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History

Different types of solvers for different applications

based on weak-coupling expansion

bas‘ed on Hubbard—Stratonovich weak-coupling CT-QMC (2005)
mainly for lattice problems Rubtsov, Lichtenstein, ...

BSS algorithm (1981)
Blankenbecler, Scalapino, Sugar

inchworm algorithm (2015)
Cohen, Gull, Millis, Reichman

noneq. DMFT

bnictides

based on resummed propagators

Hirsch-Fye algorithm (1986
e A5 ( ) mainly for real-time simulations

Hirsch, Fye

based on Hubbard-Stratonovich  gtrong-coupling CT-QMC (2006)
mainly for impurity problems Werner, Troyer, Millis . ..

based on hybridization expansion
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Hamiltonian formulation Z = Tr;'1r. [6_51{]

Single-orbital Anderson impurity model

H = Hloc -+ Hbath -+ Hmix ‘
N ‘\' o .®
/! t N O & Ep
correlated noninteracting  hybridization “\\_: %’ O
impurity electron bath (mixing) term o
o ¢ Ve
O
Hloc = Hu+ Hy Hpan = Z EPCZJEU Cpo
Hy, = —p(ng +ny) P
L — f * AT
Hy = Unyn, Huix = D [V dipo + Vischod ]

po



Action formulation Z = Try [7-6—5]

Single-orbital Anderson impurity model

S = Sloc + Smix noninteracting bath is
/ \ integrated out and A, (7-)
replaced by the
correlated hybridization hybridization function
impurity (mixing) term

B
S = Z/O deT’dj‘,(T’)A"(T’ — 7)dy(T)

Sloc = /05 dT{ — pu(n4 (1) +ny (7)) + UTLT(T)R¢(T)}

. VA ’2 FT
definition of o _ ‘ po o1
hybridization function A (an) Z Wy, — Ep — A (T T)
p
relation to noninteracting [go‘]—l (iw ) — ity 4 — A° (iw )
0 n) — n n

impurity Green’s function



Continuous-time QMC

General formalism
Main objective: calculate the impurity Green’s function

G(r) = —(Td(r)d"(0))

Strategy:
ZZEwC 01%02%03%“'
C
express partition sum as a implement a random walk such that
sum over configurations ergodicity and detailed balance are satisfied

! !

all configurations accessible in  assures that configurations are

a finite number of steps visited with a probability
proportional to their weight
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General formalism
CT-QMC configurations and weights

(i) split impurity Hamiltonian into two parts
H = H{ + H>

(i) switch to an interaction representation where the time evolution is given by H

O(t) = e Oe™™h 7 = Tr[e PHT e Jy drHa(r)]

(iii) expand time ordered exponential into a power series

> 5 s
2= [ [ anme[e oy
n=0 Tn—1

“ .. 6_(7'2—7'1)H1 (_H2)6_71H1j|



General formalism
CT-QMC configurations and weights

(i) split impurity Hamiltonian into two parts

H = H{ + H5
(i) switch to an interaction representation where the time evolution is given by H
O(1) = ™ Qe ™ 7 = Tr[e PHT e Jy drHa(r)]

(iii) expand time ordered exponential into a power series

. B 5
7 = Z/O dry - - / | dr, Tr [e_(ﬁ_Tn)Hl(—HQ)
n=0 Tn—

“ .. 6_(7'2—7'1)1{1 (_H2)€—7'1H1}

— [ = g W representation of the partition sum

C as a sum over configurations



General formalism
CT-QMC configurations and weights

configurations are collections of time-points on the imaginary-time interval
C=A{n,...,7m},n=0,1,...
with weight

we = Ir {6_(5_7”)111(_[—[2) . 6_(72—71)H1(_H2)6—7'1H1} (d’]‘)n



Questions about the general
formalism!?



