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Fig. 1: Schematic representation of the Anderson impurity model. The left panel illustrates the

Hamiltonian represenation. Spin up and down electrons on the impurity (black dot) interact

with an on-site energy U and hop to a continuum of non-interacting bath levels with energy

"p. The amplitudes for these transitions are given by the hybridization parameters Vp�. Right

panel: Action representation of the Anderson impurity model, where the bath is replaced by the

hybridization function ��(⌧).

1.1 Action formulation

For analytical and numerical studies of equilibrium impurity problems, it can be useful to ex-
press the partition function and the imaginary-time Green’s function in terms of the imaginary-
time action. By integrating out the bath degrees of freedom in the path integral formalism one
obtains the partition function of the Anderson impurity model as

Z = Trd
⇥
T e�S

⇤
,

with the impurity action S = Smix + Sloc given by

Smix =
X
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Z
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i
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T is the time-ordering operator. The impurity Green’s function becomes

G(⌧) = �hT d(⌧)d†(0)iS = �
1

Z
Trd

⇥
T e�Sd(⌧)d†(0)

⇤
.

The imaginary-time and Matsubara-frequency representations are related by

G(i!n) =

Z
�

0

d⌧ ei!n⌧G (⌧) , G(⌧) =
1

�

X

n

e�i!n⌧G(i!n),

where the fermionic Matsubara frequencies are !n = (2n + 1)⇡/� and � = 1/T is the inverse
temperature.
The hybridization function ��(⌧ 0

� ⌧) in Eq. (10) represents the amplitude for hopping from
the impurity into the bath at time ⌧ and back onto the impurity at time ⌧ 0. It is a function of the
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1 Quantum impurity models

A quantum impurity model describes an atom or molecule embedded in some host with which
it exchanges electrons or spin. This exchange allows the impurity to make transitions between
different quantum states, and these transitions lead to non-trivial dynamical properties. Quan-
tum impurity models play a prominent role, for example, in the theoretical description of dilute
metal alloys and in theoretical studies of quantum dots and molecular conductors. These models
also appear as an auxiliary problem whose solution yields the dynamical mean-field description
of correlated lattice models.
The Hamiltonian of a general impurity model has the form

H = Hloc + Hbath + Hmix, (1)

where Hloc describes the impurity, characterized by a small number of degrees of freedom
(typically spin and orbital degrees of freedom denoted by a, b, . . .), and Hbath describes an
infinite reservoir of free electrons, labeled by a continuum of quantum numbers p and a discrete
set of quantum numbers ⌫ (typically spin). Hmix describes the exchange of electrons between
the impurity and the bath in terms of hybridization amplitudes V a

p⌫
. Denoting the impurity

creation operators by d† and the bath creation operators by c†, the three terms are
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In most of the following discussions, we focus on the single-orbital Anderson impurity model,
where the local Hamiltonian

Hloc = Hµ + HU , (5)

Hµ = �µ(n" + n#), (6)

HU = Un"n#, (7)

has a Hilbert space of dimension four. The discrete quantum number labeling the impurity
states is the spin �, n� = d†

�
d� is the density operator for impurity electrons with spin �, and

the chemical potential is µ = �✏. The bath and mixing terms are
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An illustration of the Anderson impurity model is shown in Fig. 1.
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Fig. 1: Schematic representation of the Anderson impurity model. The left panel illustrates the

Hamiltonian represenation. Spin up and down electrons on the impurity (black dot) interact

with an on-site energy U and hop to a continuum of non-interacting bath levels with energy

"p. The amplitudes for these transitions are given by the hybridization parameters Vp�. Right

panel: Action representation of the Anderson impurity model, where the bath is replaced by the

hybridization function ��(⌧).

1.1 Action formulation

For analytical and numerical studies of equilibrium impurity problems, it can be useful to ex-
press the partition function and the imaginary-time Green’s function in terms of the imaginary-
time action. By integrating out the bath degrees of freedom in the path integral formalism one
obtains the partition function of the Anderson impurity model as

Z = Trd
⇥
T e�S

⇤
,

with the impurity action S = Smix + Sloc given by

Smix =
X

�

Z
�

0

d⌧d⌧ 0d†
�
(⌧ 0)��(⌧ 0

� ⌧)d�(⌧), (10)

Sloc =

Z
�

0

d⌧
h

� µ(n"(⌧) + n#(⌧)) + Un"(⌧)n#(⌧)
i
. (11)

T is the time-ordering operator. The impurity Green’s function becomes

G(⌧) = �hT d(⌧)d†(0)iS = �
1

Z
Trd

⇥
T e�Sd(⌧)d†(0)

⇤
.

The imaginary-time and Matsubara-frequency representations are related by

G(i!n) =

Z
�

0

d⌧ ei!n⌧G (⌧) , G(⌧) =
1

�

X

n

e�i!n⌧G(i!n),

where the fermionic Matsubara frequencies are !n = (2n + 1)⇡/� and � = 1/T is the inverse
temperature.
The hybridization function ��(⌧ 0

� ⌧) in Eq. (10) represents the amplitude for hopping from
the impurity into the bath at time ⌧ and back onto the impurity at time ⌧ 0. It is a function of the
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Fig. 1: Schematic representation of the Anderson impurity model. The left panel illustrates the

Hamiltonian represenation. Spin up and down electrons on the impurity (black dot) interact

with an on-site energy U and hop to a continuum of non-interacting bath levels with energy

"p. The amplitudes for these transitions are given by the hybridization parameters Vp�. Right

panel: Action representation of the Anderson impurity model, where the bath is replaced by the

hybridization function ��(⌧).

1.1 Action formulation

For analytical and numerical studies of equilibrium impurity problems, it can be useful to ex-
press the partition function and the imaginary-time Green’s function in terms of the imaginary-
time action. By integrating out the bath degrees of freedom in the path integral formalism one
obtains the partition function of the Anderson impurity model as

Z = Trd
⇥
T e�S

⇤
,

with the impurity action S = Smix + Sloc given by

Smix =
X

�

Z
�

0

d⌧d⌧ 0d†
�
(⌧ 0)��(⌧ 0

� ⌧)d�(⌧), (10)

Sloc =

Z
�

0

d⌧
h

� µ(n"(⌧) + n#(⌧)) + Un"(⌧)n#(⌧)
i
. (11)

T is the time-ordering operator. The impurity Green’s function becomes

G(⌧) = �hT d(⌧)d†(0)iS = �
1

Z
Trd

⇥
T e�Sd(⌧)d†(0)

⇤
.

The imaginary-time and Matsubara-frequency representations are related by

G(i!n) =

Z
�

0

d⌧ ei!n⌧G (⌧) , G(⌧) =
1

�

X

n

e�i!n⌧G(i!n),

where the fermionic Matsubara frequencies are !n = (2n + 1)⇡/� and � = 1/T is the inverse
temperature.
The hybridization function ��(⌧ 0

� ⌧) in Eq. (10) represents the amplitude for hopping from
the impurity into the bath at time ⌧ and back onto the impurity at time ⌧ 0. It is a function of the

5.4 Philipp Werner

bath energies and hybridization amplitudes and is most conveniently expressed in Matsubara
frequency space:

��(i!n) =
X

p

|Vp�|
2

i!n � "p
. (12)

It is also useful to introduce the Green’s function of the non-interacting impurity, G0, which is
related to the hybridization function by

[G�

0 ]�1(i!n) = i!n + µ � ��(i!n). (13)

1.2 Dynamical mean-field theory

Quantum impurity models are a key ingredient of the dynamical mean-field theory (DMFT),
which provides an approximate description of correlated lattice models [1]. The success of
DMFT created a demand for accurate and versatile impurity solvers and triggered the devel-
opment of the continuous-time impurity solvers. These solvers have been discussed in detail
in various lecture notes [2], reviews [3] and books [4]. Our presentation here follows closely
Chapter 8 in Ref. [4].
In this section, we briefly introduce the DMFT approximation, which maps an interacting lattice
model, such as the Hubbard model, onto an effective single-site problem (impurity model)
subject to a self-consistency condition for the bath.
The Hubbard model

HHubbard = �t
X

hiji�

(d†
i�

d
j�

+ d†
j�

d
i�

) + U
X

i

ni"ni# � µ
X

i�

ni�

describes electrons hopping between nearest neighbor sites of some lattice with amplitude t.
Two electrons on the same site interact with energy U . The chemical potential term has been
added because we will work in the grand canonical ensemble. The noninteracting dispersion
✏k is obtained as the Fourier transform of the hopping matrix. For example, in the case of a
one-dimensional lattice with lattice spacing a, ✏k = �2t cos(ka).
Inspired by the Weiss molecular-field theory [1], we focus on one particular site of the lattice
and replace the remaining degrees of freedom of the model by a bath of non-interacting levels
and a hybridization term that connects the interacting site to the bath. The effective single-site
problem thus becomes an Anderson impurity model,1

Himp =
X

p�

"
p
c†
p�

c
p�

+
X

p�

(V
p�

d†
�
c
p�

+ V ⇤
p�

c†
p�

d
�
) + Un"n# � µ(n" + n#). (14)

Here, the d† create electrons on the impurity, n� = d†
�
d
�
, and the c†

p
create electrons in bath

states labeled by a quantum number p. In this effective single-site model, hoppings from the
impurity into the bath and back represent processes in the original Hubbard model where an

1In the DMFT context, the bath energy levels "p of the impurity model are not directly related to the dispersion
of the lattice model, ✏k.
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Fig. 1: Schematic representation of the Anderson impurity model. The left panel illustrates the

Hamiltonian represenation. Spin up and down electrons on the impurity (black dot) interact

with an on-site energy U and hop to a continuum of non-interacting bath levels with energy

"p. The amplitudes for these transitions are given by the hybridization parameters Vp�. Right

panel: Action representation of the Anderson impurity model, where the bath is replaced by the

hybridization function ��(⌧).

1.1 Action formulation

For analytical and numerical studies of equilibrium impurity problems, it can be useful to ex-
press the partition function and the imaginary-time Green’s function in terms of the imaginary-
time action. By integrating out the bath degrees of freedom in the path integral formalism one
obtains the partition function of the Anderson impurity model as

Z = Trd
⇥
T e�S

⇤
,

with the impurity action S = Smix + Sloc given by

Smix =
X

�

Z
�

0

d⌧d⌧ 0d†
�
(⌧ 0)��(⌧ 0

� ⌧)d�(⌧), (10)

Sloc =

Z
�

0

d⌧
h

� µ(n"(⌧) + n#(⌧)) + Un"(⌧)n#(⌧)
i
. (11)

T is the time-ordering operator. The impurity Green’s function becomes

G(⌧) = �hT d(⌧)d†(0)iS = �
1

Z
Trd

⇥
T e�Sd(⌧)d†(0)

⇤
.

The imaginary-time and Matsubara-frequency representations are related by

G(i!n) =

Z
�

0

d⌧ ei!n⌧G (⌧) , G(⌧) =
1

�

X

n

e�i!n⌧G(i!n),

where the fermionic Matsubara frequencies are !n = (2n + 1)⇡/� and � = 1/T is the inverse
temperature.
The hybridization function ��(⌧ 0

� ⌧) in Eq. (10) represents the amplitude for hopping from
the impurity into the bath at time ⌧ and back onto the impurity at time ⌧ 0. It is a function of the
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Fig. 1: Schematic representation of the Anderson impurity model. The left panel illustrates the

Hamiltonian represenation. Spin up and down electrons on the impurity (black dot) interact

with an on-site energy U and hop to a continuum of non-interacting bath levels with energy

"p. The amplitudes for these transitions are given by the hybridization parameters Vp�. Right

panel: Action representation of the Anderson impurity model, where the bath is replaced by the

hybridization function ��(⌧).

1.1 Action formulation

For analytical and numerical studies of equilibrium impurity problems, it can be useful to ex-
press the partition function and the imaginary-time Green’s function in terms of the imaginary-
time action. By integrating out the bath degrees of freedom in the path integral formalism one
obtains the partition function of the Anderson impurity model as

Z = Trd
⇥
T e�S

⇤
,

with the impurity action S = Smix + Sloc given by

Smix =
X

�

Z
�

0

d⌧d⌧ 0d†
�
(⌧ 0)��(⌧ 0

� ⌧)d�(⌧), (10)

Sloc =

Z
�

0

d⌧
h

� µ(n"(⌧) + n#(⌧)) + Un"(⌧)n#(⌧)
i
. (11)

T is the time-ordering operator. The impurity Green’s function becomes

G(⌧) = �hT d(⌧)d†(0)iS = �
1

Z
Trd

⇥
T e�Sd(⌧)d†(0)

⇤
.

The imaginary-time and Matsubara-frequency representations are related by

G(i!n) =

Z
�

0

d⌧ ei!n⌧G (⌧) , G(⌧) =
1

�

X

n

e�i!n⌧G(i!n),

where the fermionic Matsubara frequencies are !n = (2n + 1)⇡/� and � = 1/T is the inverse
temperature.
The hybridization function ��(⌧ 0

� ⌧) in Eq. (10) represents the amplitude for hopping from
the impurity into the bath at time ⌧ and back onto the impurity at time ⌧ 0. It is a function of the

5.4 Philipp Werner

bath energies and hybridization amplitudes and is most conveniently expressed in Matsubara
frequency space:

��(i!n) =
X

p

|Vp�|
2

i!n � "p
. (12)

It is also useful to introduce the Green’s function of the non-interacting impurity, G0, which is
related to the hybridization function by

[G�

0 ]�1(i!n) = i!n + µ � ��(i!n). (13)

1.2 Dynamical mean-field theory

Quantum impurity models are a key ingredient of the dynamical mean-field theory (DMFT),
which provides an approximate description of correlated lattice models [1]. The success of
DMFT created a demand for accurate and versatile impurity solvers and triggered the devel-
opment of the continuous-time impurity solvers. These solvers have been discussed in detail
in various lecture notes [2], reviews [3] and books [4]. Our presentation here follows closely
Chapter 8 in Ref. [4].
In this section, we briefly introduce the DMFT approximation, which maps an interacting lattice
model, such as the Hubbard model, onto an effective single-site problem (impurity model)
subject to a self-consistency condition for the bath.
The Hubbard model

HHubbard = �t
X

hiji�

(d†
i�

d
j�

+ d†
j�

d
i�

) + U
X

i

ni"ni# � µ
X

i�

ni�

describes electrons hopping between nearest neighbor sites of some lattice with amplitude t.
Two electrons on the same site interact with energy U . The chemical potential term has been
added because we will work in the grand canonical ensemble. The noninteracting dispersion
✏k is obtained as the Fourier transform of the hopping matrix. For example, in the case of a
one-dimensional lattice with lattice spacing a, ✏k = �2t cos(ka).
Inspired by the Weiss molecular-field theory [1], we focus on one particular site of the lattice
and replace the remaining degrees of freedom of the model by a bath of non-interacting levels
and a hybridization term that connects the interacting site to the bath. The effective single-site
problem thus becomes an Anderson impurity model,1

Himp =
X

p�

"
p
c†
p�

c
p�

+
X

p�

(V
p�

d†
�
c
p�

+ V ⇤
p�

c†
p�

d
�
) + Un"n# � µ(n" + n#). (14)

Here, the d† create electrons on the impurity, n� = d†
�
d
�
, and the c†

p
create electrons in bath

states labeled by a quantum number p. In this effective single-site model, hoppings from the
impurity into the bath and back represent processes in the original Hubbard model where an

1In the DMFT context, the bath energy levels "p of the impurity model are not directly related to the dispersion
of the lattice model, ✏k.
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General formalism 

Main objective: calculate the impurity Green’s function


Strategy:

Continuous-time QMC 
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1. Solve the impurity problem, that is, compute the impurity Green’s function Gimp(i!n) for
the given G0(i!n),

2. Extract the self-energy of the impurity model: ⌃imp(i!n) = G
�1
0 (i!n) � G�1

imp(i!n),

3. Identify the lattice self-energy with the impurity self-energy, ⌃(k, i!n) = ⌃imp(i!n)

(DMFT approximation), and compute the local lattice Green’s function Gloc(i!n) =R
(dk)[i!n + µ � ✏k � ⌃imp(i!n)]�1,

4. Apply the DMFT self-consistency condition, Gloc(i!n) = Gimp(i!n), and use it to define
a new Weiss Green’s function G

�1
0 (i!n) = G�1

loc (i!n) + ⌃imp(i!n).

The computationally expensive step is the solution of the impurity problem (Step 1). When the
loop converges, the bath contains information about the lattice (through the density of states),
and about the phase (metal, Mott insulator, antiferromagnetic insulator, . . . ). The impurity,
which exchanges electrons with the bath, thus feels, at least to some extent, as if it were a site
of the lattice.

2 Continuous-time QMC solvers - General formalism

Quantum impurity models are (0+1)-dimensional quantum field theories and as such are compu-
tationally much more tractable than interacting lattice models. The main objective is computing
the impurity Green’s function

G(⌧) = �hT d(⌧)d†(0)i = �
1

Z
Tr
h
e�(��⌧)Hde�⌧Hd†

i
, (17)

where Z = Tr[e��H ] is the impurity model partition function, � the inverse temperature, T is
the (imaginary) time-ordering operator, and Tr = TrdTrc the trace over the impurity and bath
states. In the last expression we assumed that 0  ⌧ < �.
Continuous-time Monte Carlo algorithms expand the partition function into a series of “dia-
grams” and stochastically sample these diagrams [3]. We represent the partition function as a
sum (or more precisely as an integral) over configurations C with weight wC ,

Z =
X

C

wC , (18)

and implement a random walk C1 ! C2 ! C3 ! · · · in configuration space in such a way
that ergodicity and detailed balance are satisfied. Using sign-weighted averages, the impurity
Green’s function can be estimated from a finite number M of measurements as

G =
X

C

wCGC

Z
=

P
C

|wC |sign
C
GCP

C
|wC |sign

C

⇡

P
M

i=1 sign
Ci

GCiP
M

i=1 sign
Ci

⌘
hsign · GiMC

hsigniMC
. (19)

To derive the general framework for the continuous-time solvers it is useful to express the
partition function as an imaginary-time-ordered exponential in an interaction representation.
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To derive the general framework for the continuous-time solvers it is useful to express the
partition function as an imaginary-time-ordered exponential in an interaction representation.
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ergodicity and detailed balance are satisfied
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Fig. 1: Schematic representation of the Anderson impurity model. The left panel illustrates the

Hamiltonian represenation. Spin up and down electrons on the impurity (black dot) interact

with an on-site energy U and hop to a continuum of non-interacting bath levels with energy

"p. The amplitudes for these transitions are given by the hybridization parameters Vp�. Right

panel: Action representation of the Anderson impurity model, where the bath is replaced by the

hybridization function ��(⌧).

1.1 Action formulation

For analytical and numerical studies of equilibrium impurity problems, it can be useful to ex-
press the partition function and the imaginary-time Green’s function in terms of the imaginary-
time action. By integrating out the bath degrees of freedom in the path integral formalism one
obtains the partition function of the Anderson impurity model as

Z = Trd
⇥
T e�S

⇤
,

with the impurity action S = Smix + Sloc given by

Smix =
X

�

Z
�

0

d⌧d⌧ 0d†
�
(⌧ 0)��(⌧ 0

� ⌧)d�(⌧), (10)

Sloc =

Z
�

0

d⌧
h

� µ(n"(⌧) + n#(⌧)) + Un"(⌧)n#(⌧)
i
. (11)

T is the time-ordering operator. The impurity Green’s function becomes

G(⌧) = �hT d(⌧)d†(0)iS = �
1

Z
Trd

⇥
T e�Sd(⌧)d†(0)

⇤
.

The imaginary-time and Matsubara-frequency representations are related by

G(i!n) =

Z
�

0

d⌧ ei!n⌧G (⌧) , G(⌧) =
1

�

X

n

e�i!n⌧G(i!n),

where the fermionic Matsubara frequencies are !n = (2n + 1)⇡/� and � = 1/T is the inverse
temperature.
The hybridization function ��(⌧ 0

� ⌧) in Eq. (10) represents the amplitude for hopping from
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1. Solve the impurity problem, that is, compute the impurity Green’s function Gimp(i!n) for
the given G0(i!n),

2. Extract the self-energy of the impurity model: ⌃imp(i!n) = G
�1
0 (i!n) � G�1

imp(i!n),

3. Identify the lattice self-energy with the impurity self-energy, ⌃(k, i!n) = ⌃imp(i!n)

(DMFT approximation), and compute the local lattice Green’s function Gloc(i!n) =R
(dk)[i!n + µ � ✏k � ⌃imp(i!n)]�1,

4. Apply the DMFT self-consistency condition, Gloc(i!n) = Gimp(i!n), and use it to define
a new Weiss Green’s function G

�1
0 (i!n) = G�1

loc (i!n) + ⌃imp(i!n).

The computationally expensive step is the solution of the impurity problem (Step 1). When the
loop converges, the bath contains information about the lattice (through the density of states),
and about the phase (metal, Mott insulator, antiferromagnetic insulator, . . . ). The impurity,
which exchanges electrons with the bath, thus feels, at least to some extent, as if it were a site
of the lattice.

2 Continuous-time QMC solvers - General formalism

Quantum impurity models are (0+1)-dimensional quantum field theories and as such are compu-
tationally much more tractable than interacting lattice models. The main objective is computing
the impurity Green’s function

G(⌧) = �hT d(⌧)d†(0)i = �
1

Z
Tr
h
e�(��⌧)Hde�⌧Hd†

i
, (17)

where Z = Tr[e��H ] is the impurity model partition function, � the inverse temperature, T is
the (imaginary) time-ordering operator, and Tr = TrdTrc the trace over the impurity and bath
states. In the last expression we assumed that 0  ⌧ < �.
Continuous-time Monte Carlo algorithms expand the partition function into a series of “dia-
grams” and stochastically sample these diagrams [3]. We represent the partition function as a
sum (or more precisely as an integral) over configurations C with weight wC ,

Z =
X

C

wC , (18)

and implement a random walk C1 ! C2 ! C3 ! · · · in configuration space in such a way
that ergodicity and detailed balance are satisfied. Using sign-weighted averages, the impurity
Green’s function can be estimated from a finite number M of measurements as

G =
X

C

wCGC

Z
=

P
C

|wC |sign
C
GCP

C
|wC |sign

C

⇡

P
M

i=1 sign
Ci

GCiP
M

i=1 sign
Ci

⌘
hsign · GiMC

hsigniMC
. (19)

To derive the general framework for the continuous-time solvers it is useful to express the
partition function as an imaginary-time-ordered exponential in an interaction representation.
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Fig. 1: Schematic representation of the Anderson impurity model. The left panel illustrates the

Hamiltonian represenation. Spin up and down electrons on the impurity (black dot) interact

with an on-site energy U and hop to a continuum of non-interacting bath levels with energy

"p. The amplitudes for these transitions are given by the hybridization parameters Vp�. Right

panel: Action representation of the Anderson impurity model, where the bath is replaced by the

hybridization function ��(⌧).

