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Figure 3 Schematic representation of reference systems in the DFT, DFT+DMFT and
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ture, are indeed most striking in spectroscopic probes, where they take the form of
quasi-particle renormalisations or broadening due to finite lifetimes, and give rise to
satellite features or atomic multiplets. An intrinsic temperature dependence of the
electronic structure of a metal, with a coherence-incoherence crossover delimiting
Fermi liquid properties, or a strongly temperature-dependent gap – beyond what can
be explained by a Fermi factor – are further hallmarks of electronic correlations [11].

Historically, the first non-perturbative electronic structure techniques for correlated
materials evolved from many-body treatments of the multi-orbital Hubbard Hamilto-
nian with realistic parameters. The general strategy of these so-called “DFT++” ap-
proaches [12, 13] consists in the extraction of the parameters of a many-body Hamil-
tonian from first principles calculations and then solving the problem by many-body
techniques. The procedure becomes conceptually involved, however, through the
need of incorporating e�ects of higher energy degrees of freedom on the low energy
part, the so-called “downfolding”.

For the one-particle part of the Hamiltonian, downfolding techniques have been the
subject of a vast literature [14, 15], and are by now well established. The task here
is to define orbitals spanning the low-energy Hilbert space of the electronic degrees
of freedom of a solid in such a way that a low-energy one-particle Hamiltonian can
be constructed whose spectrum coincides with the low-energy part of the spectrum
of the original one-particle Hamiltonian.1) Downfolding of the interacting part of a
many-body Hamiltonian is a less straightforward problem, which has attracted a lot

1) We do not enter here into details concerning the di�erent strategies of achieving such a construction:
various frameworks, such as mu�n-tin orbitals methods [15], maximally localised Wannier functions
[16], or projected atomic orbitals [17] have been employed.

Many-Body: Peierls-Feynman-Bogoliubov variational principle: 

the accuracy of QMC calculations for interacting fermions[2, 3, 4, 5]. Very important
and largely unresolved problem is related to the next-nearest-neighbor hopping t

0 in the
Hubbard model and its role in the tendency towards superconductivity[6, 7, 8, 9, 10,
11, 12].

On the other hand, the new class of diagrammatic Monte Carlo scheme[13] is
claimed to have a “sign blessing” properties which help to reduce the e↵ects of high-
order diagrams. The state of the art diagrammatic Monte Carlo scheme in the con-
nected determinant mode (C-DET)[14] based on e�cient Continuous Time Quantum
Monte Carlo scheme (CT-INT)[15] gives unprecedented accuracy for the doped Hub-
bard model[16, 17]. It becomes possible to study formation of the pseudogap already
at the beginning of strong coupling case with U/t = 6 [16]. Nevertheless, exponential
convergence of the C-DET scheme for weak interactions [18, 19], turns to a divergence
at large U values due to poles in the complex U-plane[17]. This means that calcula-
tions for interactions close to the bandwidth U/t ⇡ 8 and temperature T/t ⇡ 0.1 are
still within a prohibited area in the phase diagram[17].

There is recent interesting attempt to use dynamical variational QMC scheme for
doped Hubbard model [20, 21] which gives very reasonable description of spectral
function. Existence of pseudogap can be described in the simple model of electron
fractionalization and appearing of “dark” fermion which is supported by 2 ⇥ 2 cluster
Dynamical Mean Field Theory (C-DMFT) [22, 10]. Moreover the experimental RIXS
spectrum [23] of doped cuprate materials can be interpreted in such a theoretical model
of pseudogap formation. The larger cluster in C-DMFT scheme for doped case has
unacceptable fermionic sign problem within the QMC scheme.

In this paper we discuss a di↵erent route to tackle the “sign problem” in the de-
terminantal lattice QMC scheme and design a strong-coupling perturbative solution
for a general Hubbard model. The starting point is related to the “reference system”
idea [24] which is basically quite simple and straightforward. The conventional choice
of the noninteracting Hamiltonian as the reference system for the perturbation [25]
is justified by Wick’s theorem which allows to calculate exactly any many-particle
Green’s functions: they are all expressed in terms of single-particle Green’s functions.
The choice of single-site approximation like dynamical mean-field theory [26] as the
reference system leads to dual fermion technique [27, 24]. Actually, the reference sys-
tem can be arbitrary assuming that we can calculate its Green’s functions of arbitrary
order. Of course, in practice this is hardly doable.

At the same time, sometimes even taking into account the simplest, first-order di-
agram, seems to be quite successful. In the conventional weak-coupling expansion it
is equivalent to the famous Hartree-Fock approximation [28] which is able to catch a
lot of important many-body physics including e.g. superconductivity within the BCS
model. It can be shown [29, 30, 31] that the unrestricted Hartree-Fock trial wave func-
tion is optimal within a very broad class of variational ground-state wave functions for
di↵erent physical systems. It is worthwhile to mention here very successful the Peierls-
Feynman-Bogoliubov variational principle [32, 33, 34] which can be formulated on the
path-integral scheme. In this case, good variational estimation of system free energy F

with the Hamiltonian H1 based on optimal reference system with the Hamiltonian H0,
namely F1  F0 + hH1 �H0i0. One can hope therefore that even first-order corrections
to the properly chosen reference system will already give a rich and adequate enough
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Fermionic QMC: sign problem vs. sign blessing
Problem: 

Blessing:

DQMC and CT-INT for large system about 8x8
Doped and particle-hole asymmetric case

R. Mondaini, S. Tarat, R. Scalettar, Science 375, 418 (2022) 

the SP itself precludes determination of d-wave
order in DQMC through “traditional” observ-
ables such as the associated correlation func-
tions. However, Fig. 4, which is based on the
behavior of the sign itself, is suggestive. We
report the average sign (Fig. 4A), the enhance-
ment of the d-wave pairing susceptibility over
its value in the absence of the pairing vertex
(57) (Fig. 4B), and the uniform, static spin
susceptibility c(q = 0) (Fig. 4C) in the T/t–m/t
plane. Figure 4, D to F, shows analogous plots
for the T/t–r plane (7).
The most salient features of this “sign phase

diagram” are (i) the “dome” of vanishing hSi
that occurs in a range of densities 0.4 ≲ r ≲ 1 as
T is lowered (Fig. 4D), (ii) the enhancement of
d-wave pairing (Fig. 4E) surrounding the sign
dome, and (iii) the magnetic properties being
also linked to the hSi dome: The trajectory
tracing the peak value of c(q = 0) as T is de-
creased terminates precisely at the top of the
dome (Fig. 4F). In isolation, the comparisons
of the behavior of the sign and the pairing
and magnetic responses in the square lattice
Hubbard model appear likely to be coinci-
dental. Indeed, the fact that the sign is worse
precisely for optimal dopings has been pre-
viously discussed, but thought to be just “bad
luck” (32, 57–59). However, that the known
QCPs of the three models discussed in the
preceding three sections can be quantita-

tively linked to the behavior of hSi suggests
that the sign domemight actually be indicative
of the presence of d-wave superconductivity.

Discussion and outlook

Early in the history of the study of the SP, a
simple connection was noted between the
fermionic physics and negative weights in
AFQMC: If one artificially constructs two
Hubbard-Stratonovich field configurations,
one associated with two particle exchanging
as they propagate in imaginary time and
another with no exchange, one finds that the
associated fermion determinants are nega-
tive in the former case and positive in the
latter. This interesting observation, however,
pertains to low density, that is, to the prop-
agation of just two electrons. Another key
observation is that the SP can be viewed as
being proportional to the exponential of the
difference of free energy densities of the orig-
inal fermionic problem and the one usedwith
the weights in the Monte Carlo sampling
taken to be positive, akin to a bosonic for-
mulation of the problem (13, 32). It highlights
how intrinsic the SP is in QMCmethods. A last
important remark is that ordered phases are
often associated with a reduction in the im-
portance of configurations that scramble the
sign. This is graphically illustrated in the snap-
shots of (24). Although less crisp, similar ef-

fects are seen in AFQMC, for example, in
considering the evolution from the attractive
Hubbard model to the Holstein model with
decreasing phonon frequency w0. Reducing w0

acts to increase the effect of the phonon po-
tential energy term P̂

2
in Ĥ, thereby straight-

ening the auxiliary field in imaginary time.
Here, we have shown that the behavior of

the average sign hSi in DQMC simulations
holds information concerning finite density
thermodynamic phases and transitions be-
tween them: the QCPs in the semimetal to
antiferromagnetic MI transition of Dirac
fermions, the BI to CM to correlated insu-
lator evolution of the ionic Hubbard Hamil-
tonian, and the QCP of spinless fermions
(even though a sign-problem free formula-
tion exists). Specifically, a rapid evolution of
hSi marks the positions of QCPs. We have
chosen these models as representative ex-
amples of QCP physics of itinerant electrons
that have been extensively studied in the
condensed-matter physics community but
speculate that the result is general. In fact,
in a model for frustrated spins in a ladder
using a completely different QMC method
(stochastic series expansion), similar con-
clusions can be inferred (60), further cor-
roborating this generality. Likewise, in the
square lattice version of the U(1) Hubbard
model that we studied here, with an added
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Fig. 4. Square lattice Hubbard model. (A) Temperature dependence of the
average hSi as a function of the chemical potential m/t for a lattice with L = 16,
U/t = 6, and next-NN hopping t′/t = –0.2, values chosen to be close to
those in cuprate materials. (B) d-wave pair susceptibility (with the non-vertex
contribution subtracted) for the same parameters. (C) Corresponding static
spin susceptibility c(q = 0). The white markers describe its peak for values at
which the average sign is large enough to allow a reliable calculation, which
encompasses the pseudogap regime. See the supplementary materials (7)

for a perspective on the onset of this regime. (D to F) Corresponding diagrams
when converting to the calculated average density. The black markers depict
the actual average density extracted from the regular mesh of m used in the
upper panels and where an interpolation of the data is performed. In all
data, Trotter discretization is chosen as tDt = 0.0625. A finite-size analysis
(fig. S7), different pairing channels (fig. S8), and the behavior of the spectral
weight (figs. S9 and S10) is given in the supplementary materials (7). Equivalent
results for t′ = 0 are reported in fig. S11.
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and negative p(x). On the other hand, it is known that
simulations employing the Langevin algorithm can go
out of equilibrium when crossing nodal surfaces.

In Fig. 3 we plot (S )p as a function of P at U =4 for
the ground-state algorithm. The solid squares are for an
electron density of 0.625 and the open squares for a den-
sity of 0.875. Figures 4 and 5 show semilog plots of the
same data. Again the straight lines are least-square fits to
the large P portion of the data. We see that (S)p falls
exponentially with P for both fillings, but with very
different decay rates. The variation in decay rates with
filling and coupling are in accordance with our discussion
in the preceding section.

In Fig. 6 we again plot the logarithm of (S)z as a
function of P for U =8 with a filling of 0.625. The solid
squares are the ground-state algorithm data of Figs. 1

and 2. The open squares are from a grand-canonical-
ensemble calculation. The straight lines are again least-
squares fits to the high P portion of the data. The slopes
of the two lines agree within statistical errors, but the line
from the grand-canonical-ensemble calculation has an in-
tercept that lies somewhat below that from the ground-
state calculation. We believe that the smaller value of the
sign in the grand-canonical-ensemble simulation is due to
electron number fluctuations. Finally we note that we
have previously presented data showing that for the
grand-canonical ensemble the sign falls with increasing
spatial volume.

In all calculations that we have preformed to date, we
find strong evidence that the expectation value of the sign
falls exponentially with P. This does not mean that one
cannot obtained useful information about the ground-
state energy. As Sorella et al. have pointed out, ' it is
straightforward to calculate the P dependence of
Z++Z, because no fluctuating signs are involved.
This calculation yields the quantity Eo =Eo —b, . A mea-
surement of the P dependence of (S)p yields b„and
therefore Eo. For example, for U=8 with a filling of
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FIG. 5. The logarithm of (S)p as a function of P on a 4X4
lattice with U =4 and (n ) =0.875. The straight line is a least-
squares fit to the large P portion of the data.
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0.625 and hz=0. 1 we find Eo =Eo—b = —17.75+0.06.
Our least-squares fit to the logarithm of (S)p yields a
correction, 6=0. 126+0.002. 5 varies significantly with
filling and coupling, but in all cases that we have studied
to date, it is a small compared to Eo. It should be possi-
ble to significantly reduce the error bars on Ep, so that at
least on small lattices this approach can be used to obtain
accurate measurements of the ground-state energy as a
function of filling and coupling. Whether this procedure
or a straightforward measurement including the signs
produces superior results is likely to depend on the rela-
tive size of b and the gap to the first excited state.

Our results suggests that it may be possible to perform
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FIG. 4. The logarithm of (S)p as a function of P on a 4X4
lattice with U =4 and (n ) =0.625. The straight line is a least-
squares fit to the large P portion of the data.

FIG. 6. The logarithm of (S)p as a function of P on a 4X4
lattice with U =8 and (n ) =0.625. The solid squares are data
from the ground-state algorithm and the open squares from the
grand-canonical-ensemble algorithm. The straight lines are
least-squares fits to the large P portions of the data. The slopes
of these lines agree with statistical errors.
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DiagMC and Cdet
Cancellation of high-order
Feynman diagram
10-12 order is ”converged”
with “shifted-action” and
conformal mapping 

15.18 Nikolay Prokof’ev
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Fig. 14: (a) Resummation of divergent series for ln(1+x) with x = 2 using f(n, ✏) = e�✏n2
(cir-

cles) and f(n, ✏) = e�✏n3/2
(triangles). Extrapolation to ✏ = 0 was performed using parabolic

fits. Partial sums
P[✏]

1 (�x)n+1/n are shown by open squares. The value ln 3 is marked by the

diamond on the vertical axis. (b) Moving a simple-pole and increasing the convergence radius

using conformal mapping.

The above protocol is blind to specific properties of the series and may require knowledge of
many terms in the series for reliable extrapolation, especially for less “aggressive” f -functions.
More efficient methods exist when the reason for reaching the convergence radius is known
better. Suppose that the series behaves as dn = �nxn with �n = (�1)n and M = 10 terms
are known. The goal is get an answer for x = 3, well outside of the radius of convergence.
From available information one can roughly estimate the convergence radius, and produce con-
stant phase lines y(x) for the complex function Q(z = x + iy) =

PM
n �nzn to establish that

a simple pole is located close to the real axis, say at z0 ⇡ �1.05. Next, one performs a con-
formal mapping w = z/(z � z0), or z = �wz0/(1 � w) and constructs the Taylor series for
Qw(w) =

PM
n �nwn. The final answer is given by Qw(x/(x � z0)); with extraordinary accu-

racy it reproduces 1/(1 + x) = 0.25. Under conformal mapping the singularities are moved
away from the origin of the expansion and the point of interest ends up well within the radius
of convergence, see the illustration in Fig. 14(b).

Similarly, it is possible to handle poles of higher order or several poles, but high accuracy rests
on the number of known terms in the series. A slightly different version of the method is known
as extrapolation by Padé approximants. One assumes that the function behind the series is given
by the ratio of two polynomials, Q(z) = Pk(z)/Pm(z), with k +m  M . For each (k,m) pair
the polynomials are determined by matching the coefficients of the Taylor series for the ratio to
�n. The final answer is determined by examining how Pk(x)/Pm(x) depends on (k,m) when
we increase the order of polynomials.

Conformal mappings can be also used to improve the convergence properties of series by mov-
ing branch cuts away from the origin. The ratio of polynomials can be replaced by the ratio
of hypergeometric functions to achieve efficient extrapolation in cases when the convergence
radius is limited by the branch cuts [7]. The mathematical and physical literature on the topic

N. Prokof’ev “DiagMC” Jülich school 2019 

Sign is physical and
related with QCP
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Weak and Strong coupling: QMC
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Diagrammatic MC (Worm) for bosonic system
N. Prokof’ev, B. Svistunov, I. Tupitsyn, 
JETP Lett. 64, 911 (1996), JETP 87, 310 (1998)
N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 81, 2514 (1998)

CT-QMC: CT-INT (”det G0”) sign problem
A. Rubtsov, and A. L., JETP Lett. 80, 61 (2004)
A. Rubtsov, V. Savkin, and A. L., Phys. Rev. B 72, 035122 (2005)

CDet: 

R. Rossi, Phys. Rev. Lett. 119, 045701 (2017)           

Weak:   U<<t , “normal” perturbation diagram  
Diagrammatic Monte Carlo 15.3
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Fig. 1: Graphical representation of the diagrammatic expansion for the Green function of an

interacting many-body system.

There are well-established diagrammatic series for other quantities of interest such as self-
energies, polarization operators, pair-propagators, current-current and other correlation func-
tions, etc. Numerous alternative representations of quantum and classical models, such as path
integrals and impurity solvers, are mathematically identical to Eq. (1). Thus, regardless of the
origin of Eq. (1), it can be viewed as a mathematical expression for the answer in terms of a
series of multi-dimensional integrals. The real challenge is to evaluate it with high accuracy.
Let us denote the collection of all external and internal parameters that lead to a complete char-
acterization of the diagram as ⌫ = (n,T;x1, . . . ,xn;y), and call it the “configuration space;” a
particular set of parameters has to be viewed as a point in {⌫}. Accordingly, the modulus of D⌫

will be called the configuration “weight.” Since, in general, the D-function is not sign-positive,
we will need to introduce also the configuration “phase,” '⌫ = argD⌫ (the diagram phase is
not necessarily equal to 0 or ⇡).

2.1 Updates: general principles

The MC process of generating diagrams with probabilities proportional to their weight is based
on the conventional Markov-chain updating scheme [2–4] implemented directly in the space of
continuous variables. All updates are broadly classified as type-I and type-II. The number of
continuous variables is not changed in type-I updates that perform sampling of diagrams of the
same order n. Typical examples are shown in Fig. 2. They are based on the simplest possible
local modifications of the topology and line parameters allowed by the rules and conservation
laws. Their implementation is straightforward; e.g., for the update illustrated in Fig. 2(a) select
at random any pair of consecutive interaction vertices and exchange their places. An acceptance
ratio for the corresponding update, R⌫!⌫0 , is given by the ratio of the diagram weights,

R⌫!⌫0 = |D⌫0/D⌫ | , (2)

which is easily calculated, since D⌫ is the product of Fline-functions and only three of them
change their values in this update. Changing internal or external variables, see Figs. 2(b) and
2(c), is also standard. For example, one may select at random some interaction vertex and
propose a new value for its time variable, ⌧i ! ⌧ 0i , from the (arbitrary) normalized probability
density P (⌧ 0i). The acceptance ratio for this update is given by the ratio of probabilities for
suggesting the ⌫ ! ⌫ 0 and ⌫ 0 ! ⌫ moves times the ratio of the diagram weights

R⌫!⌫0 =

����
D⌫0

D⌫

����
P (⌧i)d⌧

P (⌧ 0i)d⌧
=

����
D⌫0

D⌫

����
P (⌧i)

P (⌧ 0i)
. (3)

Strong:   U>>t  complicated perturbation diagram –’diverge’

CT-QMC: CT-HYB (”det D”) – small system <6 and sign problem
P. Werner, A. Comanac, L. de’ Medici, M. Troyer, A. Millis
Phys. Rev. Lett. 97, 076405 (2006).

15.22 Nikolay Prokof’ev
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Fig. 16: By connecting all outgoing arrows to incoming ones with the same spin index, one

obtains a Feynman diagram for the partition function. Free energy density diagrams must form

a connected graph.

5.2 Determinant method for connected diagrams

An efficient method for computing D̄ for expansions in the coupling constant was developed by
Rossi in Ref. [12]. It rests on the simple observation that the sum of all connected topologies
can be obtained from the sum of all topologies by subtracting disconnected ones. To be spe-
cific, consider the fermionic Hubbard model and Feynman diagrams for the free energy density.
Given space-time positions of interaction vertexes X1, . . . Xn, where Xi = (ri, ⌧i), all topolo-
gies are generated by establishing pairwise associations between the incoming and outgoing
arrows with the same spin index, as in Fig. 16. Apart from the global factor (�U)n, the dia-
gram contribution is given by the product of all Green functions and the sign rule based on the
number of fermionic loops. According to this rule, each time one swaps the destination points
for two propagators the number of loops changes by ±1 and this leads to an additional factor
of �1. Thus, the sum over all possible topologies forms a determinant (44).
Let us introduce a short-hand notation for the collection of all vertex coordinates, V = {Xi},
any proper subset of coordinates, S ( V, the sum over all topologies (determinant) for a
given set of coordinates, det(V ), and the sum over all connected topologies, C(V ). Then, by
subtracting from det(V ) all disconnected cases, we obtain C(V )

C(V ) = det(V )�
X

S(V

C(S) det(V \S) . (49)

This is a set of recursive equations for connected contributions after similar equations are written
for subsets of V. Its coefficients are based on determinants and the cost of computing all of them
scales as n3 2n, where 2n comes from the combinatorial number of possible proper subsets,Pn�1

m=1 n!/m!(n � m)!. The number of arithmetic operations required to solve these recursive
equations is / 3n—in the large n limit this is the main computational cost.
In this scheme, the effort is exponential in the diagram order and this is certainly an enormous
improvement compared to the (n!)2 scaling of the total number of connected graphs. After sum-
mation over {Xi} one should not forget to divide the n-th order contribution by n! to account
for the indistinguishability of the vertices. One can use this scheme (or its generalizations) to
compute connected diagrams for any correlation function [12], proper self-energy [13, 14], and
even semi-skeleton series; in the latter case, however, the computational cost will increase to
roughly 6n.
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Multi-orbital impurity with general U

General Interaction:

CT-HYB-QMC

E. Gull, A. Millis, A.L., A. Rubtsov, M. Troyer, Ph. Werner, Rev. Mod. Phys. 83, 349 (2011)

General multi-orbital system: strong sign-problem



Diag-MC CDet: State-of-the-Art
F. Šimkovic, R. Rossi, M. Ferrero, Phys. Rev. Res. 4, 043201 (2022)

F. Šimkovic, R. Rossi, A. Georges, M. Ferrero, arXiv:2209.09237
Origin and fate of the pseudogap: 64x64 lattice 6

In Fig. 5 we show the results of an extrapolation down
to T = 0 of our numerically exact finite-T results for
the position of the various crossovers (details are pro-
vided in SM). The plain red line on Fig. 5 indicates
the extrapolated T = 0 boundary between the (pink)
region with a PG and that without a PG (light blue).
The T = 0 extrapolation of the FS topology (Lifschitz)
crossover coincides with the PG boundary up to a dop-
ing level of around 13.5%, and deviates from it at higher
doping. The full black line on Fig. 5 is adapted from
Ref. [30]. It represents the ground state phase transition
between a phase with long-range spin and charge stripe
order [7, 8, 11, 12, 46] and a phase at higher doping lev-
els with only short-range spin and/or charge correlations.
This boundary was computed by auxiliary field quan-
tum Monte Carlo (AFQMC), and the results are in good
agreement with a variational Monte Carlo study [47].
Remarkably, our result for the extrapolated pseudogap
boundary is in near-perfect agreement with this phase
transition line. This provides striking evidence that the
pseudogap regime eventually becomes stripe-ordered at
zero T . This is one of the major conclusions of our work,
which answers the long-standing question of the fate of
the pseudogap regime as temperature is lowered towards
the ground state.

