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Why useful?
1.  Less computationally demanding than DMFT, 
   with comparable accuracy (with “ghost” extension). 

2.  Variational (T=0). 

3.  Computationally convenient extension to 
   non-equilibrium problems.



Why is computational speed important?
Exploring large 

chemical spaces



Outline
A.  Quantum Embedding (QE) methods. 

B.  gGA method (multi-orbital models): QE formulation. 

   Supplementary topics:  
   - Spectral properties  
   - Examples of applications. 
   - Recent formalism extensions and open problems.



Algorithmic structure of QE methods 
(DMFT, DMET, GA, gGA,…)

Impurity i Bath i

Self-consistency

Xf(X)

Embedding Hamiltonian 
or impurity model 

(Atomic energy scales

of fragment included explicitly )



Example: DMFT

Impurity i Bath i

Self-consistency: → Σ(ω) (Δ(ω), E, U, J)Σ(ω)

Impurity 
model



Self-consistency: → [
⟨c†

αcβ⟩ ⟨c†
αba⟩

⟨b†
acα⟩ ⟨b†

abb⟩]

GA/RISB (QE formulation)

(D, Λc, E, U, J)[
⟨c†

αcβ⟩ ⟨c†
αba⟩

⟨b†
acα⟩ ⟨b†

abb⟩]

E, U, J

'

Λc

Ĥi
emb['i, Λc

i ] = Ĥi
loc [ciα, c†

iα]
+

νi

∑
a=1

νi

∑
α=1

(['i]aα
c†

iαbia + H.c.) +
νi

∑
a,b=1

[Λc
i ]ab

bibb†
ia

Embedding 
Hamiltonian



gGA/gRISB (QE formulation)

Embedding 
Hamiltonian Λc

'

E, U, J

[
⟨c†

αcβ⟩ ⟨c†
αba⟩

⟨b†
acα⟩ ⟨b†

abb⟩] (D, Λc, E, U, J)

Ĥi
emb['i, Λc

i ] = Ĥi
loc [ciα, c†

iα]
+

Bνi

∑
a=1

νi

∑
α=1

(['i]aα
c†

iαbia + H.c.) +
Bνi

∑
a,b=1

[Λc
i ]ab

bibb†
ia

Self-consistency: → [
⟨c†

αcβ⟩ ⟨c†
αba⟩

⟨b†
acα⟩ ⟨b†

abb⟩]



Outline
A.  Quantum Embedding (QE) methods. 

B.  gGA method (multi-orbital models): QE formulation. 

   Supplementary topics:  
   - Spectral properties  
   - Examples of applications. 
   - Recent formalism extensions and open problems.



The Hamiltonian:

Ĥ =
)

∑
i=1

Ĥi
loc[c†

iα, ciα] + ∑
i≠j

νi

∑
α=1

νj

∑
β=1

[tij]αβ c†
iαcjβ

tij

(α = 1,..,νi)

c†
iα

Ĥi
loc[c†

iα, ciα]

•      :                   Indices of the fragments of the lattice. 

•      :   Local operator on fragment  

•      :                 Indices of Fermionic modes within each fragment. 
•     :               Matrix elements of the hopping term.

i, j
Ĥi

loc[c†
iα, ciα] i

α, β
[tij]αβ



|ΨG⟩ = ,̂G |Ψ0⟩ =
)

∏
i=1

,̂i |Ψ0⟩

The gGA variational wave function:

Evaluating and minimizing  
 ⟨ΨG | Ĥ |ΨG⟩ = ⟨Ψ0 |,̂†

GĤ,̂G |Ψ0⟩



|ΨG⟩ = ,̂G |Ψ0⟩ =
)

∏
i=1

,̂i |Ψ0⟩

,̂i =
2νi−1

∑
Γ=0

2Bνi−1

∑
n=0

[Λ̂i]Γn |Γ, i⟩⟨n, i |

The gGA variational wave function:

|Γ, i⟩ = [c†
i1]

q1(Γ)…[c†
iqνi

]qνi(Γ) |0⟩

|n, i⟩ = [ f †
i1]

q1(Γ)…[ f †
iqBνi

]qBνi(Γ) |0⟩
|ΨG⟩

|Ψ0⟩

Auxiliary 
space

Physical 
space

,̂G



|ΨG⟩ = ,̂G |Ψ0⟩ =
)

∏
i=1

,̂i |Ψ0⟩

The gGA variational wave function:

|ΨG⟩

|Ψ0⟩

Auxiliary 
space

Physical 
space

,̂G

Suggestive analogies: 

• Matrix product states and projected entangled pair states.
• Ancilla qubit techique (S. Sachdev)
• Hidden Fermion (M. Imada)
• Hidden Fermi liquid (P. Anderson)



Our goal is to minimize   
w.r.t.  