1.1 Action formulation

For analytical and numerical studies of equilibrium impurity problems, it can be useful to ex-
press the partition function and the imaginary-time Green’s function in terms of the imaginary-
time action. By integrating out the bath degrees of freedom in the path integral formalism one
obtains the partition function of the Anderson impurity model as

Z = Trd
⇥
T e�S

⇤
,

with the impurity action S = Smix + Sloc given by

Smix =
X

�

Z
�

0

d⌧d⌧ 0d†
�
(⌧ 0)��(⌧ 0

� ⌧)d�(⌧), (10)

Sloc =

Z
�

0

d⌧
h

� µ(n"(⌧) + n#(⌧)) + Un"(⌧)n#(⌧)
i
. (11)

T is the time-ordering operator. The impurity Green’s function becomes

G(⌧) = �hT d(⌧)d†(0)iS = �
1

Z
Trd

⇥
T e�Sd(⌧)d†(0)

⇤
.

The imaginary-time and Matsubara-frequency representations are related by

G(i!n) =

Z
�

0

d⌧ ei!n⌧G (⌧) , G(⌧) =
1

�

X

n

e�i!n⌧G(i!n),

where the fermionic Matsubara frequencies are !n = (2n + 1)⇡/� and � = 1/T is the inverse
temperature.
The hybridization function ��(⌧ 0

� ⌧) in Eq. (10) represents the amplitude for hopping from
the impurity into the bath at time ⌧ and back onto the impurity at time ⌧ 0. It is a function of the
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(i) split impurity Hamiltonian into two parts
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To do this, we split the Hamiltonian into two parts, H = H1 + H2, and define the imaginary-
time dependent operators in the interaction representation as O(⌧) = e⌧H1Oe�⌧H1 . In this
representation, the partition function becomes Z = Tr

⇥
e��H1T e�

R �
0 d⌧H2(⌧)

⇤
.3

Next, we expand the time-ordered exponential into a power series,

Z =
1X

n=0

Z
�

0

d⌧1 · · ·

Z
�

⌧n�1

d⌧nTr
h
e�(��⌧n)H1(�H2)

· · · e�(⌧2�⌧1)H1(�H2)e
�⌧1H1

i
. (20)

This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
time ordering ⌧i < ⌧i+1 and the restriction ⌧i 2 [0, �). The expression for the Monte Carlo
weights is

wC = Tr
h
e�(��⌧n)H1(�H2) · · · e�(⌧2�⌧1)H1(�H2)e

�⌧1H1

i
(d⌧)n. (21)

There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling

approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ +HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers of H2 = HU .4 Equation (21) then gives the weight of a configuration of n interaction

vertices. Since H1 = H �H2 = Hµ +Hbath +Hmix is quadratic, we can use Wick’s theorem to
evaluate the trace. The result is a product of two determinants of n ⇥ n matrices (one for each
spin). The elements of these matrices are the Weiss Green’s functions G

�

0 for the time intervals

3We can understand this formula by defining the operator A(�) = e
�H1e

��H and writing the partition function
as Z = Tr[e��H1A(�)]. The operator A(�) satisfies dA/d� = e

�H1(H1�H)e��H = �H2(�)A(�), the solution
of which is A(�) = T exp

⇥
�
R

�

0 d⌧H2(⌧)
⇤
.

4A related algorithm, based on an expansion in powers of HU � K/� (with K some non-zero constant), is the
continuous-time auxiliary field method [7].
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This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
time ordering ⌧i < ⌧i+1 and the restriction ⌧i 2 [0, �). The expression for the Monte Carlo
weights is
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There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling

approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ +HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers of H2 = HU .4 Equation (21) then gives the weight of a configuration of n interaction

vertices. Since H1 = H �H2 = Hµ +Hbath +Hmix is quadratic, we can use Wick’s theorem to
evaluate the trace. The result is a product of two determinants of n ⇥ n matrices (one for each
spin). The elements of these matrices are the Weiss Green’s functions G
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To do this, we split the Hamiltonian into two parts, H = H1 + H2, and define the imaginary-
time dependent operators in the interaction representation as O(⌧) = e⌧H1Oe�⌧H1 . In this
representation, the partition function becomes Z = Tr

⇥
e��H1T e�

R �
0 d⌧H2(⌧)

⇤
.3

Next, we expand the time-ordered exponential into a power series,

Z =
1X

n=0

Z
�

0

d⌧1 · · ·

Z
�

⌧n�1

d⌧nTr
h
e�(��⌧n)H1(�H2)

· · · e�(⌧2�⌧1)H1(�H2)e
�⌧1H1

i
. (20)

This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
time ordering ⌧i < ⌧i+1 and the restriction ⌧i 2 [0, �). The expression for the Monte Carlo
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There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling

approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ +HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers of H2 = HU .4 Equation (21) then gives the weight of a configuration of n interaction

vertices. Since H1 = H �H2 = Hµ +Hbath +Hmix is quadratic, we can use Wick’s theorem to
evaluate the trace. The result is a product of two determinants of n ⇥ n matrices (one for each
spin). The elements of these matrices are the Weiss Green’s functions G
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To do this, we split the Hamiltonian into two parts, H = H1 + H2, and define the imaginary-
time dependent operators in the interaction representation as O(⌧) = e⌧H1Oe�⌧H1 . In this
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This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
time ordering ⌧i < ⌧i+1 and the restriction ⌧i 2 [0, �). The expression for the Monte Carlo
weights is

wC = Tr
h
e�(��⌧n)H1(�H2) · · · e�(⌧2�⌧1)H1(�H2)e

�⌧1H1

i
(d⌧)n. (21)

There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling

approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ +HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers of H2 = HU .4 Equation (21) then gives the weight of a configuration of n interaction

vertices. Since H1 = H �H2 = Hµ +Hbath +Hmix is quadratic, we can use Wick’s theorem to
evaluate the trace. The result is a product of two determinants of n ⇥ n matrices (one for each
spin). The elements of these matrices are the Weiss Green’s functions G
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This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
time ordering ⌧i < ⌧i+1 and the restriction ⌧i 2 [0, �). The expression for the Monte Carlo
weights is
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There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling

approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ +HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers of H2 = HU .4 Equation (21) then gives the weight of a configuration of n interaction

vertices. Since H1 = H �H2 = Hµ +Hbath +Hmix is quadratic, we can use Wick’s theorem to
evaluate the trace. The result is a product of two determinants of n ⇥ n matrices (one for each
spin). The elements of these matrices are the Weiss Green’s functions G
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This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
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approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ +HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers of H2 = HU .4 Equation (21) then gives the weight of a configuration of n interaction

vertices. Since H1 = H �H2 = Hµ +Hbath +Hmix is quadratic, we can use Wick’s theorem to
evaluate the trace. The result is a product of two determinants of n ⇥ n matrices (one for each
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This yields a representation of the partition function of the form (18), namely, as an infinite sum
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approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ +HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
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4A related algorithm, based on an expansion in powers of HU � K/� (with K some non-zero constant), is the
continuous-time auxiliary field method [7].

(iii) expand time ordered exponential into a power series

5.6 Philipp Werner

1. Solve the impurity problem, that is, compute the impurity Green’s function Gimp(i!n) for
the given G0(i!n),

2. Extract the self-energy of the impurity model: ⌃imp(i!n) = G
�1
0 (i!n) � G�1

imp(i!n),

3. Identify the lattice self-energy with the impurity self-energy, ⌃(k, i!n) = ⌃imp(i!n)

(DMFT approximation), and compute the local lattice Green’s function Gloc(i!n) =R
(dk)[i!n + µ � ✏k � ⌃imp(i!n)]�1,

4. Apply the DMFT self-consistency condition, Gloc(i!n) = Gimp(i!n), and use it to define
a new Weiss Green’s function G

�1
0 (i!n) = G�1

loc (i!n) + ⌃imp(i!n).

The computationally expensive step is the solution of the impurity problem (Step 1). When the
loop converges, the bath contains information about the lattice (through the density of states),
and about the phase (metal, Mott insulator, antiferromagnetic insulator, . . . ). The impurity,
which exchanges electrons with the bath, thus feels, at least to some extent, as if it were a site
of the lattice.

2 Continuous-time QMC solvers - General formalism

Quantum impurity models are (0+1)-dimensional quantum field theories and as such are compu-
tationally much more tractable than interacting lattice models. The main objective is computing
the impurity Green’s function

G(⌧) = �hT d(⌧)d†(0)i = �
1

Z
Tr
h
e�(��⌧)Hde�⌧Hd†

i
, (17)

where Z = Tr[e��H ] is the impurity model partition function, � the inverse temperature, T is
the (imaginary) time-ordering operator, and Tr = TrdTrc the trace over the impurity and bath
states. In the last expression we assumed that 0  ⌧ < �.
Continuous-time Monte Carlo algorithms expand the partition function into a series of “dia-
grams” and stochastically sample these diagrams [3]. We represent the partition function as a
sum (or more precisely as an integral) over configurations C with weight wC ,

Z =
X

C

wC , (18)

and implement a random walk C1 ! C2 ! C3 ! · · · in configuration space in such a way
that ergodicity and detailed balance are satisfied. Using sign-weighted averages, the impurity
Green’s function can be estimated from a finite number M of measurements as

G =
X

C

wCGC

Z
=

P
C

|wC |sign
C
GCP

C
|wC |sign

C

⇡

P
M

i=1 sign
Ci

GCiP
M

i=1 sign
Ci

⌘
hsign · GiMC

hsigniMC
. (19)

To derive the general framework for the continuous-time solvers it is useful to express the
partition function as an imaginary-time-ordered exponential in an interaction representation.
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To do this, we split the Hamiltonian into two parts, H = H1 + H2, and define the imaginary-
time dependent operators in the interaction representation as O(⌧) = e⌧H1Oe�⌧H1 . In this
representation, the partition function becomes Z = Tr
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This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
time ordering ⌧i < ⌧i+1 and the restriction ⌧i 2 [0, �). The expression for the Monte Carlo
weights is
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There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling

approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
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To do this, we split the Hamiltonian into two parts, H = H1 + H2, and define the imaginary-
time dependent operators in the interaction representation as O(⌧) = e⌧H1Oe�⌧H1 . In this
representation, the partition function becomes Z = Tr

⇥
e��H1T e�

R �
0 d⌧H2(⌧)

⇤
.3

Next, we expand the time-ordered exponential into a power series,
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This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
time ordering ⌧i < ⌧i+1 and the restriction ⌧i 2 [0, �). The expression for the Monte Carlo
weights is

wC = Tr
h
e�(��⌧n)H1(�H2) · · · e�(⌧2�⌧1)H1(�H2)e

�⌧1H1

i
(d⌧)n. (21)

There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling

approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ +HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers of H2 = HU .4 Equation (21) then gives the weight of a configuration of n interaction

vertices. Since H1 = H �H2 = Hµ +Hbath +Hmix is quadratic, we can use Wick’s theorem to
evaluate the trace. The result is a product of two determinants of n ⇥ n matrices (one for each
spin). The elements of these matrices are the Weiss Green’s functions G
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4A related algorithm, based on an expansion in powers of HU � K/� (with K some non-zero constant), is the
continuous-time auxiliary field method [7].
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0 (⌧) = �Tr[e��H1T d(⌧)d†(0)]/Z0, and Z0 = Tr[e��H1 ] is the partition function of the non-
interacting model.5 For the diagonal elements, we adopt the convention [M�1
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]ii = G
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0 (0�).
At this point, one notices a potential sign problem. In the paramagnetic phase, where G

"
0 = G

#
0 ,

the product of determinants is positive, which means that for a repulsive interaction (U > 0)
odd perturbation orders yield negative weights. Except in the particle-hole symmetric case,
where odd perturbation orders vanish, these odd order configurations cause a sign problem.
Fortunately, we can solve this sign problem by shifting the chemical potentials for up and down
spins in an appropriate way [6]. To do so, we rewrite the interaction term as [8]
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Here, � is some constant and s = ±1 is an auxiliary Ising variable. This construction is not
a Hubbard-Stratonovich transformation, but simply a shift in the zero of energy. The constant
U [(1

2 + �)2
�

1
4 ] in Eq. (22) is irrelevant and will be ignored in the following. We absorb the

contribution 1
2U(n" + n#) into the non-interacting Green’s function by shifting the chemical

potential as µ ! µ �
1
2U . Explicitly, the Weiss Green’s function is redefined as6
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0 ]�1 = i!n + µ �
1
2U � ��.

The introduction of an Ising variable si at each vertex position ⌧i enlarges the configuration
space exponentially. A configuration C now corresponds to a collection of auxiliary spin vari-
ables defined on the imaginary-time interval: C = {(⌧1, s1), (⌧2, s2), . . . , (⌧n, sn)}. The weight
of these configurations is

wC = Z̃0(�Ud⌧/2)n
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, (24)
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5We note that in the DMFT framework discussed in Section 1.2, the function G

�

0 is determined directly by
the self-consistency loop, without reference to a Hamiltonian. For the purpose of the present discussion, we may
however assume that we know Hbath and Hmix terms whose parameters yield G

�

0 through Eqs. (12) and (13).
6In a DMFT calculation, this means that the shifted chemical potential is used within the self-consistency loop.
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odd perturbation orders yield negative weights. Except in the particle-hole symmetric case,
where odd perturbation orders vanish, these odd order configurations cause a sign problem.
Fortunately, we can solve this sign problem by shifting the chemical potentials for up and down
spins in an appropriate way [6]. To do so, we rewrite the interaction term as [8]
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Here, � is some constant and s = ±1 is an auxiliary Ising variable. This construction is not
a Hubbard-Stratonovich transformation, but simply a shift in the zero of energy. The constant
U [(1

2 + �)2
�

1
4 ] in Eq. (22) is irrelevant and will be ignored in the following. We absorb the

contribution 1
2U(n" + n#) into the non-interacting Green’s function by shifting the chemical

potential as µ ! µ �
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2U . Explicitly, the Weiss Green’s function is redefined as6
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The introduction of an Ising variable si at each vertex position ⌧i enlarges the configuration
space exponentially. A configuration C now corresponds to a collection of auxiliary spin vari-
ables defined on the imaginary-time interval: C = {(⌧1, s1), (⌧2, s2), . . . , (⌧n, sn)}. The weight
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5We note that in the DMFT framework discussed in Section 1.2, the function G

�

0 is determined directly by
the self-consistency loop, without reference to a Hamiltonian. For the purpose of the present discussion, we may
however assume that we know Hbath and Hmix terms whose parameters yield G

�

0 through Eqs. (12) and (13).
6In a DMFT calculation, this means that the shifted chemical potential is used within the self-consistency loop.

5.8 Philipp Werner

defined by the vertex positions:

wC

Z0
= (�Ud⌧)n

1

Z0
Tr

h
e�(��⌧n)H1n"n# · · · e�(⌧2�⌧1)H1n"n#e

�⌧1H1

i

= (�Ud⌧)n
Y

�

det M�1
�

,

where
[M�1

�
]ij = G

�

0 (⌧i � ⌧j),

G
�

0 (⌧) = �Tr[e��H1T d(⌧)d†(0)]/Z0, and Z0 = Tr[e��H1 ] is the partition function of the non-
interacting model.5 For the diagonal elements, we adopt the convention [M�1

�
]ii = G

�

0 (0�).
At this point, one notices a potential sign problem. In the paramagnetic phase, where G

"
0 = G

#
0 ,

the product of determinants is positive, which means that for a repulsive interaction (U > 0)
odd perturbation orders yield negative weights. Except in the particle-hole symmetric case,
where odd perturbation orders vanish, these odd order configurations cause a sign problem.
Fortunately, we can solve this sign problem by shifting the chemical potentials for up and down
spins in an appropriate way [6]. To do so, we rewrite the interaction term as [8]

HU =
U

2

X

s

Y

�

(n� � ↵�(s)) +
U

2
(n" + n#) + U

h⇣1

2
+ �

⌘2

�
1

4

i
, (22)

with
↵�(s) =

1

2
+ �s

⇣1

2
+ �

⌘
. (23)

Here, � is some constant and s = ±1 is an auxiliary Ising variable. This construction is not
a Hubbard-Stratonovich transformation, but simply a shift in the zero of energy. The constant
U [(1

2 + �)2
�

1
4 ] in Eq. (22) is irrelevant and will be ignored in the following. We absorb the

contribution 1
2U(n" + n#) into the non-interacting Green’s function by shifting the chemical

potential as µ ! µ �
1
2U . Explicitly, the Weiss Green’s function is redefined as6

[G�

0 ]�1 = i!n + µ � ��
! [G̃�

0 ]�1 = i!n + µ �
1
2U � ��.

The introduction of an Ising variable si at each vertex position ⌧i enlarges the configuration
space exponentially. A configuration C now corresponds to a collection of auxiliary spin vari-
ables defined on the imaginary-time interval: C = {(⌧1, s1), (⌧2, s2), . . . , (⌧n, sn)}. The weight
of these configurations is

wC = Z̃0(�Ud⌧/2)n
Y

�

det M̃�1
�

, (24)

where
[M̃�1

�
]ij = G̃

�

0 (⌧i � ⌧j) � ↵�(si)�ij. (25)
5We note that in the DMFT framework discussed in Section 1.2, the function G

�

0 is determined directly by
the self-consistency loop, without reference to a Hamiltonian. For the purpose of the present discussion, we may
however assume that we know Hbath and Hmix terms whose parameters yield G

�

0 through Eqs. (12) and (13).
6In a DMFT calculation, this means that the shifted chemical potential is used within the self-consistency loop.

<latexit sha1_base64="/uJcx3ms7ge7Ex4Ny9H3LZ4iBsc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHgxWMF+wFtKJvNpl272Q27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTAU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdkBgmuGQt5ChYN9WMJKFgnXB8O/M7T0wbruQDTlIWJGQoecwpQSu1+yJSaAbVmlf35nBXiV+QGhRoDqpf/UjRLGESqSDG9HwvxSAnGjkVbFrpZ4alhI7JkPUslSRhJsjn107dM6tEbqy0LYnuXP09kZPEmEkS2s6E4MgsezPxP6+XYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpSOiCUUbUMWG4C+/vEraF3X/qu7fX9YajSKOMpzAKZyDD9fQgDtoQgsoPMIzvMKbo5wX5935WLSWnGLmGP7A+fwBvX2PPA==</latexit>. . .<latexit sha1_base64="luPhA2i57SCJWqs3ryTIOui5S9U=">AAACA3icbVBPS8MwHE3nvzn/Vb3pJTgET6MVUY8DLx4n2G2wlZJm6RaWJiVJHaMMvPhVvHhQxKtfwpvfxrTrQTcfBF7e+z2S3wsTRpV2nG+rsrK6tr5R3axtbe/s7tn7B20lUomJhwUTshsiRRjlxNNUM9JNJEFxyEgnHN/kfueBSEUFv9fThPgxGnIaUYy0kQL7yIM86KcJklJMcjoQE15caoFddxpOAbhM3JLUQYlWYH+ZNE5jwjVmSKme6yTaz5DUFDMyq/VTRRKEx2hIeoZyFBPlZ8UOM3hqlAGMhDSHa1iovxMZipWaxqGZjJEeqUUvF//zeqmOrv2M8iTVhOP5Q1HKoBYwLwQOqCRYs6khCEtq/grxCEmEtaktL8FdXHmZtM8b7mXDvbuoN5tlHVVwDE7AGXDBFWiCW9ACHsDgETyDV/BmPVkv1rv1MR+tWGXmEPyB9fkDwIiXlw==</latexit>Un"n#

H1 quadratic in the 

fermionic operators 

PRB 72, 035122 (05) 



Formalism 

Configurations and weights

Weak-coupling CT-QMC 

points represent interaction vertices 

Quantum Monte Carlo impurity solvers 5.7

To do this, we split the Hamiltonian into two parts, H = H1 + H2, and define the imaginary-
time dependent operators in the interaction representation as O(⌧) = e⌧H1Oe�⌧H1 . In this
representation, the partition function becomes Z = Tr

⇥
e��H1T e�

R �
0 d⌧H2(⌧)

⇤
.3

Next, we expand the time-ordered exponential into a power series,

Z =
1X

n=0

Z
�

0

d⌧1 · · ·

Z
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⌧n�1

d⌧nTr
h
e�(��⌧n)H1(�H2)

· · · e�(⌧2�⌧1)H1(�H2)e
�⌧1H1

i
. (20)

This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
time ordering ⌧i < ⌧i+1 and the restriction ⌧i 2 [0, �). The expression for the Monte Carlo
weights is

wC = Tr
h
e�(��⌧n)H1(�H2) · · · e�(⌧2�⌧1)H1(�H2)e

�⌧1H1

i
(d⌧)n. (21)

There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling

approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ +HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers of H2 = HU .4 Equation (21) then gives the weight of a configuration of n interaction

vertices. Since H1 = H �H2 = Hµ +Hbath +Hmix is quadratic, we can use Wick’s theorem to
evaluate the trace. The result is a product of two determinants of n ⇥ n matrices (one for each
spin). The elements of these matrices are the Weiss Green’s functions G

�

0 for the time intervals

3We can understand this formula by defining the operator A(�) = e
�H1e

��H and writing the partition function
as Z = Tr[e��H1A(�)]. The operator A(�) satisfies dA/d� = e

�H1(H1�H)e��H = �H2(�)A(�), the solution
of which is A(�) = T exp

⇥
�
R

�

0 d⌧H2(⌧)
⇤
.