Formalism

Conﬁgu rations and weights boints represent interaction vertices
Hy = Hypy ———0— 0
Uniny - -

Hl — H_HQ — Hu+Hbath_|_HmiX

1
% = (—UdT)”?Tr [e_(ﬁ_m)mmm a 6_(T2_71)H17ZT71¢6_71H1}
0 0

= (—Udr)" | [ det 0!
H/ quadratic in the | Mg_l]z-j = GJ (1 — 7;)
fermionic operators
GS (1) = —Trle P17 d(T)d(0)]/Z,
Z() — T]T[G_BHl]



Formalism

Confi gurations and weights boints represent interaction vertices

Hy = Hy ———0—0——

Hl — H_H2 — H,u_I_Hbath_l_HmiX

1
% = (—UdT)”Z)Tr [e_(ﬁ_m)mmm

= (—Udr)" | [ det M, «—u

H ) quadratic in the
fermionic operators




Formalism
Conﬁgu rations and weights boints represent interaction vertices
H2 — HU —‘_‘—‘—
UnTn\l/ o o o
Hl = H — H2 — H,u_I_Hbath_l_HmiX
w 1
¢ _ (—Udr)"—=Tr [e_(ﬁ_m)mmm - o-e_(TQ_Tl)HlnTme_ﬁHl}
Zs Zs

(~Udr)" | [ det Az,

/ 0
sign problem
for repulsive U?
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Formalism

Avoid sign problem by shifting chemical potential for spin-up/down

ZH o — (S g(nT+n¢)—l—U[(%—l—5)2—ﬂ

absorb this term into a absorb this term into a irrelevant constant
shift of chemical potential  shift of chemical potential

GOl = dwn +p— A
S (GO = iw, + p— U — A

Q,(S) = ! + (73(1

2 T2

Ising variable  constant

+9)



Formalism

Configurations in the expanded sampling space

C={(r,81),(12,82), ..., (Tn, Sn)}

the sign problem?

Wo = Z()(—UdT/Z)n H det Ma—l why does this solve

~

(MY = G5 (1 — 75) — ()05

1

(745 83 )
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Formalism

Absence of sign problem Q—Q—Q—.—

By mapping the impurity problem to a chain one can show that the weights can be expressed as
we = Tr [e_(ﬁ_Tn)HOA(sn)e_(T”_T”—l)HOA(sn_l) . }

with time evolution operators represented by matrices with only positive elements

Also the matrix
A(s) = (~Udr/2) [ng — 1/2 — s(1/2 + 8)] [n] — 1/2 + s(1/2 + §)]
has only non-negative elements for U, > 0

s=1: (=Udr/2)(ny —1—96)(n, +9)
—————— — o —
<0 <0 >0

s=—1: (=Udr/2)(ny+9)(n, —1—9)
h/—/‘ s — —
<0 >0 <0
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Monte Carlo updates

Insertion and removal of spins

f V1
e (Y e
H—t
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Monte Carlo updates

Insertion and removal of spins

ergodicity: insert spins with random orientation at random times, and remove randomly selected spins

detailed balance:

w(C)p(C — C") = w(C")p(C" = C)

p(C N C/) _ pprop(C N C/) paCC(C N C,) split transition probability into

proposal | acceptance probability

Metropolis-Hastings algorithm:
p(C = C") = min[1, R(C' — ")

w(C)pr(C" = C)
w(C)pror(C — ')

R(C — C') =



Monte Carlo updates

Insertion and removal of spins

insertion: insert spins with random orientation at random times
P P(n —n+1) = L(dr/p)

removal: pick a random spin
PPPn+1—-n)=1/(n+1)
Metropolis-Hastings algorithm

pacc(n s n+ 1) — Injn[l7 Rinsert(n — N+ 1)]

—B8U 1 det[ MM

S § IO

o)

acceptance probability for removal follows from

7zremove(n +1— TL) — 1/Rinsert(n — N+ 1)
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Monte Carlo updates

Determinant ratios and fast matrix updates

acceptance probability requires calculation of determinant ratios: do updates scale O(n3)?

can be evaluated more efficiently, since we only change one row/column of the matrix

note: in the program, we store and manipulate the matrix M, = [GS]™* not M L= [g7]

insertion: assume that we insert the new row/column at the border of the matrix

- M(n) —1
M(n—l—l) _ g — [M(n—I-l)]—l _ [ ] g

P
R R

needed easy to compute



Monte Carlo updates

Determinant ratios and fast matrix updates

using the expression for the determinant ratio of a block matrix and the block inversion of a matrix
one finds

det [M(n-l-l)]—l

e det(S — RM™Q) =S — RM™Q

needed for the acceptance
probability

= (S—[R][M™Q])™

_ [ M) Q] 5* needed for the updated
matrix M ("1

= —S[RM™]