⟨Ψ0 |,̂†
GĤ,̂G |Ψ0⟩{Λ̂i}, |Ψ0⟩

2νi × 2Bνi

|ΨG⟩

|Ψ0⟩

Auxiliary 
space

Physical space

,̂G



Self-consistency

tij

(α = 1,..,νi)

c†
iα

Ĥi
loc[c†

iα, ciα]

Quantum-embedding 
formulation

Impurity i Bath i

c†
iα b†

ia

(α = 1,..,νi)

(a = νi+1,..,Bνi)

2νi × 2Bνi



1. Definition of approximations (GA and G. constraints). 


2. Evaluation of  in terms of .


3. Definition of slave-boson (SB) amplitudes.

4. Mapping from SB amplitudes to embedding states.

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λ̂i}, |Ψ0⟩

Necessary steps:



2νi × 2Bνi

|ΨG⟩

|Ψ0⟩

Auxiliary 
space

Physical 
space

,̂G

 can be treated only numerically in general:|ΨG⟩

Our goal is to minimize   
w.r.t.  

⟨Ψ0 |,̂†
GĤ,̂G |Ψ0⟩{Λ̂i}, |Ψ0⟩

Wick’s theorem:   ⟨Ψ0 |c†
ac†

b cccd |Ψ0⟩ = ⟨Ψ0 |c†
acd |Ψ0⟩⟨Ψ0 |c†

b cc |Ψ0⟩ − ⟨Ψ0 |c†
acc |Ψ0⟩⟨Ψ0 |c†

b cd |Ψ0⟩



Gutzwiller approximation:
We will exploit simplifications that become exact in the limit of -coordination lattices. 
In this sense, the GA is a variational approximation to DMFT.

∞

Evaluating   ⟨ΨG | Ĥ |ΨG⟩ = ⟨Ψ0 |,̂†
GĤ,̂G |Ψ0⟩

Gutzwiller constraints:
⟨Ψ0 |,̂†

i ,̂i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1
⟨Ψ0 |,̂†

i ,̂i f †
ia fib |Ψ0⟩ = ⟨Ψ0 | f †

ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

Wick’s theorem:   ⟨Ψ0 |c†
ac†

b cccd |Ψ0⟩ = ⟨Ψ0 |c†
acd |Ψ0⟩⟨Ψ0 |c†

b cc |Ψ0⟩ − ⟨Ψ0 |c†
acc |Ψ0⟩⟨Ψ0 |c†

b cd |Ψ0⟩



Gutzwiller constraints:

Key consequence:
⟨Ψ0 |,̂†

i ,̂i f †
ia fib |Ψ0⟩ = ⟨Ψ0 |,̂†

i ,̂i |Ψ0⟩⟨Ψ0 | f †
ia fib |Ψ0⟩

+⟨Ψ0 |[,̂†
i ,̂i ] f †

ia fib |Ψ0⟩2−legs

⟨Ψ0 |,̂†
i ,̂i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

⟨Ψ0 |,̂†
i ,̂i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1 ,̂Gc†

iα

f †
ia



Gutzwiller constraints:

Key consequence:

⟨Ψ0 |,̂†
i ,̂i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

⟨Ψ0 |,̂†
i ,̂i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩

+⟨Ψ0 |[,̂†
i ,̂i ] f †

ia fib |Ψ0⟩2−legs

⟨Ψ0 |,̂†
i ,̂i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1 ,̂Gc†

iα

f †
ia



Gutzwiller constraints:

Key consequence:

⟨Ψ0 |,̂†
i ,̂i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

⟨Ψ0 |,̂†
i ,̂i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |[,̂†
i ,̂i ] f†

ia fib |Ψ0⟩2−legs = 0 ∀ a, b

,̂Gc†
iα

f †
ia



Gutzwiller constraints:

Key consequence:

⟨Ψ0 |,̂†
i ,̂i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

⟨Ψ0 |,̂†
i ,̂i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

( If    such that  
non degenerate )

[Δi]ab := ⟨Ψ0 | f †
ia fib |Ψ0⟩ Δi(1 − Δi)

⟨Ψ0 |[,̂†
i ,̂i ] ⋯ |Ψ0⟩2−legs = 0 ∀ a, b

,̂Gc†
iα

f †
ia



Necessary steps:

1. Definition of approximations (GA and G. constraints). 


2. Evaluation of  in terms of .


3. Definition of slave-boson (SB) amplitudes.

4. Mapping from SB amplitudes to embedding states.

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λ̂i}, |Ψ0⟩



The Hamiltonian: tij

(α = 1,..,νi)

c†
iα

Ĥi
loc[c†

iα, ciα]

•      :                   Indices of the fragments of the lattice. 

•      :   Local operator on fragment  

•      :                 Indices of Fermionic modes within each fragment. 
•     :               Matrix elements of the hopping term.

i, j
Ĥi

loc[c†
iα, ciα] i

α, β
[tij]αβ

Ĥ =
)

∑
i=1

Ĥi
loc[c†

iα, ciα] + ∑
i≠j

νi

∑
α=1

νj

∑
β=1

[tij]αβ c†
iαcjβ



⟨ΨG | Ĥi
loc |ΨG⟩ = ⟨Ψ0 |(

)

∏
k=1

,̂†
k) Ĥi

loc (
)

∏
k=1

,̂k) |Ψ0⟩

= ⟨Ψ0 | ∏
k≠i

,̂†
k,̂k (,̂†

i Ĥ
i
loc,̂i) |Ψ0⟩

= ⟨Ψ0 |(,̂†
k,̂k) ∏

k′ ≠i,k
,̂†

k′ 

,̂k′ (,̂†
i Ĥ

i
loc,̂i) |Ψ0⟩

Local operators:



⟨Ψ0 |(,̂†
k,̂k) ∏

k′ ≠i,k
,̂†

k′ 

,̂k′ (,̂†
i Ĥ

i
loc,̂i) |Ψ0⟩

= ⟨Ψ0 |(,̂†
k,̂k) |Ψ0⟩ × ⟨Ψ0 | ∏

k′ ≠i,k
,̂†

k′ 

,̂k′ (,̂†
i Ĥ

i
loc,̂i) |Ψ0⟩

(G. constraints)

{= 1

Local operators: (disconnected terms)



= ⟨Ψ0 |(,̂†
k,̂k) |Ψ0⟩ × ⟨Ψ0 | ∏

k′ ≠i,k
,̂†

k′ 

,̂k′ (,̂†
i Ĥ

i
loc,̂i) |Ψ0⟩

= ⟨Ψ0 | ∏
k′ ≠i,k

,̂†
k′ 

,̂k′ (,̂†
i Ĥ

i
loc,̂i) |Ψ0⟩

Local operators: (disconnected terms)

⟨Ψ0 |(,̂†
k,̂k) ∏

k′ ≠i,k
,̂†

k′ 

,̂k′ (,̂†
i Ĥ

i
loc,̂i) |Ψ0⟩



Local operators: (connected terms 2 legs)

= 0

(G. constraints)

⟨Ψ0 |(,̂†
k,̂k) ∏

k′ ≠i,k
,̂†

k′ 

,̂k′ (,̂†
i Ĥ

i
loc,̂i) |Ψ0⟩

⟨Ψ0 |[,̂†
i ,̂i ] ⋯ |Ψ0⟩2−legs = 0 ∀ a, b



Local operators: (connected terms >2 legs)

= 0

(G. Approximation)

⟨Ψ0 |(,̂†
k,̂k) ∏

k′ ≠i,k
,̂†

k′ 

,̂k′ (,̂†
i Ĥ

i
loc,̂i) |Ψ0⟩

( Exact in limit of  dimension )∞



⟨ΨG | Ĥi
loc |ΨG⟩ = ⟨Ψ0 |(,̂†

k,̂k) ∏
k′ ≠i,k

,̂†
k′ 

,̂k′ (,̂†
i Ĥ

i
loc,̂i) |Ψ0⟩

≈ ⟨Ψ0 | ∏
k′ ≠i,k

,̂†
k′ 

,̂k′ (,̂†
i Ĥ

i
loc,̂i) |Ψ0⟩

Local operators:

≈ ⟨Ψ0 |,̂†
i Ĥ

i
loc,̂i |Ψ0⟩

(GA and G. constraints)



The Hamiltonian: tij

(α = 1,..,νi)

c†
iα

Ĥi
loc[c†

iα, ciα]

•      :                   Indices of the fragments of the lattice. 

•      :   Local operator on fragment  

•      :                 Indices of Fermionic modes within each fragment. 
•     :               Matrix elements of the hopping term.

i, j
Ĥi

loc[c†
iα, ciα] i

α, β
[tij]αβ

Ĥ =
)

∑
i=1

Ĥi
loc[c†

iα, ciα] + ∑
i≠j

νi

∑
α=1

νj

∑
β=1

[tij]αβ c†
iαcjβ



⟨ΨG |c†
iαcjβ |ΨG⟩ = ⟨Ψ0 |(

)

∏
k=1

,̂†
k) c†

iαcjβ (
)

∏
k=1

,̂k) |Ψ0⟩

= ⟨Ψ0 | ∏
k≠i,j

,̂†
k,̂k (,̂†

i c
†
iα,̂i) (,̂†

j cjβ,̂j) |Ψ0⟩

Non-Local 1-body operators, i.e., :i ≠ j

≈ ⟨Ψ0 |(,̂†
i c

†
iα,̂i) (,̂†

j cjβ,̂j) |Ψ0⟩(GA and G. constraints)



Non-local 1-body operators, i.e., :i ≠ j

⟨ΨG | Ĥi
loc |ΨG⟩ ≈ ⟨Ψ0 |,̂†

i Ĥ
i
loc,̂i |Ψ0⟩

Local operators:

⟨ΨG |c†
iαcjβ |ΨG⟩ ≈ ⟨Ψ0 |(,̂†

i c
†
iα,̂i) (,̂†

j cjβ,̂j) |Ψ0⟩



⟨ΨG |c†
iαcjβ |ΨG⟩ ≈ ⟨Ψ0 |(,̂†

i c
†
iα,̂i) (,̂†

j cjβ,̂j) |Ψ0⟩

⟨Ψ0 |,̂†
i c

†
iα,̂i fia |Ψ0⟩ =

Bνi

∑
b=1

[ℛi]bα⟨Ψ0 | f †
ib fia |Ψ0⟩

Where  is determined by:ℛi

=
Bνi

∑
a=1

Bνj

∑
b=1

⟨Ψ0 |([ℛi]aα f†
ia) ([ℛj]†

βb fjb) |Ψ0⟩

,̂G

c†
iα

f †
ia

Non-Local 1-body operators, i.e., :i ≠ j



Non-local quadratic operators:

,̂†
i c

†
iα,̂i → ∑

a
[ℛi]aα f†

ia

,̂i =
2νi−1

∑
Γ=0

2Bνi−1

∑
n=0

[Λ̂i]Γn |Γ, i⟩⟨n, i |

|Γ, i⟩ = [c†
i1]

q1(Γ)…[c†
iqνi

]qνi(Γ) |0⟩

|n, i⟩ = [ f †
i1]

q1(Γ)…[ f †
iqBνi

]qBνi(Γ) |0⟩

f †
ia

Auxiliary 
space

c†
iα

Physical 
space

,̂G



Variational energy:

ℰ =
)

∑
i,j=1

Bνi

∑
a,b=1

[ℛitijℛ†
j ]ab

⟨Ψ0 | f †
ia fjb |Ψ0⟩ +

)

∑
i=1

⟨Ψ0 |,̂†
i Ĥi

loc[c†
iα, ciα] ,̂i |Ψ0⟩

⟨Ψ0 |,̂†
i c

†
iα,̂i fia |Ψ0⟩ =

Bνi

∑
b=1

[ℛi]bα⟨Ψ0 | f †
ib fia |Ψ0⟩Where:

⟨Ψ0 |,̂†
i ,̂i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |,̂†
i ,̂i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

Ĥ =
)

∑
i=1

Ĥi
loc[c†

iα, ciα] +
νi

∑
α=1

νj

∑
β=1

[tij]αβ c†
iαcjβ

{



1. Definition of approximations (GA and G. constraints). 


2. Evaluation of  in terms of .


3. Definition of slave-boson (SB) amplitudes.

4. Mapping from SB amplitudes to embedding states.

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λ̂i}, |Ψ0⟩

Necessary steps:



Variational energy:

ℰ =
)

∑
i,j=1

Bνi

∑
a,b=1

[ℛitijℛ†
j ]ab

⟨Ψ0 | f †
ia fjb |Ψ0⟩ +

)

∑
i=1

⟨Ψ0 |,̂†
i Ĥi

loc[c†
iα, ciα] ,̂i |Ψ0⟩

⟨Ψ0 |,̂†
i c

†
iα,̂i fia |Ψ0⟩ =

Bνi

∑
b=1

[ℛi]bα ⟨Ψ0 | f †
ib fia |Ψ0⟩Where:

⟨Ψ0 |,̂†
i ,̂i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |,̂†
i ,̂i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}{



Where:

[Fiα]ΓΓ′ 
= ⟨Γ, i |ciα |Γ′ , i⟩

[F̃ia]nn′ 
= ⟨n, i | fia |n′ , i⟩

⟨Ψ0 |,̂†
i c

†
iα,̂i fia |Ψ0⟩ = Tr[P0

i Λ̂†
i F

†
iαΛ̂i F̃ia] =

Bνi

∑
b=1

[ℛi]bα [Δi]ba

⟨Ψ0 |,̂†
i ,̂i |Ψ0⟩ = Tr[P0

i Λ̂†
i Λ̂i ] = 1

⟨Ψ0 |,̂†
i ,̂i f †

ia fib |Ψ0⟩ = Tr [P0
i Λ̂†

i Λ̂iF̃†
iaF̃ib] = ⟨Ψ0 | f †

ia fib |Ψ0⟩ =: [Δi]ab

⟨Ψ0 |,̂†
i Ĥi

loc[c†
iα, ciα] ,̂i |Ψ0⟩ = Tr[P0

i Λ̂†
i Ĥ

i
loc[F†

iα, Fiα]Λ̂i ]

,̂i =
2νi−1

∑
Γ=0

2Bνi−1

∑
n=0

[Λ̂i]Γn |Γ, i⟩⟨n, i |

|Γ, i⟩ = [c†
i1]

q1(Γ)…[c†
iqνi

]qνi(Γ) |0⟩

|n, i⟩ = [ f †
i1]

q1(Γ)…[ f †
iqBνi

]qBνi(Γ) |0⟩

P0
i ∝ exp −

Bνi

∑
a,b=1 [ln ( 1 − ΔT

i

ΔT
i )]

ab

F̃†
iaF̃ib



P0
i ∝ exp −

Bνi

∑
a,b=1 [ln ( 1 − ΔT

i

ΔT
i )]

ab

F̃†
iaF̃ib

Matrix of SB amplitudes:

ϕi = Λ̂i P0
i

⟨Ψ0 |,̂†
i c

†
iα,̂i fia |Ψ0⟩ = Tr[P0

i Λ̂†
i F

†
iαΛ̂i F̃ia] =

Bνi

∑
b=1

[ℛi]bα [Δi]ba

⟨Ψ0 |,̂†
i ,̂i |Ψ0⟩ = Tr[P0

i Λ̂†
i Λ̂i ] = 1

⟨Ψ0 |,̂†
i ,̂i f †

ia fib |Ψ0⟩ = Tr [P0
i Λ̂†

i Λ̂iF̃†
iaF̃ib] = ⟨Ψ0 | f †

ia fib |Ψ0⟩ =: [Δi]ab

⟨Ψ0 |,̂†
i Ĥi

loc[c†
iα, ciα] ,̂i |Ψ0⟩ = Tr[P0

i Λ̂†
i Ĥ

i
loc[F†

iα, Fiα]Λ̂i ]