4A related algorithm, based on an expansion in powers of HU � K/� (with K some non-zero constant), is the
continuous-time auxiliary field method [7].
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the product of determinants is positive, which means that for a repulsive interaction (U > 0)
odd perturbation orders yield negative weights. Except in the particle-hole symmetric case,
where odd perturbation orders vanish, these odd order configurations cause a sign problem.
Fortunately, we can solve this sign problem by shifting the chemical potentials for up and down
spins in an appropriate way [6]. To do so, we rewrite the interaction term as [8]
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Here, � is some constant and s = ±1 is an auxiliary Ising variable. This construction is not
a Hubbard-Stratonovich transformation, but simply a shift in the zero of energy. The constant
U [(1

2 + �)2
�

1
4 ] in Eq. (22) is irrelevant and will be ignored in the following. We absorb the

contribution 1
2U(n" + n#) into the non-interacting Green’s function by shifting the chemical

potential as µ ! µ �
1
2U . Explicitly, the Weiss Green’s function is redefined as6

[G�

0 ]�1 = i!n + µ � ��
! [G̃�

0 ]�1 = i!n + µ �
1
2U � ��.

The introduction of an Ising variable si at each vertex position ⌧i enlarges the configuration
space exponentially. A configuration C now corresponds to a collection of auxiliary spin vari-
ables defined on the imaginary-time interval: C = {(⌧1, s1), (⌧2, s2), . . . , (⌧n, sn)}. The weight
of these configurations is
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5We note that in the DMFT framework discussed in Section 1.2, the function G
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0 is determined directly by
the self-consistency loop, without reference to a Hamiltonian. For the purpose of the present discussion, we may
however assume that we know Hbath and Hmix terms whose parameters yield G

�

0 through Eqs. (12) and (13).
6In a DMFT calculation, this means that the shifted chemical potential is used within the self-consistency loop.
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1.7 Determinant structure and sign problem 41

0 0 ββ

Figure 1.12 Left panel: weak-coupling diagrams sumable into a deter-
minant. The diamonds represent interaction vertices and the lines bath
Green’s functions for spin up and down electrons. Right panel: strong cou-
pling diagrams sumable into a determinant. The full circles represent cre-
ation operators and the empty circles annihilation operators. Pairs of cre-
ation and annihilation operators are connected by hybridization lines.

tion. Therefore, both connected and disconnected diagrams appear. What
the n! diagrams have in common are the positions on the imaginary time
interval of the n interaction vertices (weak-coupling approach) or the po-
sitions of the n creation and n annihilation operators (strong-coupling ap-
proach). Figure 1.12 illustrates all second order (weak-coupling) and third
order (strong coupling) contributions corresponding to some fixed operator
positions. We note that the fermionic nature of the operators leads to indi-
vidual diagrams with anti-commutivity signs. The determinants allow us to
add n! diagrams with proper signs and, at least in simple models such as
the AIM, to completely absorb the cancellation effects between positive and
negative weight contributions.

To underscore the crucial role of the determinants, we consider a simple
model of a noninteracting (spin-less) impurity coupled to one bath site with
energy ε = 0 and hybridization V . The action reads

S =

∫ β

0
dτ d†(τ)∆(τ − τ ′)d(τ ′), (1.102)

with the hybridization function (1.20) given by ∆(iωn) = |V |2/iωn, which
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To do this, we split the Hamiltonian into two parts, H = H1 + H2, and define the imaginary-
time dependent operators in the interaction representation as O(⌧) = e⌧H1Oe�⌧H1 . In this
representation, the partition function becomes Z = Tr
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Next, we expand the time-ordered exponential into a power series,

Z =
1X

n=0

Z
�

0

d⌧1 · · ·

Z
�

⌧n�1

d⌧nTr
h
e�(��⌧n)H1(�H2)

· · · e�(⌧2�⌧1)H1(�H2)e
�⌧1H1

i
. (20)

This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
time ordering ⌧i < ⌧i+1 and the restriction ⌧i 2 [0, �). The expression for the Monte Carlo
weights is
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There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling

approach, which scales favorably with system size (that is, the number of correlated sites or
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0 (⌧) = �Tr[e��H1T d(⌧)d†(0)]/Z0, and Z0 = Tr[e��H1 ] is the partition function of the non-
interacting model.5 For the diagonal elements, we adopt the convention [M�1

�
]ii = G
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0 (0�).
At this point, one notices a potential sign problem. In the paramagnetic phase, where G

"
0 = G

#
0 ,

the product of determinants is positive, which means that for a repulsive interaction (U > 0)
odd perturbation orders yield negative weights. Except in the particle-hole symmetric case,
where odd perturbation orders vanish, these odd order configurations cause a sign problem.
Fortunately, we can solve this sign problem by shifting the chemical potentials for up and down
spins in an appropriate way [6]. To do so, we rewrite the interaction term as [8]
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Here, � is some constant and s = ±1 is an auxiliary Ising variable. This construction is not
a Hubbard-Stratonovich transformation, but simply a shift in the zero of energy. The constant
U [(1

2 + �)2
�

1
4 ] in Eq. (22) is irrelevant and will be ignored in the following. We absorb the

contribution 1
2U(n" + n#) into the non-interacting Green’s function by shifting the chemical

potential as µ ! µ �
1
2U . Explicitly, the Weiss Green’s function is redefined as6

[G�

0 ]�1 = i!n + µ � ��
! [G̃�

0 ]�1 = i!n + µ �
1
2U � ��.

The introduction of an Ising variable si at each vertex position ⌧i enlarges the configuration
space exponentially. A configuration C now corresponds to a collection of auxiliary spin vari-
ables defined on the imaginary-time interval: C = {(⌧1, s1), (⌧2, s2), . . . , (⌧n, sn)}. The weight
of these configurations is
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where
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5We note that in the DMFT framework discussed in Section 1.2, the function G

�

0 is determined directly by
the self-consistency loop, without reference to a Hamiltonian. For the purpose of the present discussion, we may
however assume that we know Hbath and Hmix terms whose parameters yield G

�

0 through Eqs. (12) and (13).
6In a DMFT calculation, this means that the shifted chemical potential is used within the self-consistency loop.
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the self-consistency loop, without reference to a Hamiltonian. For the purpose of the present discussion, we may
however assume that we know Hbath and Hmix terms whose parameters yield G
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0 through Eqs. (12) and (13).
6In a DMFT calculation, this means that the shifted chemical potential is used within the self-consistency loop.
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
� ]�1

. (27)

The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)
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why does this solve 

the sign problem? 



Formalism 

Absence of sign problem

Weak-coupling CT-QMC 

with time evolution operators represented by matrices with only positive elements 

By mapping the impurity problem to a chain one can show that the weights can be expressed as

44 Continuous-time impurity solvers

Since H̃0 conserves Nσ

e−τH̃0 = e−τ(H̃0−Λ(N↑+N↓))e−τΛ(N↑+N↓) (1.106)

is a product of two matrices with elements ≥ 0 and therefore the product
has no negative elements in the chain basis.

The weight of a weak-coupling Monte Carlo configuration is

wC = Tr
[

e−(β−τn)H̃0A(sn)e−(τn−τn−1)H̃0A(sn−1) . . .
]

, (1.107)

where

A(s) = (−Udτ/2) [n↑ − 1/2− s(1/2 + δ)] [n↓ − 1/2 + s(1/2 + δ)] . (1.108)

What we still need to show is that the matrix A(s) has only non-negative
elements when δ ≥ 0 and U ≥ 0. We can easily do this by considering the
two values of the auxiliary spin variable s and by factorizing the interaction
term into a product of two quadratic operators:

s = 1 : (−Udτ/2)
︸ ︷︷ ︸

≤0

(n↑ − 1− δ)
︸ ︷︷ ︸

≤0

(n↓ + δ)
︸ ︷︷ ︸

≥0

,

s = −1 : (−Udτ/2)
︸ ︷︷ ︸

≤0

(n↑ + δ)
︸ ︷︷ ︸

≥0

(n↓ − 1− δ)
︸ ︷︷ ︸

≤0

. (1.109)

Hence, in the chain basis, neither the imaginary-time evolution operators
e−τH̃0 nor the “interaction vertices” A(s) have negative elements. The weight
is the trace of a product of matrices with non-negative elements, and there-
fore must be non-negative. We recall that in the case of attractive U , we
required no auxiliary field decoupling and the weak-coupling weights are
evidently positive.

The lack of a sign problem proof for the strong-coupling formalism is also
based on the chain basis (Kaul, 2007). Here, the weight of a Monte Carlo
configuration has the form

wC = Tr
[

e−(β−τn)(Hloc+Hbath)

(−Hd†
mix) . . . (−Hd

mix)e
−(τ2−τ1)(Hloc+Hbath)

]

(dτ)2n, (1.110)

with −Hd†
mix = V c†0c1, −Hd

mix = V c†1c0 (c0 ≡ d). In the chain basis, the
hybridization operators do not produce any negative signs (V ≥ 0), and in
fact in any basis, these factors come in pairs of complex conjugate numbers.
In the imaginary-time-evolution operators, Hloc is diagonal while Hbath has
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evidently positive.

The lack of a sign problem proof for the strong-coupling formalism is also
based on the chain basis (Kaul, 2007). Here, the weight of a Monte Carlo
configuration has the form
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︸ ︷︷ ︸
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
� ]�1

. (27)

The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
� ]�1

. (27)

The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
� ]�1

. (27)

The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
� ]�1

. (27)

The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)

ergodicity:  insert spins with random orientation at random times, and remove randomly selected spins

Quantum Monte Carlo impurity solvers 5.9
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
� ]�1

. (27)

The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)

Metropolis-Hastings algorithm:

Quantum Monte Carlo impurity solvers 5.9
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
� ]�1

. (27)

The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)

split transition probability into

proposal / acceptance probability
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
� ]�1

. (27)

The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
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The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
� ]�1

. (27)

The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
� ]�1

. (27)

The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
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The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)

acceptance probability for removal follows from
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the

imaginary-time interval [0, �). We increase the perturbation order by adding an auxiliary spin

with random orientation at a random time and decrease it by removing a randomly chosen

auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C ! C 0) to move from configuration C to C 0 satisfies w(C)p(C ! C 0) =

w(C 0)p(C 0
! C). Splitting p(C ! C 0) = pprop(C ! C 0)pacc(C ! C 0) into a proposal and

acceptance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C ! C 0) = min[1, R(C ! C 0)],

where
R(C ! C 0) =

w(C 0)pprop(C 0
! C)

w(C)pprop(C ! C 0)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, �) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n ! n + 1) = 1
2(d⌧/�), pprop(n + 1 ! n) = 1/(n + 1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n + 1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n ! n+1) =

min[1, Rinsert(n ! n + 1)] with

Rinsert(n ! n + 1) =
��U

n + 1

Y

�

det[M̃ (n+1)
� ]�1

det[M̃ (n)
� ]�1

. (27)

The acceptance probability for the removal follows from

Rremove(n + 1 ! n) = 1/Rinsert(n ! n + 1). (28)
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3.2 Determinant ratios and fast matrix updates

From Eq. (27), we see that each update requires the calculation of a ratio of two determinants.
At first sight, one might think that for a matrix of size n⇥n this is an O(n3) operation. However,
each insertion or removal of a vertex (or spin) merely changes one row and one column of the
matrix M�1

�
(or M̃�1

�
).7 It is thus possible to evaluate this ratio in a time O(n2) for insertion

and O(1) for removal [3].
We first note that the objects which are stored and manipulated, besides the lists of the times
{⌧i} (or times and spins {(⌧i, si)}), are the matrices M� = [G�

0 ]�1, not M�1
�

= [G�

0 ]. Inserting
a vertex (or auxiliary spin) adds a new row and column to M�1

�
. We imagine inserting this row

and column on the border of the given matrix and write the resulting matrix in a block matrix
form (omitting the � index for simplicity):

[M (n+1)]�1 =

 
[M (n)]�1 Q

R S

!
.

The analogous blocks of the M matrix are defined as

M (n+1) =

 
P̃ Q̃

R̃ S̃

!
. (29)

Here Q, R, and S are n⇥1, 1⇥n, and 1⇥1 matrices which contain the functions G0 evaluated at
time intervals determined by the position of the new vertex (spin). They can be easily computed.
We want to find P̃ , Q̃, R̃, and S̃, and the ratio of determinants. Using the expression for the
block inversion of a matrix and for the determinant of a block matrix, the determinant ratio
needed for the acceptance probability becomes

det[M (n+1)]�1

det[M (n)]�1
= det(S � RM (n)Q) = S � RM (n)Q. (30)

Because we store M (n), computing the acceptance probability of an insertion move is just an
O(n2) operation. If the move is accepted, the new matrix M (n+1) can be computed from M (n),
Q, R, and S, also in a time O(n2):

S̃ = (S � [R] [M (n) Q])�1, (31)

Q̃ = �[M (n)Q] S̃, (32)

R̃ = �S̃ [R M (n)], (33)

P̃ = M (n) + [M (n)Q] S̃ [RM (n)]. (34)

In the case of removing a spin we imagine removing a bordering row and column. It follows
from Eqs. (30) and (31) that

det[M (n)]�1

det[M (n+1)]�1
= det S̃ = S̃. (35)

7In the following, we write the formulas without the tildes, that is, for the sampling of interaction vertices. For
the algorithm with auxiliary spins, it suffices to replace M ! M̃ and G0 ! G̃0.
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S̃ = (S � [R] [M (n) Q])�1, (31)
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Here Q, R, and S are n⇥1, 1⇥n, and 1⇥1 matrices which contain the functions G0 evaluated at
time intervals determined by the position of the new vertex (spin). They can be easily computed.
We want to find P̃ , Q̃, R̃, and S̃, and the ratio of determinants. Using the expression for the
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Because we store M (n), computing the acceptance probability of an insertion move is just an
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In the case of removing a spin we imagine removing a bordering row and column. It follows
from Eqs. (30) and (31) that
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Here Q, R, and S are n⇥1, 1⇥n, and 1⇥1 matrices which contain the functions G0 evaluated at
time intervals determined by the position of the new vertex (spin). They can be easily computed.
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Here Q, R, and S are n⇥1, 1⇥n, and 1⇥1 matrices which contain the functions G0 evaluated at
time intervals determined by the position of the new vertex (spin). They can be easily computed.
We want to find P̃ , Q̃, R̃, and S̃, and the ratio of determinants. Using the expression for the
block inversion of a matrix and for the determinant of a block matrix, the determinant ratio
needed for the acceptance probability becomes
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Q, R, and S, also in a time O(n2):

S̃ = (S � [R] [M (n) Q])�1, (31)

Q̃ = �[M (n)Q] S̃, (32)

R̃ = �S̃ [R M (n)], (33)

P̃ = M (n) + [M (n)Q] S̃ [RM (n)]. (34)

In the case of removing a spin we imagine removing a bordering row and column. It follows
from Eqs. (30) and (31) that

det[M (n)]�1

det[M (n+1)]�1
= det S̃ = S̃. (35)

7In the following, we write the formulas without the tildes, that is, for the sampling of interaction vertices. For
the algorithm with auxiliary spins, it suffices to replace M ! M̃ and G0 ! G̃0.
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3.2 Determinant ratios and fast matrix updates

From Eq. (27), we see that each update requires the calculation of a ratio of two determinants.
At first sight, one might think that for a matrix of size n⇥n this is an O(n3) operation. However,
each insertion or removal of a vertex (or spin) merely changes one row and one column of the
matrix M�1

�
(or M̃�1

�
).7 It is thus possible to evaluate this ratio in a time O(n2) for insertion

and O(1) for removal [3].
We first note that the objects which are stored and manipulated, besides the lists of the times
{⌧i} (or times and spins {(⌧i, si)}), are the matrices M� = [G�

0 ]�1, not M�1
�

= [G�

0 ]. Inserting
a vertex (or auxiliary spin) adds a new row and column to M�1

�
. We imagine inserting this row

and column on the border of the given matrix and write the resulting matrix in a block matrix
form (omitting the � index for simplicity):

[M (n+1)]�1 =

 
[M (n)]�1 Q

R S

!
.

The analogous blocks of the M matrix are defined as

M (n+1) =

 
P̃ Q̃

R̃ S̃

!
. (29)

Here Q, R, and S are n⇥1, 1⇥n, and 1⇥1 matrices which contain the functions G0 evaluated at
time intervals determined by the position of the new vertex (spin). They can be easily computed.
We want to find P̃ , Q̃, R̃, and S̃, and the ratio of determinants. Using the expression for the
block inversion of a matrix and for the determinant of a block matrix, the determinant ratio
needed for the acceptance probability becomes

det[M (n+1)]�1

det[M (n)]�1
= det(S � RM (n)Q) = S � RM (n)Q. (30)

Because we store M (n), computing the acceptance probability of an insertion move is just an
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3.2 Determinant ratios and fast matrix updates
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S̃ is just a 1 ⇥ 1 matrix so its determinant is trivial to compute. The above formulas also imply
that the elements of the reduced matrix are

M (n) = P̃ � [Q̃][R̃]/S̃. (36)

The calculation of the removal probability is thus O(1), while the calculation of the new M (n)

matrix is O(n2).

3.3 Measurement of the Green’s function

To compute the contribution of a configuration C to the Green’s function, G�

C
(⌧), we insert in

the right-hand side of Eq. (21) a creation operator d† at time 0 and an annihilation operator d at
time ⌧ and divide by wC . Wick’s theorem and Eq. (30) then lead to the expression [6]

G�

C
(⌧) = G

�

0 (⌧) �

X

k

G
�

0 (⌧ � ⌧k)
X

l

[M�]klG
�

0 (⌧l). (37)

The estimate for the impurity Green’s function for a given imaginary-time then follows from
Eq. (19). To avoid unnecessary and time-consuming summations during the Monte Carlo sim-
ulation (evaluation of Eq. (37) for many ⌧ -values), we accumulate the quantity [7]

S�(⌧̃) ⌘

X

k

�(⌧̃ � ⌧k)
X

l

⇥
M�

⇤
kl
G
�

0 (⌧l),

by binning the time points ⌧̃ on a fine grid. After the simulation is finished, we compute the
Green’s function as8

G�(⌧) = G
�

0 (⌧) �

Z
�

0

d⌧̃G
�

0 (⌧ � ⌧̃)
⌦
S�(⌧̃)

↵
MC. (38)

It is also possible to measure the Matsubara components of the Green’s function directly. Using
the imaginary-time translational invariance of the Green’s functions, one finds

G�

C
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0 (i!n) � G
�

0 (i!n)
X
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1

�
ei!n(⌧k�⌧l)[M�]klG
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0 (i!n),

so that

G�(i!n) = G
�

0 (i!n) �
1

�
(G�

0 (i!n))
2

*
X

kl

ei!n(⌧k�⌧l)[M�]kl

+

MC

. (39)

We note that because the Weiss Green’s function has the high-frequency behavior G0(i!n) ⇠

1/i!n, the measured impurity Green’s function automatically inherits the correct high-frequency
tail.

8Comparison of this equation with the Dyson equation G = G0 + G0 ? ⌃ ? G (where the ? symbol denotes a
convolution in imaginary time) shows that his procedure amounts to measuring �⌃ ? G.
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S̃ is just a 1 ⇥ 1 matrix so its determinant is trivial to compute. The above formulas also imply
that the elements of the reduced matrix are

M (n) = P̃ � [Q̃][R̃]/S̃. (36)

The calculation of the removal probability is thus O(1), while the calculation of the new M (n)

matrix is O(n2).

3.3 Measurement of the Green’s function

To compute the contribution of a configuration C to the Green’s function, G�

C
(⌧), we insert in

the right-hand side of Eq. (21) a creation operator d† at time 0 and an annihilation operator d at
time ⌧ and divide by wC . Wick’s theorem and Eq. (30) then lead to the expression [6]
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The estimate for the impurity Green’s function for a given imaginary-time then follows from
Eq. (19). To avoid unnecessary and time-consuming summations during the Monte Carlo sim-
ulation (evaluation of Eq. (37) for many ⌧ -values), we accumulate the quantity [7]
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by binning the time points ⌧̃ on a fine grid. After the simulation is finished, we compute the
Green’s function as8
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It is also possible to measure the Matsubara components of the Green’s function directly. Using
the imaginary-time translational invariance of the Green’s functions, one finds
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We note that because the Weiss Green’s function has the high-frequency behavior G0(i!n) ⇠

1/i!n, the measured impurity Green’s function automatically inherits the correct high-frequency
tail.

8Comparison of this equation with the Dyson equation G = G0 + G0 ? ⌃ ? G (where the ? symbol denotes a
convolution in imaginary time) shows that his procedure amounts to measuring �⌃ ? G.
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To do this, we split the Hamiltonian into two parts, H = H1 + H2, and define the imaginary-
time dependent operators in the interaction representation as O(⌧) = e⌧H1Oe�⌧H1 . In this
representation, the partition function becomes Z = Tr

⇥
e��H1T e�

R �
0 d⌧H2(⌧)

⇤
.3

Next, we expand the time-ordered exponential into a power series,

Z =
1X

n=0

Z
�

0

d⌧1 · · ·

Z
�

⌧n�1

d⌧nTr
h
e�(��⌧n)H1(�H2)

· · · e�(⌧2�⌧1)H1(�H2)e
�⌧1H1

i
. (20)

This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
time ordering ⌧i < ⌧i+1 and the restriction ⌧i 2 [0, �). The expression for the Monte Carlo
weights is

wC = Tr
h
e�(��⌧n)H1(�H2) · · · e�(⌧2�⌧1)H1(�H2)e

�⌧1H1

i
(d⌧)n. (21)

There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling

approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ +HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers of H2 = HU .4 Equation (21) then gives the weight of a configuration of n interaction

vertices. Since H1 = H �H2 = Hµ +Hbath +Hmix is quadratic, we can use Wick’s theorem to
evaluate the trace. The result is a product of two determinants of n ⇥ n matrices (one for each
spin). The elements of these matrices are the Weiss Green’s functions G

�

0 for the time intervals

3We can understand this formula by defining the operator A(�) = e
�H1e

��H and writing the partition function
as Z = Tr[e��H1A(�)]. The operator A(�) satisfies dA/d� = e

�H1(H1�H)e��H = �H2(�)A(�), the solution
of which is A(�) = T exp

⇥
�

R
�

0 d⌧H2(⌧)
⇤
.

4A related algorithm, based on an expansion in powers of HU � K/� (with K some non-zero constant), is the
continuous-time auxiliary field method [7].
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S̃ is just a 1 ⇥ 1 matrix so its determinant is trivial to compute. The above formulas also imply
that the elements of the reduced matrix are

M (n) = P̃ � [Q̃][R̃]/S̃. (36)

The calculation of the removal probability is thus O(1), while the calculation of the new M (n)

matrix is O(n2).

