c) \eta (r_1 + r_5) \right], \\ J_{ab}^{\tau} &= \frac{1}{4} J \left[(1 - s_{ab}) r_1 + (1 + s_{ab}) \eta (r_1 + r_5) \right], \end{split}$$

depending on spin correlations: $s_c = \langle \vec{S}_i \cdot \vec{S}_j \rangle_c$ and $s_{ab} = -\langle \vec{S}_i \cdot \vec{S}_j \rangle_{ab}$.

$$H_{\tau}^{(0)} = Jr_1 \left[\sum_{\langle ij \rangle_c} \vec{\tau_i} \cdot \vec{\tau_j} + \frac{1}{2} \eta \left(1 + \frac{r_5}{r_1} \right) \sum_{\langle ij \rangle_{ab}} \tau_i^z \tau_j^z \right]$$

Entanglement #4: **Optical spectral weights for LaVO₃ (C-AF)**

Phase Diagram of RVO₃ (R =Lu,...,La)

FIG. 1: (color) The orbital transition $T_{\rm OO}$ and Néel T_{N1}

with superexchange:

$$J = 200 \text{ K}$$

[P. Horsch et al., PRL 100, 167205 (2008)]

Entanglement #5: Phase Diagram of RVO₃ (R =Lu,...,La)

Fig. 14: Phase transitions in the vanadium perovskites RVO_3 : (a) phase diagram with the orbital T_{OO} and Néel T_{N1} transition temperatures obtained from the theory with and without orbital-lattice coupling (solid and dashed lines) [50], and from experiment (circles) [51]; (b) spin $\langle S_i^z \rangle$ (solid) and G-type orbital $\langle \tau_i^z \rangle_G$ (dashed) order parameters, vanishing at T_{N1} and T_{OO} , respectively, and the transverse orbital polarization $\langle \tau_i^x \rangle$ (dashed-dotted lines) for LaVO₃ and SmVO₃ (thin and heavy lines). Images reproduced from Ref. [50].

T_{N1} modified due to s-o entanglement !

J. Phys.: Condens. Matter 24 (2012) 313201 (28pp)

TOPICAL REVIEW

Fingerprints of spin-orbital entanglement in transition metal oxides

Andrzej M Oleś

Contents

1.	Intro	duction: entanglement in many-body systems	2		4.2. Pha
2.	Orbi	tal and spin-orbital superexchange	3		4.3. Pei
	2.1.	Intrinsic frustration of orbital interactions	3	5.	Entangle
	2.2.	Spin–orbital superexchange models	5		models
3.	Spin	-orbital entanglement	7		5.1. The
	3.1.	Exact versus mean field states for a bond	7		5.2. Spi
	3.2.	Entanglement in the $SU(2) \otimes SU(2)$ spin–orbital		6.	Hole pro
		model	8		spin-orb
	3.3.	Entanglement in t_{2g} spin–orbital models	10	7.	Discussi

4.	Entangled states in the RVO ₃ perovskites	12
	4.1. Optical spectral weights for LaVO ₃	12
	4.2. Phase diagram of the RVO ₃ perovskites	13
	4.3. Peierls dimerization in YVO ₃	15
5.	Entanglement in the ground states of spin-orbital	
	models	17
	5.1. The Kugel–Khomskii model	17
	5.2. Spin–orbital resonating valence bond liquid	19
6.	Hole propagation in a Mott insulator with coupled	
	spin–orbital order	23
7.	Discussion and summary	25

$$S_{ij} \equiv \frac{1}{d} \sum_{n} \langle n | \vec{S}_{i} \cdot \vec{S}_{j} | n \rangle,$$

$$T_{ij} \equiv \frac{1}{d} \sum_{n} \langle n | (\vec{T}_{i} \cdot \vec{T}_{j})^{(\gamma)} | n \rangle,$$

$$C_{ij} \equiv \frac{1}{d} \sum_{n} \langle n | (\vec{S}_{i} \cdot \vec{S}_{j} - S_{ij}) (\vec{T}_{i} \cdot \vec{T}_{j} - T_{ij})^{(\gamma)} | n \rangle$$

$$= \frac{1}{d} \sum_{n} \langle n | (\vec{S}_{i} \cdot \vec{S}_{j}) (\vec{T}_{i} \cdot \vec{T}_{j})^{(\gamma)} | n \rangle - \left(\frac{1}{d} \sum_{n} \langle n | \vec{S}_{i} \cdot \vec{S}_{j} | n \rangle\right) \left(\frac{1}{d} \sum_{m} \langle m | (\vec{T}_{i} \cdot \vec{T}_{j})^{(\gamma)} | m \rangle\right),$$

$$(54)$$

$$(55)$$

$$(55)$$

$$(56)$$

$$= \frac{1}{d} \sum_{n} \langle n | (\vec{S}_{i} \cdot \vec{S}_{j}) (\vec{T}_{i} \cdot \vec{T}_{j})^{(\gamma)} | n \rangle - \left(\frac{1}{d} \sum_{n} \langle n | \vec{S}_{i} \cdot \vec{S}_{j} | n \rangle\right) \left(\frac{1}{d} \sum_{m} \langle m | (\vec{T}_{i} \cdot \vec{T}_{j})^{(\gamma)} | m \rangle\right),$$

The effective spin-orbital model considered here for NaTiO₂ reads [54],

$$\mathcal{H} = J\left((1-\alpha) \mathcal{H}_s + \sqrt{(1-\alpha)\alpha} \mathcal{H}_m + \alpha \mathcal{H}_d\right).$$

The parameter α in Eq. (57) is given by the hopping elements as follows,

$$\alpha = (t')^2 / [t^2 + (t')^2]$$
,

interpolates between the superexchange $\mathcal{H}_s(\alpha = 0)$ and kinetic exchange $\mathcal{H}_d(\alpha = 1)$.