= M™ 4+ [M™Q]S[RM™)

T T L U
|

all operations are O(n?)
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Monte Carlo updates

Determinant ratios and fast matrix updates

in the case of the removal update:

det[M™]~t
det[M(n—l—l)]—l o
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Measurement of the Green’s function G = ), wcGc/Z
Use Wick’s theorem and the formula for determinant ratios

insert creation / annihilation operators

d, dl = wledo

v v
we = Tr|e™ P () .. e~ (i )e=n H (dr )"
contribution to the Green’s function G'¢x = wg 2 ° Jwe
GL(r) = Gi(r) =D _G3(r—m) ) _[Mo]uds(n)

k [
after Fourier transformation, we get the measurement formula
- o/ 1 o/ Wn (T —T
G (iwy) = Gg (iwn) — E(go (iwn))® ( ) e M,
kl MC

this formula automatically produces the correct high-frequency tail ~ 1/(iwy,)



Questions about weak-coupling
CT-QMC?



Formalism

Configurations and weights

Hmix
H — H2 — H,u + HU + Hba,th — Hloc ‘|‘Hbath

oy + HY = D e VoodbCpu > Vil d

o~ po po ' po po a
only even expansion orders (same number of creation/annihilation operators) contribute

Z/ dry - - / dTn/ dr! - - / dr’

—1

AT ()1 7)) B )

. / . . . .
{7' LyeveyTmyTyyeey T, n} configurations are collections of time-points
for creation and annihilation operators



Formalism

Configurations and weights

if I conserves spin: same number of creation and annihilation operators for each spin

insert explicit expressions for hybridization operators and separate impurity from bath operators

B B B B
7 = Zi. Z H/ dry - - / dry / dri’ .. / dr,’
{ 0 T 0 T

o lo

< Trgle T [T do (7 ) (777) - do ()l (1)

9 1 Trc{e—ﬁHbathTH Z Z %ﬁa‘/p;a“'%iaa%gaa

Zbath P R
-Png PP,

heoo (T2 ) o (T10) b (7)o (1)



Formalism

Configurations and weights

the trace over the bath states can be simplified by introducing the hybridization function

; Voo |? —e =) 0 <7< f
A(r) = —1F

- ecrP +1 | e~er7 —0<1<0

1 Trc{e—ﬁHbathTH Z Z VoroVoro = Vo oV &

Zbath o DPLeDrs D
--Png P1.-Pp,

o (T0) o (1) < by (T )y o (17| = T det A,

Wick theorem for the

—1 /O . :
[ M ]ij — AU (7'. — 7'(.7) matrix elements are given by (noninteracting) bath

hybridization functions



Formalism

Configurations and weights
C={r,.. TJT, L ,TQT\Tl, 7'7%, AT ,T,’Lﬁ}

we = L Tea|e o T [T do(r )dl(7i0) -+ do (7Yl (7))

X H det M (dr)*™

density-density interaction: can represent the local weight using “segment configurations™




Formalism
Configurations and weights

C={r,.. TET,TlT, . ,TQT\Tf, . Ti¢,71¢, T
we = L Tea|e o T [T do(r )dl(7i0) -+ do (7Yl (7))

X H det M (dr)*™

density-density interaction: can represent the local weight using “segment configurations™

dT* fd

O_ — N . O
interaction contribution
o =] ——) —
0 * ? chemical potential 3
contribution



Formalism
Configurations and weights

C={r,  .,mh.m ..o,

nT7

We = Lbath 114 [6_5 HIOCTH do (T, )dj;

X H det M (dr)*™

density-density interaction: can represent the local weight using “segment configurations™

dT*

ta

@ummmm)—

interaction contribution

e

?

chemical potential
contribution

B



Monte Carlo updates

Local updates in the segment formalism

Tr, [e—ﬁﬂwcTH d, (1S )di (/%) -+ - do (77 )diﬂ(T{">]
=S exXp [,U(ZT =+ li) — Uloverlap]