⟨Ψ0 |,̂†
i ,̂i |Ψ0⟩ = Tr [ϕ†

i ϕi] = 1

⟨Ψ0 |,̂†
i ,̂i f †

ia fib |Ψ0⟩ = Tr [ϕ†
i ϕiF̃†

iaF̃ib] = ⟨Ψ0 | f †
ia fib |Ψ0⟩ =: [Δi]ab

Tr [ϕ†
i F†

iαϕiF̃ia] =
Bνi

∑
c=1

[ℛi]cα [Δi(1 − Δi)]
1
2
ca

⟨Ψ0 |,̂†
i Ĥi

loc[c†
iα, ciα] ,̂i |Ψ0⟩ = Tr [ϕiϕ†

i Ĥi
loc[F†

iα, Fiα]]

Matrix of SB amplitudes:

ϕi = Λ̂i P0
i[Fiα]ΓΓ′ 

= ⟨Γ, i |ciα |Γ′ , i⟩
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Variational energy:
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[ℛitijℛ†
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i F†
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Tr [ϕ†
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i ϕiF̃†

iaF̃ib] = ⟨Ψ0 | f †
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Ĥi
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iα, ciα] + ∑
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νi

∑
α=1

νj

∑
β=1

[tij]αβ c†
iαcjβ
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5. Lagrange formulation of the optimization problem.
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If  eigenstate of number operator: |ΨG⟩



Tr[ϕ†
i ϕi F†

iaFib] = ⟨Φi |bibb
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∑
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∑
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Lagrange function:
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∑
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∑
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∑
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∑
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{

Lagrange equations:
Self-

consistency

c†
iα b†

ia'i

Λc
i

Ĥi
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Summary steps done
1. Definition of approximations (GA and G. constraints). 


2. Evaluation of  in terms of .


3. Definition of slave-boson (SB) amplitudes.

4. Mapping from SB amplitudes to embedding states.

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λ̂i}, |Ψ0⟩



Self-consistency

tij

(α = 1,..,νi)

c†
iα

Ĥi
loc[c†

iα, ciα]

Quantum-embedding 
formulation

2νi × 2Bνi

Impurity i Bath i

c†
iα b†

ia

Λc
i(α = 1,..,νi)

(a = νi+1,..,Bνi)

[Λ̂i]Γn ⟷ |Φi⟩
2νi × 2Bνi 2νi × 2Bνi



Outline
A.  Quantum Embedding (QE) methods. 

B.  gGA method (multi-orbital models): QE formulation. 

   Supplementary topics:  
   - Spectral properties  
   - Examples of applications. 
   - Recent formalism extensions and open problems.



|ΨG⟩ = , |Ψ0⟩
|Ψn

G⟩ = , ξ†
n |Ψ0⟩

Spectral properties

Aiα,jβ(ω) = ⟨ΨG |ciα δ(ω − Ĥ) c†
jβ |ΨG⟩ + ⟨ΨG |c†

jβ δ(ω + Ĥ) ciα |ΨG⟩

Ground state:

Excited states:



|ΨG⟩ = , |Ψ0⟩Ground state:

Excited states: |Ψn
G⟩ = , ξ†

n |Ψ0⟩

A(ω) = ∫
∞

−∞
dϵ

A(ω)
ω − ϵ

≃ ℛ† 1
ω − [ℛtℛ† + Λ] ℛ =: 1

ω − tloc − Σ(ω)

Spectral properties

Aiα,jβ(ω) = ⟨ΨG |ciα δ(ω − Ĥ) c†
jβ |ΨG⟩ + ⟨ΨG |c†

jβ δ(ω + Ĥ) ciα |ΨG⟩
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1 − ℛ†
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ℛ†
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+ [ℛi]−1Λi[ℛ†
i ]−1

Spectral properties

Aiα,jβ(ω) = ⟨ΨG |ciα δ(ω − Ĥ) c†
jβ |ΨG⟩ + ⟨ΨG |c†

jβ δ(ω + Ĥ) ciα |ΨG⟩

|Ψn
G⟩ = , ξ†

n |Ψ0⟩
Ground state:

Excited states:
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Example: phase diagram of Pu
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FIG. 2. Evolution of (top) total energy, (middle) local double
occupancy, and (bottom) QP weight as a function of the Hubbard
interaction strength U for the single-band Hubbard model with
semicircular DOS at half-filling. The ghost-GA results are shown
in comparison with the ordinary GA and with DMFT+NRG. The
ghost-GA boundaries of the coexistence region Uc1,Uc2 are indicated
by vertical dotted lines. Inset: Integral of ghost-GA local spectral
weight over all frequencies (see discussion in main text).

in comparison with the ordinary GA theory and with DMFT
in combination with numerical renormalization group (NRG).
In particular, we employed the “NRG Ljubljana” impurity
solver [26].