E. Piecing together a unifying picture

We conclude this work by attempting to provide a uni-
fying qualitative picture of the physical regimes of the
doped two-dimensional Hubbard model, also emphasiz-
ing the questions that are still open.

In Fig. 6 we present a sketch of the proposed strong-
coupling phase diagram as a function of temperature and
doping level. The pseudogap and Lifschitz crossovers
from Fig. 5 are indicated by T ⇤ and TL. Additionally,
we display the commensurate to incommensurate spin
fluctuation crossover TIC, and the crossover from a short
to a long spin correlation length T⇠ which were identi-
fied in Ref. [33]. As established in previous work [9, 33]
and also shown above, charge correlations only pick up
at much lower temperatures. This implies that the for-
mation of the pseudogap is driven by spin correlations,
consistently with the conclusions from cluster extensions
of DMFT [14, 17, 36–38]. Charge correlations are, how-
ever, a necessary ingredient for the stripe ordering which
was established to exist in the ground state [30, 47, 48].
We postulate that charge correlations develop only once
incommensurate spin correlations have grown to be suf-
ficiently long-ranged (as seen in Fig. 5). Very recently,
strong indications that charge long-range (or quasi long-
range) order indeed takes place through a phase transi-
tion at a low non-zero temperature were obtained [49].
From our data we identify the ideal region of parameters
to further investigate this question to be n ⇠ 0.9 and
U ⇠ 4. Incidentally, this is where we experience most
di�culties with the resummation of perturbative series

FIG. 6. Proposed unifying picture at strong coupling.

This schematic strong coupling phase diagram as a func-
tion of temperature and doping indicates the pseudogap
(red), strongly correlated (green) and weakly correlated (blue)
metallic regimes discussed in the text. The dashed gray and
yellow lines refer to spin physics: below the former (T⇠)
the magnetic correlation length exceeds a specified value,
while below the latter (TIC) the magnetic correlations be-
come incommensurate. The ground-state is a spin/charge
ordered stripe state at low doping (purple region) and a su-
perconductor at higher doping (blue region). These two zero-
temperature phases are likely to extend to finite temperature
in a manner which is not yet fully understood, as represented
by arrows and question marks.

from diagrammatic Monte Carlo.

As doping is further increased, the stripe order eventu-
ally ceases to exist in the ground state. In the weak-to-
intermediate coupling regime and in the absence of other
instabilities, the Hubbard model will eventually turn su-
perconducting because of the Kohn-Luttinger e↵ect [50],
albeit at possibly very low temperatures. For U . 4, it
has been established that this instability is of the dx2�y2

type up to 40% doping [51, 52]. At stronger coupling, it
has been shown that stripe ordering wins over supercon-
ductivity over a significant range of parameter space in
the absence of next-nearest neighbor hopping [48]. The
situation at doping levels just above the critical value
where stripe order disappears is still under investigation
but recent results seem to suggest that strong coupling
superconductivity exists over some range of doping [47].
Finite-temperature studies using approximate methods
have also found d-wave superconductivity to exist in the
vicinity of the pseudogap crossover [53, 54]. However,
more work is needed to provide conclusive results about
the critical temperature and doping extension of this
phase. Further, it would be insightful to study changes in
entropy within this phase diagram as it could indicate the
vicinity to phase separation or favor high-temperature
superconductivity [55].

In conclusion, we have investigated the two-
dimensional Hubbard model using a numerically exact di-

U=6.0   x=8.7%   U=4.3 T=02
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Abstract

I. INTRODUCTION

II. EFFECTIVE BOSONIC ACTION FOR CHARGE AND
SPIN DEGREES OF FREEDOM

In the current work we aim at deriving a quantum bosonic
action that describes the behaviour of the charge and spin de-
grees of freedom of an initially purely fermionic problem. We
start with the lattice action of the extended Hubbard model
written in the coordinate and imaginary time representation

Slatt =

Z �

0
d⌧

(
�
X

i j,��0
c
⇤
i⌧�

h
�i j���0 (�@⌧ + µ) � "��

0
i j

i
c

j⌧�0

+
X

i,��0
Uni⌧"ni⌧# +

1
2

X

i j,&

⇢&
i⌧V
&
i j
⇢&

j⌧

)
(1)

Fermionic Grassmann variables c
(⇤)
i⌧� describe annihilation

(creation) of an electron with the spin projection � = {", #}
at the site i and imaginary time ⌧. "��0

i j
= "i j ��� + i~i j · ~���0

is the hopping matrix in the spin space. The diagonal compo-
nent "i j of this matrix corresponds to the hopping amplitude
of electrons between two lattice sites i and j. The nondiago-
nal part accounts for the spin-orbit coupling (SOC) ~i j in the
Rashba form [1, 2], where ~� = {�x,�y,�z} is a vector of Pauli
matrices. U is the on-site Coulomb repulsion. V

&
i j

describes
the non-local (V&

ii
= 0) interaction between charge (& = c) and

spin (& = s = {x, y, z}) densities n
&
i⌧ =
P
��0 c

⇤
i⌧� �

&
��0ci⌧�0 . For

convenience we introduce following variables ⇢&
i⌧ = n

&
i⌧ � hn&i

that describe fluctuations of the densities around their average
value. We assume that the average densities can be obtained
from a certain local reference system. Can one write a lo-
cal reference problem for DFT (LDA)? Can I say that it is an
atomic problem in the Hartree-Fock approximation? In this
particular work the role of the reference system is played by
an e↵ective local impurity problem of the dynamical mean-
field theory (DMFT) [3]

Simp = �
Z �

0
d⌧ d⌧0

X

��0
c
⇤
⌧�

h
�⌧⌧0���0 (�@⌧ + µ) � ���

0
⌧⌧0

i
c⌧0�0

+

Z �

0
d⌧Un⌧"n⌧# (2)
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The advantage of considering this reference system is that
it can be solved numerically exactly, e.g. by means of the
continious-time quantum Monte Carlo method [4–7]. There-
fore, introducing such reference system makes investigation
of local correlation e↵ects more accessible. In particular, this
will help us to address the problem of the local moment for-
mation in the system. In order to isolate the impurity problem
from the initial action (1), we add the fermionic hybridiza-
tion function ���0⌧⌧0 = �

��0 (⌧0 � ⌧) to the local part of the lat-
tice problem. To be consistent, the same hybridization is sub-
tracted from the remaining (non-local) part of the lattice prob-
lem Srem = Slatt �

P
i Simp
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Z �

0
d⌧ d⌧0
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h
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+
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0
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i j,&
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i⌧V
&
i j
⇢&

j⌧ (3)

This way of introducing the reference system gives some free-
dom in choosing the form of the hybridization function [8].
For instance, �⌧⌧0 does not necessarily have to be obtained
from the DMFT self-consistency condition, which equates the
local part of the lattice Green’s function G

��0
ii,⌧⌧0 to the exact lo-

cal impurity Green’s function g
��0
⌧⌧0 [3]. In this work we stick to

the paramagnetic case, which is the most challenging regime
for describing the behavior of the local magnetic moment. In-
deed, in the ordered state the value of the magnetic moment
is given by the average magnetization, which in many cases
can be obtained from DFT in reasonable agreement with the
experiment [??]. On the contrary, in the paramagnetic regime
the average magnetization is equal to zero even if the mag-
netic moment has already been formed. In the latter case the
zero average magnetization is a consequence of an uncorre-
lated precession of the magnetic moment, and distinguishing
this situation from the case when the system does not pos-
sess any magnetic moment at all is a non-trivial task. As has
been mentioned above, in the current work the average mag-
netization is given by the local reference system (2). For this
reason, we consider a spin-independent hybridization func-
tion ���0⌧⌧0 = ���0�⌧⌧0 , which ensures that the average local spin
density is zero hnsiimp = 0, and therefore ⇢s

i⌧ = n
s

i⌧. As a con-
sequence, the Green’s function g

��0
⌧⌧0 = ���0g⌧⌧0 of such refer-

ence system is also diagonal in the spin space. At the same
time, the lattice Green’s function can have non-diagonal spin
components due to the presence of the SOC. For this reason,
we determine the hybridization function from the following

Correlated electrons
lattice model

2

self-consistency condition for the diagonal part of the lattice
Green’s function 1

2
P
�G

��
ii,⌧⌧0 = g⌧⌧0 .

We point out that ⇢& are not suitable variables for address-
ing the problem of charge and spin dynamics. Indeed, they
are not true bosonic variables, because they are composed of
two fermionic Grassmann variables. Proper bosonic variables
that describe fluctuations of charge and spin densities can be
introduced performing a set of Hubbard-Stratonovich trans-
formations as has been shown in Refs. 9 and 10. Following
the idea of these works we first rewrite the non-local part of
the lattice action Srem in terms of new fermionic f

(⇤) and truly
bosonic �& fields instead of original fermionic c

(⇤) and com-
posite ⇢& variables. This transformation is explicitly shown in
Appendix ?? for a general multi-orbital case and results in the
following lattice action

S = �
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In this equation we have introduced a source field j
& for a

composite ⇢& variable. This source field will help us identify
the correct variables for original charge and spin degrees of
freedom after multiple transformations of the initial action.

Static properties of e↵ective bosonic models for spin or
charge degrees of freedom, namely the exchange interaction
between spin or charge densities, have been studied in previ-
ous works [9, 10]. Description of the spin dynamics, which
has not been performed in these works, is a nontrivial task
that requires a careful separation of the precession of the vec-
tor spin field from the fluctuation of the absolute value of the
local magnetic moment. To this e↵ect, we deviate from the
main route of these works and make a transformation to a ro-
tating frame for original fermionic variables c

⇤
i⌧ ! c

⇤
i⌧Ri⌧ and

c
i⌧ ! R

†
i⌧ci⌧ introducing a unitary rotation matrix in the spin

space

Ri⌧ =

 
cos(✓i⌧/2) �e

�i'i⌧ sin(✓i⌧/2)
e

i'i⌧ sin(✓i⌧/2) cos(✓i⌧/2)

!
(5)

where ci⌧ = (ci⌧", ci⌧#)T . Later on, polar angles ✓i⌧ and 'i⌧ will
be associated with the direction of the local magnetic moment.
Therefore, at each lattice site i and imaginary time ⌧ the rota-
tion matrices are intended to adjust the coordinate system such
that the local magnetization in new coordinates always points
in z direction. In this way the accounting for the rotation
dynamics of the local magnetic moment is transferred from
the corresponding bosonic field to a new time- and position-
dependent coordinate system. Under this rotation the impurity

problem transforms as

Simp ! Simp +
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where Ṙ
i⌧ = @⌧Ri⌧ and A

&
i⌧ is an e↵ective gauge field intro-

duced as R
†
i⌧Ṙi⌧ =

P
& A
&
i⌧�
&. The explicit form of the rota-

tion matrix (5) implies that A
c

i⌧ = 0. Composite variables for
charge and spin degrees of freedom become
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where B
&&0
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It can be shown that
P

s0 B
T ss
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s
0
s
00
= �ss00 , B

cs

i⌧ = 0, and
B

cc

i⌧ = 1. The last equality originates from the fact that the
charge density n

c

i⌧ is invariant under rotation in the spin space.
Upon collecting all terms, the lattice action (4) transforms to
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We find that the bosonic field �s

i⌧ enters the lattice action (9)
as an e↵ective magnetic field. However, it is important to em-
phasise that the local magnetic moment at a given lattice site
does not necessarily point in the same direction as the polar-
izing field applied to the same site. For this reason it would
be incorrect to associate polar angles ✓i⌧ and 'i⌧ with the di-
rection of the field �s

i⌧ and identify the latter with the Higgs
field contrary to what is commonly done in the literature (see
e.g. [11–15]). Instead, below we demonstrate a proper way of
introducing the bosonic field that describes Higgs fluctuations
of the local magnetic moment.

After the rotational dynamics of the magnetic moment is
explicitly isolated, original fermionic variables can be inte-
grated out. This allows to account for local correlation ef-
fects exactly via the reference system (2), which is formulated
solely in terms of original variables. It is important that upon
all transformations of the lattice problem the source field j

&

and the e↵ective gauge field A
& are taken into account exactly

without any approximation. For this purpose we make the fol-
lowing shift of variables
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Rotated local frame

4

to non-locality of the bare dual Green’s function (17). In ad-
dition, since the SOC enters the problem (1) as a non-local
hopping ~i j · ~���0 , the local part of G̃��0

i j,⌧⌧0 in the case of a small
SOC is also negligibly small. Quadratic exchange can be ob-
tained in the second order of expansion, which gives
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The total non-local exchange interaction
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contains the bare (direct) interaction V
&
i j

of the initial action (1)
and the RKKY-like (kinetic) interaction mediated by electrons
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Here, G̃ is the full Green’s function of the problem (16). The
diagonal part of the kinetic interaction is given by the Heisen-
berg exchange interaction J

ss

i j
for spin [9] and the Ising in-

teraction J
cc

i j
for charge [10] densities. The nondiagonal J

ss
0

i j

(s , s
0) component gives rise to the antisymmetric anisotropic

(Dzyaloshinskii-Moriya) and the symmetric anisotropic inter-
actions (see, e.g., Ref. 2). More involved interaction terms,
such as the chiral three-spin [??] and biquadratic [??] ex-
change interactions can be obtained by a straightforward ex-
pansion the first term in Eq. (18) in higher-orders in ⇢.

III. EQUATION OF MOTION

In this section we derive equation of motion for the preces-
sion of the local magnetic moment and thus exclude charge
degrees of freedom from consideration. The last term in
Eq. (19) describes the Higgs dynamics of the absolute value
of the local magnetic moment Mi⌧. These fluctuations are fast
and the corresponding contribution is strongly non-local in
time. This fact is confirmed by a rapidly saturating behav-
ior of the Fourier transform of the local spin susceptibility �s

!
to the Matsubara frequency space ! shown in Fig. 1. On the
contrary, the precession of the local magnetic moment is slow
in time and can be described by the Landau-Lifshitz-Gilbert
equation of motion [??]. To derive this equation we assume
that the local magnetic moment has already been formed in
the system. The criterion for the formation of the magnetic
moment is discussed in details in the Section IV. At this point
we average over fast Higgs fluctuations and replace the scalar
field Mi⌧ by its constant nonzero average value hMi⌧i = 2S .
In this case the Higgs term can be neglected in the action, be-
cause now it only gives a constant contribution to the energy.
The bosonic action (19) reduces to an e↵ective spin problem

Sspin =

Z �

0
d⌧
X

j

⇣
i'̇ j⌧(1 � cos ✓ j⌧) S � ~S j⌧ · ~h j⌧

⌘
(22)

FIG. 1. Local spin susceptibility �z

! as a function of the number N

of bosonic Matsubara frequency !N = 2⇡N/�. Results are obtained
for the case of U = 8 given in units of nearest-neighbor hopping
amplitude " = 1 at di↵erent temperatures specified in the legend.
The non-local interaction V

& and the SOC are set to zero.

where ~Si⌧ = S~ei⌧, and components of an e↵ective magnetic
field ~h j⌧ are following

h
s

j⌧ = 2
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0
d⌧0
X

i,s0
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0
ji,⌧⌧0S

s
0

i⌧0 (23)

In the general case the equation of motion for the spins is a
set of integro-di↵erential equations. To simplify the problem,
we make use of the fact that the interaction between spins
is determined by the super-exchange processes due to elec-
trons (21) and thus decays fast on the time scales of inverse
band width, while the time-dependence of the angle variables
'i⌧ and ✓i⌧ is slow. For this reason, we can expand the time-
dependence of the spin variable S

s
0

i⌧0 in Eq. (23) up to the first
order in powers of ⌧ � ⌧0. In the zeroth order the ⌧0 time argu-
ment of S

s
0

i⌧0 is simply replaced by ⌧. Then, the ⌧0 integration
of Iss

0
ji

(⌧ � ⌧0) leads to the zero frequency Fourier component
of the spin-spin interaction Iss

0
i j

(! = 0), and the zeroth-order
contribution to the e↵ective magnetic field (23) becomes

h
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s
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i⌧ (24)

We note that the local three-point vertex function that enters
the expression for the kinetic interaction J

ss
0

i j,!=0 (21) can be
obtained from the self-energy of the impurity problem as (see
Ref. 9 and also Appendix)
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where ⌫ is the fermionic Matsubara frequency. If the in-
verse of the local susceptibility is neglected in this equa-
tion, the equal-time kinetic interaction reduces to well-known
Liechtenstein-Katsnelson-Antropov-Gubanov expression
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At this point we should emphasize again that our aim was
a mapping of the initial interacting fermionic problem onto
and effective Hamiltonian problem (24) that is stationary in
time. This effective problem describes the dynamics of spin
degrees of freedom, which is supposed to be much slower
than the electron hopping and other fast electron processes, in
particular, related to the Hubbard U energy scale. Within this
approach, we should take into account only low-frequency
part of the exchange term (23), which is approximately lim-
ited by the value of the exchange interaction. Actually, the
exchange term (23) has a complicated frequency dependence;
in fact it diverges for high frequencies, but taking into ac-
count such nonadiabatic effects is not allowed in the derived
Landau-Lifshitz-Gilbert equation of motion (30). In the high-
frequency region the separation of spin and electron dynamics
is, generally speaking, impossible. In the latter case, the dy-
namics of charge and spin degrees of freedom can only by
described by the derived fermion-boson (17) or boson (19)
actions that have no restriction on the regime of frequencies,
but are nonstationary in time.

IV. LOCAL MAGNETIC MOMENT FORMATION

The introduced equation of motion (30) is valid only when
the local magnetic moment exists. Otherwise, there is no way
to discuss a specific spin dynamics separated from general
dynamics of electron-hole excitations. In this section we de-
rive the corresponding condition for the formation of the local
magnetic moment in the system.

According to Landau phenomenology [82], a transition
from a paramagnetic to a magnetically ordered state occurs
due to a spontaneous symmetry breaking. The latter results
in the change of the free energy F [m] from a paraboloid-like
form with a minimum at m = 0 to a Mexican-hat potential
characterized by a continuous set of minima at m != 0. This
change in the free energy can be seen in the sign change
of the second variation of the free energy ∂2

mF [m]|m=0 with
respect to the corresponding order parameter m (see, e.g.,
Ref. [83]). As an example, let us consider a half-filled Hub-
bard model on a three-dimensional (3D) cubic lattice, where
the spontaneous symmetry breaking is associated with the
formation of the antiferromagnetic (AFM) ordering with the
wave vector "Q = {π ,π ,π}. The free energy of our problem is
given by the action derived above (19) that is written in terms
of the physical bosonic variables ρς describing fluctuations of
charge and spin densities. Thus, the second variation of the
free energy with respect to the AFM order parameter ρs

Q,ω=0
results in the inverse of the AFM susceptibility X s

Q,ω=0 [39]
that becomes zero at the transition point

− ∂2S[ρs]
∂ρs

Q,ω=0∂ρs
−Q,ω=0

=
(
X s

Q,ω=0

)−1 =
(
χ s

ω=0

)−1−Iss
Q,ω=0=0.

(31)

Above the AFM phase boundary fluctuations of magnetic
moments are uncorrelated at large distances, which means that
the moments on different lattice sites fluctuate independently
on each other, assuming that the distance between sites is
larger than the magnetic correlation length. It can be expected
that the formation of the local magnetic moment can be cap-

tured in the same way as the formation of the AFM ordering
but looking at the corresponding local free energy. Impor-
tantly, this local free energy is different from the one of the
local reference system (2). Indeed, the impurity problem Simp
describes local correlation effects of both itinerant electrons
and local magnetic moments. In order to isolate the energy
related to the magnetic moment only, one has to find a way
to subtract the contribution of itinerant electrons from the
local free energy of the reference system (2). As we argue
in Appendix C, this procedure can be done by excluding
nonlocal terms from Eq. (10) and integrating out fermionic
variables f (∗). This procedure is reminiscent of the mapping
of the s-d model on the Anderson impurity model for the d
electrons [84,85]. Let is emphasize again that the discussion of
local moments and their separate dynamics makes sense only
at timescales much larger than typical electron times, such as
the inverse of the hopping amplitude, or 1/U . As the result we
get the local problem written in terms of only physical bosonic
variables ρ:

Sloc = −Tr ln

[
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ττ ′δσσ ′ +
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σσ ′+

ς
ττ ′τ ′′ ρ
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iτ ′′
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− 1
2
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0
dτ dτ ′

∑

ς

ρς
τ [χς ]−1

ττ ′ρ
ς
τ ′ . (32)

Note that the derivation of this local problem does not rely on
the saddle-point approximation for rotation angles because no
transformation of fermionic variables to a rotating frame (4)
has been performed in this case.

In analogy to the formation to the AFM state the formation
of the local magnetic moment in the system can be seen in the
sign change of the second variation of the local action (32)
with respect to the local magnetic moment

−∂2Sloc[ρs]
∂ρs

τ ∂ρs
τ ′

= [χ s]−1
ττ ′ − J loc

ττ ′ . (33)

Importantly, and contrary to the case of the true phase transi-
tions for the infinite system, we keep times τ and τ ′ different
since in the static limit local magnetic moment does not exist,
it is screened by Kondo effect, or by intersite exchange-
induced spin flips (in paramagnetic phase), or by both these
factors. At the same time, as was already stressed, local
magnetic moment exists at relatively long times in compar-
ison with basic electron processes. In this sense, its existence
means symmetry breaking at intermediate timescales.

The expression (33) corresponds to a “slow” exchange cou-
pling of the local moment to itself at a different time point that
can be obtained by subtracting the contribution of itinerant
electrons given by a local analog of the exchange interaction
(23):

J loc
ττ ′ =

∫ β

0
{dτi}

∑

σ

+∗ s
ττ1τ2

gσ
τ1τ3

gσ
τ4τ2

+s
τ3τ4τ ′ (34)

from the total exchange interaction χ−1
ττ ′ of the local ref-

erence system (2). The moment when this self-exchange
becomes diamagnetic clearly marks the instability of the truly
paramagnetic phase without a developed local moment. Re-
markably, by direct numerical calculations we find that the
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can be arbitrary assuming that we can calculate its Green’s functions of arbitrary order. It is
worthwhile to mention here the very successful Peierls-Feynman-Bogoliubov variational prin-
ciple [36–38]. In this case, a good variational estimate of the system’s free energy F with the
Hamiltonian H1 is achieved on an optimal reference system with the Hamiltonian H0, namely
F1  F0 + hH1 � H0i0. One can hope therefore that even first-order corrections to the properly
chosen reference system will already give a rich and adequate enough physical picture.