3.3 Measurement of the Green’s function

To compute the contribution of a configuration C to the Green’s function, G�

C
(⌧), we insert in

the right-hand side of Eq. (21) a creation operator d† at time 0 and an annihilation operator d at
time ⌧ and divide by wC . Wick’s theorem and Eq. (30) then lead to the expression [6]
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The estimate for the impurity Green’s function for a given imaginary-time then follows from
Eq. (19). To avoid unnecessary and time-consuming summations during the Monte Carlo sim-
ulation (evaluation of Eq. (37) for many ⌧ -values), we accumulate the quantity [7]
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by binning the time points ⌧̃ on a fine grid. After the simulation is finished, we compute the
Green’s function as8
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It is also possible to measure the Matsubara components of the Green’s function directly. Using
the imaginary-time translational invariance of the Green’s functions, one finds
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We note that because the Weiss Green’s function has the high-frequency behavior G0(i!n) ⇠

1/i!n, the measured impurity Green’s function automatically inherits the correct high-frequency
tail.

8Comparison of this equation with the Dyson equation G = G0 + G0 ? ⌃ ? G (where the ? symbol denotes a
convolution in imaginary time) shows that his procedure amounts to measuring �⌃ ? G.
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matrix is O(n2).
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The estimate for the impurity Green’s function for a given imaginary-time then follows from
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by binning the time points ⌧̃ on a fine grid. After the simulation is finished, we compute the
Green’s function as8

G�(⌧) = G
�

0 (⌧) �

Z
�

0

d⌧̃G
�

0 (⌧ � ⌧̃)
⌦
S�(⌧̃)

↵
MC. (38)

It is also possible to measure the Matsubara components of the Green’s function directly. Using
the imaginary-time translational invariance of the Green’s functions, one finds
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We note that because the Weiss Green’s function has the high-frequency behavior G0(i!n) ⇠

1/i!n, the measured impurity Green’s function automatically inherits the correct high-frequency
tail.

8Comparison of this equation with the Dyson equation G = G0 + G0 ? ⌃ ? G (where the ? symbol denotes a
convolution in imaginary time) shows that his procedure amounts to measuring �⌃ ? G.

this formula automatically produces the correct high-frequency tail

<latexit sha1_base64="vijXQJYj2BgswdhShtA9YurMbN4=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUREXRbcuKxgH9DEMJlM0qEzkzAzUUrsp7hxoYhbv8Sdf+OkzUJbD1w4nHMv994TZowq7Tjf1srq2vrGZm2rvr2zu7dvNw56Ks0lJl2cslQOQqQIo4J0NdWMDDJJEA8Z6Yfj69LvPxCpaCru9CQjPkeJoDHFSBspsBvRvRehJCEy8BRNOKoHdtNpOTPAZeJWpAkqdAL7y4tSnHMiNGZIqaHrZNovkNQUMzKte7kiGcJjlJChoQJxovxidvoUnhglgnEqTQkNZ+rviQJxpSY8NJ0c6ZFa9ErxP2+Y6/jKL6jIck0Eni+KcwZ1CsscYEQlwZpNDEFYUnMrxCMkEdYmrTIEd/HlZdI7a7kXLff2vNluV3HUwBE4BqfABZegDW5AB3QBBo/gGbyCN+vJerHerY9564pVzRyCP7A+fwDVFJO3</latexit>

d†�
<latexit sha1_base64="B0fEmnZ1aHQgCO7owWJdNh+WvLw=">AAAB8HicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE1GPBi8cK9kPaUDabTbt0dxN2N0IJ/RVePCji1Z/jzX/jps1BWx8MPN6bYWZemHKmjed9O5W19Y3Nrep2bWd3b//APTzq6CRThLZJwhPVC7GmnEnaNsxw2ksVxSLktBtObgu/+0SVZol8MNOUBgKPJIsZwcZKj9FwoNlI4NrQrXsNbw60SvyS1KFEa+h+DaKEZIJKQzjWuu97qQlyrAwjnM5qg0zTFJMJHtG+pRILqoN8fvAMnVklQnGibEmD5urviRwLracitJ0Cm7Fe9grxP6+fmfgmyJlMM0MlWSyKM45MgorvUcQUJYZPLcFEMXsrImOsMDE2oyIEf/nlVdK5aPhXDf/+st5slnFU4QRO4Rx8uIYm3EEL2kBAwDO8wpujnBfn3flYtFaccuYY/sD5/AFLhZAS</latexit>

d�

<latexit sha1_base64="q5Qd+sz/EEDqghXtHrRUz0SQVNs=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0VwISURUZeFblxWsQ9o0nAzmaZDJw9mJpYS+hNu/BU3LhRxK7jzb0zaLLT1wIXDOfdy7z1uzJlUhvGtlVZW19Y3ypuVre2d3T19/6Ato0QQ2iIRj0TXBUk5C2lLMcVpNxYUApfTjjtq5H7ngQrJovBeTWJqB+CHbMAIqExy9DPrjvlDBUJEYzx2Gv3UcyzJ/ACw17c88H0qCmFacfSqUTNmwMvELEgVFWg6+pflRSQJaKgIByl7phErOwWhGOF0WrESSWMgI/BpL6MhBFTa6eyrKT7JFA8PIpFVqPBM/T2RQiDlJHCzzgDUUC56ufif10vU4NpOWRgnioZkvmiQcKwinEeEPSYoUXySESCCZbdiMgQBRGVB5iGYiy8vk/Z5zbysmbcX1Xq9iKOMjtAxOkUmukJ1dIOaqIUIekTP6BW9aU/ai/aufcxbS1oxc4j+QPv8Abrvnyk=</latexit>

) w
d�d

†
�

C

<latexit sha1_base64="qr5hAjOL2OMVmrnUht9ZB8BtQcU=">AAACGXicbZBNS8MwGMfT+TbnW9Wjl+AQPM1WRL0Igx30OMG9wNqVNM26sDQtSaqMsq/hxa/ixYMiHvXktzHdetDNBwK//P/PQ/L8/YRRqSzr2ygtLa+srpXXKxubW9s75u5eW8apwKSFYxaLro8kYZSTlqKKkW4iCIp8Rjr+qJH7nXsiJI35nRonxI1QyOmAYqS05JnWtdfoO5KGEbqCD5qzwJtdYdB3AhSGRBTC5ET7Fc+sWjVrWnAR7AKqoKimZ346QYzTiHCFGZKyZ1uJcjMkFMWMTCpOKkmC8AiFpKeRo4hIN5tuNoFHWgngIBb6cAWn6u+JDEVSjiNfd0ZIDeW8l4v/eb1UDS7djPIkVYTj2UODlEEVwzwmGFBBsGJjDQgLqv8K8RAJhJUOMw/Bnl95EdqnNfu8Zt+eVev1Io4yOACH4BjY4ALUwQ1oghbA4BE8g1fwZjwZL8a78TFrLRnFzD74U8bXD4+5oAU=</latexit>

G�
C = w

d�d
†
�

C /wC

<latexit sha1_base64="l8u1C8a7ZnQoWzPG/Rnml+TwlE8=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNzURUZcFNy4r2Ac0IUymk3bozCTMTIQQ6q+4caGIWz/EnX/jpM1CWw9cOJxzL/feEyaMKu0431ZlbX1jc6u6XdvZ3ds/sA+PeipOJSZdHLNYDkKkCKOCdDXVjAwSSRAPGemH09vC7z8SqWgsHnSWEJ+jsaARxUgbKbDrnqIcuudN6sWcjFEgzmqB3XBazhxwlbglaYASncD+8kYxTjkRGjOk1NB1Eu3nSGqKGZnVvFSRBOEpGpOhoQJxovx8fvwMnhplBKNYmhIaztXfEzniSmU8NJ0c6Yla9grxP2+Y6ujGz6lIUk0EXiyKUgZ1DIsk4IhKgjXLDEFYUnMrxBMkEdYmryIEd/nlVdK7aLlXLff+stFul3FUwTE4AU3ggmvQBnegA7oAgww8g1fwZj1ZL9a79bForVjlTB38gfX5A73Jk4g=</latexit>

⇠ 1/(i!n)

<latexit sha1_base64="yWVgPuzWeReJ6D8NS0gUgYQr3VY=">AAAB/HicbVC7TsNAEDyHVwgvQ0qaExYSVWJTAA2SpRShDBJ5iMSyzpdzcuT80N0ZZFmh4ztoKECIlpKCT6DjbzgnKSBhpJVGM7va3fFiRoU0zW+tsLS8srpWXC9tbG5t7+i7ey0RJRyTJo5YxDseEoTRkDQllYx0Yk5Q4DHS9ka13G/fEi5oFF7JNCZOgAYh9SlGUkmuXq6f90QSuDV4p6ru1qrXJVc3zIo5AVwk1owYtvFQ/SQ3Hw1X/+r1I5wEJJSYISG6lhlLJ0NcUszIuNRLBIkRHqEB6SoaooAIJ5scP4aHSulDP+KqQgkn6u+JDAVCpIGnOgMkh2Ley8X/vG4i/TMno2GcSBLi6SI/YVBGME8C9iknWLJUEYQ5VbdCPEQcYanyykOw5l9eJK3jinVSsS4tw7bBFEWwDw7AEbDAKbDBBWiAJsAgBY/gGbxo99qT9qq9TVsL2mymDP5Ae/8BpDmWfA==</latexit>

G =
P

C wCGC/Z



Questions about weak-coupling 

CT-QMC?                 




Formalism

Configurations and weights


Hybridization expansion CT-QMC 

only even expansion orders (same number of creation/annihilation operators) contribute

5.12 Philipp Werner

3.4 Multi-orbital and cluster impurity problems

The generalization of the weak-coupling method to impurity clusters is straightforward. All we
have to do is to add a site index to the interaction vertices (or auxiliary Ising spin variables) and
sample the vertices (auxiliary spins) on a family of nsites imaginary-time intervals.
General four-Fermion terms as in Eq. (2) are, at least in principle, also easily dealt with. We
simply expand the partition function in powers of the interactions Uabcd. The trace over the
impurity and bath degrees of freedom again yields a determinant of a matrix whose order equals
the total perturbation order. In general there is a sign problem. To reduce the sign problem, it is
advantageous to introduce auxiliary fields ↵ and replace

1

2

X

abcd
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abcd
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with an appropriate shift in the quadratic part of the Hamiltonian. However, in general, it is
not possible to completely eliminate the sign problem by a suitable choice of ↵ parameters.
Furthermore, since the number of interaction terms grows like O(n4

orbitals), the computational
cost rapidly escalates. In practice, the approach discussed in the following section is a more
suitable approach for single-site multi-orbital impurity problems with general interactions.

4 Hybridization-expansion approach

While the Monte Carlo weights in the weak-coupling method are expressed in terms of the
Weiss Green’s function G0, the hybridization-expansion method, which is in many ways com-
plementary to the weak-coupling approach, naturally involves the hybridization function �. It
follows from Eq. (13) that the Weiss Green’s function G0 and hybridization function � con-
tain the same information, and the DMFT procedure sketched in Sec. 1.2 could be just as well
written as a self-consistency loop fixing the hybridization function �.
The hybridization-expansion approach [9] is based on an expansion of the partition function
in powers of the impurity-bath hybridization term. Here, we decompose the Hamiltonian
as H2 = Hmix and H1 = H � H2 = Hµ + HU + Hbath. Since H2 ⌘ Hd

†
2 + Hd

2 =P
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Vp�d†
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c
p�

+
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c†
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d
�

has two terms, corresponding to electrons hopping from the bath
to the impurity and from the impurity back to the bath, only even perturbation orders contribute
to Eq. (20). Furthermore, at perturbation order 2n, only the (2n)!/(n!)2 terms corresponding
to n creation operators d† and n annihilation operators d contribute. We therefore write the
partition function as a sum over configurations {⌧1, . . . , ⌧n; ⌧ 0

1, . . . , ⌧
0
n
} that are collections of

imaginary-time points corresponding to these n annihilation and n creation operators:
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Since the imaginary-time evolution operator e�⌧H1 does not rotate the spin in the case of the
Anderson impurity model, the configurations must contain an equal number of creation and
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Since the imaginary-time evolution operator e�⌧H1 does not rotate the spin in the case of the
Anderson impurity model, the configurations must contain an equal number of creation and
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To do this, we split the Hamiltonian into two parts, H = H1 + H2, and define the imaginary-
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This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {⌧1, . . . , ⌧n}, n = 0, 1, . . . , where we assume the imaginary-
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There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling

approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)-(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic part Hµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ +HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers of H2 = HU .4 Equation (21) then gives the weight of a configuration of n interaction

vertices. Since H1 = H �H2 = Hµ +Hbath +Hmix is quadratic, we can use Wick’s theorem to
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3.4 Multi-orbital and cluster impurity problems

The generalization of the weak-coupling method to impurity clusters is straightforward. All we
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impurity and bath degrees of freedom again yields a determinant of a matrix whose order equals
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with an appropriate shift in the quadratic part of the Hamiltonian. However, in general, it is
not possible to completely eliminate the sign problem by a suitable choice of ↵ parameters.
Furthermore, since the number of interaction terms grows like O(n4

orbitals), the computational
cost rapidly escalates. In practice, the approach discussed in the following section is a more
suitable approach for single-site multi-orbital impurity problems with general interactions.
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annihilation operators for each spin. Taking this additional constraint into account and using
the explicit expressions for Hd

2 and Hd
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2 , we find
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where to separate the d and c operators we used the fact that H1 does not mix the impurity and
the bath. The local Hamiltonian Hloc is defined in Eq. (5) and Zbath = Trc[e��Hbath ].
Introducing the �-antiperiodic hybridization function (12), which in the time-domain reads
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where M�1
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is the (n� ⇥ n�) matrix with elements
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In the hybridization expansion approach, the configuration space consists of all sequences C =
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The weight of such a configuration is
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The trace factor represents the contribution of the impurity, which fluctuates between different
quantum states as electrons hop in and out. The determinants sum up all bath evolutions which
are compatible with the given sequence of transitions.
To evaluate the trace factor, we may for example use the eigenbasis of Hloc. In this basis, the
imaginary-time evolution operator e�⌧Hloc is diagonal while the operators d� and d†

�
produce
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annihilation operators for each spin. Taking this additional constraint into account and using
the explicit expressions for Hd
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where to separate the d and c operators we used the fact that H1 does not mix the impurity and
the bath. The local Hamiltonian Hloc is defined in Eq. (5) and Zbath = Trc[e��Hbath ].
Introducing the �-antiperiodic hybridization function (12), which in the time-domain reads
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annihilation operators for each spin. Taking this additional constraint into account and using
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where to separate the d and c operators we used the fact that H1 does not mix the impurity and
the bath. The local Hamiltonian Hloc is defined in Eq. (5) and Zbath = Trc[e��Hbath ].
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where to separate the d and c operators we used the fact that H1 does not mix the impurity and
the bath. The local Hamiltonian Hloc is defined in Eq. (5) and Zbath = Trc[e��Hbath ].
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Fig. 3: Local update in the segment picture. The two segment configurations correspond to

spin up and down electrons. Each segment depicts a time interval in which an electron of the

corresponding spin resides on the impurity. The segment end points are the locations of the

operators d†
(full circles) and d (empty circles). We increase the perturbation order by adding

a segment or anti-segment of random length for random spin and decrease it by removing a

randomly chosen segment or anti-segment.

transitions between eigenstates with amplitude ±1. Because the time evolution does not flip the
electron spin, the creation and annihilation operators for a given spin alternate. This observation
allows us to separate the operators for spin up from those for spin down and to depict the time
evolution by a collection of segments with each segment representing an imaginary-time interval
in which an electron of spin up or down resides on the impurity (Fig. 3). We call an unoccupied
time-interval between two segments an “anti-segment”.
At each time, the eigenstate of the impurity follows immediately from the segment representa-
tion, and the trace factor becomes
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with S being a permutation sign, l� the total “length” of the segments for spin �, and loverlap the
total length of the overlap between spin-up and spin-down segments. The lower panel of Fig. 3
shows a configuration with two segments for spin up and one segment for spin down (note the
periodic boundary conditions). The time intervals where segments overlap, indicated by gray
rectangles, correspond to a doubly occupied impurity and cost a repulsion energy U .

4.1 Sampling

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators
(segments or anti-segments) for spin up and down. One possible strategy for inserting a segment
is the following: We select a random time in [0, �) for the creation operator. If it falls on an
existing segment, the impurity is already occupied and the move is rejected. If it falls on an
empty space, we compute lmax, the length from this selected time to the next segment (in the

density-density interaction: can represent the local weight using “segment configurations”
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where to separate the d and c operators we used the fact that H1 does not mix the impurity and
the bath. The local Hamiltonian Hloc is defined in Eq. (5) and Zbath = Trc[e��Hbath ].
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The trace factor represents the contribution of the impurity, which fluctuates between different
quantum states as electrons hop in and out. The determinants sum up all bath evolutions which
are compatible with the given sequence of transitions.
To evaluate the trace factor, we may for example use the eigenbasis of Hloc. In this basis, the
imaginary-time evolution operator e�⌧Hloc is diagonal while the operators d� and d†

�
produce

Quantum Monte Carlo impurity solvers 5.13

annihilation operators for each spin. Taking this additional constraint into account and using
the explicit expressions for Hd

2 and Hd
†

2 , we find

Z = Zbath

X

{n�}

Y

�

Z
�

0

d⌧�

1 · · ·

Z
�

⌧
�
n��1

d⌧�

n�

Z
�

0

d⌧ 0�
1 . . .

Z
�

⌧
0�
n��1

d⌧ 0�
n�

⇥ Trd
h
e��HlocT

Y

�

d�(⌧
�

n�
)d†

�
(⌧ 0�

n�
) . . . d�(⌧

�

1 )d†
�
(⌧ 0�

1 )
i

⇥
1

Zbath
Trc

h
e��HbathT

Y

�

X

p1...pn�

X

p
0
1...p

0
n�

V ⇤
p1�

V
p
0
1�

· · · V ⇤
pn��

V
p0n��

c†
pn��

(⌧�

n�
)c

p0n��
(⌧ 0�

n�
) . . . c†

p1�
(⌧�

1 )c
p
0
1�

(⌧ 0�
1 )

i
,

where to separate the d and c operators we used the fact that H1 does not mix the impurity and
the bath. The local Hamiltonian Hloc is defined in Eq. (5) and Zbath = Trc[e��Hbath ].
Introducing the �-antiperiodic hybridization function (12), which in the time-domain reads

��(⌧) =
X

p

|Vp�|
2

e"p� + 1

(
�e�"p(⌧��) 0 < ⌧ < �

e�"p⌧ �� < ⌧ < 0
,

the trace over the bath states can be expressed as

1

Zbath
Trc

h
e��HbathT

Y

�

X

p1...pn�

X

p
0
1...p

0
n�

V ⇤
p1�

V
p
0
1�

· · · V ⇤
pn��

V
p0n��

c†
pn��

(⌧�

n�
)c

p0n��
(⌧ 0�

n�
) . . . c†

p1�
(⌧�

1 )c
p
0
1�

(⌧ 0�
1 )

i
=

Y

�

det M�1
�

,

where M�1
�

is the (n� ⇥ n�) matrix with elements

[M�1
�

]ij = ��(⌧ 0
i

�
� ⌧�

j
).

In the hybridization expansion approach, the configuration space consists of all sequences C =

{⌧ "
1 , . . . , ⌧ "

n"
; ⌧ 0"

1 , . . . , ⌧ 0"
n"

|⌧ #
1 , . . . , ⌧ #

n#
; ⌧ 0#

1 , . . . , ⌧ 0#
n#

} of n" creation and annihilation operators for
spin up (n" = 0, 1, . . .) and n# creation and annihilation operators for spin down (n# = 0, 1, . . .).
The weight of such a configuration is

wC = ZbathTrd
h
e��HlocT

Y

�

d�(⌧
�

n�
)d†

�
(⌧ 0�

n�
) · · · d�(⌧

�

1 )d†
�
(⌧ 0�

1 )
i

⇥

Y

�

det M�1
�

(d⌧)2n� . (41)

The trace factor represents the contribution of the impurity, which fluctuates between different
quantum states as electrons hop in and out. The determinants sum up all bath evolutions which
are compatible with the given sequence of transitions.
To evaluate the trace factor, we may for example use the eigenbasis of Hloc. In this basis, the
imaginary-time evolution operator e�⌧Hloc is diagonal while the operators d� and d†

�
produce

Quantum Monte Carlo impurity solvers 5.13

annihilation operators for each spin. Taking this additional constraint into account and using
the explicit expressions for Hd

2 and Hd
†

2 , we find

Z = Zbath

X

{n�}

Y

�

Z
�

0

d⌧�

1 · · ·

Z
�

⌧
�
n��1

d⌧�

n�

Z
�

0

d⌧ 0�
1 . . .

Z
�

⌧
0�
n��1

d⌧ 0�
n�

⇥ Trd
h
e��HlocT

Y

�

d�(⌧
�

n�
)d†

�
(⌧ 0�

n�
) . . . d�(⌧

�

1 )d†
�
(⌧ 0�

1 )
i

⇥
1

Zbath
Trc

h
e��HbathT

Y

�

X

p1...pn�

X

p
0
1...p

0
n�

V ⇤
p1�

V
p
0
1�

· · · V ⇤
pn��

V
p0n��

c†
pn��

(⌧�

n�
)c

p0n��
(⌧ 0�

n�
) . . . c†

p1�
(⌧�

1 )c
p
0
1�

(⌧ 0�
1 )

i
,

where to separate the d and c operators we used the fact that H1 does not mix the impurity and
the bath. The local Hamiltonian Hloc is defined in Eq. (5) and Zbath = Trc[e��Hbath ].
Introducing the �-antiperiodic hybridization function (12), which in the time-domain reads

��(⌧) =
X

p

|Vp�|
2

e"p� + 1

(
�e�"p(⌧��) 0 < ⌧ < �

e�"p⌧ �� < ⌧ < 0
,

the trace over the bath states can be expressed as

1

Zbath
Trc

h
e��HbathT

Y

�

X

p1...pn�

X

p
0
1...p

0
n�

V ⇤
p1�

V
p
0
1�

· · · V ⇤
pn��

V
p0n��

c†
pn��

(⌧�

n�
)c

p0n��
(⌧ 0�

n�
) . . . c†

p1�
(⌧�

1 )c
p
0
1�

(⌧ 0�
1 )

i
=

Y

�

det M�1
�

,

where M�1
�

is the (n� ⇥ n�) matrix with elements

[M�1
�

]ij = ��(⌧ 0
i

�
� ⌧�

j
).