@uumm)—

) e
0 5

remove < > insert

lmax
_)—_)—
* new '
) Ommmee———

0 Sl 5

Y loverlap

ergodicity: enough to insert/remove random segments for spin up and down



Monte Carlo updates

Detailed balance

insertion: removal:

(i) chose random time for creation operator randomly pick a segment
if it falls on a segment: reject move
otherwise: calculate distance to the next operator

(i) choose annihilation operator randomly in the
corresponding interval

dr dr 1
PP (. 1) = PP (4] s p) =
P (e =g+ 1) = 51— P + 1= no) = -
@) —
) $mmmeeee————
0 &
remove < > insert
jlmm : R




Monte Carlo updates

Detailed balance

acceptance probability for the insertion of a segment

pacc(na — Ny -+ 1) — min[la Rinseﬂ(nﬂ — Ng + 1)]

(nc‘l‘l) —1
ﬁlmax eﬂlneW_U(Sloverlap det [MU :|

7zinse (na — Ng T 1) — —
" ne + 1 det [MS")]7

acceptance probability for removal obtained from

7zlremove(ncr +1— na) — 1/Rinsert(n0 — Ng T 1)
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Measurement of the Green’s function

Cannot use Wick’s theorem

weight of configuration with additional
creation and annihilation operators in Ir

1 ¢az<r>aﬁ<o> L~ cowe "
G(r) === > wi"" " = -2 "wfV =
4 C 4 C T Wer

complete weight of configuration with additional
creation and annihilation operators
(including enlarged determinant)

identical trace factors in both weights

wgﬁ)d*(m - (—1)7*7 det [ Mc] —1

wg 0 et [M ((;’O)} !

= [M57]

J1

i and j are the row/column corresponding to
the extra creation/annihilation operator
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Measurement of the Green’s function

Cannot use Wick’s theorem

with this, the measurement formula becomes

1 / 0.5 0.6 0.7 0.8 0.9 1
G(T) = ( — E —o(7,7; — 73) M;; R S —
— \%qr ++ ......... S }
’L] MC 0.4 F \ + e
R, pt=400 —— |
0.3 | s pt=200 -~
. = Ry " pt=31.4 -
or in frequency space 5 N B=200
' R o
02} o " |
**t\$q:*+++ 0.01
//////// } +
( / ) 0.1 N +++++++++++~
G(iw,) = E i M;;
0 —— L : 0.001
0 0.001 0.002 0.003 0.004 0.005

MC /B

note that this formula does not guarantee the correct high-frequency behavior ~ 1/(iw,,)
(need improved estimators)
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Absence of sign problem Uy 4 —t,

Use again the chain basis: - "— —
—HY = Vebe,, —H?

mix mix

— VCJ{CO (co d)
wWeo = TI' |:€_(ﬁ_7_n)(Hloc+Hbath)

(_HdJr ) o (_Hd )6_(72_71)(H100+Hbath) (dT)zn

mix mix

V' > 0 : mixing terms are positive

Hoc has only diagonal elements

can choose chain basis such that Hy i1, has only negative off-diagonal elements

. T N
G_T(HIOC_I_Hbath) = lim (1 — — [Hloc -+ Hbath] ) also positive
N —00 N
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General impurity models

Matrix formalism

if Hioc is not diagonal in the occupation number basis, the calculation of the trace becomes costly

Trg e # Moo [ dalr )l (ri2) - - dy(ri)dL (1)

in the matrix formalism, we use the eigenbasis of the time evolution operator e~ MocT

in this basis, the creation/annihilation operators d., d,, are however non-diagonal

important: use of conserved quantum numbers, such as particle number or spin
example: d$(7’4)d¥(7’3)d¢(7’2)d¢(7’1) (Wlth T < To < T3 < Ty)

{ny=1Ln} = {ny =0;n,} =0
dT dT



Y °
- D . ()1 .u
-
‘. P d

General impurity models

Matrix formalism

having identified the contributing blocks, the trace reduces to block-matrix multiplications