1.1 Generic Hamiltonian

The simplest model describing interacting fermions on a lattice is the single band Hubbard
model, defined by the Hamiltonian

Ĥ↵ = �
X

i, j,�

t↵i jc
†
i�c j� +

X

i

U(ni" �
1
2

)(ni# �
1
2

) (1)

where ti j are the hopping matrix elements including the chemical potential µ in the diagonal
part:

t↵i j =

8>>>>>>>>>><
>>>>>>>>>>:

t if i and j are nearest neighbours,

↵t0 if i and j are next nearest neighbours,

↵µ if i = j,

0 otherwise,

(2)

where ni� = c†i�ci�. We introduce a ”scaling” parameter ↵ = 0, 1, which distinguish a reference
system H0 for ↵ = 0 and corresponds to the half-filled Hubbard model (µ0 = 0) with only
nearest neighbours hopping (t00 = 0) from the final system H1 for ↵ = 1 with given µ and t0.
Notes, that long-range hoping parameters can be trivially included in the present formalism
similar to t0.
The reference system now corresponds to the half-filled (µ = 0) particle-hole symmetric (t0 = 0)
case (Figure 3) where lattice Monte Carlo has no sign problem and the numerically exact solu-
tion for any practical value of U is possible within a broad range of temperatures [39]. Then we
apply the lattice dual fermion perturbation theory [6, 5, 33] to find the first-order perturbative
corrections in µ and t0. To this aim, it is su�cient to calculate the two-particle Green’s function,
or, equivalently, four-leg vertex, which can be done accurately enough within the continuous
time Quantum Monte Carlo. Our reference system already has the main correlation e↵ects in
the lattice and shows characteristic “four-peak” structure [40] with high-energy Hubbard bands
around ±U/2 and antiferromagnetic Slater bands close to the insulating gap (which can be seen
in the density of states in Figure 3, left panel). After the dual fermion perturbation scheme the
correlated metallic states with the DMFT-like ”three peak” structure appear with a pseudogap-
like feature at a high temperature (the density of states in Figure 3, right panel). The results
for the strong-coupling case (U = W = 8t) with practically interesting values of the chemical
potential and next-nearest-neighbour hoppings corresponding to cuprate superconductors have
shown formation of a pseudogap and nodal-antinodal dichotomy (that is, well-defined quasipar-
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ticles in the nodal part of the Fermi surface and strong quasiparticle damping for the antinodal
part) which makes this approximation a perspective for practical applications.

2 Numerically Exact Lattice QMC
We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
scheme. The both QMC methods used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c⇤i , ci]. The space-time bare Green’s
function Gi j describe non-interacting part of the Hamiltonian in Eq.(2) for Nx ⇥ Ny 2D-space
(N = Nx · Ny) and L ⇥ L discretise times in e↵ective bath external infinite lattice with space-
time index here i ⌘ (r, ⌧). Imaginary time slicing corresponds to the mesh ⌧ = l ⇤ �⌧ with
l = 0, · · · , L � 1 and �⌧ = �/L with inverse temperature �. The interaction part of Hamilto-
nian in in Eq.(2) is decoupled by mapping to an auxiliary Ising fields si via a discrete Hirsch-
Hubbard-Stratonovich transformation [41]

e�U�⌧[ni"ni#�(ni"+ni#)/2] =
1
2

X

si=±1

e�si(ni"�ni#) (3)

where � = arccosh(eU�⌧/2) and for the best convergence of DQMC one used a following ”rule
of thumb” U�⌧/2 . 1. Then the e↵ective lattice action become Gaussian:

S [c⇤, c] = �
X

i, j,�

c⇤i� G�1
i j� c j� , (4)

with
G�1

i j�(s) = G�1
i j� � �i, j�si� , (5)

where s ⌘ {si}with i = 1,N ·L. Note that in time space the delta function should be anti-periodic
for fermions [42,43,2] and Eq.(4) has a schematic form. For such Gaussian action (Eq. (4)) we
can integrated out fermionic degrees of freedom and get for the partition function the following
formula used in determinant QMC scheme:

Z =
1

2NL

X

s

Y

�

det[G�1
� (s)] . (6)

where the sum over Ising auxiliary fields si performed within important sampling Monte Carlo
algorithm with probability P(s) = det[G�1

" (s)] · det[G�1
# (s)] which is always positive for the

half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme exact single-
particle Green’s function of the reference system calculated as following:

g�i j =
1
Z

X

s

P(s) G�i j(s) . (7)
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ticles in the nodal part of the Fermi surface and strong quasiparticle damping for the antinodal
part) which makes this approximation a perspective for practical applications.

2 Numerically Exact Lattice QMC
We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
scheme. The both QMC methods used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c⇤i , ci]. The space-time bare Green’s
function Gi j describe non-interacting part of the Hamiltonian in Eq.(2) for Nx ⇥ Ny 2D-space
(N = Nx · Ny) and L ⇥ L discretise times in e↵ective bath external infinite lattice with space-
time index here i ⌘ (r, ⌧). Imaginary time slicing corresponds to the mesh ⌧ = l ⇤ �⌧ with
l = 0, · · · , L � 1 and �⌧ = �/L with inverse temperature �. The interaction part of Hamilto-
nian in in Eq.(2) is decoupled by mapping to an auxiliary Ising fields si via a discrete Hirsch-
Hubbard-Stratonovich transformation [41]

e�U�⌧[ni"ni#�(ni"+ni#)/2] =
1
2

X

si=±1

e�si(ni"�ni#) (3)

where � = arccosh(eU�⌧/2) and for the best convergence of DQMC one used a following ”rule
of thumb” U�⌧/2 . 1. Then the e↵ective lattice action become Gaussian:

S [c⇤, c] = �
X

i, j,�

c⇤i� G�1
i j� c j� , (4)

with
G�1

i j�(s) = G�1
i j� � �i, j�si� , (5)

where s ⌘ {si}with i = 1,N ·L. Note that in time space the delta function should be anti-periodic
for fermions [42,43,2] and Eq.(4) has a schematic form. For such Gaussian action (Eq. (4)) we
can integrated out fermionic degrees of freedom and get for the partition function the following
formula used in determinant QMC scheme:

Z =
1

2NL

X

s

Y

�

det[G�1
� (s)] . (6)

where the sum over Ising auxiliary fields si performed within important sampling Monte Carlo
algorithm with probability P(s) = det[G�1

" (s)] · det[G�1
# (s)] which is always positive for the

half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme exact single-
particle Green’s function of the reference system calculated as following:

g�i j =
1
Z

X

s

P(s) G�i j(s) . (7)
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ticles in the nodal part of the Fermi surface and strong quasiparticle damping for the antinodal
part) which makes this approximation a perspective for practical applications.

2 Numerically Exact Lattice QMC
We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
scheme. The both QMC methods used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c⇤i , ci]. The space-time bare Green’s
function Gi j describe non-interacting part of the Hamiltonian in Eq.(2) for Nx ⇥ Ny 2D-space
(N = Nx · Ny) and L ⇥ L discretise times in e↵ective bath external infinite lattice with space-
time index here i ⌘ (r, ⌧). Imaginary time slicing corresponds to the mesh ⌧ = l ⇤ �⌧ with
l = 0, · · · , L � 1 and �⌧ = �/L with inverse temperature �. The interaction part of Hamilto-
nian in in Eq.(2) is decoupled by mapping to an auxiliary Ising fields si via a discrete Hirsch-
Hubbard-Stratonovich transformation [41]

e�U�⌧[ni"ni#�(ni"+ni#)/2] =
1
2

X

si=±1

e�si(ni"�ni#) (3)

where � = arccosh(eU�⌧/2) and for the best convergence of DQMC one used a following ”rule
of thumb” U�⌧/2 . 1. Then the e↵ective lattice action become Gaussian:

S [c⇤, c] = �
X

i, j,�

c⇤i� G�1
i j� c j� , (4)

with
G�1

i j�(s) = G�1
i j� � �i, j�si� , (5)

where s ⌘ {si}with i = 1,N ·L. Note that in time space the delta function should be anti-periodic
for fermions [42,43,2] and Eq.(4) has a schematic form. For such Gaussian action (Eq. (4)) we
can integrated out fermionic degrees of freedom and get for the partition function the following
formula used in determinant QMC scheme:

Z =
1

2NL

X

s

Y

�

det[G�1
� (s)] . (6)

where the sum over Ising auxiliary fields si performed within important sampling Monte Carlo
algorithm with probability P(s) = det[G�1

" (s)] · det[G�1
# (s)] which is always positive for the

half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme exact single-
particle Green’s function of the reference system calculated as following:

g�i j =
1
Z

X

s

P(s) G�i j(s) . (7)

Imaginary time mesh
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ticles in the nodal part of the Fermi surface and strong quasiparticle damping for the antinodal
part) which makes this approximation a perspective for practical applications.

2 Numerically Exact Lattice QMC
We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
scheme. The both QMC methods used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c⇤i , ci]. The space-time bare Green’s
function Gi j describe non-interacting part of the Hamiltonian in Eq.(2) for Nx ⇥ Ny 2D-space
(N = Nx · Ny) and L ⇥ L discretise times in e↵ective bath external infinite lattice with space-
time index here i ⌘ (r, ⌧). Imaginary time slicing corresponds to the mesh ⌧ = l ⇤ �⌧ with
l = 0, · · · , L � 1 and �⌧ = �/L with inverse temperature �. The interaction part of Hamilto-
nian in in Eq.(2) is decoupled by mapping to an auxiliary Ising fields si via a discrete Hirsch-
Hubbard-Stratonovich transformation [41]

e�U�⌧[ni"ni#�(ni"+ni#)/2] =
1
2

X

si=±1

e�si(ni"�ni#) (3)

where � = arccosh(eU�⌧/2) and for the best convergence of DQMC one used a following ”rule
of thumb” U�⌧/2 . 1. Then the e↵ective lattice action become Gaussian:

S [c⇤, c] = �
X

i, j,�

c⇤i� G�1
i j� c j� , (4)

with
G�1

i j�(s) = G�1
i j� � �i, j�si� , (5)

where s ⌘ {si}with i = 1,N ·L. Note that in time space the delta function should be anti-periodic
for fermions [42,43,2] and Eq.(4) has a schematic form. For such Gaussian action (Eq. (4)) we
can integrated out fermionic degrees of freedom and get for the partition function the following
formula used in determinant QMC scheme:

Z =
1

2NL

X

s

Y

�

det[G�1
� (s)] . (6)

where the sum over Ising auxiliary fields si performed within important sampling Monte Carlo
algorithm with probability P(s) = det[G�1

" (s)] · det[G�1
# (s)] which is always positive for the

half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme exact single-
particle Green’s function of the reference system calculated as following:

g�i j =
1
Z

X

s

P(s) G�i j(s) . (7)

Discrete Hirsch-Hubbard-Stratanovich transformation 
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ticles in the nodal part of the Fermi surface and strong quasiparticle damping for the antinodal
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2 Numerically Exact Lattice QMC
We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
scheme. The both QMC methods used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c⇤i , ci]. The space-time bare Green’s
function Gi j describe non-interacting part of the Hamiltonian in Eq.(2) for Nx ⇥ Ny 2D-space
(N = Nx · Ny) and L ⇥ L discretise times in e↵ective bath external infinite lattice with space-
time index here i ⌘ (r, ⌧). Imaginary time slicing corresponds to the mesh ⌧ = l ⇤ �⌧ with
l = 0, · · · , L � 1 and �⌧ = �/L with inverse temperature �. The interaction part of Hamilto-
nian in in Eq.(2) is decoupled by mapping to an auxiliary Ising fields si via a discrete Hirsch-
Hubbard-Stratonovich transformation [41]

e�U�⌧[ni"ni#�(ni"+ni#)/2] =
1
2

X

si=±1

e�si(ni"�ni#) (3)

where � = arccosh(eU�⌧/2) and for the best convergence of DQMC one used a following ”rule
of thumb” U�⌧/2 . 1. Then the e↵ective lattice action become Gaussian:

S [c⇤, c] = �
X

i, j,�

c⇤i� G�1
i j� c j� , (4)

with
G�1

i j�(s) = G�1
i j� � �i, j�si� , (5)

where s ⌘ {si}with i = 1,N ·L. Note that in time space the delta function should be anti-periodic
for fermions [42,43,2] and Eq.(4) has a schematic form. For such Gaussian action (Eq. (4)) we
can integrated out fermionic degrees of freedom and get for the partition function the following
formula used in determinant QMC scheme:

Z =
1

2NL

X

s

Y

�

det[G�1
� (s)] . (6)

where the sum over Ising auxiliary fields si performed within important sampling Monte Carlo
algorithm with probability P(s) = det[G�1

" (s)] · det[G�1
# (s)] which is always positive for the

half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme exact single-
particle Green’s function of the reference system calculated as following:

g�i j =
1
Z

X

s

P(s) G�i j(s) . (7)
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2 Numerically Exact Lattice QMC
We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
scheme. The both QMC methods used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c⇤i , ci]. The space-time bare Green’s
function Gi j describe non-interacting part of the Hamiltonian in Eq.(2) for Nx ⇥ Ny 2D-space
(N = Nx · Ny) and L ⇥ L discretise times in e↵ective bath external infinite lattice with space-
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1
2
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where � = arccosh(eU�⌧/2) and for the best convergence of DQMC one used a following ”rule
of thumb” U�⌧/2 . 1. Then the e↵ective lattice action become Gaussian:

S [c⇤, c] = �
X

i, j,�
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i j� c j� , (4)

with
G�1

i j�(s) = G�1
i j� � �i, j�si� , (5)

where s ⌘ {si}with i = 1,N ·L. Note that in time space the delta function should be anti-periodic
for fermions [42,43,2] and Eq.(4) has a schematic form. For such Gaussian action (Eq. (4)) we
can integrated out fermionic degrees of freedom and get for the partition function the following
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1

2NL

X

s

Y

�

det[G�1
� (s)] . (6)

where the sum over Ising auxiliary fields si performed within important sampling Monte Carlo
algorithm with probability P(s) = det[G�1
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s
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We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
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2

X
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where � = arccosh(eU�⌧/2) and for the best convergence of DQMC one used a following ”rule
of thumb” U�⌧/2 . 1. Then the e↵ective lattice action become Gaussian:
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X

i, j,�
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i j� c j� , (4)
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i j�(s) = G�1
i j� � �i, j�si� , (5)

where s ⌘ {si}with i = 1,N ·L. Note that in time space the delta function should be anti-periodic
for fermions [42,43,2] and Eq.(4) has a schematic form. For such Gaussian action (Eq. (4)) we
can integrated out fermionic degrees of freedom and get for the partition function the following
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1
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X

s

Y

�

det[G�1
� (s)] . (6)

where the sum over Ising auxiliary fields si performed within important sampling Monte Carlo
algorithm with probability P(s) = det[G�1

" (s)] · det[G�1
# (s)] which is always positive for the

half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme exact single-
particle Green’s function of the reference system calculated as following:

g�i j =
1
Z

X

s

P(s) G�i j(s) . (7)
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We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
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2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c⇤i , ci]. The space-time bare Green’s
function Gi j describe non-interacting part of the Hamiltonian in Eq.(2) for Nx ⇥ Ny 2D-space
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with
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where s ⌘ {si}with i = 1,N ·L. Note that in time space the delta function should be anti-periodic
for fermions [42,43,2] and Eq.(4) has a schematic form. For such Gaussian action (Eq. (4)) we
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s

Y

�
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� (s)] . (6)

where the sum over Ising auxiliary fields si performed within important sampling Monte Carlo
algorithm with probability P(s) = det[G�1
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# (s)] which is always positive for the

half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme exact single-
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ticles in the nodal part of the Fermi surface and strong quasiparticle damping for the antinodal
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2 Numerically Exact Lattice QMC
We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
scheme. The both QMC methods used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c⇤i , ci]. The space-time bare Green’s
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(i) The basic principle of the method can be under-
stood as a discretization of the impurity model effective
action, Eq. (105):
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where the imaginary time is discretized in L ‘‘slices’’
t=1,2, . . . , L of size Dt, and the timestep Dt is defined by
b=LDt.

(ii) The remaining quartic term can be decoupled us-
ing a discrete Hubbard-Stratonovich transformation
(Hirsch, 1983):
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where l=arccosh (eDtU/2) and the discrete field s is an
Ising-like variable taking the values 61. Performing this
transformation at every time slice, we are led to a qua-
dratic action, and the partition function becomes
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with
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the inverse propagator for a particular realization of the
Ising spins (s1 ,. . . ,sL). The antiperiodic delta function is
defined by dl ,l811=1 if l5l811,l52,.. . ,L21, d l ,l811
5 2 1 if l=1, l85L , and is zero otherwise. Its origin is in
the proper time ordering of the creation and destruction
operators (Blankenbecler, Scalapino, and Sugar, 1981).
In the actual implementation of the algorithm, Eq. (109)
is replaced by

Gs ,~s1 ,.. . ,sL!
21 ~t ,t8![G 0s

21~t ,t8!eV1eV21, (110)

where eV is the diagonal matrix with elements eV(t ,t)
5 eslst. This choice of discretization results from the rig-
orous derivation in Sec. VI.A.1.b following the original
Hamiltonian formulation of Hirsch and Fye (1986).

(iii) The replacement of a quartic term for an extra
summation on the auxiliary Ising variables (s1 ,. . . ,sL)
renders the action quadratic and allows us to apply
Wick’s theorem at each time slice. We can now perform
the Gaussian integration of the Grassmann variables, to
obtain
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In principle, the trace over the auxiliary field gives the
full interacting Green’s function:
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this requires the sum over 2L configurations. Each term
in the sum (112) involves the inversion of an L3L ma-
trix as is clear from Eq. (110). In practice, the full trace
can only be performed for small values of L .

(iv) Usually, the interacting Green’s function is there-
fore calculated by stochastic Monte Carlo sampling: the
term det[G "

21(s1,. . . ,sL)]det[G #
21(s1 ,. . . ,sL)] in Eq.

(112) is interpreted as a stochastic weight, and configu-
rations (s1 ,. . . ,sL) are generated by a Markov process
with a probability corresponding to their statistical
weight.

(v) The Markov process visits configurations of Ising
variables (s1 ,. . . ,sL) with a single spin-flip dynamic,
in which a possible movement consists in
(s1 ,s2 ,. . . ,sk , . . . ,sL)!(s1 ,s2 ,. . . ,2sk , . . . ,sL). The for-
mulas given in Sec. VI.A.1.b will allow a rapid calcula-
tion of the change in statistical weight, and of the new
Green’s function for a single spin-flip change.

b. The Hirsch-Fye algorithm: Rigorous derivation
The above derivation leaves us with the impression

that there are two discretizations involved: the one of
the bath Green’s function, and the subsequent discreti-
zation of the functional integral. Using a Hamiltonian
description of the general Anderson impurity model one

FIG. 10. Various possible geometries used to represent the
effective conduction bath in the exact diagonalization algo-
rithm.
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renders the action quadratic and allows us to apply
Wick’s theorem at each time slice. We can now perform
the Gaussian integration of the Grassmann variables, to
obtain

Z5 (
$s1 ,.. . ,sL%

det@G"
21~s1 ,. . . ,sL!#det@G#

21~s1 ,. . . ,sL!# .

(111)

In principle, the trace over the auxiliary field gives the
full interacting Green’s function:

Gs5
1
Z (

$s1 ,.. . ,sL%
det@G"

21~s1 ,. . . ,sL!#

3det@G#
21~s1 ,. . . ,sL!#Gs~s1 ,. . . ,sL!; (112)

this requires the sum over 2L configurations. Each term
in the sum (112) involves the inversion of an L3L ma-
trix as is clear from Eq. (110). In practice, the full trace
can only be performed for small values of L .

(iv) Usually, the interacting Green’s function is there-
fore calculated by stochastic Monte Carlo sampling: the
term det[G "

21(s1,. . . ,sL)]det[G #
21(s1 ,. . . ,sL)] in Eq.

(112) is interpreted as a stochastic weight, and configu-
rations (s1 ,. . . ,sL) are generated by a Markov process
with a probability corresponding to their statistical
weight.

(v) The Markov process visits configurations of Ising
variables (s1 ,. . . ,sL) with a single spin-flip dynamic,
in which a possible movement consists in
(s1 ,s2 ,. . . ,sk , . . . ,sL)!(s1 ,s2 ,. . . ,2sk , . . . ,sL). The for-
mulas given in Sec. VI.A.1.b will allow a rapid calcula-
tion of the change in statistical weight, and of the new
Green’s function for a single spin-flip change.

b. The Hirsch-Fye algorithm: Rigorous derivation
The above derivation leaves us with the impression

that there are two discretizations involved: the one of
the bath Green’s function, and the subsequent discreti-
zation of the functional integral. Using a Hamiltonian
description of the general Anderson impurity model one

FIG. 10. Various possible geometries used to represent the
effective conduction bath in the exact diagonalization algo-
rithm.
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ticles in the nodal part of the Fermi surface and strong quasiparticle damping for the antinodal
part) which makes this approximation a perspective for practical applications.

2 Numerically Exact Lattice QMC
We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
scheme. The both QMC methods used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c⇤i , ci]. The space-time bare Green’s
function Gi j describe non-interacting part of the Hamiltonian in Eq.(2) for Nx ⇥ Ny 2D-space
(N = Nx · Ny) and L ⇥ L discretise times in e↵ective bath external infinite lattice with space-
time index here i ⌘ (r, ⌧). Imaginary time slicing corresponds to the mesh ⌧ = l ⇤ �⌧ with
l = 0, · · · , L � 1 and �⌧ = �/L with inverse temperature �. The interaction part of Hamilto-
nian in in Eq.(2) is decoupled by mapping to an auxiliary Ising fields si via a discrete Hirsch-
Hubbard-Stratonovich transformation [41]

e�U�⌧[ni"ni#�(ni"+ni#)/2] =
1
2

X

si=±1

e�si(ni"�ni#) (3)

where � = arccosh(eU�⌧/2) and for the best convergence of DQMC one used a following ”rule
of thumb” U�⌧/2 . 1. Then the e↵ective lattice action become Gaussian:

S [c⇤, c] = �
X

i, j,�

c⇤i� G�1
i j� c j� , (4)

with
G�1

i j�(s) = G�1
i j� � �i, j�si� , (5)

where s ⌘ {si}with i = 1,N ·L. Note that in time space the delta function should be anti-periodic
for fermions [42,43,2] and Eq.(4) has a schematic form. For such Gaussian action (Eq. (4)) we
can integrated out fermionic degrees of freedom and get for the partition function the following
formula used in determinant QMC scheme:

Z =
1

2NL

X

s

Y

�

det[G�1
� (s)] . (6)

where the sum over Ising auxiliary fields si performed within important sampling Monte Carlo
algorithm with probability P(s) = det[G�1

" (s)] · det[G�1
# (s)] which is always positive for the

half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme exact single-
particle Green’s function of the reference system calculated as following:

g�i j =
1
Z

X

s

P(s) G�i j(s) . (7)

can show (Hirsch and Fye, 1986) that only a single well-
defined discretization of the partition function needs to
be performed (given by the Trotter breakup). Green’s
functions corresponding to this discretized partition
function can be defined naturally (with the help of the
transfer operators). Then, the decoupling using the bi-
nary Ising field is performed, and Equation (110) ap-
pears as an (exact) Dyson equation relating different
discretized Green’s functions.

This section is intended mainly for the reader inter-
ested in a detailed understanding of the algorithm [this
reader should also realize that, in accordance with the
entire QMC literature, we define in this section temporal
Green’s functions without the minus sign in Eq. (8)]. In
order to make it self-contained, the section is accompa-
nied by Appendix B which contains mest derivations.