In the hybridization expansion approach, the configuration space consists of all sequences C =

{⌧ "
1 , . . . , ⌧ "

n"
; ⌧ 0"

1 , . . . , ⌧ 0"
n"

|⌧ #
1 , . . . , ⌧ #

n#
; ⌧ 0#

1 , . . . , ⌧ 0#
n#

} of n" creation and annihilation operators for
spin up (n" = 0, 1, . . .) and n# creation and annihilation operators for spin down (n# = 0, 1, . . .).
The weight of such a configuration is

wC = ZbathTrd
h
e��HlocT

Y

�

d�(⌧
�

n�
)d†

�
(⌧ 0�

n�
) · · · d�(⌧

�

1 )d†
�
(⌧ 0�

1 )
i

⇥

Y

�

det M�1
�

(d⌧)2n� . (41)

The trace factor represents the contribution of the impurity, which fluctuates between different
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Fig. 3: Local update in the segment picture. The two segment configurations correspond to

spin up and down electrons. Each segment depicts a time interval in which an electron of the

corresponding spin resides on the impurity. The segment end points are the locations of the

operators d†
(full circles) and d (empty circles). We increase the perturbation order by adding

a segment or anti-segment of random length for random spin and decrease it by removing a

randomly chosen segment or anti-segment.

transitions between eigenstates with amplitude ±1. Because the time evolution does not flip the
electron spin, the creation and annihilation operators for a given spin alternate. This observation
allows us to separate the operators for spin up from those for spin down and to depict the time
evolution by a collection of segments with each segment representing an imaginary-time interval
in which an electron of spin up or down resides on the impurity (Fig. 3). We call an unoccupied
time-interval between two segments an “anti-segment”.
At each time, the eigenstate of the impurity follows immediately from the segment representa-
tion, and the trace factor becomes
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with S being a permutation sign, l� the total “length” of the segments for spin �, and loverlap the
total length of the overlap between spin-up and spin-down segments. The lower panel of Fig. 3
shows a configuration with two segments for spin up and one segment for spin down (note the
periodic boundary conditions). The time intervals where segments overlap, indicated by gray
rectangles, correspond to a doubly occupied impurity and cost a repulsion energy U .

4.1 Sampling

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators
(segments or anti-segments) for spin up and down. One possible strategy for inserting a segment
is the following: We select a random time in [0, �) for the creation operator. If it falls on an
existing segment, the impurity is already occupied and the move is rejected. If it falls on an
empty space, we compute lmax, the length from this selected time to the next segment (in the

density-density interaction: can represent the local weight using “segment configurations”
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where to separate the d and c operators we used the fact that H1 does not mix the impurity and
the bath. The local Hamiltonian Hloc is defined in Eq. (5) and Zbath = Trc[e��Hbath ].
Introducing the �-antiperiodic hybridization function (12), which in the time-domain reads
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In the hybridization expansion approach, the configuration space consists of all sequences C =
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spin up (n" = 0, 1, . . .) and n# creation and annihilation operators for spin down (n# = 0, 1, . . .).
The weight of such a configuration is
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The trace factor represents the contribution of the impurity, which fluctuates between different
quantum states as electrons hop in and out. The determinants sum up all bath evolutions which
are compatible with the given sequence of transitions.
To evaluate the trace factor, we may for example use the eigenbasis of Hloc. In this basis, the
imaginary-time evolution operator e�⌧Hloc is diagonal while the operators d� and d†

�
produce
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Fig. 3: Local update in the segment picture. The two segment configurations correspond to

spin up and down electrons. Each segment depicts a time interval in which an electron of the

corresponding spin resides on the impurity. The segment end points are the locations of the

operators d†
(full circles) and d (empty circles). We increase the perturbation order by adding

a segment or anti-segment of random length for random spin and decrease it by removing a

randomly chosen segment or anti-segment.

transitions between eigenstates with amplitude ±1. Because the time evolution does not flip the
electron spin, the creation and annihilation operators for a given spin alternate. This observation
allows us to separate the operators for spin up from those for spin down and to depict the time
evolution by a collection of segments with each segment representing an imaginary-time interval
in which an electron of spin up or down resides on the impurity (Fig. 3). We call an unoccupied
time-interval between two segments an “anti-segment”.
At each time, the eigenstate of the impurity follows immediately from the segment representa-
tion, and the trace factor becomes
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with S being a permutation sign, l� the total “length” of the segments for spin �, and loverlap the
total length of the overlap between spin-up and spin-down segments. The lower panel of Fig. 3
shows a configuration with two segments for spin up and one segment for spin down (note the
periodic boundary conditions). The time intervals where segments overlap, indicated by gray
rectangles, correspond to a doubly occupied impurity and cost a repulsion energy U .

4.1 Sampling

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators
(segments or anti-segments) for spin up and down. One possible strategy for inserting a segment
is the following: We select a random time in [0, �) for the creation operator. If it falls on an
existing segment, the impurity is already occupied and the move is rejected. If it falls on an
empty space, we compute lmax, the length from this selected time to the next segment (in the

density-density interaction: can represent the local weight using “segment configurations”
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0 0 ββ

Figure 1.12 Left panel: weak-coupling diagrams sumable into a deter-
minant. The diamonds represent interaction vertices and the lines bath
Green’s functions for spin up and down electrons. Right panel: strong cou-
pling diagrams sumable into a determinant. The full circles represent cre-
ation operators and the empty circles annihilation operators. Pairs of cre-
ation and annihilation operators are connected by hybridization lines.

tion. Therefore, both connected and disconnected diagrams appear. What
the n! diagrams have in common are the positions on the imaginary time
interval of the n interaction vertices (weak-coupling approach) or the po-
sitions of the n creation and n annihilation operators (strong-coupling ap-
proach). Figure 1.12 illustrates all second order (weak-coupling) and third
order (strong coupling) contributions corresponding to some fixed operator
positions. We note that the fermionic nature of the operators leads to indi-
vidual diagrams with anti-commutivity signs. The determinants allow us to
add n! diagrams with proper signs and, at least in simple models such as
the AIM, to completely absorb the cancellation effects between positive and
negative weight contributions.

To underscore the crucial role of the determinants, we consider a simple
model of a noninteracting (spin-less) impurity coupled to one bath site with
energy ε = 0 and hybridization V . The action reads

S =

∫ β

0
dτ d†(τ)∆(τ − τ ′)d(τ ′), (1.102)

with the hybridization function (1.20) given by ∆(iωn) = |V |2/iωn, which



Monte Carlo updates

Local updates in the segment formalism


Hybridization expansion CT-QMC 

ergodicity: enough to insert/remove random segments for spin up and down

5.14 Philipp Werner
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Fig. 3: Local update in the segment picture. The two segment configurations correspond to

spin up and down electrons. Each segment depicts a time interval in which an electron of the

corresponding spin resides on the impurity. The segment end points are the locations of the

operators d†
(full circles) and d (empty circles). We increase the perturbation order by adding

a segment or anti-segment of random length for random spin and decrease it by removing a

randomly chosen segment or anti-segment.

transitions between eigenstates with amplitude ±1. Because the time evolution does not flip the
electron spin, the creation and annihilation operators for a given spin alternate. This observation
allows us to separate the operators for spin up from those for spin down and to depict the time
evolution by a collection of segments with each segment representing an imaginary-time interval
in which an electron of spin up or down resides on the impurity (Fig. 3). We call an unoccupied
time-interval between two segments an “anti-segment”.
At each time, the eigenstate of the impurity follows immediately from the segment representa-
tion, and the trace factor becomes
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with S being a permutation sign, l� the total “length” of the segments for spin �, and loverlap the
total length of the overlap between spin-up and spin-down segments. The lower panel of Fig. 3
shows a configuration with two segments for spin up and one segment for spin down (note the
periodic boundary conditions). The time intervals where segments overlap, indicated by gray
rectangles, correspond to a doubly occupied impurity and cost a repulsion energy U .

4.1 Sampling

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators
(segments or anti-segments) for spin up and down. One possible strategy for inserting a segment
is the following: We select a random time in [0, �) for the creation operator. If it falls on an
existing segment, the impurity is already occupied and the move is rejected. If it falls on an
empty space, we compute lmax, the length from this selected time to the next segment (in the
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Fig. 3: Local update in the segment picture. The two segment configurations correspond to

spin up and down electrons. Each segment depicts a time interval in which an electron of the

corresponding spin resides on the impurity. The segment end points are the locations of the

operators d†
(full circles) and d (empty circles). We increase the perturbation order by adding

a segment or anti-segment of random length for random spin and decrease it by removing a

randomly chosen segment or anti-segment.

transitions between eigenstates with amplitude ±1. Because the time evolution does not flip the
electron spin, the creation and annihilation operators for a given spin alternate. This observation
allows us to separate the operators for spin up from those for spin down and to depict the time
evolution by a collection of segments with each segment representing an imaginary-time interval
in which an electron of spin up or down resides on the impurity (Fig. 3). We call an unoccupied
time-interval between two segments an “anti-segment”.
At each time, the eigenstate of the impurity follows immediately from the segment representa-
tion, and the trace factor becomes
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with S being a permutation sign, l� the total “length” of the segments for spin �, and loverlap the
total length of the overlap between spin-up and spin-down segments. The lower panel of Fig. 3
shows a configuration with two segments for spin up and one segment for spin down (note the
periodic boundary conditions). The time intervals where segments overlap, indicated by gray
rectangles, correspond to a doubly occupied impurity and cost a repulsion energy U .

4.1 Sampling

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators
(segments or anti-segments) for spin up and down. One possible strategy for inserting a segment
is the following: We select a random time in [0, �) for the creation operator. If it falls on an
existing segment, the impurity is already occupied and the move is rejected. If it falls on an
empty space, we compute lmax, the length from this selected time to the next segment (in the
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Fig. 3: Local update in the segment picture. The two segment configurations correspond to

spin up and down electrons. Each segment depicts a time interval in which an electron of the

corresponding spin resides on the impurity. The segment end points are the locations of the

operators d†
(full circles) and d (empty circles). We increase the perturbation order by adding

a segment or anti-segment of random length for random spin and decrease it by removing a

randomly chosen segment or anti-segment.

transitions between eigenstates with amplitude ±1. Because the time evolution does not flip the
electron spin, the creation and annihilation operators for a given spin alternate. This observation
allows us to separate the operators for spin up from those for spin down and to depict the time
evolution by a collection of segments with each segment representing an imaginary-time interval
in which an electron of spin up or down resides on the impurity (Fig. 3). We call an unoccupied
time-interval between two segments an “anti-segment”.
At each time, the eigenstate of the impurity follows immediately from the segment representa-
tion, and the trace factor becomes
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with S being a permutation sign, l� the total “length” of the segments for spin �, and loverlap the
total length of the overlap between spin-up and spin-down segments. The lower panel of Fig. 3
shows a configuration with two segments for spin up and one segment for spin down (note the
periodic boundary conditions). The time intervals where segments overlap, indicated by gray
rectangles, correspond to a doubly occupied impurity and cost a repulsion energy U .

4.1 Sampling

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators
(segments or anti-segments) for spin up and down. One possible strategy for inserting a segment
is the following: We select a random time in [0, �) for the creation operator. If it falls on an
existing segment, the impurity is already occupied and the move is rejected. If it falls on an
empty space, we compute lmax, the length from this selected time to the next segment (in the
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lmax

Fig. 3: Local update in the segment picture. The two segment configurations correspond to

spin up and down electrons. Each segment depicts a time interval in which an electron of the

corresponding spin resides on the impurity. The segment end points are the locations of the

operators d†
(full circles) and d (empty circles). We increase the perturbation order by adding

a segment or anti-segment of random length for random spin and decrease it by removing a

randomly chosen segment or anti-segment.

transitions between eigenstates with amplitude ±1. Because the time evolution does not flip the
electron spin, the creation and annihilation operators for a given spin alternate. This observation
allows us to separate the operators for spin up from those for spin down and to depict the time
evolution by a collection of segments with each segment representing an imaginary-time interval
in which an electron of spin up or down resides on the impurity (Fig. 3). We call an unoccupied
time-interval between two segments an “anti-segment”.
At each time, the eigenstate of the impurity follows immediately from the segment representa-
tion, and the trace factor becomes
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with S being a permutation sign, l� the total “length” of the segments for spin �, and loverlap the
total length of the overlap between spin-up and spin-down segments. The lower panel of Fig. 3
shows a configuration with two segments for spin up and one segment for spin down (note the
periodic boundary conditions). The time intervals where segments overlap, indicated by gray
rectangles, correspond to a doubly occupied impurity and cost a repulsion energy U .

4.1 Sampling

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators
(segments or anti-segments) for spin up and down. One possible strategy for inserting a segment
is the following: We select a random time in [0, �) for the creation operator. If it falls on an
existing segment, the impurity is already occupied and the move is rejected. If it falls on an
empty space, we compute lmax, the length from this selected time to the next segment (in the
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direction of increasing ⌧ , taking into account the periodic boundary conditions).9 Then we
choose the position of the new annihilation operator randomly in this interval of length lmax

(Fig. 3). If in the inverse procedure we propose to remove a randomly chosen segment for this
spin, then the proposal probabilities for the insertion and removal are

pprop(n� ! n� + 1) =
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while the acceptance probability for a removal is obtained from

Rremove(n� + 1 ! n�) = 1/Rinsert(n� ! n� + 1). (44)

Here, lnew is the length of the new segment, and �loverlap is the change in the overlap (see Fig. 3).
We compute the ratio of determinants using the fast update formulas discussed in Section 3.2.

4.2 Measurement of the Green’s function

The strategy is to create configurations which contribute to the Green’s function measurement
by decoupling the bath from a given pair of creation and annihilation operators in C. We start
by expressing the expectation value for the Green’s function as
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direction of increasing ⌧ , taking into account the periodic boundary conditions).9 Then we
choose the position of the new annihilation operator randomly in this interval of length lmax

(Fig. 3). If in the inverse procedure we propose to remove a randomly chosen segment for this
spin, then the proposal probabilities for the insertion and removal are
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while the acceptance probability for a removal is obtained from

Rremove(n� + 1 ! n�) = 1/Rinsert(n� ! n� + 1). (44)

Here, lnew is the length of the new segment, and �loverlap is the change in the overlap (see Fig. 3).
We compute the ratio of determinants using the fast update formulas discussed in Section 3.2.

4.2 Measurement of the Green’s function

The strategy is to create configurations which contribute to the Green’s function measurement
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direction of increasing ⌧ , taking into account the periodic boundary conditions).9 Then we
choose the position of the new annihilation operator randomly in this interval of length lmax

(Fig. 3). If in the inverse procedure we propose to remove a randomly chosen segment for this
spin, then the proposal probabilities for the insertion and removal are

pprop(n� ! n� + 1) =
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while the acceptance probability for a removal is obtained from

Rremove(n� + 1 ! n�) = 1/Rinsert(n� ! n� + 1). (44)

Here, lnew is the length of the new segment, and �loverlap is the change in the overlap (see Fig. 3).
We compute the ratio of determinants using the fast update formulas discussed in Section 3.2.

4.2 Measurement of the Green’s function

The strategy is to create configurations which contribute to the Green’s function measurement
by decoupling the bath from a given pair of creation and annihilation operators in C. We start
by expressing the expectation value for the Green’s function as
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d(⌧) in the trace factor and w(⌧,0)
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direction of increasing ⌧ , taking into account the periodic boundary conditions).9 Then we
choose the position of the new annihilation operator randomly in this interval of length lmax

(Fig. 3). If in the inverse procedure we propose to remove a randomly chosen segment for this
spin, then the proposal probabilities for the insertion and removal are

pprop(n� ! n� + 1) =
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while the acceptance probability for a removal is obtained from

Rremove(n� + 1 ! n�) = 1/Rinsert(n� ! n� + 1). (44)

Here, lnew is the length of the new segment, and �loverlap is the change in the overlap (see Fig. 3).
We compute the ratio of determinants using the fast update formulas discussed in Section 3.2.

4.2 Measurement of the Green’s function

The strategy is to create configurations which contribute to the Green’s function measurement
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direction of increasing ⌧ , taking into account the periodic boundary conditions).9 Then we
choose the position of the new annihilation operator randomly in this interval of length lmax

(Fig. 3). If in the inverse procedure we propose to remove a randomly chosen segment for this
spin, then the proposal probabilities for the insertion and removal are

pprop(n� ! n� + 1) =
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while the acceptance probability for a removal is obtained from

Rremove(n� + 1 ! n�) = 1/Rinsert(n� ! n� + 1). (44)

Here, lnew is the length of the new segment, and �loverlap is the change in the overlap (see Fig. 3).
We compute the ratio of determinants using the fast update formulas discussed in Section 3.2.

4.2 Measurement of the Green’s function

The strategy is to create configurations which contribute to the Green’s function measurement
by decoupling the bath from a given pair of creation and annihilation operators in C. We start
by expressing the expectation value for the Green’s function as
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while the acceptance probability for a removal is obtained from

Rremove(n� + 1 ! n�) = 1/Rinsert(n� ! n� + 1). (44)

Here, lnew is the length of the new segment, and �loverlap is the change in the overlap (see Fig. 3).
We compute the ratio of determinants using the fast update formulas discussed in Section 3.2.
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with i and j denoting the row and column corresponding to the additional operators d† and d in
the enlarged [M (⌧,0)

C
]�1. Hence, the measurement formula for the Green’s function becomes10
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with �(⌧, ⌧ 0) = �(⌧ � ⌧ 0) for ⌧ 0 > 0, and �(⌧, ⌧ 0) = ��(⌧ � ⌧ 0
� �) for ⌧ 0 < 0. In the first

step, we went from a sum over configurations C with n creation and annihilation operators in
addition to d(⌧) and d†(0) to a sum over configurations C̃ with ñ = n + 1 operator pairs, while
in the last step, we used the translational invariance and the �-anti-periodicity of the Green’s
function. We finally replace the factor ñ2 (which comes from the 1/(n!)2 factor in the Monte
Carlo weights without time ordering) by a sum over all pairs i, j of creation and annihilation
operators, to obtain the measurement formula G(⌧) = �
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P
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Fourier transformation of Eq. (45) yields the measurement formula

G(i!n) =

*
�

X

ij
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ei!n(⌧i�⌧

0
j)Mij

+

MC

(46)

for the Fourier coefficients of the Green’s function. Note that in contrast to the weak-coupling
approach, where we measure the Green’s function as a O(1/(i!n)2) correction to the Weiss
Green’s function, Eq. (46) does not automatically yield the correct high frequency tail.
An elegant way to suppress the noise in G(i!n) at large !n and to obtain a compact represen-
tation of the Green’s function is to measure the expansion coefficients in a basis of orthogonal

10For the purpose of this derivation, it is convenient to use configurations C and C̃ without time ordering, that
is, we write the Green’s function as
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ñ
2
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FIG. 2: Green functions for n = 1, U/t = 3.5
√
2, βt =

400, 200, 31.4 and 20. Lines without symbols (upper and right
axes) show G(τ ) on a semi-log scale over the wide time in-
terval [β/2, β] revealing marked differences between metallic
(βt = 200, 400) and insulating (βt = 20, 31.4) solutions. Lines
with symbols (lower and left axes) show the same data on a
linear scale in the very narrow τ range [0, β/2000], revealing
the accurate representation of the rapid drop of G(τ ).

(reduced) matrices in a time O(k2). We store and ma-
nipulate M , the inverse of Eq. (5), becauseM allows easy
access to the determinant ratios in Eqs. (6) and (7) and
is required for measuring the Green function, since

G(τ) =
〈 1

β

k
∑

i=1

k
∑

j=1

Mj,i∆(τ, τei − τsj )
〉

, (8)

∆(τ, τ ′) =

{

δ(τ − τ ′) τ ′ > 0
−δ(τ − τ ′ − β) τ ′ < 0

. (9)

The end points G(0) and G(β) can be measured accu-
rately from the average total length of the segments.
In the form given here, the algorithm generalizes

straightforwardly to any model with interaction terms
which are diagonal in an occupation number basis (for
models with exchange, see Ref. [14]). One simply in-
troduces one collection of segments for each spin/orbital
state, and the weight of a configuration now also de-
pends on the segment overlap. For example, in the one-
orbital Hubbard model with on-site interaction U , there
is one collection of segments for spin up and one for spin
down, while in Eqs. (6) and (7) one has to add a factor
exp(−δovU) on the right hand side, where δov denotes
the change in overlap between up and down segments.
We have used the new method to study the param-

agnetic phase of the Hubbard model with semicircular
density of states of bandwidth 4t, for interactions of the
order of the Mott critical value Uc2 and temperatures
as low as βt = 400. For this model the self-consistency
condition reduces to F (τ) = t2G(−τ). Simulations for
temperatures down to βt ≈ 50 can be run on a laptop.
For calculations at βt = 400, we typically used 10 CPU
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FIG. 3: Probability p(k) for a configuration with k segments
plotted for different interaction strengths U/t for βt = 100
and half-filling. The peak position shifts to lower values of
k as U/t is increased. The inset compares the scaling of the
matrix size with U to Hirsch-Fye (≈ 5βU) and the method of
Ref. [13] (≈ 0.5βU).

hours for each iteration in order to accurately resolve the
short- and long-time behavior.

Figure 2 shows the impurity model Green function for
U/t = 3.5

√
2, βt = 20, 31.4, 200 and 400 and n = 1 (half

filling). The lower two temperatures are out of reach of
the Hirsch-Fye algorithm. We collected the data on a grid
of 104 points for βt = 200, 400 and 103 points for βt =
20, 31.4. The lines with symbols show that the method
accurately captures the steep short-time drop of G; the
lines without symbols demonstrate clearly the difference
in long-time behavior between the insulating (high-T )
and metallic (low-T ) solutions.

Despite the almost perfect resolution, the typical size,
k, of the matices, M , which are generated during the
simulation remains reasonable even at low temperatures.
This property explains the superior performance of the
strong-coupling expansion method. Figure 3 shows the
probability distribution p(k) for βt = 100 and different
values of the interaction strength. While the peak value
of the distribution is proportional to β, it shifts to lower

order as the interaction strength is increased, in contrast
to Hirsch-Fye or the method of Ref. [13], where the ma-
trix size scales approximately as 5βU and 0.5βU , respec-
tively. The inset of Fig. 3 shows that the linear size of the
matrix in our method can easily be a factor 100 smaller
than in a Hirsch-Fye calculation or a factor 10 smaller
than in the weak-coupling approach of Ref. [13]. The cu-
bic scaling of the computational effort with matrix size
implies a dramatically improved efficiency at couplings
of the order of the Mott critical value, making low T
behavior accessible.