The agreement between ghost-GA and DMFT is quantita-
tively remarkable. In particular, the ghost-GA theory enables
us to account for the coexistence region of the Mott and
metallic phases, which is not captured by the ordinary GA
theory. The values of the boundaries of the coexistence region
Uc1 ! 2, Uc2 ! 2.88 are in good agreement with the DMFT
results available in the literature [27–30], i.e., Uc1 ! 2.39,
Uc2 ! 2.94. The ghost-GA value of Uc2, which is the actual
Mott transition point at T = 0, is particularly accurate. The
method also gives a reasonable value for the very small energy
scale characterizing the coexistence region, which we can
estimate as Tc ! Eins(Uc1) − Emet(Uc1) ! 0.02, consistently
with both DMFT and experiments [31,32]. We point out also
that, as shown in the second panel of Fig. 2, the ghost-
GA approach captures the charge fluctuations in the Mott
phase, while this is approximated by the simple atomic limit
(which has zero double occupancy) within the Brinkman-Rice
scenario [33].

Interestingly, while at least two ghost orbitals are necessary
to obtain the data illustrated above for the metallic solution, one
ghost orbital is sufficient to obtain our results concerning the

FIG. 3. Poles of the ghost-GA energy-resolved Green’s function
(bullets), see Eq. (6), in comparison with DMFT+NRG. The size of
the bullets indicates the spectral weights of the corresponding poles.
Metallic solution for U = 1, 2.5 and Mott solution for U = 3.5, 5.

Mott phase. Increasing further the number of ghost orbitals
does not lead to any appreciable difference [11]. As we are
going to show, this is connected with the fact that the electronic
structures of the Mott and the metallic phases are topologically
distinct.

Let us now analyze the ghost-GA single-particle Green’s
function G(ε,ω), see Eq. (6). In Fig. 3 is shown the ghost-GA
energy-resolved spectral function A(ε,ω) = − 1

π
ImG(ε,ω) in

comparison with DMFT [34]. Although the broadening of the
bands (scattering rate), is not captured by our approximation
(as it is not captured by the ordinary GA), the positions
and the weights of the poles of the ghost-GA spectral
function encode most of the DMFT features, not only at low
energies (QP excitations), but also at high energies (Hubbard
bands). In order to analyze how the spectral properties of the
system emerge within the ghost-GA theory, it is particularly
convenient to express the QP Hamiltonian [Eq. (5)] in a gauge
where λ̃ is diagonal [35].

In the metallic phase, an explicit ghost-GA calculation
obtained employing two ghost orbitals shows that the matrices
R̃ and λ̃ are represented as follows:

λ̃ij = l δij (δ2i − δ3i) (7)

R̃ij = δj1(
√

z δi1 +
√

h (δi2 + δi3)/
√

2), (8)

where δij is the Kronecker delta, and l, z and h are real
positive numbers determined numerically as in Ref. [19]. The
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going to show, this is connected with the fact that the electronic
structures of the Mott and the metallic phases are topologically
distinct.
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comparison with DMFT [34]. Although the broadening of the
bands (scattering rate), is not captured by our approximation
(as it is not captured by the ordinary GA), the positions
and the weights of the poles of the ghost-GA spectral
function encode most of the DMFT features, not only at low
energies (QP excitations), but also at high energies (Hubbard
bands). In order to analyze how the spectral properties of the
system emerge within the ghost-GA theory, it is particularly
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Analytical (approximate) 
expression for self-energy 

Benchmark calculations ALM:



Our goal is to extremize w.r.t. : {Λi}, |Ψ0⟩

S = ∫
tf

ti
dt ⟨ΨG(t) | i∂t − Ĥ |ΨG(t)⟩

Time-dependent gGA