We temporarily introduce the Hamiltonian descrip-
tion of the local impurity problem, which permits a
local-in-time description of the partition function. In or-
der to preserve the standard notations for this model,
the impurity orbital (that is associated with a local de-
gree of freedom of the original lattice) will be taken as a
d orbital in this section. The conduction bath orbitals
are numbered from p52,.. . ,ns , and the impurity orbital
is equivalently denoted by a1s[ds, i.e., corresponds to
p=1. The Hamiltonian of a general Anderson impurity
model reads

H5 (
p>2,s

ẽpaps
1 aps1 (

p>2,s
Vp~aps

1 ds1ds
1aps!

1ed(
s

ds
1ds1Und"nd# . (113)

It is written as a sum of terms H=H0+H i, where H0 is
quadratic in the fermion operators:

H0[ (
p>2,s

ẽpaps
1 aps1 (

p>2,s
Vp~aps

1 ds1ds
1aps!

1~ed1U/2!(
s

nds , (114)

whereas H i is the interaction term:

H i5U@nd"nd#2 1
2 ~nd"1nd#!# . (115)

As in Sec. VI.A.1.a, the imaginary time interval [0,b]
is now discretized into L time slices, but on the level of
the original Hamiltonian H. With tl5lDt , with
l51,.. . ,L and Dt[b/L , the partition function is written
as

Z5Tr e2bH5Tr )
l51

L

e2Dt@H01Hi# (116)

Using the Trotter breakup: exp[−Dt(H0+H i)]
.exp(−DtH0)exp(−DtH i), Z can be approximated by
the discretized partition function:

Z.ZDt[Tr )
l51

L

e2DtH0
e2DtHi

. (117)

Green’s functions corresponding to ZDt can be defined
analogously, by using UDt[exp(−DtH0)exp(−DtH i) as
an evolution operator between time slices:

gp1 ,p2

Dt ~t l1
,t l2

![^ap1
~t l1

!ap2

1 ~t l2
!&

5
TrUDt

L2l1ap1
~t l1

!UDt
l12l2ap2

1 ~t l2
!UDt

l2

Tr UDt
L

~for l1.l2! (118)

(and similarly for l1,l2). It is important to understand
that the object gDt will be obtained essentially exactly:
The only systematic error of the QMC method will con-
sist in the replacement of exp(−DtH) by UDt as an evo-
lution operator between time slices. We are then ulti-
mately interested in the d-site Green’s function,
which we denote by a capital letter GDt(t l1

,t l2
)

[g1,1
Dt(t l1

,t l2
).

After the decoupling of H i by the transformation Eq.
(102)

exp@2DtH i#5
1
2 (

s561
exp@ls~nd"2nd#!# ,

cosh~l![exp~DtU/2! (119)

and after inserting Eq. (119) into Eq. (117), the partition
function ZDt is reduced to

ZDt5
1

2L (
s1 ,.. . ,sL561

Zs1 ,.. . ,sL

Dt (120)

with

Zs1 ,.. . ,sL

Dt 5 )
s561~5" ,# !

Tre2DtH0
eVs~s1!

3e2DtH0
eVs~s2!•••e2DtH0

eVs~sL!. (121)

In Eq. (121), the ns3ns matrix Vs(s) is diagonal with

eVs~s !5S elss . . . . . . 0

.. . 1 .. . . . .

. . . . . . 1 .. .

0 .. . . . . 1
D . (122)

An important observation is that Zs1 ,.. . ,sL

Dt can be writ-
ten as Zs1 ,.. . ,sL

Dt 5 detO s1 ,.. . ,sL
(cf. Appendix B), with the

nsL3nsL matrix

O s1 ,.. . ,sL

5S
1 0 ••• 0 B~sL!

2B~s1! 1 ••• ••• 0

0 2B~s2! 1 ••• •••

••• ••• ••• 1 0

••• ••• ••• 2B~sL21! 1

D ,

(123)

where B(ss)[exp[−DtH0]exp[Vs(s)], and O has been
written as an L3L matrix of ns3ns matrices [O
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can show (Hirsch and Fye, 1986) that only a single well-
defined discretization of the partition function needs to
be performed (given by the Trotter breakup). Green’s
functions corresponding to this discretized partition
function can be defined naturally (with the help of the
transfer operators). Then, the decoupling using the bi-
nary Ising field is performed, and Equation (110) ap-
pears as an (exact) Dyson equation relating different
discretized Green’s functions.

This section is intended mainly for the reader inter-
ested in a detailed understanding of the algorithm [this
reader should also realize that, in accordance with the
entire QMC literature, we define in this section temporal
Green’s functions without the minus sign in Eq. (8)]. In
order to make it self-contained, the section is accompa-
nied by Appendix B which contains mest derivations.

We temporarily introduce the Hamiltonian descrip-
tion of the local impurity problem, which permits a
local-in-time description of the partition function. In or-
der to preserve the standard notations for this model,
the impurity orbital (that is associated with a local de-
gree of freedom of the original lattice) will be taken as a
d orbital in this section. The conduction bath orbitals
are numbered from p52,.. . ,ns , and the impurity orbital
is equivalently denoted by a1s[ds, i.e., corresponds to
p=1. The Hamiltonian of a general Anderson impurity
model reads

H5 (
p>2,s

ẽpaps
1 aps1 (

p>2,s
Vp~aps

1 ds1ds
1aps!

1ed(
s

ds
1ds1Und"nd# . (113)

It is written as a sum of terms H=H0+H i, where H0 is
quadratic in the fermion operators:

H0[ (
p>2,s

ẽpaps
1 aps1 (

p>2,s
Vp~aps

1 ds1ds
1aps!

1~ed1U/2!(
s

nds , (114)

whereas H i is the interaction term:

H i5U@nd"nd#2 1
2 ~nd"1nd#!# . (115)

As in Sec. VI.A.1.a, the imaginary time interval [0,b]
is now discretized into L time slices, but on the level of
the original Hamiltonian H. With tl5lDt , with
l51,.. . ,L and Dt[b/L , the partition function is written
as

Z5Tr e2bH5Tr )
l51

L

e2Dt@H01Hi# (116)

Using the Trotter breakup: exp[−Dt(H0+H i)]
.exp(−DtH0)exp(−DtH i), Z can be approximated by
the discretized partition function:

Z.ZDt[Tr )
l51

L

e2DtH0
e2DtHi

. (117)

Green’s functions corresponding to ZDt can be defined
analogously, by using UDt[exp(−DtH0)exp(−DtH i) as
an evolution operator between time slices:

gp1 ,p2

Dt ~t l1
,t l2

![^ap1
~t l1

!ap2

1 ~t l2
!&

5
TrUDt

L2l1ap1
~t l1

!UDt
l12l2ap2

1 ~t l2
!UDt

l2

Tr UDt
L

~for l1.l2! (118)

(and similarly for l1,l2). It is important to understand
that the object gDt will be obtained essentially exactly:
The only systematic error of the QMC method will con-
sist in the replacement of exp(−DtH) by UDt as an evo-
lution operator between time slices. We are then ulti-
mately interested in the d-site Green’s function,
which we denote by a capital letter GDt(t l1

,t l2
)

[g1,1
Dt(t l1

,t l2
).

After the decoupling of H i by the transformation Eq.
(102)

exp@2DtH i#5
1
2 (

s561
exp@ls~nd"2nd#!# ,

cosh~l![exp~DtU/2! (119)

and after inserting Eq. (119) into Eq. (117), the partition
function ZDt is reduced to

ZDt5
1

2L (
s1 ,.. . ,sL561

Zs1 ,.. . ,sL

Dt (120)

with

Zs1 ,.. . ,sL

Dt 5 )
s561~5" ,# !

Tre2DtH0
eVs~s1!

3e2DtH0
eVs~s2!•••e2DtH0

eVs~sL!. (121)

In Eq. (121), the ns3ns matrix Vs(s) is diagonal with

eVs~s !5S elss . . . . . . 0

.. . 1 .. . . . .

. . . . . . 1 .. .

0 .. . . . . 1
D . (122)

An important observation is that Zs1 ,.. . ,sL

Dt can be writ-
ten as Zs1 ,.. . ,sL

Dt 5 detO s1 ,.. . ,sL
(cf. Appendix B), with the

nsL3nsL matrix

O s1 ,.. . ,sL

5S
1 0 ••• 0 B~sL!

2B~s1! 1 ••• ••• 0

0 2B~s2! 1 ••• •••

••• ••• ••• 1 0

••• ••• ••• 2B~sL21! 1

D ,

(123)

where B(ss)[exp[−DtH0]exp[Vs(s)], and O has been
written as an L3L matrix of ns3ns matrices [O
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ticles in the nodal part of the Fermi surface and strong quasiparticle damping for the antinodal
part) which makes this approximation a perspective for practical applications.

2 Numerically Exact Lattice QMC
We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
scheme. The both QMC methods used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c⇤i , ci]. The space-time bare Green’s
function Gi j describe non-interacting part of the Hamiltonian in Eq.(2) for Nx ⇥ Ny 2D-space
(N = Nx · Ny) and L ⇥ L discretise times in e↵ective bath external infinite lattice with space-
time index here i ⌘ (r, ⌧). Imaginary time slicing corresponds to the mesh ⌧ = l ⇤ �⌧ with
l = 0, · · · , L � 1 and �⌧ = �/L with inverse temperature �. The interaction part of Hamilto-
nian in in Eq.(2) is decoupled by mapping to an auxiliary Ising fields si via a discrete Hirsch-
Hubbard-Stratonovich transformation [41]

e�U�⌧[ni"ni#�(ni"+ni#)/2] =
1
2

X

si=±1

e�si(ni"�ni#) (3)

where � = arccosh(eU�⌧/2) and for the best convergence of DQMC one used a following ”rule
of thumb” U�⌧/2 . 1. Then the e↵ective lattice action become Gaussian:

S [c⇤, c] = �
X

i, j,�

c⇤i� G�1
i j� c j� , (4)

with
G�1

i j�(s) = G�1
i j� � �i, j�si� , (5)

where s ⌘ {si}with i = 1,N ·L. Note that in time space the delta function should be anti-periodic
for fermions [42,43,2] and Eq.(4) has a schematic form. For such Gaussian action (Eq. (4)) we
can integrated out fermionic degrees of freedom and get for the partition function the following
formula used in determinant QMC scheme:

Z =
1

2NL

X

s

Y

�

det[G�1
� (s)] . (6)

where the sum over Ising auxiliary fields si performed within important sampling Monte Carlo
algorithm with probability P(s) = det[G�1

" (s)] · det[G�1
# (s)] which is always positive for the

half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme exact single-
particle Green’s function of the reference system calculated as following:

g�i j =
1
Z

X

s

P(s) G�i j(s) . (7)

The identity gs1 ,.. . ,sL

Dt 5 O s1 ,.. . ,sL

21 is easily established in a similar way. It is quite useful to consider the simple
example of a 333 matrix (of matrices Bi), for which we explicitly write down the inverse.

O 5S 1 0 B3

2B1 1 0

0 2B2 1
D , (B2)

O 215S $11B3B2B1%
21 2B3B2$11B1B3B2%

21 2B3$11B2B1B3%
21

B1$11B3B2B1%
21 $11B1B3B2%

21 2B1B3$11B2B1B3%
21

B2B1$11B3B2B1%
21 B2$11B1B3B2%

21 $11B2B1B3%
21

D . (B3)

The reader will easily be able to verify Eq. (B3) and to
generalize it for arbitrary L . Manifestly, Eq. (B3) repro-
duces Eq. (140).

To derive the Dyson equation it is useful to consider
the matrix O exp(−V) with the Lns3Lns matrix

es1 ,.. . ,sL

2Ṽ 5S e2V~s1! • • 0

• e2V~s2! • •
• • • •
0 • • e2V~sL!

D ; (B4)

O exp(−Ṽ) is therefore a matrix which depends on
(s1 ,. . . ,sL) only in the space- and time-diagonal ele-
ments

O s1 ,.. . ,sL
es1 ,.. . ,sL

2Ṽ 2O s18 , . . . ,sL8
es18 , . . . ,sL8

2Ṽ
5es1 ,.. . ,sL

2Ṽ 2es18 , . . . ,sL8
2Ṽ .

(B5)

Abbreviating g [ gs1 ,.. . ,sL
and g8 [ gs18 , . . . ,sL8

, etc., and us-
ing O =g−1, it is very easy to see that Eq. (B5) leads
to exp(V82V)g82g5g[exp(V82V)−1]g8, which is
equivalent to Eq. (125).

2. Numerical implementation of the QMC
and Gray code enumeration

As described in the main body of the paper, the
Monte Carlo procedure consists of two independent
parts (single impurity problem, self-consistency). This
structure is mirrored in the setup of our numerical pro-
gram, which consists of two parts: LISAQMC.F and
LISASELF.F. The programs communicate with each other
via files that contain the current values of G(t i) and
G 0(ti).

In the program LISAQMC.F, the different parts of the
algorithm are distributed over a few subroutines, in a
way explained in the following table:

function purpose Equation

DETRAT calculate determinant ratio Eq. ~131!
INITIAL initialize ~G 0

Dt(t)!O 0,...,0
−1 (t,t8)) 2

RECORD perform fast update Eq. ~130!
UPDATE compute Gs1 ,.. . ,sL

Dt from G 0
Dt Eq. ~128!

Besides the Monte Carlo update, the program
LISAQMC.F also allows one to compute physical Green’s
functions by complete enumeration using the Gray code.
In this method, all possible configurations of Ising spins
are visited in an order in which every configuration of
spins (s1 ,. . . ,sL) differs from the following one
(s18 , . . . ,sL8 ) in a single index only (si 5 si8 , except for a
single value of i). More precisely, the configurations are
enumerated by flipping the spin si with the largest pos-
sible value of i, provided that this flip does not yield a
previously visited configuration. As an example, let us
give the first steps of a Gray code enumeration for L=5:

3
1 1 1 1 1
1 1 1 1 2
1 1 1 2 2
1 1 1 2 1
1 1 2 2 1
1 1 2 2 2
1 1 2 1 2
1 1 2 1 1

A
Gray code

4 3
1 1 1 1 1
1 1 1 1 2
1 1 1 2 1
1 1 1 2 2
1 1 2 1 1
1 1 2 1 2
1 1 2 2 1
1 1 2 2 2

A
standard

4 (B6)

This algorithm can be simply programmed (cf. Press
et al., 1991). By doing this, we can again compute the
Green’s function Gs1 ,.. . ,sk8 , . . . ,sL

Dt from Gs1 ,.. . ,sk , . . . ,sL

Dt by the

fast update RECORD [in O(L2) steps], rather than hav-
ing to compute it from G 0

Dt in O(L3) steps (using
UPDATE). Naturally, the averages must now be com-
puted by including the determinant in the statistical
weight. Furthermore, the normalization needs also be
calculated. Further details can be found in the program
LISAQMC.F.

Both the Monte Carlo and the exact enumeration in-
clude checks to avoid loss of precision. In the Monte
Carlo algorithm, this is done from time to time by con-
fronting the result of subroutine UPDATE with the single
spin-flip updates. In the exact enumeration calculation,
the precision can be evaluated simply by restarting the
Gray code with an initial spin configuration (s1 ,. . . ,sL)
different from (1,...,1).

Finally, we briefly discuss the discretization error in Dt
which is introduced by the Trotter breakup. Let us first
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ticles in the nodal part of the Fermi surface and strong quasiparticle damping for the antinodal
part) which makes this approximation a perspective for practical applications.

2 Numerically Exact Lattice QMC
We briefly introduce here main idea of two di↵erent lattice QMC approaches for large periodic
cluster in the bath. The first one is based on Hubbard-Strtatonovich transformation of local
interaction in Eq.(2) and other is related with continuous-time interaction (CT-INT) expansion
scheme. The both QMC methods used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c⇤i , ci]. The space-time bare Green’s
function Gi j describe non-interacting part of the Hamiltonian in Eq.(2) for Nx ⇥ Ny 2D-space
(N = Nx · Ny) and L ⇥ L discretise times in e↵ective bath external infinite lattice with space-
time index here i ⌘ (r, ⌧). Imaginary time slicing corresponds to the mesh ⌧ = l ⇤ �⌧ with
l = 0, · · · , L � 1 and �⌧ = �/L with inverse temperature �. The interaction part of Hamilto-
nian in in Eq.(2) is decoupled by mapping to an auxiliary Ising fields si via a discrete Hirsch-
Hubbard-Stratonovich transformation [41]

e�U�⌧[ni"ni#�(ni"+ni#)/2] =
1
2

X

si=±1

e�si(ni"�ni#) (3)

where � = arccosh(eU�⌧/2) and for the best convergence of DQMC one used a following ”rule
of thumb” U�⌧/2 . 1. Then the e↵ective lattice action become Gaussian:

S [c⇤, c] = �
X

i, j,�

c⇤i� G�1
i j� c j� , (4)

with
G�1

i j�(s) = G�1
i j� � �i, j�si� , (5)

where s ⌘ {si}with i = 1,N ·L. Note that in time space the delta function should be anti-periodic
for fermions [42,43,2] and Eq.(4) has a schematic form. For such Gaussian action (Eq. (4)) we
can integrated out fermionic degrees of freedom and get for the partition function the following
formula used in determinant QMC scheme:

Z =
1

2NL

X

s

Y

�

det[G�1
� (s)] . (6)

where the sum over Ising auxiliary fields si performed within important sampling Monte Carlo
algorithm with probability P(s) = det[G�1

" (s)] · det[G�1
# (s)] which is always positive for the

half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme exact single-
particle Green’s function of the reference system calculated as following:

g�i j =
1
Z

X

s

P(s) G�i j(s) . (7)

The identity gs1 ,.. . ,sL

Dt 5 O s1 ,.. . ,sL

21 is easily established in a similar way. It is quite useful to consider the simple
example of a 333 matrix (of matrices Bi), for which we explicitly write down the inverse.

O 5S 1 0 B3

2B1 1 0

0 2B2 1
D , (B2)

O 215S $11B3B2B1%
21 2B3B2$11B1B3B2%

21 2B3$11B2B1B3%
21

B1$11B3B2B1%
21 $11B1B3B2%

21 2B1B3$11B2B1B3%
21

B2B1$11B3B2B1%
21 B2$11B1B3B2%

21 $11B2B1B3%
21

D . (B3)

The reader will easily be able to verify Eq. (B3) and to
generalize it for arbitrary L . Manifestly, Eq. (B3) repro-
duces Eq. (140).

To derive the Dyson equation it is useful to consider
the matrix O exp(−V) with the Lns3Lns matrix

es1 ,.. . ,sL

2Ṽ 5S e2V~s1! • • 0

• e2V~s2! • •
• • • •
0 • • e2V~sL!

D ; (B4)

O exp(−Ṽ) is therefore a matrix which depends on
(s1 ,. . . ,sL) only in the space- and time-diagonal ele-
ments

O s1 ,.. . ,sL
es1 ,.. . ,sL

2Ṽ 2O s18 , . . . ,sL8
es18 , . . . ,sL8

2Ṽ
5es1 ,.. . ,sL

2Ṽ 2es18 , . . . ,sL8
2Ṽ .

(B5)

Abbreviating g [ gs1 ,.. . ,sL
and g8 [ gs18 , . . . ,sL8

, etc., and us-
ing O =g−1, it is very easy to see that Eq. (B5) leads
to exp(V82V)g82g5g[exp(V82V)−1]g8, which is
equivalent to Eq. (125).

2. Numerical implementation of the QMC
and Gray code enumeration

As described in the main body of the paper, the
Monte Carlo procedure consists of two independent
parts (single impurity problem, self-consistency). This
structure is mirrored in the setup of our numerical pro-
gram, which consists of two parts: LISAQMC.F and
LISASELF.F. The programs communicate with each other
via files that contain the current values of G(t i) and
G 0(ti).

In the program LISAQMC.F, the different parts of the
algorithm are distributed over a few subroutines, in a
way explained in the following table:

function purpose Equation

DETRAT calculate determinant ratio Eq. ~131!
INITIAL initialize ~G 0

Dt(t)!O 0,...,0
−1 (t,t8)) 2

RECORD perform fast update Eq. ~130!
UPDATE compute Gs1 ,.. . ,sL

Dt from G 0
Dt Eq. ~128!

Besides the Monte Carlo update, the program
LISAQMC.F also allows one to compute physical Green’s
functions by complete enumeration using the Gray code.
In this method, all possible configurations of Ising spins
are visited in an order in which every configuration of
spins (s1 ,. . . ,sL) differs from the following one
(s18 , . . . ,sL8 ) in a single index only (si 5 si8 , except for a
single value of i). More precisely, the configurations are
enumerated by flipping the spin si with the largest pos-
sible value of i, provided that this flip does not yield a
previously visited configuration. As an example, let us
give the first steps of a Gray code enumeration for L=5:

3
1 1 1 1 1
1 1 1 1 2
1 1 1 2 2
1 1 1 2 1
1 1 2 2 1
1 1 2 2 2
1 1 2 1 2
1 1 2 1 1

A
Gray code

4 3
1 1 1 1 1
1 1 1 1 2
1 1 1 2 1
1 1 1 2 2
1 1 2 1 1
1 1 2 1 2
1 1 2 2 1
1 1 2 2 2

A
standard

4 (B6)

This algorithm can be simply programmed (cf. Press
et al., 1991). By doing this, we can again compute the
Green’s function Gs1 ,.. . ,sk8 , . . . ,sL

Dt from Gs1 ,.. . ,sk , . . . ,sL

Dt by the

fast update RECORD [in O(L2) steps], rather than hav-
ing to compute it from G 0

Dt in O(L3) steps (using
UPDATE). Naturally, the averages must now be com-
puted by including the determinant in the statistical
weight. Furthermore, the normalization needs also be
calculated. Further details can be found in the program
LISAQMC.F.

Both the Monte Carlo and the exact enumeration in-
clude checks to avoid loss of precision. In the Monte
Carlo algorithm, this is done from time to time by con-
fronting the result of subroutine UPDATE with the single
spin-flip updates. In the exact enumeration calculation,
the precision can be evaluated simply by restarting the
Gray code with an initial spin configuration (s1 ,. . . ,sL)
different from (1,...,1).

Finally, we briefly discuss the discretization error in Dt
which is introduced by the Trotter breakup. Let us first
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In practice of DQMC one use a so-called fast update formalism to calculate the lattice Green’s
function Eq.(5) with a single Ising spin-flip [42].

2.2 Continuous-time QMC

The interaction expansion (CT-INT) continuous-time quantum Monte Carlo algorithm for fermions
based on a formal series expansion for the partition function in the interaction term of the ac-
tion [24]. In a schematic form with short notation ik ⌘ (rk, ⌧k) we have:

Z =
Z
D[c⇤, c] e�S 0[c⇤,c]

1X

k=0

(�U)k

k!

Z �

0
d⌧1···k c⇤i1"ci1" c⇤i1#ci1# . . . c

⇤
ik"cik" c⇤ik#cik# (8)

where S 0 is a Gaussian part of action related with G�i j. In this case we can integrated out
fermionic path integral in Eq.(8) and get determinant of k ⇥ k bare Green’s function G�

Z = Z0

1X

k=0

(�U)k
Z �

0
d⌧1 . . .