To verify the accuracy of the method we show in Fig. 4

the kinetic energy K = 2t2
∫ β

0 dτG(τ)G(−τ) obtained
via the new approach, the exact diagonalization method
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Since H̃0 conserves Nσ

e−τH̃0 = e−τ(H̃0−Λ(N↑+N↓))e−τΛ(N↑+N↓) (1.106)

is a product of two matrices with elements ≥ 0 and therefore the product
has no negative elements in the chain basis.

The weight of a weak-coupling Monte Carlo configuration is

wC = Tr
[

e−(β−τn)H̃0A(sn)e−(τn−τn−1)H̃0A(sn−1) . . .
]

, (1.107)

where

A(s) = (−Udτ/2) [n↑ − 1/2− s(1/2 + δ)] [n↓ − 1/2 + s(1/2 + δ)] . (1.108)

What we still need to show is that the matrix A(s) has only non-negative
elements when δ ≥ 0 and U ≥ 0. We can easily do this by considering the
two values of the auxiliary spin variable s and by factorizing the interaction
term into a product of two quadratic operators:

s = 1 : (−Udτ/2)
︸ ︷︷ ︸

≤0

(n↑ − 1− δ)
︸ ︷︷ ︸

≤0

(n↓ + δ)
︸ ︷︷ ︸

≥0

,

s = −1 : (−Udτ/2)
︸ ︷︷ ︸

≤0

(n↑ + δ)
︸ ︷︷ ︸

≥0

(n↓ − 1− δ)
︸ ︷︷ ︸

≤0

. (1.109)

Hence, in the chain basis, neither the imaginary-time evolution operators
e−τH̃0 nor the “interaction vertices” A(s) have negative elements. The weight
is the trace of a product of matrices with non-negative elements, and there-
fore must be non-negative. We recall that in the case of attractive U , we
required no auxiliary field decoupling and the weak-coupling weights are
evidently positive.

The lack of a sign problem proof for the strong-coupling formalism is also
based on the chain basis (Kaul, 2007). Here, the weight of a Monte Carlo
configuration has the form
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mix = V c†1c0 (c0 ≡ d). In the chain basis, the
hybridization operators do not produce any negative signs (V ≥ 0), and in
fact in any basis, these factors come in pairs of complex conjugate numbers.
In the imaginary-time-evolution operators, Hloc is diagonal while Hbath has
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off-diagonal elements −ti ≤ 0 (i = 1, 2, . . .). Writing

e−τ(Hloc+Hbath) = lim
N→∞

(

1− τ

N
[Hloc + Hbath]

)N
, (1.111)

we see that inside the brackets the diagonal terms (dominated by 1) are
positive, and the off-diagonal terms (originating from − τ

N Hbath) are non-
negative. Hence, the imaginary-time evolution operator has no negative ele-
ments. We can therefore again express the Monte Carlo weights as the trace
of a product of matrices with nonnegative elements.

1.8 Scaling of the algorithms

The average expansion orders in the weak and strong-coupling algorithms
have a simple physical interpretation. In a DMFT calculation, they yield
highly accurate measurements for the potential and kinetic energy, respec-
tively.

Let us first consider the weak-coupling algorithm, where after the intro-
duction of auxiliary fields (Eqs. (1.50) and (1.51)) H = H1 + H2, with
H1 = H0 + U

2 (n↑ + n↓) and H2 = Un↑n↓ − U
2 (n↑ + n↓). It follows from

Eq. (1.46) that

〈−H2〉 =
1

β

∫ β

0
dτ〈−H2(τ)〉 =

1

β

1

Z

∞
∑

n=0

n + 1

(n + 1)!

∫ β

0
dτ

∫ β

0
dτ1 . . .

∫ β

0
dτn

× Tr
[

e−βH1T (−H2(τ))(−H2(τn)) . . . (−H2(τ1))
]

=
1

β

1

Z

∑

C

nCwC =
1

β
〈n〉, (1.112)

and therefore the average perturbation order 〈n〉 is related to the potential
energy by

〈n〉weak-coupling = −βU〈n↑n↓〉+
βU

2
〈n↑ + n↓〉 = −βEpot +

βU

2
〈n↑ + n↓〉.

(1.113)
We also learn from this formula that the average perturbation order is
roughly proportional to the inverse temperature β and the interaction strength
U .

In the strong-coupling case, the average perturbation order is proportional

mixing terms are positive
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General impurity models

Matrix formalism


Hybridization expansion CT-QMC 

if         is not diagonal in the occupation number basis, the calculation of the trace becomes costly

in the matrix formalism, we use the eigenbasis of the time evolution operator  
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For multi-orbital impurity models with Hloc diagonal in the occupation number basis, such as
models with density-density interactions, the segment formalism illustrated in Fig. 3 is still ap-
plicable, but there is now a collection of segments for each flavor ↵ (orbital, spin, etc.). The
trace factor can again be computed from the length of the segments (the chemical potential con-
tribution) and the overlaps between segments of different flavor (the interaction contribution).
This allows a very efficient simulation of models with 5, 7, and in principle even more orbitals,
despite the fact that the corresponding Hilbert spaces (45 = 1024 for 5 orbitals, 47 = 16384 for
7 orbitals) are quite large.
If Hloc is not diagonal in the occupation number basis defined by the d†
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, the calculation of
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becomes rather involved and for a model with a large Hilbert space also computationally ex-
pensive. An obvious idea is to evaluate the trace in the eigenbasis where the imaginary-time
evolution operators e�Hloc⌧ become diagonal. On the other hand, the operators d↵ and d†

↵
,

which are simple and sparse in the occupation number basis, become complicated matrices in
the eigenbasis. The evaluation of the trace factor in the eigenbasis thus involves the multiplica-
tion of matrices whose size scales as the dimension of the Hilbert space of the local problem.
Since the dimension of this Hilbert space grows exponentially with the number of flavors, the
calculation of the trace factor becomes the computational bottleneck of the simulation, and the
matrix formalism is therefore restricted to a relatively small number of flavors.
It is important to identify and use conserved quantum numbers [13]. Typically, these are particle
number for spin up and spin down and momentum. If we group the eigenstates of Hloc according
to these quantum numbers, the operator matrices acquire a sparse block structure. For example,
the operator d†

",q connects states corresponding to the quantum numbers m = {n", n#, k, . . .} to
those with m0 = {n"+1, n#, k+q, . . .} (if they exist). Checking the compatibility of the operator
sequence with the different starting blocks allows us to identify the blocks which contribute to
the trace without performing any expensive matrix-matrix multiplications.
Let us take as a simple example a two-orbital model with conserved quantum numbers n" and
n#. The operator sequence d†

"(⌧4)d
†
"(⌧3)d"(⌧2)d"(⌧1) (with ⌧1 < ⌧2 < ⌧3 < ⌧4) is compatible

with the starting blocks {n" = 2; n# = 0, 1, 2}, since the quantum numbers evolve as
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whereas the blocks {n" = 0, 1; n# = 0, 1, 2} do not contribute to the weight, since, for example,
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;.

Having identified the contributing blocks, the trace calculation reduces to a block matrix multi-
plication of the form
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becomes rather involved and for a model with a large Hilbert space also computationally ex-
pensive. An obvious idea is to evaluate the trace in the eigenbasis where the imaginary-time
evolution operators e�Hloc⌧ become diagonal. On the other hand, the operators d↵ and d†

↵
,

which are simple and sparse in the occupation number basis, become complicated matrices in
the eigenbasis. The evaluation of the trace factor in the eigenbasis thus involves the multiplica-
tion of matrices whose size scales as the dimension of the Hilbert space of the local problem.
Since the dimension of this Hilbert space grows exponentially with the number of flavors, the
calculation of the trace factor becomes the computational bottleneck of the simulation, and the
matrix formalism is therefore restricted to a relatively small number of flavors.
It is important to identify and use conserved quantum numbers [13]. Typically, these are particle
number for spin up and spin down and momentum. If we group the eigenstates of Hloc according
to these quantum numbers, the operator matrices acquire a sparse block structure. For example,
the operator d†
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those with m0 = {n"+1, n#, k+q, . . .} (if they exist). Checking the compatibility of the operator
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Let us take as a simple example a two-orbital model with conserved quantum numbers n" and
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where O is either a creation or annihilation operator, m denotes the index of the matrix block,
and the sum runs over those starting sectors which are compatible with the operator sequence.
Using the block structure imposed by the conserved quantum numbers, it is possible to effi-
ciently simulate 3-orbital models or 4-site clusters. However, since the matrix blocks are dense
and the largest blocks grow exponentially with system size, the simulation of 5-orbital models
already becomes quite expensive and the simulation of 7-orbital models with 5, 6 or 7 electrons
is doable only if we truncate the size of the blocks.
In fact, one should distinguish two types of truncations:

1. Restriction of the trace
P

contributing m
Trm[. . .] to those quantum number sectors or states

which give the dominant contribution,

2. Reduction of the size of the operator blocks [O]m0m00 by eliminating high-energy states.

Truncations of type (1) have little effect at low enough temperature, because they restrict the
possible states only at a single point on the imaginary-time interval. Truncations of the type (2)
are more problematic and possibly lead to systematic errors which are difficult to estimate and
control when the system size is large.
Accumulating a histogram of the states or quantum number sectors visited during the sampling
can be very instructive. For example, in the study of correlated materials with multiple partially
filled orbitals, interesting questions are the typical valence or the dominant spin state, and the
importance of fluctuations to other charge and spin states. Dynamical mean-field theory allows
us to address these issues by adopting a real-space representation of the solid as a collection of
atoms and treating the local fluctuations on a given site through the effective impurity model
construction. The strong-coupling solver, which treats the local part of the impurity problem
exactly, is ideally suited for such an analysis.

4.3.2 Krylov formalism

An alternative strategy [14] to evaluate the trace factor (50) is to

1. Adopt the occupation number basis in which we can easily apply the d↵ and d†
↵

operator
matrices to any state and in which we can exploit the sparse nature of Hloc during the
imaginary-time evolutions,

2. Approximate the trace by a sum over the lowest energy states, that is, by a truncation of
type (1) described in the previous subsection.

Instead of evaluating the matrix corresponding to the product of operators, we propagate each
retained state in the trace through the sequence of time-evolution, creation and annihilation op-
erators. This computation only involves matrix-vector multiplications of the type d↵|vi, d†

↵
|vi,

and Hloc|vi with sparse operators d↵, d†
↵

and Hloc and is thus possible for systems for which
the multiplication of dense matrix blocks becomes prohibitively expensive. Furthermore, the
approach does not require any approximation of type (2), so all excited states remain accessi-
ble at intermediate ⌧ . While the sparsity of Hloc depends on the number of interaction terms,
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and therefore the average perturbation order hni is related to the potential energy by

hniweak-coupling = ��Uhn"n#i + 1
2�Uhn" + n#i = ��Epot + 1

2�Uhn" + n#i. (53)

We learn from this formula that the average perturbation order is roughly proportional to the
inverse temperature � and the interaction strength U .
In the hybridization-expansion case, the average perturbation order is proportional to the kinetic
energy. In single-site DMFT, we can express the kinetic energy
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with Gloc the local lattice Green’s function, which after convergence of the DMFT calculation is identical to the
impurity Green’s function G. The latter is related to the hybridization function by G = [i!n + µ � ⌃ � �]�1.
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore di�erent for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is
no serious sign problem. The strong-coupling approach, on the other hand, is
useful in particular for the study of (single-site) multi-orbital problems with
complicated local interactions. Such problems typically have to be solved
in single-site DMFT studies of strongly correlated materials, or in realistic
simulations of transition metal impurities (Surer et al., 2012).

Solver Scaling Use

Weak-coupling �
3

L
3 Impurity clusters with density-

density interaction

Hybridization expansion �
3

L Single site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the di�erent impurity solvers with inverse tempera-
ture � and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.
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Fig. 4: Average perturbation order for the weak-coupling and hybridization-expansion algo-

rithms. These results correspond to the DMFT solution of the one-band Hubbard model with

semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is

therefore different for each data point.
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore di�erent for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is
no serious sign problem. The strong-coupling approach, on the other hand, is
useful in particular for the study of (single-site) multi-orbital problems with
complicated local interactions. Such problems typically have to be solved
in single-site DMFT studies of strongly correlated materials, or in realistic
simulations of transition metal impurities (Surer et al., 2012).

Solver Scaling Use

Weak-coupling �
3

L
3 Impurity clusters with density-

density interaction

Hybridization expansion �
3

L Single site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the di�erent impurity solvers with inverse tempera-
ture � and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.
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Fig. 4: Average perturbation order for the weak-coupling and hybridization-expansion algo-

rithms. These results correspond to the DMFT solution of the one-band Hubbard model with

semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is

therefore different for each data point.
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.

hybridization matrix with row j and column i removed
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rithms. These results correspond to the DMFT solution of the one-band Hubbard model with

semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is

therefore different for each data point.
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appearing in the numerator is nothing but the expansion of the determinant of the hybridization
matrix along column i. The expression for the kinetic energy thus simplifies to
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.

expansion of determinant along column i
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore di�erent for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is
no serious sign problem. The strong-coupling approach, on the other hand, is
useful in particular for the study of (single-site) multi-orbital problems with
complicated local interactions. Such problems typically have to be solved
in single-site DMFT studies of strongly correlated materials, or in realistic
simulations of transition metal impurities (Surer et al., 2012).

Solver Scaling Use

Weak-coupling �
3

L
3 Impurity clusters with density-

density interaction

Hybridization expansion �
3

L Single site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the di�erent impurity solvers with inverse tempera-
ture � and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.

<latexit sha1_base64="euYjsY1RKFJB1mQdvFzLXAwxH/g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cWTFtoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbT6g0T+SDGacYxHQgecQZNVZq+L1yxa26c5BV4uWkAjnqvfJXt5+wLEZpmKBadzw3NcGEKsOZwGmpm2lMKRvRAXYslTRGHUzmh07JmVX6JEqULWnIXP09MaGx1uM4tJ0xNUO97M3E/7xOZqKbYMJlmhmUbLEoygQxCZl9TfpcITNibAllittbCRtSRZmx2ZRsCN7yy6ukeVH1rqpe47JSu83jKMIJnMI5eHANNbiHOvjAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHsyWM3w==</latexit>

U

<latexit sha1_base64="9+bpVqde+zmug+2eaUZCY9qvZeI=">AAACEnicbVC7SgNBFJ31GeMramkzGARtwq6IWgZtLCOYB2RDmJ3cJENmZ5eZu5Kw5Bts/BUbC0Vsrez8G2eTFJp4YOBwzrncuSeIpTDout/O0vLK6tp6biO/ubW9s1vY26+ZKNEcqjySkW4EzIAUCqooUEIj1sDCQEI9GNxkfv0BtBGRusdRDK2Q9ZToCs7QSu3CqY8wxBSGMVNZiEa6A5qOqS+Z6kmgivp6wtqFoltyJ6CLxJuRIpmh0i58+Z2IJyEo5JIZ0/TcGFsp0yi4hHHeTwzEjA9YD5qWKhaCaaWTk8b02Cod2o20fQrpRP09kbLQmFEY2GTIsG/mvUz8z2sm2L1qpULFCYLi00XdRFKMaNYP7QgNHOXIEsa1sH+lvM8042hbzNsSvPmTF0ntrORdlLy782L5elZHjhySI3JCPHJJyuSWVEiVcPJInskreXOenBfn3fmYRpec2cwB+QPn8weXJp4H</latexit> ex
p
an

si
on

or
d
er

h
n
i

Fig. 4: Average perturbation order for the weak-coupling and hybridization-expansion algo-

rithms. These results correspond to the DMFT solution of the one-band Hubbard model with

semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is

therefore different for each data point.
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore di�erent for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is
no serious sign problem. The strong-coupling approach, on the other hand, is
useful in particular for the study of (single-site) multi-orbital problems with
complicated local interactions. Such problems typically have to be solved
in single-site DMFT studies of strongly correlated materials, or in realistic
simulations of transition metal impurities (Surer et al., 2012).
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(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the di�erent impurity solvers with inverse tempera-
ture � and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.
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Fig. 4: Average perturbation order for the weak-coupling and hybridization-expansion algo-

rithms. These results correspond to the DMFT solution of the one-band Hubbard model with

semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is

therefore different for each data point.
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appearing in the numerator is nothing but the expansion of the determinant of the hybridization
matrix along column i. The expression for the kinetic energy thus simplifies to
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.
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and therefore the average perturbation order hni is related to the potential energy by

hniweak-coupling = ��Uhn"n#i + 1
2�Uhn" + n#i = ��Epot + 1

2�Uhn" + n#i. (53)

We learn from this formula that the average perturbation order is roughly proportional to the
inverse temperature � and the interaction strength U .
In the hybridization-expansion case, the average perturbation order is proportional to the kinetic
energy. In single-site DMFT, we can express the kinetic energy
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in terms of the Green’s function and hybridization function:13

12For simplicity, we have chosen � = 0.
13The first step in the derivation of this formula is to switch to the Fourier representation:
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with Gloc the local lattice Green’s function, which after convergence of the DMFT calculation is identical to the
impurity Green’s function G. The latter is related to the hybridization function by G = [i!n + µ � ⌃ � �]�1.
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore di�erent for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is
no serious sign problem. The strong-coupling approach, on the other hand, is
useful in particular for the study of (single-site) multi-orbital problems with
complicated local interactions. Such problems typically have to be solved
in single-site DMFT studies of strongly correlated materials, or in realistic
simulations of transition metal impurities (Surer et al., 2012).

Solver Scaling Use

Weak-coupling �
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L
3 Impurity clusters with density-

density interaction

Hybridization expansion �
3

L Single site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the di�erent impurity solvers with inverse tempera-
ture � and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.
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Fig. 4: Average perturbation order for the weak-coupling and hybridization-expansion algo-

rithms. These results correspond to the DMFT solution of the one-band Hubbard model with

semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is

therefore different for each data point.
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore di�erent for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is
no serious sign problem. The strong-coupling approach, on the other hand, is
useful in particular for the study of (single-site) multi-orbital problems with
complicated local interactions. Such problems typically have to be solved
in single-site DMFT studies of strongly correlated materials, or in realistic
simulations of transition metal impurities (Surer et al., 2012).

Solver Scaling Use

Weak-coupling �
3

L
3 Impurity clusters with density-

density interaction

Hybridization expansion �
3

L Single site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the di�erent impurity solvers with inverse tempera-
ture � and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore di�erent for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is
no serious sign problem. The strong-coupling approach, on the other hand, is
useful in particular for the study of (single-site) multi-orbital problems with
complicated local interactions. Such problems typically have to be solved
in single-site DMFT studies of strongly correlated materials, or in realistic
simulations of transition metal impurities (Surer et al., 2012).
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Figure 8.15 Scaling of the di�erent impurity solvers with inverse tempera-
ture � and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.
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Fig. 4: Average perturbation order for the weak-coupling and hybridization-expansion algo-

rithms. These results correspond to the DMFT solution of the one-band Hubbard model with

semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is

therefore different for each data point.
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appearing in the numerator is nothing but the expansion of the determinant of the hybridization
matrix along column i. The expression for the kinetic energy thus simplifies to
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.
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and therefore the average perturbation order hni is related to the potential energy by

hniweak-coupling = ��Uhn"n#i + 1
2�Uhn" + n#i = ��Epot + 1

2�Uhn" + n#i. (53)

We learn from this formula that the average perturbation order is roughly proportional to the
inverse temperature � and the interaction strength U .
In the hybridization-expansion case, the average perturbation order is proportional to the kinetic
energy. In single-site DMFT, we can express the kinetic energy
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in terms of the Green’s function and hybridization function:13

12For simplicity, we have chosen � = 0.
13The first step in the derivation of this formula is to switch to the Fourier representation:
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with Gloc the local lattice Green’s function, which after convergence of the DMFT calculation is identical to the
impurity Green’s function G. The latter is related to the hybridization function by G = [i!n + µ � ⌃ � �]�1.
Hence, we obtain
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore di�erent for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is
no serious sign problem. The strong-coupling approach, on the other hand, is
useful in particular for the study of (single-site) multi-orbital problems with
complicated local interactions. Such problems typically have to be solved
in single-site DMFT studies of strongly correlated materials, or in realistic
simulations of transition metal impurities (Surer et al., 2012).
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L Single site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the di�erent impurity solvers with inverse tempera-
ture � and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.

<latexit sha1_base64="euYjsY1RKFJB1mQdvFzLXAwxH/g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cWTFtoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbT6g0T+SDGacYxHQgecQZNVZq+L1yxa26c5BV4uWkAjnqvfJXt5+wLEZpmKBadzw3NcGEKsOZwGmpm2lMKRvRAXYslTRGHUzmh07JmVX6JEqULWnIXP09MaGx1uM4tJ0xNUO97M3E/7xOZqKbYMJlmhmUbLEoygQxCZl9TfpcITNibAllittbCRtSRZmx2ZRsCN7yy6ukeVH1rqpe47JSu83jKMIJnMI5eHANNbiHOvjAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHsyWM3w==</latexit>

U

<latexit sha1_base64="9+bpVqde+zmug+2eaUZCY9qvZeI=">AAACEnicbVC7SgNBFJ31GeMramkzGARtwq6IWgZtLCOYB2RDmJ3cJENmZ5eZu5Kw5Bts/BUbC0Vsrez8G2eTFJp4YOBwzrncuSeIpTDout/O0vLK6tp6biO/ubW9s1vY26+ZKNEcqjySkW4EzIAUCqooUEIj1sDCQEI9GNxkfv0BtBGRusdRDK2Q9ZToCs7QSu3CqY8wxBSGMVNZiEa6A5qOqS+Z6kmgivp6wtqFoltyJ6CLxJuRIpmh0i58+Z2IJyEo5JIZ0/TcGFsp0yi4hHHeTwzEjA9YD5qWKhaCaaWTk8b02Cod2o20fQrpRP09kbLQmFEY2GTIsG/mvUz8z2sm2L1qpULFCYLi00XdRFKMaNYP7QgNHOXIEsa1sH+lvM8042hbzNsSvPmTF0ntrORdlLy782L5elZHjhySI3JCPHJJyuSWVEiVcPJInskreXOenBfn3fmYRpec2cwB+QPn8weXJp4H</latexit> ex
p
an

si
on

or
d
er

h
n
i

Fig. 4: Average perturbation order for the weak-coupling and hybridization-expansion algo-

rithms. These results correspond to the DMFT solution of the one-band Hubbard model with

semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is

therefore different for each data point.
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.
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FIG. 2: Green functions for n = 1, U/t = 3.5
√
2, βt =

400, 200, 31.4 and 20. Lines without symbols (upper and right
axes) show G(τ ) on a semi-log scale over the wide time in-
terval [β/2, β] revealing marked differences between metallic
(βt = 200, 400) and insulating (βt = 20, 31.4) solutions. Lines
with symbols (lower and left axes) show the same data on a
linear scale in the very narrow τ range [0, β/2000], revealing
the accurate representation of the rapid drop of G(τ ).