5 T Dbl -] O ],

contrlbutlng

matrix blocks are dense and largest block grows exponentially with number of sites / orbitals

two types of truncation

1. Restriction of the trace )
which give the dominant contribution

contributing 11 Tr,,|. . .| to those quantum number sectors or states

2. Reduction of the size of the operator blocks [O],,..,,» by eliminating high-energy states



Scaling of the algorithms
Average perturbation order

weak-coupling approach: related to the potential energy
H{ = H'u + %U(TLT + n¢) + Hypam + Hpix
HQ = UTLTT% — %U(TLT + ni)

1

B
(~Ha) = / dr (—Hy(7)) =

11 n+1
5Zn0n‘|‘ /dT/ dry - - /dTn

X Tr [ e T (= Ha (7)) (— Ha(7,)) -+ (— Ho(m))|




CT-OMC

Scaling of the algorithms

Average perturbation order

weak-coupling approach: related to the potential energy

<n>weak—coupling — _5Epot + %ﬁU<nT - n¢> ~ 6U



Scaling of the algorithms

Average perturbation order

weak-coupling approach: related to the potential energy
1
<n>weak -coupling — 5Epot + 5U<nT + n¢> ~ 5U

strong-coupling approach: related to the kinetic energy

5
Ekin — Z/() dTGJ(T)AO(_T)
5
Z/o dr <— Z %5(7’, T, — TJ’)[MJ]Z]> A% (—T1)
- Z < Z oli A7(T) — T@)>

Ekin



Scaling of the algorithms

Average perturbation order

weak-coupling approach: related to the potential energy
1
<n>weak—coupling — _5Epot + §ﬁU<nT + n¢> ~ 5U

strong-coupling approach: related to the kinetic energy

Fiyin = — Z %Z[Ma]ijAa(T]/‘ — 7;)

v MC
[Ma]ij — (—1)i+j det Ma_l[j, Z]/ det ]\40_1
*

hybridization matrix with row j and column i removed
1+ —17r: 1 A0 (- _ —1
E (—=1)"" det M, " [7,1] A% (1; — 75) : det M

/ expansion of determinant along column i



Scaling of the algorithms

Average perturbation order

weak-coupling approach: related to the potential energy
1
<n>weak -coupling — 5Epot + 5U<nT + n¢> ~ 5U

strong-coupling approach: related to the kinetic energy

—Z 52 ZJAUT—TZ)

E kin

1 det M1 1
_20: EngtM—l =52 {no)

o)



Scaling of the algorithms

Average perturbation order

weak-coupling approach: related to the potential energy

<n>weak—coupling — _5Epot + %ﬁU<nT - n¢> ~ 6U

strong-coupling approach: related to the kinetic energy

<n>hybridization—expansion —

5Ekin
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Scaling of the algorithms

Average perturbation order

weak-coupling approach: related to the potential energy

<n>weak—coupling — _5Epot + %ﬁU<nT - n¢> ~ 6U

strong-coupling approach: related to the kinetic energy

<n>hybridization—expansion —

computational effort scales as

O({n)")

ﬁEkin

expansion order (n)

100

80 |

60 |

40 r

20

weak coupling expansion —e—
hybridization expansion —@—

Mott
insulator




Scaling of the algorithms

Average perturbation order

weak-coupling approach: related to the potential energy

<n>weak—coupling — _5Epot + %ﬁU<nT - n¢> ~ 6U

strong-coupling approach: related to the kinetic energy

<n>hybridization—expansion —

computational effort scales as

O({n)")

5Ekin

expansion order (n)

100

80 |

60 |

40

20 -:'

weak coupling expansion —e—
hybridization expansion —@—

Hirsch-Fye

Mott
insulator




Scaling of the algorithms

Summary and main applications

Solver Scaling Use

Weak-coupling 33 L’ Impurity clusters with density-
density interaction

Hybridization expansion 33 L Single-site multi-orbital models

(segment formalism) with density-density interaction

Hybridization expansion B exp(L) Single-site multi-orbital models

(matrix/Krylov formalism)

with general Ui

/

if calculation of determinant
ratios dominates overlap
calculation



Questions about
strong-coupling CT-QMC?