Z �

⌧k�1

d⌧k

Y

�

detG�k , (9)

in order to overcome a trivial sign problem related with factor (�U)k one use a particle-hole
transformation related with so-called ↵-shift [24]. The CT-INT scheme performed important
sampling in the space of k ⇥ k fermionic determinants. The probability to change the k to k + 1
order in the Metropolis algorithm is related with ratio of the fermionic determinants [24]:

P(k ! k + 1) = min
0
BBBBB@1,
�U

k + 1

Y

�

(detG�k+1

detG�k

1
CCCCCA (10)

The optimal order of k-perturbation, which corresponds to maximum of distribution function of
the fermionic determinants size [24] for a cluster of N-sites is of the order kopt ⇠ �NU. Finally,
the exact reference Green’s function in CT-INT formalism is calculated as following:

g�i j = G�i j �
X

k,k0
G�ik · M�k,k0 · G�k0 j , (11)

where M-matrix is equal to Monte Carlo average of inverse fermionic matrix in Eq.(9).

3 DF-QMC Method
We start with the strong-coupling theory of the dual fermion scheme [6,44] for t� t0 �U square
lattice Hubbard model. There are many important works on pure strong-coupling expansion in
hopping t for Hubbard model [45–49]. The dual-fermion scheme [6] di↵er from the pure strong-
coupling expansion in the hopping t in very important way: this is expansion from reference
system to the final system, or in the ”di↵erence” t̃ (Fig.(3)) which is much better converge. The
general strategy of the dual fermion approach as a strong coupling theory is related to formally
exact expansion around arbitrary reference system [33]
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numerical complexity:  O(N2K2 log(K)). 
For 8x8 system at β = 10 the average K ∼ 700
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hopping t for t � U Hubbard model [45–49]. The dual-fermion scheme [6] di↵er from the pure
strong-coupling expansion in hopping t in very important way: this is expansion from reference
system (originaly it was the DMFT) to the final system, so in ”di↵erence” t̃ (Fig.(3)) which is
much better converge. The general strategy of the dual fermion approach as a strong coupling
theory is related to formally exact expansion around arbitrary reference system [33]

3.1 Real Space Scheme

Let us consider a general lattice fermion model with the local Hubbard-like interaction vertex
U. The general strategy is related with formally exact separation of the local and non-local
correlations e↵ects. We introduction of auxiliary dual fermionic fields which will couple local
correlated impurities or clusters back to the original lattice [6].
Using the path-integral formalism the partition function of a general fermionic lattice system
(Fig.3) can be written in following form of the functional integral over Grassmann variables
[c⇤, c] :

Z↵ =
Z
D[c⇤, c] exp(�S ↵[c⇤, c]) (12)

For the super-perturbation in the lattice Monte-Carlo scheme we use a general dual-fermion
expansion around arbitrary reference system within the path-integral formalism [6, 33] similar
to a strong coupling expansion [47, 48]. In this case our N ⇥ N lattice and corresponding
reference systems represent N ⇥N-part which we cut from infinite lattice and periodise the bare
Green’s function G↵. The general lattice action for discretise Nx ⇥Ny ⇥ L space-time lattice (for
CT-INT scheme imaginary time space ⌧ is continuous in the [0, �) interval) with Hamiltonian
Eq. (1) reads

S ↵[c⇤, c] = �
X

1,2

c⇤1 (G↵)�1
12 c2 +

1
4

X

1234

U1234c⇤1c⇤2c4c3 . (13)

In order to keep the notation simple, it is useful to introduce the combined index |1i ⌘ |i, ⌧,�i
(i being the site index suppressed above) while assuming summation over repeated indices.
To calculate the bare propagators (G↵)12 we start from the Nx ⇥ Ny cluster which is cut from
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9.10 Alexander Lichtenstein

The main idea of the dual fermion transformation is the change of variables from strongly
correlated fermions (c⇤, c) to weakly correlated “dual“ Grassmann fields (d⇤, d) in the path inte-
gral representation for the partition function from Eq. (15), followed by a simple perturbation
treatment. The new variables were introduced through the following Hubbard-Stratonovich
(HS)-transformation with the following matrix t̃12 in real-space (we assume Einstein summa-
tion convention over repeated indices):

e�c⇤1 t̃12 c2 = Zt

Z
D [d⇤, d] ed⇤1 t̃�1

12 d2+d⇤1c1+c⇤1d1 (16)

with Zt = det
⇥�t̃
⇤

and we always assume matrix inversion: t̃�1
12 ⌘ (t̃�1)12.

Using this transformation the lattice partition function became

Z = Z0Zt

Z
D[c⇤, c, d⇤, d] ed⇤1 t̃�1

12 d2
D
ed⇤1c1+c⇤1d1

E
0

(17)

where we use the standard definition of average over S 0:

h. . . i0 =
1
Z0

Z
D[c⇤, c] . . . e�S 0[c⇤,c] (18)

Now we can integrated out the c⇤, c fermions and show that average over S 0 can be rewritten in
the cumulants expansion [48] or connected correlators h· · · i0c

D
ed⇤1c1+c⇤1d1

E
0
= exp

2
666664
1X

n=1

(�1)n

(n!)2 �
(2n)
1···n,n0···10d

⇤
1 · · · d⇤ndn0 · · · d10

3
777775 (19)

with cummulant of the reference system which can be calculated within the QMC:

�(2n)
1···n,n0···10 = (�1)n ⌦c1 · · · cnc⇤n0 · · · c⇤10

↵
0c (20)

We can write e↵ective action for ”dual fermions” S̃ [d⇤, d] in the lowest order approximation
for dual interaction [7]. The first term in the cumulant expansion in Eq. (19) with n = 1 (�(2)

110)
which is bilinear over [d⇤1 , d2] Grassmann variable corresponds to the exact Green’s function of
referent system:

g12 = �hc1c⇤2i0 =
�1
Z0

Z
D[c⇤, c] c1c⇤2 e�S 0[c⇤,c] (21)

Note, that all correlators of the reference system will be writen with the small letters. Together
with the term t̃�1

12 in Eq. (17) it gives a bare Green’s function for the dual fermions:

G̃0
12 =
h

t̃�1 � ĝ
i�1

12
(22)

The second term in the cumulant expansion in Eq. (19) with n = 2 (�(4)
122010) which is bi-

quadratic over [d⇤1 , d2] Grassmann variable gives e↵ective two-particle interaction among the
dual-fermions.The corresponding connected four-point vertex has the following form:

�1234 = hc1c2c⇤3c⇤4i0 � hc1c⇤4i0hc2c⇤3i0 + hc1c⇤3i0hc2c⇤4i0 (23)
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Fig. 4: Feynman diagram for the first order dual fermion perturbation for the self-energy
⌃̃12(⌫): a line represents the non-local dual Green’s function G̃43(⌫0) and a box is the two-
particle vertex (cumulant) �1234, (�,�0) are spin-indices.

with four-point correlator or two-particle Green’s function in the reference system:

hc1c2c⇤3c⇤4i0 =
1
Z0

Z
D[c⇤, c] c1c2c⇤3c⇤4 e�S 0[c⇤,c] (24)

Finally the dual-fermion action in the two-particle approximation has the following form:

S̃ [d⇤, d] = �
X

12 ⌫�

d⇤1⌫� (G̃0
⌫)
�1
12 d2⌫� +

1
4

X

1234

�1234d⇤1d⇤2d4d3 (25)

Note, that we change sign for the interaction terms using anti-commutative rules for Grassmann
variable in order to be consistent with the standard form for Coulomb interactions (Eq. (13) ).
The first order correction to the dual self-energy is given by the diagram shown in Fig.4 and can
be calculated for a large system within the QMC-scheme:

⌃̃(1)
12 =

X

s�QMC

X

3,4

�d
1324(s)G̃0

43 (26)

where the density vertex reads

�d
1234 = �

""""
1234 + �

""##
1234 (27)

The main trick for practical large system computations related with the fact that inside the deter-
minant DQMC scheme using the Ising-fields {s} or inside the CT-INT with stochastic sampling
of interaction order expansion {s} for two-particle correlators we can use the Wick-theorem :

�1234(s) ⌘ hc1c2c⇤3c⇤4is = hc1c⇤4is hc2c⇤3is � hc1c⇤3is hc2c⇤4is (28)

In order to find exact relationship between real and dual and real Green’s functions we make
variation of ln Z in Eq.(18) and Eqs.(12,15) with respect to t̃ [50]

G12 =
� ln Z
� t̃21

= �t̃�1
12 + t̃�1

13 G̃34t̃�1
42 (29)
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i�1

12
(22)

The second term in the cumulant expansion in Eq. (19) with n = 2 (�(4)
122010) which is bi-

quadratic over [d⇤1 , d2] Grassmann variable gives e↵ective two-particle interaction among the
dual-fermions.The corresponding connected four-point vertex has the following form:

�1234 = hc1c2c⇤3c⇤4i0 � hc1c⇤4i0hc2c⇤3i0 + hc1c⇤3i0hc2c⇤4i0 (23)

9.10 Alexander Lichtenstein

The main idea of the dual fermion transformation is the change of variables from strongly
correlated fermions (c⇤, c) to weakly correlated “dual“ Grassmann fields (d⇤, d) in the path inte-
gral representation for the partition function from Eq. (15), followed by a simple perturbation
treatment. The new variables were introduced through the following Hubbard-Stratonovich
(HS)-transformation with the following matrix t̃12 in real-space (we assume Einstein summa-
tion convention over repeated indices):

e�c⇤1 t̃12 c2 = Zt

Z
D [d⇤, d] ed⇤1 t̃�1

12 d2+d⇤1c1+c⇤1d1 (16)

with Zt = det
⇥�t̃
⇤

and we always assume matrix inversion: t̃�1
12 ⌘ (t̃�1)12.

Using this transformation the lattice partition function became

Z = Z0Zt

Z
D[c⇤, c, d⇤, d] ed⇤1 t̃�1

12 d2
D
ed⇤1c1+c⇤1d1

E
0

(17)

where we use the standard definition of average over S 0:

h. . . i0 =
1
Z0

Z
D[c⇤, c] . . . e�S 0[c⇤,c] (18)

Now we can integrated out the c⇤, c fermions and show that average over S 0 can be rewritten in
the cumulants expansion [48] or connected correlators h· · · i0c

D
ed⇤1c1+c⇤1d1

E
0
= exp

2
666664
1X

n=1

(�1)n

(n!)2 �
(2n)
1···n,n0···10d

⇤
1 · · · d⇤ndn0 · · · d10

3
777775 (19)

with cummulant of the reference system which can be calculated within the QMC:

�(2n)
1···n,n0···10 = (�1)n ⌦c1 · · · cnc⇤n0 · · · c⇤10

↵
0c (20)

We can write e↵ective action for ”dual fermions” S̃ [d⇤, d] in the lowest order approximation
for dual interaction [7]. The first term in the cumulant expansion in Eq. (19) with n = 1 (�(2)

110)
which is bilinear over [d⇤1 , d2] Grassmann variable corresponds to the exact Green’s function of
referent system:

g12 = �hc1c⇤2i0 =
�1
Z0

Z
D[c⇤, c] c1c⇤2 e�S 0[c⇤,c] (21)

Note, that all correlators of the reference system will be writen with the small letters. Together
with the term t̃�1

12 in Eq. (17) it gives a bare Green’s function for the dual fermions:

G̃0
12 =
h

t̃�1 � ĝ
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In order to find exact relationship between real and dual and real Green’s functions we make
variation of ln Z in Eq.(18) and Eqs.(12,15) with respect to t̃ [50]
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Fig. 4: Feynman diagram for the first order dual fermion perturbation for the self-energy
⌃̃12(⌫): a line represents the non-local dual Green’s function G̃43(⌫0) and a box is the two-
particle vertex (cumulant) �1234, (�,�0) are spin-indices.

with four-point correlator or two-particle Green’s function in the reference system:

hc1c2c⇤3c⇤4i0 =
1
Z0

Z
D[c⇤, c] c1c2c⇤3c⇤4 e�S 0[c⇤,c] (24)

Finally the dual-fermion action in the two-particle approximation has the following form:

S̃ [d⇤, d] = �
X

12 ⌫�

d⇤1⌫� (G̃0
⌫)
�1
12 d2⌫� +

1
4

X

1234

�1234d⇤1d⇤2d4d3 (25)

Note, that we change sign for the interaction terms using anti-commutative rules for Grassmann
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Fig. 5: Diagrammatic series for the dual self-energy up to the 3-d order in the G̃.

Using the definition of exact dual Green’s function G̃�1 = G̃�1
0 � ⌃̃ we can get the expression

for the real Green’s function:

G12 =
⇣

g + ⌃̃
⌘�1 � t̃

��1

12
(30)

The Dual Fermion transformation allowed to use arbitrary reference systems and transform the
strongly correlated lattice fermion problem to e↵ective action of weakly coupled dual quasipar-
ticles. In this case even the lowest order approximation can give a reasonable results. The exact
diagrammatic series for dual self-energy presented in the Fig. (5). The second order diagram in
G̃ which include �(6) is local within the cluster and can be calculated with similar QMC scheme.
For small system of 2 ⇥ 2 cluster in the bath we can calculate matrix of Green’s function from
Eq. (30) directly in the real space formalism. In this case we do not need any additional pe-
riodisation since 2 ⇥ 2 cluster is “self-periodic”. Since there is almost no sign problem in
DQMC method for the doped 2 ⇥ 2 cluster in the bath, we can compare the first-order dual-
fermion perturbation with numerical exact DQMC results. The all three non-equivalent Green’s
functions for 2 ⇥ 2 system are shown in the Figure (6) using first-order DF-correction within
Hirsch-Fye QMC formalism. For small perturbation �µ = �0.3 and �t0 = 0 a comparison
with exact DQMC results (point on Figure (6) ) is perfect. For a large perturbation �µ = �1.5
and �t0 = 0.15 one can already see a small di↵erence from the exact DQMC Green’s function.
Nevertheless, the results of DF-QMC with only first-order corrections for the dual self-energy
are very satisfactory. Note that for square lattice the perturbation in �µ one can compare with
4 · �t0, also dispersion of t0 terms made this estimation questionable.

3.2 K-space Scheme

For large system (N � 4) it is much faster to calculate the dual self-energy in the K-space with
within the QMC Markov chain. The dual action in K-space reads

S̃ [d⇤, d] = �
X

k ⌫�
d⇤k⌫� G̃�1

0k⌫ dk⌫� +
1
4

X

1234

�1234d⇤1d⇤2d4d3 . (31)

Using the short notation k ⌘ (k, ⌫n) and ⌫n = (2n+ 1)⇡/�, with n 2 Z, the dual Green’s function
is equal to

G̃0
k =
⇣
t̃�1
k � ĝk

⌘�1
. (32)

Final Green Function:
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Now: integrate-out  original c-Fermions and get the Cumulants expansion

Dual potential related with Cumulants or connected correlators:

9.10 Alexander Lichtenstein

with Zt = det
⇥�t̃
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and we always assume matrix inversion: t̃�1
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with the standard definition of average over S 0:
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D[c⇤, c] . . . e�S 0[c⇤,c] (18)

Now we can integrated out the c⇤, c fermions and show that average over S 0 can be rewritten in
the cumulants expansion [48] or connected correlators h· · · i0c

D
ed⇤1c1+c⇤1d1

E
0
= exp

2
666664
1X

n=1

(�1)n

(n!)2 �
(2n)
1···n,n0···10d

⇤
1 · · · d⇤ndn0 · · · d10

3
777775 (19)

with cummulant (connected correlators) of the reference system which can be calculated within
the QMC:

�(2n)
1···n,n0···10 = (�1)n ⌦c1 · · · cnc⇤n0 · · · c⇤10

↵
0c (20)

We can write e↵ective action for ”dual fermions” S̃ [d⇤, d] in the lowest order approximation
for dual interaction [7]. The first term in the cumulant expansion in Eq. (19) with n = 1 (�(2)

110)
which is bilinear over [d⇤1 , d2] Grassmann variable, corresponds to the exact Green’s function
of referent system:
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Note, that all correlators of the reference system will be writen with the small letters. Together
with the term t̃�1

12 in Eq. (17) it gives a bare Green’s function for the dual fermions:

G̃0
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i�1
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(22)

The second term in the cumulant expansion in Eq. (19) with n = 2 (�(4)
122010) which is bi-

quadratic over [d⇤1 , d2] Grassmann variable, gives e↵ective two-particle interaction among the
dual-fermions.The corresponding connected four-point vertex has the following form:
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Note, that all correlators of the reference system will be writen with the small letters. Together
with the term t̃�1

12 in Eq. (17) it gives a bare Green’s function for the dual fermions:
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(22)

The second term in the cumulant expansion in Eq. (19) with n = 2 (�(4)
122010) which is bi-

quadratic over [d⇤1 , d2] Grassmann variable, gives e↵ective two-particle interaction among the
dual-fermions.The corresponding connected four-point vertex has the following form:
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First interacting term n=2:

9.10 Alexander Lichtenstein

with Zt = det
⇥�t̃
⇤

and we always assume matrix inversion: t̃�1
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Green function n=1:
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Exact connection between Real and Dual GF:

Definition of exact Dual Green’s function:

Expression of Green functions in Dual Theory:

Dual self-energy is similar to T-matrix like quantity:  G=(g+gTg) 
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Fig. 4: Feynman diagram for the first order dual fermion perturbation for the self-energy
⌃̃12(⌫): a line represents the non-local dual Green’s function G̃43(⌫0) and a box is the two-
particle vertex (cumulant) �1234, (�,�0) are spin-indices.

Note, that we change sign for the interaction terms using anti-commutative rules for Grassmann
variable in order to be consistent with the standard form for Coulomb interactions (Eq. (13) ).
The first order correction to the dual self-energy is given by the diagram shown in Fig.4 and can
be calculated for a large system within the QMC-scheme:

⌃̃(1)
12 =

X

s�QMC

X

3,4

�d
1324(s)G̃0

43 (26)

where the density vertex reads

�d
1234 = �

""""
1234 + �

""##
1234 (27)

The main trick for practical large system computations related with the fact that inside the deter-
minant DQMC scheme using the Ising-fields {s} or inside the CT-INT with stochastic sampling
of interaction order expansion {s}, for two-particle correlators we can use the Wick-theorem :

�1234(s) ⌘ hc1c2c⇤3c⇤4is = hc1c⇤4is hc2c⇤3is � hc1c⇤3is hc2c⇤4is (28)

In order to find exact relationship between real and dual and real Green’s functions we make
variation of ln Z in Eq.(18) and Eqs.(12,15) with respect to t̃ [50]

G12 =
� ln Z
� t̃21

= �t̃�1
12 + t̃�1

13 G̃34t̃�1
42 (29)

Using the definition of exact dual Green’s function G̃�1 = G̃�1
0 � ⌃̃ we can get the expression

for the real Green’s function:
G12 =

⇣
g + ⌃̃

⌘�1 � t̃
��1

12
(30)

The Dual Fermion transformation allowed to use arbitrary reference systems and transform the
strongly correlated lattice fermion problem to e↵ective action of weakly coupled dual quasipar-
ticles. In this case even the lowest order approximation can give a reasonable results. The exact
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FIG. 11. (Color online.) Imaginary parts of the self energies at the node as a function of Matsubara frequencies calculated by
various many body methods. Please note that the lowest temperatures shown sometimes di↵er for the respective methods in
order to show as many of the respective temperature regimes as possible.

and lower temperatures. The reason for these problems
varies from method to method. For the benchmark meth-
ods: in DiagMC the series cannot be summed at low-T
and the DQMC su↵ers from the exponentially growing
correlation length for T < Tmin ⇡ 0.063. In the case
of the D�A (Tmin ⇡ 0.05), lower temperatures can be
reached if one is able to converge in the internal momen-
tum grids. The same is true for TRILEX (Tmin ⇡ 0.05),
DF (Tmin ⇡ 0.05) and DB (Tmin ⇡ 0.063). Please also
note that within DiagMC the lowest reachable tempera-
ture is di↵erent for node and antinode (1/TAN

min = 18 vs.
1/TN

min=16).

C. Other approaches: TPSC, TPSC+, fRG, PA

Figs. 10 and 11 also show results for three other ap-
proaches: TPSC/TPSC+, fRG and the parquet ap-
proximation (PA). Like the diagrammatic extensions of
DMFT, all of them are able to reproduce the two dis-
tinct quasiparticle coherence scales T

N,AN
QP at the node

and antinode. However, there are significant deviations
from the benchmark regarding the onset of the insulating
pseudogap behavior.

TPSC is one of the first methods in which a de-

tailed understanding of the mechanism responsible for
the weak-coupling pseudogap was achieved early on (see
Refs. [34, 92, 93] and Sec. VII). As seen from Figs. 10 and
11, the change of slope in the self energies associated with
the pseudogap opening is indeed qualitatively captured
by TPSC, but the onset temperatures TAN,N

⇤ are severely
overestimated. As discussed in Sec. VI, this is due to an
overestimation of spin fluctuations in this method. A re-
cent improvement of the method, TPSC+ [36], leads to a
definite improvement in this respect as shown on the fig-
ures. TPSC+ partially feeds back the self-energy into the
fluctuation propagators, mimicking frequency-dependent
vertex corrections. The PA appears to eventually capture
insulating behavior at the antinode, although at lower
temperatures T < 0.05 in comparison to DiagMC, but
doesn’t open a pseudogap at the node at this tempera-
ture.

The fRG calculations are possible only down to a
“pseudocritical” temperature scale T ' 0.07 at which
the running coupling constants diverge (see also the dis-
cussion in Ref. [53]). Down to this temperature, however,
fRG is in qualitative agreement with the benchmark and
shows a non-metallic behavior at the antinode (regime
4○).

12

FIG. 10. (Color online.) Imaginary parts of the self energies at the antinode as a function of Matsubara frequencies calculated
by various many body methods. Please note that the lowest temperatures shown sometimes di↵er for the respective methods
in order to show as many of the respective temperature regimes as possible. Also note that the vertical axis is di↵erent for the
last row of three figures.

nodal point. Please note that the lowest temperature
displayed is not always the same for the di↵erent meth-
ods, and it is useful to refer to Table I as a reminder of the
important crossover scales. For the sake of comparison,
the first panel shows again the data from the DiagMC
benchmark.

We observe that all of the diagrammatic extensions
of DMFT presented here [ladder-D�A with a Moriya �-
correction in the spin channel (App. D 7), TRILEX ⇤2

(App. D 8), ladder DF (App. D 9) and single-shot DB
(please note that, in the absence of the nonlocal interac-
tion, the fully self-consistent DB theory would coincide
with the DF approach when the bosonic hybridization
function is discarded, see App. D 10)] are able to cor-
rectly reproduce the crossover from the incoherent to the
metallic regime. Indeed, all methods display incoherent
behavior (region 1○) at high temperatures, before the
onset of quasiparticles becomes visible first for the nodal
point (region 2○) and then, at lower temperatures, for
the antinode (region 3○). The temperatures of this onset
TQP, if at all, only slightly deviate from each other and
the benchmarks within the numerical accuracy.