Entanglement #6: Triangular lattice

Fig. 15: Left — (a) Hopping processes between t_{2g} orbitals along a bond parallel to the c axis in NaTiO₂: (i) t_{pd} between $Ti(t_{2g})$ and $O(2p_z)$ orbitals—two t_{pd} transitions define an effective hopping t, and (ii) direct d-d hopping t'. The t_{2g} orbitals (7) are shown by different color. The bottom part gives the hopping processes along the $\gamma = a, b, c$ axes that contribute to Eq. (57): (b) superexchange and (c) direct exchange. Right — Ground state for a free hexagon as a function of α : (a) bond correlations—spin S_{ij} Eq. (54) (circles), orbital T_{ij} Eq. (55) (squares), and spin—orbital C_{ij} Eq. (56) (triangles); (b) orbital electron densities $n_{1\gamma}$ at a representative site i = 1 (left-most site): n_{1a} (circles), n_{1b} (squares), n_{1c} (triangles). The insets indicate the orbital configurations favored by the superexchange ($\alpha = 0$), by mixed interactions $0.44 < \alpha < 0.63$, and by the direct exchange ($\alpha = 1$). The vertical lines indicate an exact range of configurations

SOE

42

Maximal frustration: No order in the Kitaev model

FIG. 1 (color online). Elementary hexagon and "bond fermion" construction. A spin is replaced with 4 Majorana fermions (c, c^x , c^y , c^z). Bond fermion $\chi_{\langle 23 \rangle}$ and spin operator are defined. A and B denote the sublattice index.

SOE 18 Sep

Entanglement #7: Kitaev-Heisenberg model

Fig. 16: Phase diagram of the Kitaev-Heisenberg model Eq. (59) with parametrization $(J, K) = (\cos \alpha, \sin \alpha)$ as obtained from exact diagonalization data. Solid lines show the mapping between two Klein-dual points. Red lines mark the location of the four SU(2)—symmetric points. Yellow diamonds mark the two Kitaev points. Image reproduced from Ref. [56].

one-dimensional (1D) Kugel-Khomskii Hamiltonian

FIG. 2. (Color online) Illustrations showing collective excitations in the spin-orbital chain in two different limits described in the literature [20,29]: (a) without crystal field ($E_z = 0$), the ground-state exhibits AF × AO correlations described by SU(4) singlets (top row,

SOE 18 Sep

Canonical Orbital System KCuF₃

FIG. 1. Scattering geometry and overview of RIXS spectra.

FIG. 4. Low-energy excitations of KCuF₃ revealed by the Cu L_3 edge

the OO is mostly driven by the JT mechanism

Conclusion.—In summary, we performed high-resolution RIXS experiments on the orbitally ordered KCuF₃. The high-energy excitations are found to stem from localized *dd* orbital excitations, consistent with the *ab initio* calculation based on a single cluster.

[J. Li et al., PRL 126, 165102 (21)]

Orbital Control of Effective Dimensionality: [V. Bisogni *et al.*, PRL **114**, 165102 (15)]

In the energy region between 1.5–2.6 eV, we observe orbital excitations, corresponding to the hole [9] in the $3d_{x^2-y^2}$ ground state being excited into a different orbital.

FIG. 1 (color online). Schematic view of the hole or orbiton propagation in an S = 1/2 environment. (a) A hole with $3d_{x^2-y^2}$ symmetry moves from its original position (second plaquette

$$\mathcal{H} = -J_{\log}^{xz} \sum_{\langle \mathbf{i}, \mathbf{j} \rangle || x, \sigma} (o_{\mathbf{i}\sigma, xz}^{\dagger} o_{\mathbf{j}\sigma, xz} + \text{H.c.}) + E_0^{xz} \sum_{\mathbf{i}} n_{\mathbf{i}, xz} + J_{\log} \sum_{\mathbf{j}, \mathbf{i}, \mathbf{j} \rangle || x} \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}} + J_{\log} \sum_{\langle \mathbf{i}, \mathbf{j} \rangle || x} \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}}.$$

Jahn-Teller Effect in Systems with Strong On-Site Spin-Orbit Coupling

Conclusions.—We analyzed here the impact of a latticemediated Jahn-Teller effect in the presence of strong SOC, which quenches orbital degeneracy in the ground state.

FIG. 3. Spin-orbit exciton spectra with propagation driven by either superexchange *or* Jahn-Teller interaction (calculated SCBA

SOE 18 Sep

[E.M. Plotnikova et al., PRL 116, 165102 (16)]

FIG. 4. Illustration showing the two types of nearest-neighbor hopping of a $j_{\text{eff}} = 3/2$ exciton in the antiferromagnetically ordered background. (a) Polaronic hopping (due to Jahn-Teller effect *or* superexchange): a $j_{\text{eff}} = 3/2$ exciton with the $j_z = -3/2$ quantum number (left-hand panel) does not change its j_z

Spin-orbital entanglement in Mott insulators

- **1. From Ising via** e_g to 2D compass: increasing frustration
- 2. Kanamori parameters: Hubbard U and Hund's J
- 3. Goodenough-Kanamori rules: complementarity
- 4. Kugel-Khomskii e_q model in 3D and in 2D: QCP
- 5. Entanglement in spin excitations
- 6. Spin-orbital entanglement in t_{2g} models
- 7. Spin-orbital entanglement in Kitaev-Heisenberg model
- 8. Experimental consequences

eg orbital order below
$$T_c=0.3566\pm0.0001$$

$$T_c^{\rm Ising}=\frac{1}{2\log(1+\sqrt{2})}\approx 0.567296$$

Thank you for your kind attention !

SOE 18 Sep