Local phonons

Anderson-Holstein model

H = Hloc + Hmix + Hbath

bhonon coupling bhonon frequency

\
Hioe = —pp(ny +ny) + Ungng + g(ng +nyp — 1)(b" +b) + wob'b

written with the phonon position / momentum operators X = (b" 4+ b)/+/2, P = i(b" — b)/v/2

W
Hie = —pu(ns + 1) + Unany 4+ V2g(ns + ny — 1)X + 70 (X% + P?)

Wo O Ay (T)
—\WW—e
U



Local phonons

Anderson-Holstein model

H = Hloc + Hmix + Hbath

pbhonon coupling bhonon frequency

\
Hioe = —pp(ny +ny) + Ungng + g(ng +nyp — 1)(b" +b) + wob'b

written with the phonon position / momentum operators X = (bf 4+ b)/+/2,P = i(b! — b)//2
W
Hloc — —,u(nT + TL¢) + Uﬂfﬂi + \/ig(m -+ n, — I)X -+ 70 (X2 + Pz)

dafter expansion in hybridization

w({OZ(TZ)}) = Tr, 17y [6_5H1°CT02n(TQn) ... 01 (7‘1)} dry...dmo,

< | [(detds;")s,



Local phonons
Calculation of the local trace TryTrp|. . ]

Lang-Firsov transformation decouples electrons and phonons in H,

Hipe = X0 7P X0 Xo = (\@9/6«}0)(% +ny — 1)

Wo
) o= 92/W0

i
(Aj — U—292/w0

Hioe = —ji(fg + 7y) + Uiy, + — (X2 + P?)

electron creation and annihilation operators get dressed (“polaron operators”™)

g —  eiPXo dt e=iPXo ] Gl d

' i — -2 (bT—b
¢PXo g o=iPXo — =g 0'=0) g



Local phonons

Calculation of the local trace TryTrp|. . ]

separate electron and phonon operators: expectation value becomes the product of a term with
only electron operators (analogous to the Anderson impurity model) and a phonon term

w({10i(7) }) = wp(10:(73) } ) wam (1 Oi (i) })

wb({Oz(Tz)}) — <682nA(7'2n)€82n_1A(7'2n_1) L 681A(71)>b

Siis +1 (-1) if the 1th electron operator operator is a creation (annihilation) operator

A(T) _ wio(eonb’f L e—wm-b) — pTwob byt  —TwobTb _ jworpi

emobTbbTe—mobTb _ p—woT},

1
use the formula eXTY = eXeY 2l XY]
g2
—95 o9 qwoTpt 9 —wor
2 s2eY07Thl —5-2e7w0TH
GSA(T) — 2w0 e’ wo e w0



Local phonons

Calculation of the local trace TryTrp|. . ]

uv /(B0 —1)

: . : t :
with this disentangling and the formula {€“*' €®), = e we obtain
2 2
g /wO Bw
wp(10; (T = exp | — n(e °+1)
O = e | - S
4+ E Sisj{ewo(ﬁ—(ﬂ;—ﬁ)) i ewO(Tz‘—Tj)}>:|
2n>1>9>1
this phonon contribution corresponds to an interaction K between all pairs of operators
™ - ~ K
’__——":'¢" "'[7 ‘\‘
. I ——— O ____ ' 4' b
l 0o A g

in addition, we have a shift of the interaction and chemical potential



Local phonons

Summary: Trace over the electron and phonon states
w({0i(7:)}) = wp(10i(7:) } wam ({1 Oi(7:) })

phonon factor corresponds to the additional “interaction” between creation/annihilation operators

g* cosh(wy (7 — /2)) — cosh(wy3/2)

K1) == 3 sinh(wo5/2)

representation of a segment diagram

T — io= n= g
————— LA ~
| IPURPELL NPT P U = U—2¢"/wy



Frequency-dependent interaction
Holstein phonon corresponds to a frequency dependent U (w)

) . . A

| - weight of the

~ \Re U(0) Im U(w) O-functions is g27T
Ubare I U ~——~F I
o U 0 [os >

—

o
/
______8______

o

ey

coupling strength to the bosonic mode with frequency w
g> = —ImU(w)/m

each boson contributes an “interaction’
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Frequency-dependent interaction

General frequency dependent U (w)
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U(w) for LagCuOy
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Questions about
electron-boson systems!?