Larger deviations, both on a qualitative and quanti-
tative level become visible, however, when lowering the
temperature into the insulating pseudogap regime associ-

ated with growing magnetic correlations. Let us remind
the reader that this crossover is signalled by a second
change of slope in the self-energies - first at the antinode
(region 4○) and then at the node (region 5○) - corre-
sponding to a scattering rate that grows upon cooling.
Whereas D�A and DF correctly reproduce these

crossovers into the pseudogap regime, TRILEX does not
exhibit these changes of slope, down to the lowest tem-
peratures where we could converge the method. The DF
method also succeeds rather quantitatively, both at the
node and antinode, while the DB method appears to per-
form better at the antinode than at the node (but does
not open the gap at the accessible temperatures). From a
more quantitative point of view, DF and DB slightly un-
derestimate the scattering rate at the node with respect
to DiagMC whereas D�A seems to slightly overestimate
the scattering rate at the antinode and simultaneously
exhibits a slightly lower TN

⇤ than the benchmark.
Summarizing, we conclude that among the diagram-

matic extensions of DMFT presented here, the D�A and
the DF method appear to be best at capturing the dif-
ferent crossover regimes for the self-energy. In terms of
the practical ability of performing calculations in this pa-
rameter regime, we must point out that all methods suf-
fer from convergence problems when going down to lower

DF: James LeBlanc (openDF-code)
DiagMC: Fedor Šimkovic
from Phys. Rev. X 11, 011058 (2021)

U/t=2
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Fermi liquid signature at this temperature. This implies that
the non-self-consistent BEPS has a slightly stronger tendency
to the pseudogap formation than the numerically exact dia-
grammatic Monte Carlo (DiagMC), where the antinode turns
insulating near T/t = 0.065 [6]. For comparison we also
show the momentum-independent DMFT self-energy and the
self-energy from the ladder dual fermion approach (LDFA,
[18]), which does not show the nodal/antinodal differentiation
at this temperature.

It is plausible that a self-consistent adjustment of the
local impurity model can improve the result. Indeed, the
self-consistency condition (9) for the dual Green’s function,
Gloc = 0, relaxes the tendency of the BEPS self-energy to the
pseudogap formation and turns the self-energy at the lowest
Matsubara frequencies slightly back toward the metallic di-
rection (see Fig. 3). Apparently, the bath self-consistency has
a sizable effect in the pseudogap regime and should be applied
in a quantitative comparison with an exact benchmark. Hence-
forth, we use the prescription (9) (outer self-consistency).
Practically, we converge at low temperature via annealing,
using the self-consistent hybridization determined at a slightly
higher temperature. Note that the self-consistency implies that
the Hartree-Fock contribution to the self-energy vanishes

!HF
ν =

∑

ν ′

Gloc(ν ′) f ch
ν ′ν,ω=0 = 0. (17)

We apply the same prescription (9) also for our LDFA
calculations [45].

B. Quantitative comparison with DiagMC

For a quantitative comparison with the numerically exact
diagrammatic Monte Carlo results of Ref. [6] we calculate
the self-energy using BEPS for 0.1 ! T/t ! 0.065, see upper
panel of Fig. 4. The sequence shows that the nodal/antinodal
dichotomy develops in this temperature range. In the lower
panel we compare for T/t = 0.1 and T/t = 0.065(4) to
DiagMC. The BEPS self-energy is in good quantitative agree-
ment with DiagMC and shows a consistent nodal/antinodal
differentiation, overall in better agreement with DiagMC than
a variety of approximate methods benchmarked in Ref. [6].

C. Self-energy decomposition

We decompose the BEPS self-energy according to
Sec. III B. We begin with the SBE decomposition which gives
rise to the components of the dual self-energy in Eq. (13).
Inserting the decomposition into the expression (7) for the
lattice self-energy we arrive at

!lat
k = !imp

ν +
!Uirr

k + !ch
k + !

sp
k + !s

k + !bare
k

1 + gν!k

= !imp
ν + !′Uirr

k + !′ch
k + !

′sp
k + !′s

k + !′bare
k , (18)

where we used that the Hartree-Fock self-energy vanishes
[Eq. (17)]. The lattice self-energy !lat is thus split into the
local impurity self-energy !imp and five nonlocal components,
each one divided by the same denominator 1 + gν!k , which
we absorbed in the second line of Eq. (18) into definition of
!′, e.g., !′ch

k = !ch
k /(1 + gν!k ).
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FIG. 4. Top: BEPS self-energy at node (full symbols) and antin-
ode (open symbols) for different temperatures. Bottom: Comparison
with the DiagMC result of Ref. [6].

In Fig. 5, the various components are drawn at the first Mat-
subara frequency along a high-symmetry path in momentum
space for T = 0.065. The leading nonlocal contributions to
the self-energy are the single-(spin)boson exchange, !′sp, and
the bare contribution !′bare, which have, in general, the same
sign. The next largest contributions are due to single-boson
exchange in the charge and singlet channels. Consistent with
the observation in Ref. [14] they have the opposite sign of
!′sp. At half filling, theses contributions are very small due to
the suppression of charge and particle-particle fluctuations in
this parameter regime.

The contribution !′Uirr due to multiboson exchange is neg-
ligible in the weak coupling regime considered here. We show
the decomposition of !′Uirr according to Eq. (15) in Appendix
A.

The bottom panel of Fig. 5 shows the difference be-
tween the self-energy at the first and the second Matsubara
frequency, $Im!lat(k) = Im!lat(k, πT ) − Im!lat(k, 3πT ).
For a metal, $Im!lat > 0 for momenta k at the Fermi level.
The crossover to the (insulating) non-Fermi-liquid regime
is then roughly indicated by $Im!lat crossing 0 [3,6]. At
the chosen temperature T = 0.065, we find that the BEPS
self-energy features already a pseudogap behavior, i.e., a non-
Fermi-liquid-type self-energy at the antinode ($Im!lat < 0
at the X point) while the node (M/2) is still metallic. On the
contrary, the corresponding results for the LDFA (black sym-
bols, cf. Appendix B) indicate that we are still in the metallic

235133-5

BEPS = boson exchange parquet solver in DF-space
F. Krien, et al Phys. Rev. B 102, 235133 (2020)

U/t=2

DiagMC: Fedor Šimkovic
from Phys. Rev. X 11, 011058 (2021)
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1-st order diagram for dual self-energy
Beyond DMFT 9.11
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Fig. 6: Feynman diagram for the 1st-order dual fermion perturbation for the self-energy e⌃:

a line represents the non-local eG43 and a box is the local �1234.

formalism. Transformation to the original DF-normalization where both dual Gd and real Green
function have the same dimension unit reads

Gd = g eGg = GDMFT � g GDMFT =
�
g⌫+�⌫�tk

��1
. (34)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]

���
0

1234(⌧1, ⌧2, ⌧3, ⌧4) = �hc1�c⇤2�c3�0c⇤4�0i
�
+ g�12g

�
0

34 � g�14g
�

32���0 .

Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (⌫, ⌫ 0), and one bosonic, (!), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels

�d/m

1234(⌫, ⌫
0,!) = �""

1234(⌫, ⌫
0,!)± �"#

1234(⌫, ⌫
0,!).

Now we can write the first-order, local in site (i), DF-correction to the dual self-energy (Fig. 6)

e⌃(1)i
12 (⌫) =

X

⌫0,3,4

�d

1234(⌫, ⌫
0, 0) eGii

43(⌫
0) (35)
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quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]
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Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
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continuation to the real axes [5]. Results of the first-order DF superperturbation are shown
in Fig. 10 together with reference and target DOS. We can conclude that even the first-oder
DF-correction gives the Green function in very good agreement with the exact one.
The real test for correlated fermions corresponds to a half-filled two-dimensional Hubbard
model on the square lattice with a 2⇥2 plaquette as the reference system (Fig. 11). We used the
2⇥2 supercell scheme with 4 atoms in the unit cell in oder to describe the lattice on the left-hand
side of Fig. 11 with the following 4⇥4 hopping matrix with the nearest neighbor hopping t and
next nearest neighbor hopping p

tk =

0

BBB@

" tK0+ pL�+ tK�0

tK0� " tK�0 pL��

pL+� tK+0 " tK0�

tK+0 pL++ tK0+ "

1

CCCA

where the functions Kmn

k and Lmn

k with [m(n)] = �(1), 0,+(1) are defined as

Kmn

k = 1 + ei(mkx+nky)

Lmn

k = 1 + ei(mkx+nky) + eimkx + einky

-4 -2 0 2 4
0�0

0�1

0�2

0�3

D
O
S

Energy

DF

G0
G

Fig. 10: Density of states for the dual-fermion first-order scheme together with the reference

and target Green function for the two-site model.

Beyond DMFT 9.13

⌫ ⌫ 0 ⌫

� �0 �0 �
⌫ 0+!

⌫+!

1 5

3 4
i j

8 2

7 6

Fig. 8: Feynman diagram for the 2nd-order dual fermion perturbation for the self-energy e⌃.

What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃�1

k⌫ = G̃�1
0k⌫ � e⌃k⌫ , and exact the relation of Appendix B, Eq. (55), we can directly

write an expression for the lattice Green function including only the reference impurity Green
function and the dual self-energy [2]

Gk⌫ =
⇣�

g⌫ + e⌃k⌫

��1 � e�k⌫

⌘�1

. (39)

This formula is perfectly suitable for the CT-QMC calculations for realistic multi-orbital corre-
lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature �=5 and the Padé analytical
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function, G̃�1
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Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
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grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
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plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
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formalism. Transformation to the original DF-normalization where both dual Gd and real Green
function have the same dimension unit reads

Gd = g eGg = GDMFT � g GDMFT =
�
g⌫+�⌫�tk

��1
. (34)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]
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Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (⌫, ⌫ 0), and one bosonic, (!), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels
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Fig. 9: Schematic representation of dual-fermion superperturbation test for a two-site model.

continuation to the real axes [5]. Results of the first-order DF superperturbation are shown
in Fig. 10 together with reference and target DOS. We can conclude that even the first-oder
DF-correction gives the Green function in very good agreement with the exact one.
The real test for correlated fermions corresponds to a half-filled two-dimensional Hubbard
model on the square lattice with a 2⇥2 plaquette as the reference system (Fig. 11). We used the
2⇥2 supercell scheme with 4 atoms in the unit cell in oder to describe the lattice on the left-hand
side of Fig. 11 with the following 4⇥4 hopping matrix with the nearest neighbor hopping t and
next nearest neighbor hopping p

tk =

0
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where the functions Kmn

k and Lmn

k with [m(n)] = �(1), 0,+(1) are defined as

Kmn

k = 1 + ei(mkx+nky)

Lmn

k = 1 + ei(mkx+nky) + eimkx + einky
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Fig. 11: Schematic representation of a plaquette cluster-reference system for the square lattice.

The standard reference system (Fig. 11) corresponds to the Green function, averaged over the
supercell Brillouin zone, which is equivalent to the self-consistent cluster-DMFT scheme [21].
Another possibility for the reference system is related with the k = 0 Green function, which
corresponds to the decoupled lattice of plaquettes with periodic boundary condition

�0 = tk=0 =

0

BBB@

" 2t 4p 2t

2t " 2t 4p

4p 2t " 2t

2t 4p 2t "

1

CCCA
. (40)

Note that the spectrum of this hopping Hamiltonian Eq. (40) is equal to the original cubic tight-
binding model

"k = 2t
�
cos kx + cos ky

�
+ 4p cos kx cos ky

in the 4 k-points: �=(0, 0), X=(⇡, 0), Y=(0, ⇡) and M=(⇡, ⇡) which corresponds to the 2⇥2

grid in the original Brillouin zone. In this sense, we can view the dual fermion perturbation
from the plaquette reference system [21] as a DF-multigrid interpolation from the 2⇥2 k-mesh
in the original cubic lattice to, e.g., 64⇥64 k-points (for this case one needs to use the 32⇥32

mesh in our supercell). This is exactly the task for the present numerical test.
In order to calculate the bare dual Green function we use a slightly modified version of Eq. (33)
(since �k = �0�tk = 0, for some k-points, e.g. for k = 0)

eG0
k,⌫ = �k

�
1� g⌫�k

��1
.

With this choice of reference system, one can again stay only with the exact diagonalization
scheme to calculate the dual Green function and the plaquette vertex function. We choose the
strong-coupling parameters with U=W=8, t=� 1, p=0 and the temperature T=1/3 for which
there is a diagrammatic QMC results [18]. In the Fig. 12 we plot the density of states (DOS)
for three different Green functions: ED for the reference plaquette, cluster perturbation (CP)
which corresponds to Eq. (39) with e⌃k⌫=0, and the results for the second-order plaquette dual-
fermion. We use Padé-analytical continuation from the Matsubara to the real energy axis [5].
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Supplementary Figure 2. Density of states for the half-filled case with t0 = 0 and U = W = 8 in the second-order DF approximation (DF2) in
comparison with ED results for 4x4 cluster and DQMC simulation of 10x10 system.

For numerical calculations it is more convenient not to calculate the lattice self-energy, but to use directly a simple connection
between the dual self-energy and the lattice Green’s function2

Gk⌫ =
⇣

g⌫ + ⌃̃k⌫

⌘�1
� t̃k⌫
��1
. (18)

where ⌃̃k⌫ is calculated via diagrammatic perturbation scheme using the G̃0k⌫ matrix and plaquette vertex �1234. The properly
rescaled dual self energy plays the role of a T-matrix for the the reference Green’s function g. With this relation, the calculation
only involves single and two-particle correlation functions of the reference system and no “amputated” quantities. By avoiding
many matrix inversions, this makes it suitable for multi-orbital systems. The case of the ”bare dual fermions” ⌃̃k⌫ = 0 is
equivalent to the cluster perturbation theory14.

As a benchmark, we show the calculations for the half-filled square lattice Hubbard model and compared with ED results
for 4x4 cluster as well as lattice DQMC15 results for 10x10 system. The parameters were chosen as following: t = 1, t0 = 0,
U = 8 (equal to the bandwidth W = 8t) and the temperature � = 5. Similar calculations have previously been done for higher
temperature16. The density of states for the cluster DF approximations using periodic 2x2 plaquete as the reference system
is presented in Supplementary Figure 2. The DOS for the second order dual fermion plaquette perturbations are in a good
agreements with two numerically exact scheme ED and DQMC. The DF theory reproduces the so-called four-peak structure of
the half-filled Hubbard model, which is standard feature of lattice QMC calculations17.

Supplementary Note 2. Dual Fermion approach with a general reference system

For all DF-calculations we used 44 fermionic Masubara frequencies for the dual Green’s function and for the vertex we used
22/21 fermion/boson frequencies. We checked few calculations with up to 160 Matsubara frequencies and results are not very
sensitive and well converged due to fast decay of the four point correlation functions for �  10.

The generalized susceptibility �P
i jkl(⌫, ⌫

0,!) is an important quantity that describes the two-particle correlations in a given
channel. For the particle-particle case it merely coincides with the two-particle Green’s function Pi jkl(⌫, ⌫

0,!), while in the
particle-hole channel � di↵ers from  by the disconnected contribution gi j(⌫)gkl(⌫0)�!,0. In this appendix ! will be set to 0
everywhere and we omit it in the notation.

Let us look at the structure of the particle-particle generalized susceptibility in more detail. We define the superconducting
nonlocal pairing operator as �i j(⌫) = c"i,⌫c

#

j,�⌫ (in order not to overload the formulas we consider only the ! = 0 situation).
The singlet pairing corresponds to ("# � #")/

p
2 combination, or equivalently the singlet pairing operator is given by �s

i j(⌫) =
(�i j(⌫) + � ji(�⌫))/

p
2. The generalized particle-particle singlet susceptibility is defined as

�s
i jkl(⌫, ⌫

0) = h�s
i j(⌫)�

s†
kl (⌫0)i = �P"#"#

i jkl (⌫, ⌫0) � �P"##"
i jkl (⌫, ⌫0) = �P"#"#

i jkl (⌫, ⌫0) + �P"#"#
i jlk (⌫,�⌫0) (19)

.
To understand the special role of the plaquette degenerate point, we consider a single component of the particle-particle singlet

susceptibility of the plaquette, namely �s
0110 at ⌫ = ⌫0 = ⇡/�. Supplementary Figure 3 shows this objects as a function of the



ED 4x4 cluster: Local Pairs
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was found in the diagrammatic Monte Carlo calculations [28] in a search of pseudo-121

gap formation, and the value of U/t ⇡ 6 pointed out in the recent review [8] as the122

most reasonable value of the e↵ective Hubbard interaction for cuprates. Note also that123

periodic boundary conditions e↵ectively double t
0 compared to t, which explains the124

chosen value of the NNN hopping twice smaller than in Ref. [17]. At a special value125

of the chemical potential [17] µ ⇡ 0.48 the ground state for the half-filled N = 4 anti-126

ferromagnetic singlet is degenerate with the singlet for N = 2 electrons and with two127

doublets from N = 3 sector. For these values of the parameters the plaquette state128

corresponds to the hole doping of �c = 0.25.129

In the dual perturbation theory, starting from a degenerate plaquette point leads to130

divergences in the perturbation series. For the Kondo problem, the dual perturbation131

starting from the atomic limit [29] has a divergent local four-point vertex at low tem-132

perarure, while the Green’s function is finite. In the case of the degenerate plaquette133

both the single-particle and two-particle Green’s functions of the reference system are134

divergent.135

We will also consider reference systems di↵ering from the degenerate point in the136

value of the chemical potential. For smaller µ ⇡ 0 (marked with the circle in Fig. 1) the137

lattice would tend to a metallic behavior, for larger µ ⇡ 0.8 (marked with the square)138

the perturbation for the lattice results in a superconducting dx2�y2 instability.139

RESULTS140

Short-ranged correlations: exact diagonalization of 4⇥4 cluster141

To understand why superconductivity occurs, it is necessary to find a pairing mecha-
nism, i.e., an attractive interaction between pairs of fermions. Although a phase tran-
sition can only occur in the thermodynamic limit, finite-size simulations can already
point towards the energetic mechanism. We calculated the pairing energy of two holes
on the 4⇥4 periodic cluster – which consists of four 2⇥2 plaquettes – through the
ground state energies in the di↵erent occupation sectors,

�2h = Ẽ2h � 2Ẽ1h, (1)

where the energies are measured relative to the half-filled ground states E0 with no142

holes, ẼNh = ENh�E0. Note, that �2h < 0 signals pairing. By construction, �2h = 0 for143

U = 0 and U � t, so it measures genuine correlation e↵ects. Calculated energies for144

t
0 = 0 are in perfect agreement with the standard exact diagonalization (ED) results[30].145

Figure 2 shows the pair binding energy �2h between pairs of holes for a 4⇥4 cluster146

t�t
0�U Hubbard model with periodic boundary conditions as a function of interactions147

strength U for di↵erent next-nearest neighbours hopping t
0. A striking observation is148

that switching on non-zero negative t
0/t leads to a distinct minimum in the �2h depen-149

dence on U. It can be attributed to the change of the ground state for the sector (7", 7#)150

(see the Supplemental Materials for a detailed consideration of the case U = 6 where it151

occurs at t
0/t ⇡ �0.12). The binding of the two holes becomes extremely strong around152
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FIG. 28. Schematic view of pseudogap formation in (4 ⇥ 4) periodic cluster from the peak DOS structure of individual 2 ⇥ 2 plaquettes (left),
and the sketch of e�cient t0 hopping in presence of two holes in AFM structures (right)

sites being numbered from 1 to 16 from left to right and then from top to bottom, in agreement with the understanding that large
NNN hopping completely destroys the antiferromagnetic order.

Another interesting observation arises when we calculate the sum
P

i j C2
i j for di↵erent values of t0. This value shows how well

the | 14;0i state is described in terms of the two holes states | 14;i ji. It turns out that while for t0 = 0 this value is reasonably large
(1.25, one should be surprised it is larger than one as the states  14;i j are no orthogonal), for t0 = 0.3 it is very low (0.0013). This
indicates that the second approach to the notion of hole, in terms of the Fermi liquid theory is hardly appropriate for large t0, in
other words the holes in that regime are very incoherent.

Appendix H: Lehmann representation for one-particle and two-particle Green’s functions

The one-particle Green’s function for a finite fermionic system with time-independent Hamiltonian and many body spectrum
Ĥ|ii = Ei|ii has the following Lehmann representation in the Matsubara space:

g�12(⌫) =
1
Z

X

i j

hi|ĉ1�| jih j|ĉ+2�|ii
i⌫ + Ei � E j

(e��Ei + e��E j )

where Z =
P

i e��Ei .
For the two-particle Green’s function (2PGF) we introduce first four ”auxilary” fermionic frequencies (!1 ÷ !4 ) and define

2PGF in Matsubara space as following46:

��
0

1234(!1!2!3) =
1
�2

Z �

0
d⌧1

Z �

0
d⌧2

Z �

0
d⌧3 ei(!1⌧1+!⌧2+!3⌧3)

hT⌧c1�(⌧1)c2�0 (⌧2)c†4�0 (⌧3)c†3�(0)i . (H1)

Here time translation invariance of the imaginary time 2PGF has been used. Note that here the frequencies in the exponential
corresponding to annihilation and creation operators have the same sign in contrast to the usual definition for the Fourier trans-
form. Correspondingly, energy conservation requires !1 + !2 + !3 + !4 = 0. By restricting the range of integration such that
time ordering is explicit, one obtains 3! di↵erent terms. These can be brought into the same form by permuting the operators and
corresponding frequencies. By the anticommutation relations, each term picks up the sign of the permutation. After introducing
the sum over eigenstates, the 2PGF can be written as

��
0

1234(!1!2!3) =
1
Z

X

i jkl

X

⇧

�(Ei, E j, Ek, El,!⇧1 ,!⇧2 ,!⇧4 ) sgn(⇧)hi|O⇧1 | ji h j|O⇧2 |ki hk|O⇧4 |li hl|c
†

3�|ii (H2)

where the first sum is over the eigenstates and the second over all permutations⇧ of the indices {123}. We further have defined
O1 = c1�, O2 = c2�0 and O4 = c†4�0 and e.g. ⇧1 denotes the permutation of the first index. Here the di↵erent choice of convention

δ ≈ 0.24. In analogy with the Kondo model22, where the
degeneracy of the two spin states of a magnetic impurity plays
a crucial role in the anomalous low-energy properties with a
correspondingly divergent perturbation series, the degeneracy of
the plaquette starting point gives rise to strong fluctuations in
plaquette-based methods, which can reveal the nature of the
anomalous behaviour of the interacting Hubbard model on a two-
dimensional lattice. In this manuscript, we discuss how several
important aspects of the cuprate phenomenology can be seen to
appear when spatial correlations are added to the plaquette. For
this purpose, we use two complementary approaches. First, exact
diagonalization of a 4 × 4 cluster, i.e., four coupled plaquettes,
provides a way to add further short-ranged correlations to the
plaquette starting point. It shows a large hole pair-binding energy
at suitable values of t0 and U. Secondly, the dual fermion23

approach provides a recipe to start from an arbitrary local
reference system24, in this case, the 2 × 2 degenerate plaquette,
and to incorporate nonlocal corrections in a systematic fashion.
Dual fermion perturbation theory25,26 and the dual Bethe-Salpeter
equation make it possible to study the momentum structure
emerging from longer-ranged fluctuations. Here, it is important to
state that the plaquette degenerate point leaves a clear low-
temperature signature in the two-particle correlation function,
which is the basic building block of the dual fermion perturbation
theory. Thus, large nonlocal corrections are expected to appear as
the temperature is lowered.
The first attempt to discuss the plaquette physics as the main

ingredient of the high-Tc theory was done with the cluster
dynamical mean-field theory (DMFT) scheme16, and later Altman
and Auerbach analytically explained the importance of plaquette
two-hole states with dx2!y2 symmetry27. Nevertheless, they did not
consider the possibility of a degenerate ground state of the
plaquette17, with N= 2, 3, 4 electrons per plaquette, at suitable
values of t0, μ. and U.
We should point out that there is a curve of degenerate

plaquettes in the t0, μ, U space. Here, we fix t0=t ¼ !0:15, the μ
and U that correspond to a six-fold degenerate ground state of the
plaquette are signified by the star in the Fig. 1. Since we use here
periodic boundary conditions the critical Coulomb interaction for
plaquette degenerate point becomes U/t= 5.56 in contrast with
the case of an isolated plaquette17. This is in a very good
agreement with the value of the Coulomb interaction U/t= 5.6
that was found in the diagrammatic Monte Carlo calculations28 in
a search of pseudogap formation, and the value of U/t ≈ 6 pointed
out in the recent review8 as the most reasonable value of the
effective Hubbard interaction for cuprates. Note also that periodic

boundary conditions effectively double t0 compared to t, which
explains the chosen value of the NNN hopping twice smaller than
in ref. 17. At a special value of the chemical potential17μ ≈ 0.48 the
ground state for the half-filled N= 4 antiferromagnetic singlet is
degenerate with the singlet for N= 2 electrons and with two
doublets from N= 3 sector. For these values of the parameters the
plaquette state corresponds to the hole doping of δc= 0.25.
In the dual perturbation theory, starting from a degenerate

plaquette point leads to divergences in the perturbation series.
For the Kondo problem, the dual perturbation starting from the
atomic limit29 has a divergent local four-point vertex at low
temperarure, while the Green’s function is finite. In the case of the
degenerate plaquette both the single-particle and two-particle
Green’s functions of the reference system are divergent.
We will also consider reference systems differing from the

degenerate point in the value of the chemical potential. For
smaller μ ≈ 0 (marked with the circle in Fig. 1) the lattice would
tend to a metallic behaviour, for larger μ ≈ 0.8 (marked with the
square) the perturbation for the lattice results in a super-
conducting dx2!y2 instability.