(reduced) matrices in a time O(k2). We store and ma-
nipulate M , the inverse of Eq. (5), becauseM allows easy
access to the determinant ratios in Eqs. (6) and (7) and
is required for measuring the Green function, since

G(τ) =
〈 1

β

k
∑

i=1

k
∑

j=1

Mj,i∆(τ, τei − τsj )
〉

, (8)

∆(τ, τ ′) =

{

δ(τ − τ ′) τ ′ > 0
−δ(τ − τ ′ − β) τ ′ < 0

. (9)

The end points G(0) and G(β) can be measured accu-
rately from the average total length of the segments.
In the form given here, the algorithm generalizes

straightforwardly to any model with interaction terms
which are diagonal in an occupation number basis (for
models with exchange, see Ref. [14]). One simply in-
troduces one collection of segments for each spin/orbital
state, and the weight of a configuration now also de-
pends on the segment overlap. For example, in the one-
orbital Hubbard model with on-site interaction U , there
is one collection of segments for spin up and one for spin
down, while in Eqs. (6) and (7) one has to add a factor
exp(−δovU) on the right hand side, where δov denotes
the change in overlap between up and down segments.
We have used the new method to study the param-

agnetic phase of the Hubbard model with semicircular
density of states of bandwidth 4t, for interactions of the
order of the Mott critical value Uc2 and temperatures
as low as βt = 400. For this model the self-consistency
condition reduces to F (τ) = t2G(−τ). Simulations for
temperatures down to βt ≈ 50 can be run on a laptop.
For calculations at βt = 400, we typically used 10 CPU
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matrix size with U to Hirsch-Fye (≈ 5βU) and the method of
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hours for each iteration in order to accurately resolve the
short- and long-time behavior.
Figure 2 shows the impurity model Green function for

U/t = 3.5
√
2, βt = 20, 31.4, 200 and 400 and n = 1 (half

filling). The lower two temperatures are out of reach of
the Hirsch-Fye algorithm. We collected the data on a grid
of 104 points for βt = 200, 400 and 103 points for βt =
20, 31.4. The lines with symbols show that the method
accurately captures the steep short-time drop of G; the
lines without symbols demonstrate clearly the difference
in long-time behavior between the insulating (high-T )
and metallic (low-T ) solutions.
Despite the almost perfect resolution, the typical size,

k, of the matices, M , which are generated during the
simulation remains reasonable even at low temperatures.
This property explains the superior performance of the
strong-coupling expansion method. Figure 3 shows the
probability distribution p(k) for βt = 100 and different
values of the interaction strength. While the peak value
of the distribution is proportional to β, it shifts to lower

order as the interaction strength is increased, in contrast
to Hirsch-Fye or the method of Ref. [13], where the ma-
trix size scales approximately as 5βU and 0.5βU , respec-
tively. The inset of Fig. 3 shows that the linear size of the
matrix in our method can easily be a factor 100 smaller
than in a Hirsch-Fye calculation or a factor 10 smaller
than in the weak-coupling approach of Ref. [13]. The cu-
bic scaling of the computational effort with matrix size
implies a dramatically improved efficiency at couplings
of the order of the Mott critical value, making low T
behavior accessible.
To verify the accuracy of the method we show in Fig. 4

the kinetic energy K = 2t2
∫ β

0 dτG(τ)G(−τ) obtained
via the new approach, the exact diagonalization method

average order

decreases with

increasing U
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and therefore the average perturbation order hni is related to the potential energy by

hniweak-coupling = ��Uhn"n#i + 1
2�Uhn" + n#i = ��Epot + 1

2�Uhn" + n#i. (53)

We learn from this formula that the average perturbation order is roughly proportional to the
inverse temperature � and the interaction strength U .
In the hybridization-expansion case, the average perturbation order is proportional to the kinetic
energy. In single-site DMFT, we can express the kinetic energy
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with Gloc the local lattice Green’s function, which after convergence of the DMFT calculation is identical to the
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore di�erent for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is
no serious sign problem. The strong-coupling approach, on the other hand, is
useful in particular for the study of (single-site) multi-orbital problems with
complicated local interactions. Such problems typically have to be solved
in single-site DMFT studies of strongly correlated materials, or in realistic
simulations of transition metal impurities (Surer et al., 2012).

Solver Scaling Use

Weak-coupling �
3

L
3 Impurity clusters with density-

density interaction

Hybridization expansion �
3

L Single site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the di�erent impurity solvers with inverse tempera-
ture � and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.
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Fig. 4: Average perturbation order for the weak-coupling and hybridization-expansion algo-

rithms. These results correspond to the DMFT solution of the one-band Hubbard model with

semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is

therefore different for each data point.
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.

5.22 Philipp Werner272 Continuous-time impurity solvers

 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7

pe
rtu

rb
at

io
n 

or
de

r <
n>

U

metal Mott
insulator

weak coupling expansion
hybridization expansion
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coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
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2007).)
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.

computational effort scales as
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and therefore the average perturbation order hni is related to the potential energy by

hniweak-coupling = ��Uhn"n#i + 1
2�Uhn" + n#i = ��Epot + 1

2�Uhn" + n#i. (53)

We learn from this formula that the average perturbation order is roughly proportional to the
inverse temperature � and the interaction strength U .
In the hybridization-expansion case, the average perturbation order is proportional to the kinetic
energy. In single-site DMFT, we can express the kinetic energy
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with Gloc the local lattice Green’s function, which after convergence of the DMFT calculation is identical to the
impurity Green’s function G. The latter is related to the hybridization function by G = [i!n + µ � ⌃ � �]�1.
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore di�erent for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is
no serious sign problem. The strong-coupling approach, on the other hand, is
useful in particular for the study of (single-site) multi-orbital problems with
complicated local interactions. Such problems typically have to be solved
in single-site DMFT studies of strongly correlated materials, or in realistic
simulations of transition metal impurities (Surer et al., 2012).

Solver Scaling Use

Weak-coupling �
3

L
3 Impurity clusters with density-

density interaction

Hybridization expansion �
3

L Single site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the di�erent impurity solvers with inverse tempera-
ture � and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.
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Fig. 4: Average perturbation order for the weak-coupling and hybridization-expansion algo-

rithms. These results correspond to the DMFT solution of the one-band Hubbard model with

semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is

therefore different for each data point.
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matrix along column i. The expression for the kinetic energy thus simplifies to
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore di�erent for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is
no serious sign problem. The strong-coupling approach, on the other hand, is
useful in particular for the study of (single-site) multi-orbital problems with
complicated local interactions. Such problems typically have to be solved
in single-site DMFT studies of strongly correlated materials, or in realistic
simulations of transition metal impurities (Surer et al., 2012).
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L
3 Impurity clusters with density-

density interaction

Hybridization expansion �
3

L Single site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the di�erent impurity solvers with inverse tempera-
ture � and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.
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rithms. These results correspond to the DMFT solution of the one-band Hubbard model with

semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is

therefore different for each data point.
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and the average total perturbation order hni of the Monte Carlo configuration is related to the
kinetic energy by

hnihybridization-expansion = ��Ekin.

computational effort scales as
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Solver Scaling Use

Weak-coupling �3 L3 Impurity clusters with density-
density interaction

Hybridization expansion �3 L Single-site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single-site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Table 1: Scaling of the different impurity solvers with inverse temperature � and system size L.

In the case of the segment algorithm, we assume that the calculation of the determinant ratios

dominates the overlap calculations. In the matrix or Krylov case, we assume that the trace

calculation dominates the calculation of the determinant ratios.

While the average expansion order in both the weak-coupling and hybridization-expansion
methods scales as �, the scaling of the expansion order with the interaction strength is very
different. In the weak-coupling approach it grows roughly proportional to U , while in the
hybridization-expansion approach, it decreases with increasing U (Fig. 4). In the case of the
Anderson impurity model, this behavior leads to a significant computational speed-up for the
hybridization-expansion approach in the intermediate- and large-U regime. Since local updates
are O(n2), a full sweep (update of all vertices in a configuration) is order O(n3).
For impurity clusters, or models with complicated interaction terms, which require the matrix
or Krylov formalisms discussed in Section 4.3, the hybridization-expansion method scales ex-
ponentially with system size, and we can only apply it to relatively small systems. Here, the
weak-coupling approach, if applicable, can be the method of choice. Table 1 gives a summary of
the different scalings (assuming a diagonal hybridization) and indicates which solver is appro-
priate for which type of problem. The weak-coupling solvers are mainly used in cluster DMFT
calculations of the Hubbard model, where the polynomial scaling allows to treat clusters of up
to 100 sites [16], at least in parameter regimes where there is no serious sign problem. The
strong-coupling approach, on the other hand, is useful in particular for the study of (single-site)
multi-orbital problems with complicated local interactions. Such problems typically have to be
solved in single-site DMFT studies of strongly correlated materials, or in realistic simulations
of transition metal impurities [17].

6 Electron-boson systems

6.1 Local phonons

In this section, we consider a quantum impurity model in which dispersionless phonons of
frequency !0 couple to the electron density on the impurity site. The local term of the Anderson-
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Solver Scaling Use

Weak-coupling �3 L3 Impurity clusters with density-
density interaction

Hybridization expansion �3 L Single-site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single-site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Table 1: Scaling of the different impurity solvers with inverse temperature � and system size L.

In the case of the segment algorithm, we assume that the calculation of the determinant ratios

dominates the overlap calculations. In the matrix or Krylov case, we assume that the trace

calculation dominates the calculation of the determinant ratios.

While the average expansion order in both the weak-coupling and hybridization-expansion
methods scales as �, the scaling of the expansion order with the interaction strength is very
different. In the weak-coupling approach it grows roughly proportional to U , while in the
hybridization-expansion approach, it decreases with increasing U (Fig. 4). In the case of the
Anderson impurity model, this behavior leads to a significant computational speed-up for the
hybridization-expansion approach in the intermediate- and large-U regime. Since local updates
are O(n2), a full sweep (update of all vertices in a configuration) is order O(n3).
For impurity clusters, or models with complicated interaction terms, which require the matrix
or Krylov formalisms discussed in Section 4.3, the hybridization-expansion method scales ex-
ponentially with system size, and we can only apply it to relatively small systems. Here, the
weak-coupling approach, if applicable, can be the method of choice. Table 1 gives a summary of
the different scalings (assuming a diagonal hybridization) and indicates which solver is appro-
priate for which type of problem. The weak-coupling solvers are mainly used in cluster DMFT
calculations of the Hubbard model, where the polynomial scaling allows to treat clusters of up
to 100 sites [16], at least in parameter regimes where there is no serious sign problem. The
strong-coupling approach, on the other hand, is useful in particular for the study of (single-site)
multi-orbital problems with complicated local interactions. Such problems typically have to be
solved in single-site DMFT studies of strongly correlated materials, or in realistic simulations
of transition metal impurities [17].
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Here, b and b† denote the phonon annihilation and creation operators. An impurity model of
this type has to be solved in single-site DMFT simulations of the Holstein-Hubbard model.
The bosonic sector of the Hilbert space of Hloc contains an infinite number of states. Hamiltonian-
based impurity solvers truncate the Hilbert space to a finite number of phonon states, but treat-
ing even a truncated space may be computationally expensive. An attractive feature of the
action-based continuous-time Monte Carlo formalism is that the phonons are integrated out,
which both in the weak-coupling and the hybridization-expansion algorithms allows to treat the
bosonic contribution in an elegant and efficient way.
We only discuss here the hybridization-expansion approach [18] which is based on a canonical
transformation [19] called the Lang-Firsov transformation. This transformation decouples the
electrons and phonons in the local Hamiltonian and applies to the physically relevant situation
where the phonons couple to the total charge on the impurity atom. In this particular case, the
electron-phonon coupling can be treated at essentially no additional computation cost.
At expansion order n� for spin �, the n�! diagrams corresponding to a given time sequence
of fermionic creation and annihilation operators can be summed up into a determinant of a
matrix M�1

�
, as discussed in Sec. 4, so that the weight of the Monte Carlo configuration can be

expressed as

w({Oi(⌧i)}) = Trc
D
T e�
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0 Hloc(⌧)O2n(⌧2n) . . . O1(⌧1)
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d⌧1 . . . d⌧2n
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(detM�1
�

)s�, (56)

where the Oi(⌧i) denote the (time-ordered) creation or annihilation operators and s� is 1 (�1) if
the spin-� operator with the lowest time argument is a creation (annihilation) operator. To de-
couple the electrons and phonons by a Lang-Firsov transformation, we rewrite the local Hamil-
tonian (55) as

Hloc = �µ(n" + n#) + Un"n# +
p

2g(n" + n# � 1)X +
!0

2

�
X2 + P 2

�
. (57)

Here the phonon coordinate X and momentum P , satisfying [P, X] = i, are related to the
phonon creation and annihilation operators by X = (b† + b)/

p
2 and P = i(b† � b)/

p
2. We

decouple the boson and fermion operators in Hloc by shifting X by

X0 = (
p

2g/!0)(n" + n# � 1) (58)

using the unitary transformation eiPX0 . The transformed Hamiltonian H̃loc = eiPX0Hloce�iPX0

becomes
H̃loc = �µ̃(ñ" + ñ#) + Ũ ñ"ñ# +

!0

2
(X2 + P 2).

The first two terms of H̃loc correspond to the local terms of the Anderson impurity model with
modified chemical potential µ̃ and interaction strength Ũ , where

µ̃ = µ � g2/!0, (59)

Ũ = U � 2g2/!0. (60)
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written with the phonon position / momentum operators                             ,                                     
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U

Fig. 1: Schematic representation of the Anderson impurity model. The left panel illustrates the

Hamiltonian represenation. Spin up and down electrons on the impurity (black dot) interact

with an on-site energy U and hop to a continuum of non-interacting bath levels with energy

"p. The amplitudes for these transitions are given by the hybridization parameters Vp�. Right

panel: Action representation of the Anderson impurity model, where the bath is replaced by the

hybridization function ��(⌧).

1.1 Action formulation

For analytical and numerical studies of equilibrium impurity problems, it can be useful to ex-
press the partition function and the imaginary-time Green’s function in terms of the imaginary-
time action. By integrating out the bath degrees of freedom in the path integral formalism one
obtains the partition function of the Anderson impurity model as

Z = Trd
⇥
T e�S

⇤
,

with the impurity action S = Smix + Sloc given by

Smix =
X

�

Z
�

0

d⌧d⌧ 0d†
�
(⌧ 0)��(⌧ 0

� ⌧)d�(⌧), (10)

Sloc =

Z
�

0

d⌧
h

� µ(n"(⌧) + n#(⌧)) + Un"(⌧)n#(⌧)
i
. (11)

T is the time-ordering operator. The impurity Green’s function becomes

G(⌧) = �hT d(⌧)d†(0)iS = �
1

Z
Trd

⇥
T e�Sd(⌧)d†(0)

⇤
.

The imaginary-time and Matsubara-frequency representations are related by

G(i!n) =

Z
�

0

d⌧ ei!n⌧G (⌧) , G(⌧) =
1

�

X

n

e�i!n⌧G(i!n),

where the fermionic Matsubara frequencies are !n = (2n + 1)⇡/� and � = 1/T is the inverse
temperature.
The hybridization function ��(⌧ 0

� ⌧) in Eq. (10) represents the amplitude for hopping from
the impurity into the bath at time ⌧ and back onto the impurity at time ⌧ 0. It is a function of the
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Solver Scaling Use

Weak-coupling �3 L3 Impurity clusters with density-
density interaction

Hybridization expansion �3 L Single-site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion � exp(L) Single-site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Table 1: Scaling of the different impurity solvers with inverse temperature � and system size L.

In the case of the segment algorithm, we assume that the calculation of the determinant ratios

dominates the overlap calculations. In the matrix or Krylov case, we assume that the trace

calculation dominates the calculation of the determinant ratios.

While the average expansion order in both the weak-coupling and hybridization-expansion
methods scales as �, the scaling of the expansion order with the interaction strength is very
different. In the weak-coupling approach it grows roughly proportional to U , while in the
hybridization-expansion approach, it decreases with increasing U (Fig. 4). In the case of the
Anderson impurity model, this behavior leads to a significant computational speed-up for the
hybridization-expansion approach in the intermediate- and large-U regime. Since local updates
are O(n2), a full sweep (update of all vertices in a configuration) is order O(n3).
For impurity clusters, or models with complicated interaction terms, which require the matrix
or Krylov formalisms discussed in Section 4.3, the hybridization-expansion method scales ex-
ponentially with system size, and we can only apply it to relatively small systems. Here, the
weak-coupling approach, if applicable, can be the method of choice. Table 1 gives a summary of
the different scalings (assuming a diagonal hybridization) and indicates which solver is appro-
priate for which type of problem. The weak-coupling solvers are mainly used in cluster DMFT
calculations of the Hubbard model, where the polynomial scaling allows to treat clusters of up
to 100 sites [16], at least in parameter regimes where there is no serious sign problem. The
strong-coupling approach, on the other hand, is useful in particular for the study of (single-site)
multi-orbital problems with complicated local interactions. Such problems typically have to be
solved in single-site DMFT studies of strongly correlated materials, or in realistic simulations
of transition metal impurities [17].

6 Electron-boson systems

6.1 Local phonons

In this section, we consider a quantum impurity model in which dispersionless phonons of
frequency !0 couple to the electron density on the impurity site. The local term of the Anderson-
Holstein impurity Hamiltonian H = Hloc + Hmix + Hbath is

Hloc = �µ(n" + n#) + Un"n# + g(n" + n# � 1)(b† + b) + !0b
†b. (55)
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6 Electron-boson systems
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†b. (55)
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Here, b and b† denote the phonon annihilation and creation operators. An impurity model of
this type has to be solved in single-site DMFT simulations of the Holstein-Hubbard model.
The bosonic sector of the Hilbert space of Hloc contains an infinite number of states. Hamiltonian-
based impurity solvers truncate the Hilbert space to a finite number of phonon states, but treat-
ing even a truncated space may be computationally expensive. An attractive feature of the
action-based continuous-time Monte Carlo formalism is that the phonons are integrated out,
which both in the weak-coupling and the hybridization-expansion algorithms allows to treat the
bosonic contribution in an elegant and efficient way.
We only discuss here the hybridization-expansion approach [18] which is based on a canonical
transformation [19] called the Lang-Firsov transformation. This transformation decouples the
electrons and phonons in the local Hamiltonian and applies to the physically relevant situation
where the phonons couple to the total charge on the impurity atom. In this particular case, the
electron-phonon coupling can be treated at essentially no additional computation cost.
At expansion order n� for spin �, the n�! diagrams corresponding to a given time sequence
of fermionic creation and annihilation operators can be summed up into a determinant of a
matrix M�1

�
, as discussed in Sec. 4, so that the weight of the Monte Carlo configuration can be

expressed as
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where the Oi(⌧i) denote the (time-ordered) creation or annihilation operators and s� is 1 (�1) if
the spin-� operator with the lowest time argument is a creation (annihilation) operator. To de-
couple the electrons and phonons by a Lang-Firsov transformation, we rewrite the local Hamil-
tonian (55) as

Hloc = �µ(n" + n#) + Un"n# +
p

2g(n" + n# � 1)X +
!0

2

�
X2 + P 2

�
. (57)

Here the phonon coordinate X and momentum P , satisfying [P, X] = i, are related to the
phonon creation and annihilation operators by X = (b† + b)/

p
2 and P = i(b† � b)/

p
2. We

decouple the boson and fermion operators in Hloc by shifting X by

X0 = (
p

2g/!0)(n" + n# � 1) (58)

using the unitary transformation eiPX0 . The transformed Hamiltonian H̃loc = eiPX0Hloce�iPX0

becomes
H̃loc = �µ̃(ñ" + ñ#) + Ũ ñ"ñ# +

!0

2
(X2 + P 2).