RESULTS
Short-ranged correlations: 4 × 4 cluster
To understand why superconductivity occurs, it is necessary to
find a pairing mechanism, i.e., an attractive interaction between
pairs of fermions. Although a phase transition can only occur in
the thermodynamic limit, finite-size simulations can already point
towards the energetic mechanism. We calculated the pairing
energy of two holes on the 4 × 4 periodic cluster–which consists of
four 2 × 2 plaquettes–through the exact diagonalization (ED) of
ground state energies in the different occupation sectors27,30,

Δ2h ¼ ~E2h ! 2~E1h; (1)

where the energies are measured relative to the half-filled ground
state E0 with no holes, ~ENh ¼ ENh ! E0. Note, that Δ2h < 0 signals
pairing. By construction, Δ2h= 0 for U= 0 and U≫ t, so it
measures genuine correlation effects. Calculated energies for t0 ¼
0 are in perfect agreement with the standard ED results30.
Figure 2 shows the pair binding energy Δ2h between two holes

for a 4 × 4 cluster t ! t0 ! U Hubbard model with periodic
boundary conditions as a function of interactions strength U for
different next-nearest neighbours hopping t0. A striking observa-
tion is that switching on non-zero negative t0=t leads to a distinct
minimum in the Δ2h dependence on U. It can be attributed to the
change of the ground state for the sector (7↑, 7↓) (see the
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Fig. 2 Hole pairing energy. Pairing energy Δ2h of two holes in a 4 × 4
cluster with periodic boundary condition as a function of U and t0.
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degeneracy of few low-lying states are marked with the numbers. The green arrow indicate the critical t0 for ground state crossing.
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Supplementary Figure 8. Energy of two-hole binding for 4⇥4 periodic cluster for positive, negative and zero values of t0/t as function of U
(left) as well as for extended negatice values of t0/t (right).

like for small t0 to basically nonmagnetic for larger t0. Supplementary Figure 11 shows the density of states for di↵erent sectors
(hole concentrations) for ED calculations of (4 ⇥ 4) periodic cluster with t0/t = �0.15 and t0/t = �0.3. We can conclude that for
t0/t = �0.3 and optimal U = 5.56 all calculated sectors corresponding to doping � = 0.0525 ÷ 0.25 have large pseudogap DOS.
Simple pictorial view on such pseudogap formation is presented in Supplementary Figure 12. If we consider a (4 ⇥ 4) cluster
built from four interacting (2 ⇥ 2) plaquettes each of them having a sharp peak at the Fermi level, then it is clear that through the
resonant interactions the total DOS would have a pseudogap at EF . This is similar to the Fano e↵ect for Kondo-like impurity in
the conducting bath.

We should point out that the optimal interaction U/t ⇡ 6 is smaller than the bandwidth W/t = 8 and substantially below the
strong coupling, e↵ective t � J model limit. Therefore, the huge hole-hole binding we found in the 4⇥4 cluster at intermediate
U/t ⇡ 6, with two holes located on di↵erent “diagonal” plaquettes, is very di↵erent from the so-called “string-like” e↵ective
hole-hole interactions in the t � J model, where two holes are sitting with nearest-neighbor or next-nearest-neighbor distance19,
i.e., in the same plaquette. We would like to point out that the strong pair-hole binding energy on 4x4 Hubbard cluster exists only
for negative values of t0/t, while for positive ones the binding energy is very small (Supplementary Figure 8). In Supplementary
Figure 9 we additionally show the pair-hole binding energy for the ED calculations of a (2 ⇥ 2) periodic plaquette with t0/t = �0.3
as a function of U. The energy of the two-hole binding is much smaller than for the (4 ⇥ 4) cluster with the same t0. The two-hole
binding energy in a single 2⇥2 plaquette is very similar to the results of Ref.20 at t0 = 0. This indicates that it is not favourable
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Supplementary Figure 9. Energy of two-hole binding for 2⇥2 plaquette for t0/t = �0.3. Note that the energy scale is reduced by more than an
order of magnitude compared to the 4 ⇥ 4 plaquette (see the main paper).

Supplementary Figure 10. Static correlators: h7 ", 7 # |ĉ†0ĉ j|7 ", 7 #i of the (4 ⇥ 4) periodic cluster for U/t = 5.56 and t0/t = 0 (left) and
t0/t = �0.3 (right).

to put two holes in a single plaquette. Thus, the pairing is a phenomenon that emerges in the lattice of plaquettes, as we could
also see from the dual Bethe-Salpeter equation. It is also instructive to compare the changes in the static hopping correlator
hĉ†0ĉ ji within the sector (7 ", 7 #) for di↵erent t0 (Supplementary Figure 10). While in the case of t0 = 0 all next-nearest hoppings
are very small, including of t0/t = �0.3 produces ”long-range” hopping correlators in all directions which highlights the role of
kinetic stabilization of the two-hole states.

Supplementary Note 4. Lehmann representation for Green’s functions

The one-particle Green’s function for a finite fermionic system with time-independent Hamiltonian and many body spectrum
Ĥ|ii = Ei|ii has the following Lehmann representation in the Matsubara space:
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i j

hi|ĉ1�| jih j|ĉ+2�|ii
i⌫ + Ei � E j

(e��Ei + e��E j )

where Z =
P

i e��Ei .
For the two-particle Green’s function (2PGF) we introduce first four ”auxilary” fermionic frequencies (!1 ÷ !4 ) and define

2PGF in Matsubara space as follows21:
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Here the time translation invariance of the imaginary time 2PGF has been used. Note that here the frequencies in the exponen-
tial corresponding to annihilation and creation operators have the same sign in contrast to the usual definition for the Fourier
transform. Correspondingly, energy conservation requires !1 + !2 + !3 + !4 = 0. By restricting the range of integration in a
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DF-QMC scheme: Real Space
Hamiltonian
The simplest model describing interacting fermions on a lattice is the single band Hub-
bard model, defined by the Hamiltonian
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where ti j is the hopping matrix elements including the chemical potential µ in the di-
agonal elements.
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i j
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8>>>>>>>><
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t if i and j are nearest neighbours,
↵t
0 if i and j are next nearest neighbours,
↵µ if i = j,

0 otherwise,

(2)

where ni� = c
†
i�c

i�. We introduce a ”scailing” parameter ↵ = 0, 1, which defined a
reference system H0 for ↵ = 0 which corresponds to the half-field Hubbard model
(µ0 = 0) with only nearest neighbours hoppings (t00 = 0) and final system H1 for ↵ = 1
for given µ and t

0. Notes, that long-range hoping parameters can br trivially included
similar to t

0.

Real space scheme
For the super-perturbation in the lattice Monte-Carlo scheme we use a general dual-
fermion expansion around arbitrary reference system within the path-integral formal-
ism [27, 24] similar to a strong coupling expansion [43]. In this case our N ⇥ N

lattice and corresponding refverence systems represent N ⇥ N-part which we cut from
infinite lattice and periodise the bare Green’s function G↵. The general lattice action
for discretise N ⇥ N ⇥ L space-time lattice (for CT-INT scheme imaginary time space
⌧ is continous in the [0, �) interval) with Hamiltonian Eq. (1) reads
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12 c2 +
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U1234c
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In order to keep the notation simple, it is useful to introduce the combined index
|1i ⌘ |i, ⌧,�i (i being the site index suppressed above) while assuming summation
over repeated indices.

To calculate the bare propagators (G↵)12 we start from the N ⇥ N cluster which is
cutted from infinite lattice and then force translation symmetry and periodic boundary
condition on the finite N ⇥ N system. This procedure is easy to realized in the k-space,
by doing first a double Fourier transform of the bare Green’s function for non-periodic
N ⇥ N cluster G↵k,k0 and then keep only periodic part, G↵k�k,k0 .

Perturbation matrix of one-electron part of Action:

t̃ = G�1
0 � G�1

1 . (4)
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Perturbation:

Dual Action:

Figure 7: Feynman diagram for the first order dual fermion perturbation for the self-
energy e⌃12(⌫): a line represents the non-local dual Green’s function eG43(⌫0) and a box
is the two-particle vertex (cumulant) �1234, (�,�0) are spin-indices.

The dual action in paramagnetic state reads

S̃ [d⇤, d] = �
X

12 ⌫�
d
⇤
1⌫� (G̃0
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�1
12 d2⌫� +
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4
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�1234d
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2d3d4, (5)

where the bare dual Green’s function has the following matrix form:

G̃
0
12 =
h

t̃
�1 � ĝ

i�1

12
(6)

with g being exact Green’s matrix of the interacting referemnce system.
We used the following notation for the four-point vertex:

�1234 = hc1c
⇤
2c4c

⇤
3i � hc1c

⇤
2ihc4c

⇤
3i + hc1c

⇤
3ihc4c

⇤
2i (7)

The first order for the vertex in particle-hole (PH) channel is given by the diagram
shown in Fig.7

⌃̃(1)
12 = �

X

s�QMC

X

3,4

�d

1234(s)G̃0
34 (8)

Here the density vertex in PH channel is

�d

1234 = �
""""
1234 + �

""##
1234 (9)

and the final Green’s function reads

G12 =
⇣

g + ⌃̃
⌘�1 � t̃

��1

12
(10)

Within the determinant DQMC with Ising-fields {s} or inside the CT-INT with
stochastic sampling of interaction order expancion {s} for two-particle correlators we
can use the Wick-theorem:

�1234(s) ⌘ hc1c
⇤
2c3c

⇤
4is = hc1c

⇤
2is hc3c

⇤
4is � hc1c

⇤
4is hc3c

⇤
2is (11)
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can use the Wick-theorem:

�1234(s) ⌘ hc1c
⇤
2c3c

⇤
4is = hc1c

⇤
2is hc3c

⇤
4is � hc1c

⇤
4is hc3c

⇤
2is (11)
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Figure 7: Feynman diagram for the first order dual fermion perturbation for the self-
energy e⌃12(⌫): a line represents the non-local dual Green’s function eG43(⌫0) and a box
is the two-particle vertex (cumulant) �1234, (�,�0) are spin-indices.

The dual action in paramagnetic state reads

S̃ [d⇤, d] = �
X

12 ⌫�
d
⇤
1⌫� (G̃0

⌫)
�1
12 d2⌫� +

1
4

X

1234

�1234d
⇤
1d
⇤
2d3d4, (5)

where the bare dual Green’s function has the following matrix form:

G̃
0
12 =
h

t̃
�1 � ĝ

i�1

12
(6)

with g being exact Green’s matrix of the interacting referemnce system.
We used the following notation for the four-point vertex:

�1234 = hc1c
⇤
2c4c

⇤
3i � hc1c

⇤
2ihc4c

⇤
3i + hc1c

⇤
3ihc4c

⇤
2i (7)

The first order for the vertex in particle-hole (PH) channel is given by the diagram
shown in Fig.7

⌃̃(1)
12 = �

X

s�QMC

X

3,4

�d

1234(s)G̃0
34 (8)

Here the density vertex in PH channel is
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1234 = �
""""
1234 + �

""##
1234 (9)

and the final Green’s function reads

G12 =
⇣

g + ⌃̃
⌘�1 � t̃

��1

12
(10)

Within the determinant DQMC with Ising-fields {s} or inside the CT-INT with
stochastic sampling of interaction order expancion {s} for two-particle correlators we
can use the Wick-theorem:

�1234(s) ⌘ hc1c
⇤
2c3c

⇤
4is = hc1c

⇤
2is hc3c

⇤
4is � hc1c

⇤
4is hc3c

⇤
2is (11)
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Final GF:

K space scheme
For large system (N � 4) it is much faster to calculate the dual self-energy in the
K-space with within the QMC Markov chain. The dual action in K-space reads

S̃ [d⇤, d] = �
X

k ⌫�
d
⇤
k⌫� G̃

�1
0k⌫ dk⌫� +

1
4

X

1234

�1234d
⇤
1d
⇤
2d3d4 . (12)

Using the short notation k ⌘ (k, ⌫n) and ⌫n = (2n + 1)⇡/�, with n 2 Z, the dual Green’s
function is equal to

G̃
0
k
=
⇣
t̃
�1
k
� ĝk

⌘�1
. (13)

Since the bare dual Green’s function calculated in the independent QMC run for
the reference system, it is fully translationally invariant G̃

0
34 ⌘ G̃

0(3 � 4) and we used
Fourier transform to calculate the K-space dual Green’s function G̃

0
k
.

Within the QMC Markov chain the lattice auxilary Green’s function is not trans-
lationally invariant therefore g

s

12 = �hc1c
⇤
2is and we use double Fourier transform to

calculate g
s

kk0 . To include ”disconnected part” of the vertex in equation Eq. (7) we just
substract exact Green’s function from the previus QMC run of the reference system as
following

g̃
s

12 = g
s

12 � g12 (14)

In the K-space this subtractions has the following form

g̃
s

kk0 = g
s

kk0 � gk�kk0 (15)

For transformation of the vertex �d

1234 in Eq. (9)within the QMC step in the K-space
we take into account that indices 3, 4 are ”diagonal” in k-spcae due to multiplication
by translationally invariant dual Green’s function G̃

0
34 which transforms as G̃

0
k
�kk0 and

indices 1, 2 become translationally invariant after QMC-summation, which finally leads
us to the following equation for final spin-up components of the first order dual self-
energy ⌃̃k

⌃̃(1)
k
=

�1
(�N)2ZQMC

X

s�QMC

X

k0

h
g̃
""
kk

g̃
""
k0k0 � g̃

""
kk0 g̃

""
k0k + g̃

""
kk

g̃
##
k0k0

i
s
G̃

0
k0 (16)

Additional normalisation factor 1
(�N)2 comes from the Fourier transform in k and from

the k0-sum with N-lattice cites and summation over Matsubara frequency: 1
�

P
⌫0 (...).

For paramagnetic calculations we average over two spin projections.
Corresponding lattice Green’s function reads:

Gk =
⇣

gk + ⌃̃k

⌘�1 � t̃k

��1
. (17)

Finally, we note, that if we neglect the dual self-energy, ⌃̃k = 0, this approximation is
equivalent to so-called cluster-perturbation theory (CPT) for N ⇥ N system [44].
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Disconnected part – subtraction:
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FIG. 3. Feynman diagram for the first order (left) and the second order (right) dual fermion perturbation for the self-energye⌃: a line represents
the non-local eG43 and a box is the local �1234.

III. PERTURBATION IN DUAL SPACE

The cluster dual fermion perturbation theory (Fig.2) starts with the interaction between dual fermions. We use here the
particle-hole notation for the local vertex and write explicit spin indices and Matsubara frequency structure of the connected two
particle Green’s function17,28 as follows:

����01234((⌫, ⌫0,!) =
D
c1�(⌫)c⇤2�(⌫ + !)c3�0 (⌫

0 + !)c⇤4�0 (⌫
0)
E
�
� �g�12(⌫)g�

0
34(⌫0)�!0 + �g�14(⌫)g�32(⌫ + !)�⌫⌫0���0 .

In Matsubara space, the vertex depends on two fermionic (⌫, ⌫0) and one bosonic (!) frequencies. For the sake of completeness
and the reader’s convenience we mention that the connection between the particle-particle and the particle-hole notation reads
�1234(⌫, ⌫0,!) = �P

1324(⌫, ⌫0, ⌫+⌫0+!) with �P
1234(⌫, ⌫0,!) = hc1(⌫)c2(!�⌫)c⇤3(!�⌫0)c⇤4(⌫0)i�. DO NOT FORGET TO CHANGE IF

WE DECIDE TO CHANGE (13) Thus, the bare vertex of the dual fermion perturbation theory is the full connected correlation
function of the reference system. The present vertex di↵ers from the usual dual fermion expression due to the di↵erent rescaling
factor of the Hubbard-Stratonovich field. Here, we avoid amputation of the vertex, which requires division by Green’s functions
at all external points.

It is useful to symmetrize the vertex into charge density (d) and magnetic (m) channels:

�d/m
1234(⌫, ⌫0,!) = �""1234(⌫, ⌫0,!) ± �"#1234(⌫, ⌫0,!)

Now we can write the first-order dual fermion self-energy which is local in plaquette space (Fig.3):

e⌃(1)i
12 (⌫) =

X

⌫0,3,4

�d
1234(⌫, ⌫0, 0)eGii

43(⌫0) (19)

The second order Feynman diagram for DF-perturbation (Fig.3) in real space (Rij) has density- and magnetic-channel contri-
butions with corresponding constants (cd = � 1

4 and cm = � 3
4 ) :

e⌃(2)i j
12 (⌫) =

X

⌫0!

X

3�8

X

↵=d,m

c↵�↵,i1345(⌫, ⌫0,!)eGi j
36(⌫ + !)eG ji

74(⌫0 + !)eGi j
58(⌫0)�↵, j8762(⌫0, ⌫,!) (20)

In principle, one can go beyond the second order perturbation expansion and include dual ladder diagrams28,29, dual parquet
diagrams30 or a stochastic sum of all dual diagrams with the two-particle vertex �1234, using diagrammatic Monte Carlo in
dual space31–33. In addition, the diagrammatic series can be made self-consistent, using dual skeleton diagrams and “bold”
lines. Finally, one can also update the reference system (and obtain a frequency dependent �) with quite involved numerical
approach. But as the main goal of the present work is not to present quantitatively reliable results but rather to highlight the
connection between the degenerate reference system and the superconducting fluctuations we will mostly stick to the second-
order consideration.

IV. RESULTS FOR PLAQUETTE DUAL SCHEME

We study the optimally doped square lattice Hubbard model, with nearest neighbour hopping t and NNN hopping t0. As
illustrated in Fig.2, the original lattice can be reconsidered as a lattice of 2 ⇥ 2 plaquettes. Every unit cell of the plaquette lattice
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DISCUSSION
There appears to be a close relation between the physics of
cuprate superconductors, with the clear existence of a quantum
critical point at δc ≈ 0.24, and the degeneracy of the plaquette in
the strong-coupling regime. In this sense, the plaquette and not
the single site can be considered the minimal building block for
cuprate physics, with pair binding arising in a lattice of plaquettes.
Exact diagonalization shows that the cluster pair binding

energy is dramatically enhanced when four plaquettes are
considered together, compared to the pair binding energy in a
single plaquette. Given their large binding energy, these pairs
should probably exist also at much higher temperatures than the
superconducting critical temperature, remaining noncoherent.
The exact diagonalization also shows the important role played
by the next-nearest hopping t0, with a large pair-binding energy
at t0=t ! "0:3.
Dual fermion expansion starting from the plaquette reference

system provides a complementary way to investigate inter-
plaquette correlations. For the doping δ ≤ 0.25 the dual Bethe-
Salpeter equation clearly shows the presence of a low tempera-
ture dx2"y2 instability, which has an eigenvalue substantially larger
than the magnetic channel. Starting from the degenerate
plaquette, fluctuations in the density channel are also very strong,
but these seem to be less robust against changes in the filling.
The exact diagonalization of the 4 × 4 cluster as well as

renormalized dual fermion perturbation starting from the
plaquette reference system with δ= 0.25 also uncovers spectral
consequences of this degeneracy. The formation of the
pseudogap can be seen as the destructive interference or a
Fano-like effect originating from the sharply peaked DOS in the
isolated plaquette embedded into the band of surrounding
fermions, as was hypothesised in ref. 17. These observations
about the mechanisms of superconductivity can all be made by
starting the perturbation theory from an isolated plaquette. For
more quantitative predictions of the theoretical phase diagram,
the optimal dynamical embedding of the plaquette and the
implications for the resulting perturbation theory need to be
studied further.

METHODS
Cluster Dual Fermion approach
We used the standard exact diagonalization method30 for small systems
as well as the special version of the cluster dual fermion scheme23,26 for
t " t0 " U square lattice Hubbard model. The general strategy of the
dual fermion approach is related to formally exact separation of the
local-plaquette and non-local hybridization (Fig. 7). The details of

the path-integral formulation of this approach can be found in the
Supplementary Note 1.
We start from the following general lattice action and rewrite it as a sum

of non-connected plaquette reference systems and the remaining
coupling term:

SL½c$; c% ¼ "
P
kνσ

c$kνσ iν þ μ" t̂k
! "

ckνσ þ
P
i

R β
0 dτ Un$iτ"niτ#

¼
P
i
SΔ½c$i ; ci % þ

P
kνσ

c$kνσ t̂k " Δ̂ν

# $
ckνσ;

(3)

where ν= (2k+ 1)π/β, with k 2 Z, are the fermionic Matsubara frequen-
cies, β is the inverse temperature, τ is the imaginary time in the interval
0; β½ Þ, μ is the chemical potential, t̂k is the hopping matrix downfolded
onto the site-orbital space of the plaquette (see Eq. (11) below), and the
Grassmann fields c, c* are vectors in the same space. The index i labels the
lattice sites, σ is the spin projection and the k-vectors are supercell
plaquette quasimomenta. In order to keep the notation simple, it is useful
to introduce the combined index 1j i ) i; n; σ; τj i (n being the plaquette
site index suppressed above) while assuming summation over repeated
indices. The summation over Matsubara frequencies ν includes a normal-
ization factor 1/β and the k integration is normalized by the volume of the
reduced Brillouin zone.
The general reference system is defined by a plaquette matrix Δ̂ν , which

is also allowed to be instantaneous24 (ν-independent). It can contain
hopping inside the cluster as well as possible frequency-dependent
connections to an auxiliary fermionic bath. The reference plaquette has the
same local plaquette interaction matrix Û, as illustrated in Fig. 7, and the
corresponding action is:

SΔ½c$i ; ci % ¼ "
X

ν ;σ

c$iνσ iν þ μ" Δ̂ν

! "
ciνσ þ

X

ν

Ûn$iν"niν#: (4)

In this work, we restrict ourselves to instantaneous Δ̂. The main motivation
for using the simple static Δ̂ is that such a reference system can be solved
numerically using Exact Diagonalization (ED), without the introduction of
“bath sites” and fitting parameters, and without the numerical costs and
noise of continuous-time Quantum Monte Carlo (CT-QMC)23,52, which is
able to treat general, frequency-dependent hybridization Δ̂ν . In this work,
we use an isolated plaquette cluster with periodic boundary conditions as
the reference model, see Eq. (12).
Having solved the reference system exactly, including the calculation of

all relevant correlation functions, we can derive an efficient perturbation
series in the “coupling term” ~tkν ) t̂k " Δ̂ν

# $
which is equivalent to solving

of the effective dual fermion (d*, d) action and describes non-local
correlation effects beyond the reference plaquette23,23:

~S½d$; d% ¼ "
X

k νσ

d$kνσ ~G
"1
0kν dkνσ þ

1
4

X

1234

γP1234d
$
1d

$
2d3d4; (5)

where the bare dual Green function has the form

~G
0
kν ¼ ~t"1

kν " ĝν
% &"1

; (6)

with ĝν being the local Green’s function matrix for the plaquette. The
vertex γP is given by the connected part of the local two-particle

Fig. 7 Plaquette lattice. Schematic representation of a plaquette reference system for the square lattice.
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DISCUSSION
There appears to be a close relation between the physics of
cuprate superconductors, with the clear existence of a quantum
critical point at δc ≈ 0.24, and the degeneracy of the plaquette in
the strong-coupling regime. In this sense, the plaquette and not
the single site can be considered the minimal building block for
cuprate physics, with pair binding arising in a lattice of plaquettes.
Exact diagonalization shows that the cluster pair binding

energy is dramatically enhanced when four plaquettes are
considered together, compared to the pair binding energy in a
single plaquette. Given their large binding energy, these pairs
should probably exist also at much higher temperatures than the
superconducting critical temperature, remaining noncoherent.
The exact diagonalization also shows the important role played
by the next-nearest hopping t0, with a large pair-binding energy
at t0=t ! "0:3.
Dual fermion expansion starting from the plaquette reference

system provides a complementary way to investigate inter-
plaquette correlations. For the doping δ ≤ 0.25 the dual Bethe-
Salpeter equation clearly shows the presence of a low tempera-
ture dx2"y2 instability, which has an eigenvalue substantially larger
than the magnetic channel. Starting from the degenerate
plaquette, fluctuations in the density channel are also very strong,
but these seem to be less robust against changes in the filling.
The exact diagonalization of the 4 × 4 cluster as well as

renormalized dual fermion perturbation starting from the
plaquette reference system with δ= 0.25 also uncovers spectral
consequences of this degeneracy. The formation of the
pseudogap can be seen as the destructive interference or a
Fano-like effect originating from the sharply peaked DOS in the
isolated plaquette embedded into the band of surrounding
fermions, as was hypothesised in ref. 17. These observations
about the mechanisms of superconductivity can all be made by
starting the perturbation theory from an isolated plaquette. For
more quantitative predictions of the theoretical phase diagram,
the optimal dynamical embedding of the plaquette and the
implications for the resulting perturbation theory need to be
studied further.

METHODS
Cluster Dual Fermion approach
We used the standard exact diagonalization method30 for small systems
as well as the special version of the cluster dual fermion scheme23,26 for
t " t0 " U square lattice Hubbard model. The general strategy of the
dual fermion approach is related to formally exact separation of the
local-plaquette and non-local hybridization (Fig. 7). The details of

the path-integral formulation of this approach can be found in the
Supplementary Note 1.
We start from the following general lattice action and rewrite it as a sum

of non-connected plaquette reference systems and the remaining
coupling term:

SL½c$; c% ¼ "
P
kνσ

c$kνσ iν þ μ" t̂k
! "

ckνσ þ
P
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R β
0 dτ Un$iτ"niτ#

¼
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P
kνσ

c$kνσ t̂k " Δ̂ν

# $
ckνσ;

(3)

where ν= (2k+ 1)π/β, with k 2 Z, are the fermionic Matsubara frequen-
cies, β is the inverse temperature, τ is the imaginary time in the interval
0; β½ Þ, μ is the chemical potential, t̂k is the hopping matrix downfolded
onto the site-orbital space of the plaquette (see Eq. (11) below), and the
Grassmann fields c, c* are vectors in the same space. The index i labels the
lattice sites, σ is the spin projection and the k-vectors are supercell
plaquette quasimomenta. In order to keep the notation simple, it is useful
to introduce the combined index 1j i ) i; n; σ; τj i (n being the plaquette
site index suppressed above) while assuming summation over repeated
indices. The summation over Matsubara frequencies ν includes a normal-
ization factor 1/β and the k integration is normalized by the volume of the
reduced Brillouin zone.
The general reference system is defined by a plaquette matrix Δ̂ν , which

is also allowed to be instantaneous24 (ν-independent). It can contain
hopping inside the cluster as well as possible frequency-dependent
connections to an auxiliary fermionic bath. The reference plaquette has the
same local plaquette interaction matrix Û, as illustrated in Fig. 7, and the
corresponding action is:

SΔ½c$i ; ci % ¼ "
X

ν ;σ

c$iνσ iν þ μ" Δ̂ν

! "
ciνσ þ

X

ν

Ûn$iν"niν#: (4)

In this work, we restrict ourselves to instantaneous Δ̂. The main motivation
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numerically using Exact Diagonalization (ED), without the introduction of
“bath sites” and fitting parameters, and without the numerical costs and
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with ĝν being the local Green’s function matrix for the plaquette. The
vertex γP is given by the connected part of the local two-particle

Fig. 7 Plaquette lattice. Schematic representation of a plaquette reference system for the square lattice.
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DF-QMC scheme: K - Space
Action in Fourier-space

K space scheme
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For transformation of the vertex �d
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we take into account that indices 3, 4 are ”diagonal” in k-spcae due to multiplication
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Additional normalisation factor 1
(�N)2 comes from the Fourier transform in k and from

the k0-sum with N-lattice cites and summation over Matsubara frequency: 1
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For paramagnetic calculations we average over two spin projections.
Corresponding lattice Green’s function reads:

Gk =
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gk + ⌃̃k
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��1
. (17)

Finally, we note, that if we neglect the dual self-energy, ⌃̃k = 0, this approximation is
equivalent to so-called cluster-perturbation theory (CPT) for N ⇥ N system [44].
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First order diagram
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Subtraction of disconnected part:
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N.B.:     = 0  corresponds to CPT approximation  
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Fig. 7: Periodized Green’s function in imaginary time ⌧ for clusters N ⇥ N with N = 2, 4, 8 for
our scheme compare to DCA approach for the reference system with U = 5.56 t0 = 0 and µ = 0
for � = 10. The local Green’s function (left) and first nearest-neighbours (right).
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� = 5, real par (left) and imaginary part (right).

scheme [52]. The tests for di↵erent system sizes show reasonable convergence of the first-order
DF-approximation for small perturbations.
For practical calculation of a bare Green’s function for Nx⇥Ny system we used a special scheme
to reduce dependence on the cluster size. We start from the non-interacting Green’s function
with given t0/t and µ for a infinite lattice (in practice 50Nx ⇥ 50Ny with periodic boundary
condition). Then we cut the Green’s function to only our small system N ⇥ N which results
in non-periodic Green’s function Gi j(⌫n) with (i,j=0,N-1). In order to periodise the Green’s
function for small system we average corresponding distance, for example G0,n and G0,N/2�n. In
practice, we used ”double” Fourier transform on i and j from Gi j to Gkk0 and take the diagonal
(periodic) part Gk�kk0 . In this way the local Green’s function does not depends on the size of our
cluster and the non-local part (Figure 7) has much faster converge in comparison to standard
periodic DCA cluster scheme [53]. The reason for this fast convergence of the non-local Green’s
function and exact local Green’s function related with real space periodisation, while DCA make
the average patches in the K-space. For the 8 ⇥ 8 system both periodisation schemes converge
for the nearest-neighbours Green’s function in comparison with 16 ⇥ 16 ”test” case (Figure 7).
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scheme [52]. The tests for di↵erent system sizes show reasonable convergence of the first-order
DF-approximation for small perturbations.
For practical calculation of a bare Green’s function for Nx⇥Ny system we used a special scheme
to reduce dependence on the cluster size. We start from the non-interacting Green’s function
with given t0/t and µ for a infinite lattice (in practice 50Nx ⇥ 50Ny with periodic boundary
condition). Then we cut the Green’s function to only our small system N ⇥ N which results
in non-periodic Green’s function Gi j(⌫n) with (i,j=0,N-1). In order to periodise the Green’s
function for small system we average corresponding distance, for example G0,n and G0,N/2�n. In
practice, we used ”double” Fourier transform on i and j from Gi j to Gkk0 and take the diagonal
(periodic) part Gk�kk0 . In this way the local Green’s function does not depends on the size of our
cluster and the non-local part (Figure 7) has much faster converge in comparison to standard
periodic DCA cluster scheme [53]. The reason for this fast convergence of the non-local Green’s
function and exact local Green’s function related with real space periodisation, while DCA make
the average patches in the K-space. For the 8 ⇥ 8 system both periodisation schemes converge
for the nearest-neighbours Green’s function in comparison with 16 ⇥ 16 ”test” case (Figure 7).
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scheme [52]. The tests for di↵erent system sizes show reasonable convergence of the first-order
DF-approximation for small perturbations.
For practical calculation of a bare Green’s function for Nx⇥Ny system we used a special scheme
to reduce dependence on the cluster size. We start from the non-interacting Green’s function
with given t0/t and µ for a infinite lattice (in practice 50Nx ⇥ 50Ny with periodic boundary
condition). Then we cut the Green’s function to only our small system N ⇥ N which results
in non-periodic Green’s function Gi j(⌫n) with (i,j=0,N-1). In order to periodise the Green’s
function for small system we average corresponding distance, for example G0,n and G0,N/2�n. In
practice, we used ”double” Fourier transform on i and j from Gi j to Gkk0 and take the diagonal
(periodic) part Gk�kk0 . In this way the local Green’s function does not depends on the size of our
cluster and the non-local part (Figure 7) has much faster converge in comparison to standard
periodic DCA cluster scheme [53]. The reason for this fast convergence of the non-local Green’s
function and exact local Green’s function related with real space periodisation, while DCA make
the average patches in the K-space. For the 8 ⇥ 8 system both periodisation schemes converge
for the nearest-neighbours Green’s function in comparison with 16 ⇥ 16 ”test” case (Figure 7).
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scheme [52]. The tests for di↵erent system sizes show reasonable convergence of the first-order
DF-approximation for small perturbations.
For practical calculation of a bare Green’s function for Nx⇥Ny system we used a special scheme
to reduce dependence on the cluster size. We start from the non-interacting Green’s function
with given t0/t and µ for a infinite lattice (in practice 50Nx ⇥ 50Ny with periodic boundary
condition). Then we cut the Green’s function to only our small system N ⇥ N which results
in non-periodic Green’s function Gi j(⌫n) with (i,j=0,N-1). In order to periodise the Green’s
function for small system we average corresponding distance, for example G0,n and G0,N/2�n. In
practice, we used ”double” Fourier transform on i and j from Gi j to Gkk0 and take the diagonal
(periodic) part Gk�kk0 . In this way the local Green’s function does not depends on the size of our
cluster and the non-local part (Figure 7) has much faster converge in comparison to standard
periodic DCA cluster scheme [53]. The reason for this fast convergence of the non-local Green’s
function and exact local Green’s function related with real space periodisation, while DCA make
the average patches in the K-space. For the 8 ⇥ 8 system both periodisation schemes converge
for the nearest-neighbours Green’s function in comparison with 16 ⇥ 16 ”test” case (Figure 7).
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scheme [52]. The tests for di↵erent system sizes show reasonable convergence of the first-order
DF-approximation for small perturbations.
For practical calculation of a bare Green’s function for Nx⇥Ny system we used a special scheme
to reduce dependence on the cluster size. We start from the non-interacting Green’s function
with given t0/t and µ for a infinite lattice (in practice 50Nx ⇥ 50Ny with periodic boundary
condition). Then we cut the Green’s function to only our small system N ⇥ N which results
in non-periodic Green’s function Gi j(⌫n) with (i,j=0,N-1). In order to periodise the Green’s
function for small system we average corresponding distance, for example G0,n and G0,N/2�n. In
practice, we used ”double” Fourier transform on i and j from Gi j to Gkk0 and take the diagonal
(periodic) part Gk�kk0 . In this way the local Green’s function does not depends on the size of our
cluster and the non-local part (Figure 7) has much faster converge in comparison to standard
periodic DCA cluster scheme [53]. The reason for this fast convergence of the non-local Green’s
function and exact local Green’s function related with real space periodisation, while DCA make
the average patches in the K-space. For the 8 ⇥ 8 system both periodisation schemes converge
for the nearest-neighbours Green’s function in comparison with 16 ⇥ 16 ”test” case (Figure 7).
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scheme [52]. The tests for di↵erent system sizes show reasonable convergence of the first-order
DF-approximation for small perturbations.
For practical calculation of a bare Green’s function for Nx⇥Ny system we used a special scheme
to reduce dependence on the cluster size. We start from the non-interacting Green’s function
with given t0/t and µ for a infinite lattice (in practice 50Nx ⇥ 50Ny with periodic boundary
condition). Then we cut the Green’s function to only our small system N ⇥ N which results
in non-periodic Green’s function Gi j(⌫n) with (i,j=0,N-1). In order to periodise the Green’s
function for small system we average corresponding distance, for example G0,n and G0,N�n. In
practice, we used ”double” Fourier transform on i and j from Gi j to Gkk0 and take the diagonal
(periodic) part Gk�kk0 . In this way the local Green’s function does not depends on the size of our
cluster and the non-local part (Figure 7) has much faster converge in comparison to standard
periodic DCA cluster scheme [53]. The reason for this fast convergence of the non-local Green’s
function and exact local Green’s function related with real space periodisation, while DCA make
the average patches in the K-space. For the 8 ⇥ 8 system both periodisation schemes converge
for the nearest-neighbours Green’s function in comparison with 16 ⇥ 16 ”test” case (Figure 7).
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scheme [52]. The tests for di↵erent system sizes show reasonable convergence of the first-order
DF-approximation for small perturbations.
For practical calculation of a bare Green’s function for Nx⇥Ny system we used a special scheme
to reduce dependence on the cluster size. We start from the non-interacting Green’s function
with given t0/t and µ for a infinite lattice (in practice 50Nx ⇥ 50Ny with periodic boundary
condition). Then we cut the Green’s function to only our small system N ⇥ N which results
in non-periodic Green’s function Gi j(⌫n) with (i,j=0,N-1). In order to periodise the Green’s
function for small system we average corresponding distance, for example G0,n and G0,N/2�n. In
practice, we used ”double” Fourier transform on i and j from Gi j to Gkk0 and take the diagonal
(periodic) part Gk�kk0 . In this way the local Green’s function does not depends on the size of our
cluster and the non-local part (Figure 7) has much faster converge in comparison to standard
periodic DCA cluster scheme [53]. The reason for this fast convergence of the non-local Green’s
function and exact local Green’s function related with real space periodisation, while DCA make
the average patches in the K-space. For the 8 ⇥ 8 system both periodisation schemes converge
for the nearest-neighbours Green’s function in comparison with 16 ⇥ 16 ”test” case (Figure 7).
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Fig. 10: Green’s functions from DF-QMC (DFQ) in comparison with numerically exact DQMC
result (QMC) for the (4 ⇥ 4) system in Matsubara space with U = 5.56, t0/t = 0, µ = �0.5 and
� = 5, real par (left) and imaginary part (right).

We analyse performance of DF-QMC formalism as function of �µ and �t0 for the 4 ⇥ 4 periodic
cluster with and without fernionic bath. The DQMC sign problem for 4 ⇥ 4 system is also mild
and we can compare our DF-QMC with numerically exact test for the same µ and t0. We use
value of U = 5.56 which corresponds to the degenerate ground state of plaquete [19]. For all
Hirsch-Fye DQMC calculations we use imaginary time discretisation with L = 64 slices. Figure
(9) shows DF-QMC results for a small perturbation t0/t = �0.1 and � = 5 in comparison with
exact DQMC results. The agreement is very good which show the strength dual fermion QMC
theory. for a small perturbation. Next, we compare for the t0/t = �0.3 case which corresponds
to optimal next-nearest hopping in cuprate materialsm (Figure (9) ). In this case one can see
the di↵erence from exact DQMC results on the first Matsubara frequency, but still the overall
agreement in all 6 non-equvalent k-points for 4 ⇥ 4 system is quite satisfactory.
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� = 5, real par (left) and imaginary part (right).

We analyse performance of DF-QMC formalism as function of �µ and �t0 for the 4 ⇥ 4 periodic
cluster with and without fernionic bath. The DQMC sign problem for 4 ⇥ 4 system is also mild
and we can compare our DF-QMC with numerically exact test for the same µ and t0. We use
value of U = 5.56 which corresponds to the degenerate ground state of plaquete [19]. For all
Hirsch-Fye DQMC calculations we use imaginary time discretisation with L = 64 slices. Figure
(9) shows DF-QMC results for a small perturbation t0/t = �0.1 and � = 5 in comparison with
exact DQMC results. The agreement is very good which show the strength dual fermion QMC
theory. for a small perturbation. Next, we compare for the t0/t = �0.3 case which corresponds
to optimal next-nearest hopping in cuprate materialsm (Figure (9) ). In this case one can see
the di↵erence from exact DQMC results on the first Matsubara frequency, but still the overall
agreement in all 6 non-equvalent k-points for 4 ⇥ 4 system is quite satisfactory.
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Fig. 11: Green’s functions from DF-CT-QMC (DF-QMC) in comparison with numerically
exact QMC result (CT-QMC) for the (4 ⇥ 4) system in Matsubara space with U = 5.56, t0/t =
�0.3, µ = �1 and � = 10, real par (left) and imaginary part (right).
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DF-QMC for 8x8: Spectral Function
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lattice with U = 8, t

0/t = �0.3, µ = �2.0, and � = 10.

6



Nodal-Antinodal dichotomy
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Fermi Surface
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Figure 6: Spectral function of the square-lattice Hubbard model as a function of
momentum at the first Matsubara frequency G(k,!0) for dual fermion QMC with
t
0/t = �0.3, � = 10 and U/t = 8, µ = �2.0 (left) U/t = 5.6, µ = �0.9 (right) .

The non-interacting Fermi surface with the same doping is shown for comparisson as
a white contour.

X-point and nodal-antinodal dichotomy are clearly seen in the present approach.
We would like to point out a few main reasons why such “super-perturbation”

scheme works: first of all, the reference system already contains main correlation ef-
fects which result in the four-peak structure of density of states for the half-filled lattice
Monte-Carlo calculations [37]; second, the first order strong-coupling perturbation rely
on the lattice four-point vertex �1234 (Eq. (7)) which is obtained numerically exactly
and has all information about spin and charge susceptibility in the lattice; and third, if
dual perturbation Green’s function G̃

0
12 (Eq. (6)) is relatively small, results will be rea-

sonable. The complicated question of convergence for such dual-fermion perturbation
can be checked numerically by calculating the second-order contribution in ⌃̃12. For
this term one need to calculate in the lattice QMC a six-point vertex �(6) which will be
also a direction of a future development. In principle one can also discuss an instability
towards the antiferromagnetism or d-wave superconductivity introducing a symmetry
breaking fields [8], which we also plan to investigate.

It is worthwhile to mention that for starting reference system we can chose not
only half-field case, but any doped case where the sign problem is mild, so we can
use a QMC calculations to expand this numerically exact solution to ”Terra incognito”
region where the sign problem is unacceptable for direct QMC calculations.

METHODS
We start with the general version of the cluster dual fermion scheme [27, 42] for t�t

0�U

square lattice Hubbard model. The general strategy of the dual fermion approach as a
strong coupling theory is related to formally exact expansion around arbitrary reference
system [24]
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Figure 6: Spectral function of the square-lattice Hubbard model as a function of
momentum at the first Matsubara frequency G(k,!0) for dual fermion QMC with
t
0/t = �0.3, � = 10 and U/t = 8, µ = �2.0 (left) U/t = 5.6, µ = �0.9 (right) .

The non-interacting Fermi surface with the same doping is shown for comparisson as
a white contour.

X-point and nodal-antinodal dichotomy are clearly seen in the present approach.
We would like to point out a few main reasons why such “super-perturbation”

scheme works: first of all, the reference system already contains main correlation ef-
fects which result in the four-peak structure of density of states for the half-filled lattice
Monte-Carlo calculations [37]; second, the first order strong-coupling perturbation rely
on the lattice four-point vertex �1234 (Eq. (7)) which is obtained numerically exactly
and has all information about spin and charge susceptibility in the lattice; and third, if
dual perturbation Green’s function G̃

0
12 (Eq. (6)) is relatively small, results will be rea-

sonable. The complicated question of convergence for such dual-fermion perturbation
can be checked numerically by calculating the second-order contribution in ⌃̃12. For
this term one need to calculate in the lattice QMC a six-point vertex �(6) which will be
also a direction of a future development. In principle one can also discuss an instability
towards the antiferromagnetism or d-wave superconductivity introducing a symmetry
breaking fields [8], which we also plan to investigate.

It is worthwhile to mention that for starting reference system we can chose not
only half-field case, but any doped case where the sign problem is mild, so we can
use a QMC calculations to expand this numerically exact solution to ”Terra incognito”
region where the sign problem is unacceptable for direct QMC calculations.

METHODS
We start with the general version of the cluster dual fermion scheme [27, 42] for t�t

0�U

square lattice Hubbard model. The general strategy of the dual fermion approach as a
strong coupling theory is related to formally exact expansion around arbitrary reference
system [24]
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Conclusions

� DF-diagram can be combined with Lattice 
DQMC to describe doped strongly correlated 
materials

� 1-st order response as function of doping and t’
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