The first two terms of H̃loc correspond to the local terms of the Anderson impurity model with
modified chemical potential µ̃ and interaction strength Ũ , where

µ̃ = µ � g2/!0, (59)

Ũ = U � 2g2/!0. (60)

5.24 Philipp Werner

Here, b and b† denote the phonon annihilation and creation operators. An impurity model of
this type has to be solved in single-site DMFT simulations of the Holstein-Hubbard model.
The bosonic sector of the Hilbert space of Hloc contains an infinite number of states. Hamiltonian-
based impurity solvers truncate the Hilbert space to a finite number of phonon states, but treat-
ing even a truncated space may be computationally expensive. An attractive feature of the
action-based continuous-time Monte Carlo formalism is that the phonons are integrated out,
which both in the weak-coupling and the hybridization-expansion algorithms allows to treat the
bosonic contribution in an elegant and efficient way.
We only discuss here the hybridization-expansion approach [18] which is based on a canonical
transformation [19] called the Lang-Firsov transformation. This transformation decouples the
electrons and phonons in the local Hamiltonian and applies to the physically relevant situation
where the phonons couple to the total charge on the impurity atom. In this particular case, the
electron-phonon coupling can be treated at essentially no additional computation cost.
At expansion order n� for spin �, the n�! diagrams corresponding to a given time sequence
of fermionic creation and annihilation operators can be summed up into a determinant of a
matrix M�1

�
, as discussed in Sec. 4, so that the weight of the Monte Carlo configuration can be

expressed as

w({Oi(⌧i)}) = Trc
D
T e�

R �
0 Hloc(⌧)O2n(⌧2n) . . . O1(⌧1)

E

b

d⌧1 . . . d⌧2n

Y

�

(detM�1
�

)s�, (56)

where the Oi(⌧i) denote the (time-ordered) creation or annihilation operators and s� is 1 (�1) if
the spin-� operator with the lowest time argument is a creation (annihilation) operator. To de-
couple the electrons and phonons by a Lang-Firsov transformation, we rewrite the local Hamil-
tonian (55) as

Hloc = �µ(n" + n#) + Un"n# +
p

2g(n" + n# � 1)X +
!0

2

�
X2 + P 2

�
. (57)

Here the phonon coordinate X and momentum P , satisfying [P, X] = i, are related to the
phonon creation and annihilation operators by X = (b† + b)/

p
2 and P = i(b† � b)/

p
2. We

decouple the boson and fermion operators in Hloc by shifting X by

X0 = (
p

2g/!0)(n" + n# � 1) (58)

using the unitary transformation eiPX0 . The transformed Hamiltonian H̃loc = eiPX0Hloce�iPX0

becomes
H̃loc = �µ̃(ñ" + ñ#) + Ũ ñ"ñ# +
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action-based continuous-time Monte Carlo formalism is that the phonons are integrated out,
which both in the weak-coupling and the hybridization-expansion algorithms allows to treat the
bosonic contribution in an elegant and efficient way.
We only discuss here the hybridization-expansion approach [18] which is based on a canonical
transformation [19] called the Lang-Firsov transformation. This transformation decouples the
electrons and phonons in the local Hamiltonian and applies to the physically relevant situation
where the phonons couple to the total charge on the impurity atom. In this particular case, the
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At expansion order n� for spin �, the n�! diagrams corresponding to a given time sequence
of fermionic creation and annihilation operators can be summed up into a determinant of a
matrix M�1

�
, as discussed in Sec. 4, so that the weight of the Monte Carlo configuration can be

expressed as

w({Oi(⌧i)}) = Trc
D
T e�

R �
0 Hloc(⌧)O2n(⌧2n) . . . O1(⌧1)

E

b

d⌧1 . . . d⌧2n

Y

�

(detM�1
�

)s�, (56)

where the Oi(⌧i) denote the (time-ordered) creation or annihilation operators and s� is 1 (�1) if
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Here the phonon coordinate X and momentum P , satisfying [P, X] = i, are related to the
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Fig. 5: Illustration of an order n = 3 hybridization-expansion diagram for the Anderson-

Holstein impurity model. Empty and full circles represent hybridization events. Dashed lines

indicate interactions K(⌧) connecting all pairs of hybridization events. We only show the lines

attached to the red operator.
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After the transformation, the phonon expectation value h· · · ib becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w({Oi(⌧i)}) = wb({Oi(⌧i)})w̃AIM({Oi(⌧i)}).

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is
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Local phonons

Calculation of the local trace


Electron-boson systems 

separate electron and phonon operators: expectation value becomes the product of a term with 
only electron operators (analogous to the Anderson impurity model) and a phonon term

    is +1 (-1) if the       electron operator operator is a creation (annihilation) operator
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Fig. 5: Illustration of an order n = 3 hybridization-expansion diagram for the Anderson-

Holstein impurity model. Empty and full circles represent hybridization events. Dashed lines

indicate interactions K(⌧) connecting all pairs of hybridization events. We only show the lines

attached to the red operator.
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After the transformation, the phonon expectation value h· · · ib becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w({Oi(⌧i)}) = wb({Oi(⌧i)})w̃AIM({Oi(⌧i)}).

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is

wb({Oi(⌧i)}) =
⌦
es2nA(⌧2n)es2n�1A(⌧2n�1) · · · es1A(⌧1)
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with 0  ⌧1 < ⌧2 < . . . < ⌧2n < �, and si = 1 or (�1) if the ith operator is a creation
or annihilation operator. The operator in the exponent is A(⌧) = g
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Using heub
†
evbib = euv/(e

�!0�1) to evaluate the thermal expectation value, we finally obtain
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use the formula
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Fig. 5: Illustration of an order n = 3 hybridization-expansion diagram for the Anderson-

Holstein impurity model. Empty and full circles represent hybridization events. Dashed lines

indicate interactions K(⌧) connecting all pairs of hybridization events. We only show the lines

attached to the red operator.
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After the transformation, the phonon expectation value h· · · ib becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w({Oi(⌧i)}) = wb({Oi(⌧i)})w̃AIM({Oi(⌧i)}).

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is
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Fig. 5: Illustration of an order n = 3 hybridization-expansion diagram for the Anderson-

Holstein impurity model. Empty and full circles represent hybridization events. Dashed lines

indicate interactions K(⌧) connecting all pairs of hybridization events. We only show the lines

attached to the red operator.
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After the transformation, the phonon expectation value h· · · ib becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w({Oi(⌧i)}) = wb({Oi(⌧i)})w̃AIM({Oi(⌧i)}).

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is
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indicate interactions K(⌧) connecting all pairs of hybridization events. We only show the lines

attached to the red operator.
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After the transformation, the phonon expectation value h· · · ib becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w({Oi(⌧i)}) = wb({Oi(⌧i)})w̃AIM({Oi(⌧i)}).

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is
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After the transformation, the phonon expectation value h· · · ib becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w({Oi(⌧i)}) = wb({Oi(⌧i)})w̃AIM({Oi(⌧i)}).

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is
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this phonon contribution corresponds to an interaction K between all pairs of operators
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Fig. 5: Illustration of an order n = 3 hybridization-expansion diagram for the Anderson-

Holstein impurity model. Empty and full circles represent hybridization events. Dashed lines

indicate interactions K(⌧) connecting all pairs of hybridization events. We only show the lines

attached to the red operator.
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After the transformation, the phonon expectation value h· · · ib becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w({Oi(⌧i)}) = wb({Oi(⌧i)})w̃AIM({Oi(⌧i)}).

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is
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Using heub
†
evbib = euv/(e

�!0�1) to evaluate the thermal expectation value, we finally obtain
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Fig. 5: Illustration of an order n = 3 hybridization-expansion diagram for the Anderson-

Holstein impurity model. Empty and full circles represent hybridization events. Dashed lines

indicate interactions K(⌧) connecting all pairs of hybridization events. We only show the lines

attached to the red operator.
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After the transformation, the phonon expectation value h· · · ib becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w({Oi(⌧i)}) = wb({Oi(⌧i)})w̃AIM({Oi(⌧i)}).

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is
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Fig. 5: Illustration of an order n = 3 hybridization-expansion diagram for the Anderson-

Holstein impurity model. Empty and full circles represent hybridization events. Dashed lines

indicate interactions K(⌧) connecting all pairs of hybridization events. We only show the lines

attached to the red operator.
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After the transformation, the phonon expectation value h· · · ib becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w({Oi(⌧i)}) = wb({Oi(⌧i)})w̃AIM({Oi(⌧i)}).

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is
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in addition, we have a shift of the interaction and chemical potential
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Local phonons

Summary: Trace over the electron and phonon states

Electron-boson systems 

representation of a segment diagram
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Fig. 5: Illustration of an order n = 3 hybridization-expansion diagram for the Anderson-

Holstein impurity model. Empty and full circles represent hybridization events. Dashed lines

indicate interactions K(⌧) connecting all pairs of hybridization events. We only show the lines

attached to the red operator.

The impurity electron creation and annihilation operators are transformed to polaron operators,

d̃†
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= eiPX0d†
�
e�iPX0 = e

g
!0

(b†�b)d†
�
,

d̃� = eiPX0d�e
�iPX0 = e�

g
!0

(b†�b)d�.

After the transformation, the phonon expectation value h· · · ib becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w({Oi(⌧i)}) = wb({Oi(⌧i)})w̃AIM({Oi(⌧i)}).

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is

wb({Oi(⌧i)}) =
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with 0  ⌧1 < ⌧2 < . . . < ⌧2n < �, and si = 1 or (�1) if the ith operator is a creation
or annihilation operator. The operator in the exponent is A(⌧) = g
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Using heub
†
evbib = euv/(e

�!0�1) to evaluate the thermal expectation value, we finally obtain

wb({Oi(⌧i)}) = exp
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. (61)
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FIG. 4: Retarded interaction corresponding to the Holstein-Hubbard model with on-site interac-

tion U = Ubare, bosonic frequency !0 and electron-boson coupling g. The di�erence between bare

and screened interaction is � = 2g
2
/!0.

at ! = 0.

While the DMFT approximation simplifies the problem considerably, by mapping the

Holstein-Hubbard lattice model onto an auxiliary single-site impurity model, this e�ective

model is still a complicated interacting many-body system. The electron-boson coupling

introduces additional energy scales, besides the bandwidth and Kondo scale of the Ander-

son impurity model, namely the boson frequency !0 and the e�ective coupling strength

� = 2g2/!0. (In the high-frequency limit, the Holstein-Hubbard model simplifies to the

Hubbard model with interaction Uscr = U � �.) Even in the DMFT approximation, and in

the absence of long-range order, the Holstein-Hubbard model features a rich phase diagram

with metallic, Mott insulating and bipolaronic insulating phases (Sec. III B 4) [77–81]. An-

tiferromagnetic, charge-ordered, superconducting and supersolid phases can also be found

[82–84] if symmetry breaking is allowed. In the following, we will discuss e�cient, yet ac-

curate numerical approaches for solving the Holstein-Hubbard impurity problem, and also

show how these techniques can be generalized to models with a coupling to a continuum of

bosonic modes (or arbitrary retarded interactions). In fact, in the context of DMFT based ab

initio simulations of correlated materials, the numerical challenge of treating dynamically

screened interactions has been a major bottleneck which has hampered the implementa-

tion of advanced LDA+DMFT or GW+DMFT schemes for many years. The techniques

21

Fig. 6: Frequency-dependent interaction U(!) corresponding to the Anderson-Holstein impu-

rity model with interaction U = Ubare, bosonic frequency !0 and electron-boson coupling g. The

difference between the bare interaction Ubare and the screened interaction Uscr is 2g2/!0 [21].

This phonon contribution can be interpreted as originating from an interaction K(⌧ � ⌧ 0) be-
tween all pairs of operators (see Fig. 5 and Ref. [20]) of the form (0  ⌧  �)

K(⌧) = �
g2

!2
0

cosh(!0(⌧ � �/2)) � cosh(!0�/2)

sinh(!0�/2)
, (62)

keeping the sign factors si associated with creation/annihilation operators. The inclusion of
phonons is thus possible without any truncation and with a negligible extra computational cost,
since the computational bottleneck is the update of the determinants of hybridization functions,
and not the evaluation of the nonlocal interaction between operator pairs. The phonon coupling
has little effect on the average perturbation order, except very close to a bipolaronic phase.

6.2 Frequency-dependent interactions

The Anderson-Holstein impurity model corresponds to the frequency-dependent interaction
U(!) sketched in Fig. 6. In the high-frequency limit, the real part of this interaction reaches
Ubare = U , while the static value corresponds to the screened interaction Uscr = Ũ defined in
Eq. (60). The imaginary part of this frequency-dependent interaction consists of �-functions
at ! = ±!0, with weight ⌥g2⇡ [21]. An arbitrary U(!) can thus be thought of as arising
from a Holstein-type coupling to a continuum of bosonic modes with energies ! and coupling
strengths g! given by g2

!
= �ImU(!)/⇡. According to Eq. (62), each boson contributes an

effective “interaction” sisjK(⌧i � ⌧j) = �
g
2
!

!2

cosh(!(�/2�(⌧i�⌧j))�cosh(�!/2)
sinh(�!/2) between impurity cre-

ation or annihilation operators at imaginary times ⌧i and ⌧j . Hence, the hybridization-expansion
Monte Carlo simulation for a model with general U(!) proceeds exactly as in the case of the
Anderson-Holstein impurity model, but with the K-function (62) replaced by [20]

K(⌧) =

Z 1

0

d!
ImU(!)

⇡!2

cosh(!(�/2 � ⌧)) � cosh(�!/2)

sinh(�!/2)
(63)
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Here, b and b† denote the phonon annihilation and creation operators. An impurity model of
this type has to be solved in single-site DMFT simulations of the Holstein-Hubbard model.
The bosonic sector of the Hilbert space of Hloc contains an infinite number of states. Hamiltonian-
based impurity solvers truncate the Hilbert space to a finite number of phonon states, but treat-
ing even a truncated space may be computationally expensive. An attractive feature of the
action-based continuous-time Monte Carlo formalism is that the phonons are integrated out,
which both in the weak-coupling and the hybridization-expansion algorithms allows to treat the
bosonic contribution in an elegant and efficient way.
We only discuss here the hybridization-expansion approach [18] which is based on a canonical
transformation [19] called the Lang-Firsov transformation. This transformation decouples the
electrons and phonons in the local Hamiltonian and applies to the physically relevant situation
where the phonons couple to the total charge on the impurity atom. In this particular case, the
electron-phonon coupling can be treated at essentially no additional computation cost.
At expansion order n� for spin �, the n�! diagrams corresponding to a given time sequence
of fermionic creation and annihilation operators can be summed up into a determinant of a
matrix M�1

�
, as discussed in Sec. 4, so that the weight of the Monte Carlo configuration can be

expressed as

w({Oi(⌧i)}) = Trc
D
T e�

R �
0 Hloc(⌧)O2n(⌧2n) . . . O1(⌧1)

E

b

d⌧1 . . . d⌧2n

Y

�

(detM�1
�

)s�, (56)

where the Oi(⌧i) denote the (time-ordered) creation or annihilation operators and s� is 1 (�1) if
the spin-� operator with the lowest time argument is a creation (annihilation) operator. To de-
couple the electrons and phonons by a Lang-Firsov transformation, we rewrite the local Hamil-
tonian (55) as

Hloc = �µ(n" + n#) + Un"n# +
p

2g(n" + n# � 1)X +
!0

2

�
X2 + P 2

�
. (57)

Here the phonon coordinate X and momentum P , satisfying [P, X] = i, are related to the
phonon creation and annihilation operators by X = (b† + b)/

p
2 and P = i(b† � b)/

p
2. We

decouple the boson and fermion operators in Hloc by shifting X by

X0 = (
p

2g/!0)(n" + n# � 1) (58)

using the unitary transformation eiPX0 . The transformed Hamiltonian H̃loc = eiPX0Hloce�iPX0

becomes
H̃loc = �µ̃(ñ" + ñ#) + Ũ ñ"ñ# +

!0

2
(X2 + P 2).

The first two terms of H̃loc correspond to the local terms of the Anderson impurity model with
modified chemical potential µ̃ and interaction strength Ũ , where

µ̃ = µ � g2/!0, (59)

Ũ = U � 2g2/!0. (60)
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While the DMFT approximation simplifies the problem considerably, by mapping the
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model is still a complicated interacting many-body system. The electron-boson coupling
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the absence of long-range order, the Holstein-Hubbard model features a rich phase diagram
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[82–84] if symmetry breaking is allowed. In the following, we will discuss e�cient, yet ac-

curate numerical approaches for solving the Holstein-Hubbard impurity problem, and also

show how these techniques can be generalized to models with a coupling to a continuum of

bosonic modes (or arbitrary retarded interactions). In fact, in the context of DMFT based ab

initio simulations of correlated materials, the numerical challenge of treating dynamically

screened interactions has been a major bottleneck which has hampered the implementa-

tion of advanced LDA+DMFT or GW+DMFT schemes for many years. The techniques
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keeping the sign factors si associated with creation/annihilation operators. The inclusion of
phonons is thus possible without any truncation and with a negligible extra computational cost,
since the computational bottleneck is the update of the determinants of hybridization functions,
and not the evaluation of the nonlocal interaction between operator pairs. The phonon coupling
has little effect on the average perturbation order, except very close to a bipolaronic phase.

6.2 Frequency-dependent interactions
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U(!) sketched in Fig. 6. In the high-frequency limit, the real part of this interaction reaches
Ubare = U , while the static value corresponds to the screened interaction Uscr = Ũ defined in
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at ! = ±!0, with weight ⌥g2⇡ [21]. An arbitrary U(!) can thus be thought of as arising
from a Holstein-type coupling to a continuum of bosonic modes with energies ! and coupling
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keeping the sign factors si associated with creation/annihilation operators. The inclusion of
phonons is thus possible without any truncation and with a negligible extra computational cost,
since the computational bottleneck is the update of the determinants of hybridization functions,
and not the evaluation of the nonlocal interaction between operator pairs. The phonon coupling
has little effect on the average perturbation order, except very close to a bipolaronic phase.
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keeping the sign factors si associated with creation/annihilation operators. The inclusion of
phonons is thus possible without any truncation and with a negligible extra computational cost,
since the computational bottleneck is the update of the determinants of hybridization functions,
and not the evaluation of the nonlocal interaction between operator pairs. The phonon coupling
has little effect on the average perturbation order, except very close to a bipolaronic phase.

6.2 Frequency-dependent interactions

The Anderson-Holstein impurity model corresponds to the frequency-dependent interaction
U(!) sketched in Fig. 6. In the high-frequency limit, the real part of this interaction reaches
Ubare = U , while the static value corresponds to the screened interaction Uscr = Ũ defined in
Eq. (60). The imaginary part of this frequency-dependent interaction consists of �-functions
at ! = ±!0, with weight ⌥g2⇡ [21]. An arbitrary U(!) can thus be thought of as arising
from a Holstein-type coupling to a continuum of bosonic modes with energies ! and coupling
strengths g! given by g2
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rity model with interaction U = Ubare, bosonic frequency !0 and electron-boson coupling g. The

difference between the bare interaction Ubare and the screened interaction Uscr is 2g2/!0 [21].

This phonon contribution can be interpreted as originating from an interaction K(⌧ � ⌧ 0) be-
tween all pairs of operators (see Fig. 5 and Ref. [20]) of the form (0  ⌧  �)
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keeping the sign factors si associated with creation/annihilation operators. The inclusion of
phonons is thus possible without any truncation and with a negligible extra computational cost,
since the computational bottleneck is the update of the determinants of hybridization functions,
and not the evaluation of the nonlocal interaction between operator pairs. The phonon coupling
has little effect on the average perturbation order, except very close to a bipolaronic phase.

6.2 Frequency-dependent interactions

The Anderson-Holstein impurity model corresponds to the frequency-dependent interaction
U(!) sketched in Fig. 6. In the high-frequency limit, the real part of this interaction reaches
Ubare = U , while the static value corresponds to the screened interaction Uscr = Ũ defined in
Eq. (60). The imaginary part of this frequency-dependent interaction consists of �-functions
at ! = ±!0, with weight ⌥g2⇡ [21]. An arbitrary U(!) can thus be thought of as arising
from a Holstein-type coupling to a continuum of bosonic modes with energies ! and coupling
strengths g! given by g2
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= �ImU(!)/⇡. According to Eq. (62), each boson contributes an
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ation or annihilation operators at imaginary times ⌧i and ⌧j . Hence, the hybridization-expansion
Monte Carlo simulation for a model with general U(!) proceeds exactly as in the case of the
Anderson-Holstein impurity model, but with the K-function (62) replaced by [20]
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and the shifted interaction and chemical potential (Eqs. (59) and (60)) given by

µ̃ = µ +

Z 1

0

d!
ImU(!)

⇡!
, (64)

Ũ = U + 2

Z 1

0

d!
ImU(!)

⇡!
= Uscr. (65)

The last identity follows from the Kramers-Kronig relation and the anti-symmetry of ImU(!).

6.3 Boson distribution function

To measure the boson distribution function p(x) = h�(x � X)iMC, we calculate the expec-
tation values hcos(↵X)iMC for different ↵. In order to derive the measurement formula, let
us first discuss the measurement of hei↵XiMC. This measurement formula is obtained by in-
serting the operator ei↵X at ⌧ = 0 into the expression (56), which defines wX({Oi(⌧i)}) =

Trc
D
T⌧e�

R �
0 Hloc(⌧)O2n(⌧2n) . . . O1(⌧1)ei↵X

E

b

d⌧1 . . . d⌧2n

Q
�
(detM�1

�
)s�. During the Monte Carlo

sampling, we then measure the ratio wX({Oi(⌧i)})/w({Oi(⌧i)}). Since the additional ei↵X op-
erator only modifies the bosonic factor, this amounts to measuring the ratio wX

b
({Oi(⌧i)})/wb({Oi(⌧i)}),

where wX

b
({Oi(⌧i)}) is the bosonic weight factor obtained with the additional operator ei↵X at

⌧ = 0. This ratio can be expressed as

wX

b
({Oi(⌧i)})

wb({Oi(⌧i)})
= exp
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. (66)

Note that because of the Lang-Firsov shift, this expression depends on X0(⌧ = 0), with X0

defined in Eq. (58), and hence on the occupation of the impurity at ⌧ = 0 in the measured
configuration. Since the first factor is independent of the Monte Carlo configuration, the mea-
surement formula for hcos(↵X)iMC becomes

hcos(↵X)iMC = exp
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�
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. (67)

In the Monte Carlo simulation p̃(↵) = hcos(↵X)iMC is measured on a fine ↵-grid, which then
allows to compute the boson distribution function as

p(x) =
1

2⇡

Z
d↵ p̃(↵) cos(↵x). (68)
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Fig. 5: Illustration of an order n = 3 hybridization-expansion diagram for the Anderson-

Holstein impurity model. Empty and full circles represent hybridization events. Dashed lines

indicate interactions K(⌧) connecting all pairs of hybridization events. We only show the lines

attached to the red operator.

The impurity electron creation and annihilation operators are transformed to polaron operators,
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After the transformation, the phonon expectation value h· · · ib becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w({Oi(⌧i)}) = wb({Oi(⌧i)})w̃AIM({Oi(⌧i)}).

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is
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Using heub
†
evbib = euv/(e

�!0�1) to evaluate the thermal expectation value, we finally obtain
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action formalism. In the three-band case, we consider, in
addition to the local self-energy Σdd(iωn) = Σimp(iωn)
the p-p and p-d interactions at the Hartree level. We
thus have to add double counting terms ΣDC , which as
in Ref. 9 we evaluate with the LDA densities for the Upp

and Upd contributions. This amounts to adjusting the
Hartree self-energies (which are included in the LDA) to
the self-consistently computed densities. For Σdd, we use
a standard double-counting term26 evaluated with the
correlated density nd.27 Specifically, the diagonal matrix
elements of Σ̃ = Σ− ΣDC are

Σ̃dd(iωn) = Σimp(iωn)− Udd(0)(nd − 1
2 )

+ 4Upd(0)(np − nLDA
p ), (4)

Σ̃pp(iωn) = Upp(0)(np − nLDA
p ) + 2Upd(0)(nd − nLDA

d ),
(5)

and the off-diagonal elements are set to zero. The fac-
tor of four in the last term of Σ̃dd is due to the presence
of four nearest oxygen atoms around a copper atom and
the factor of two in the last term of Σ̃pp is due to the
presence of two nearest copper atoms around an oxygen
atom. Note that in the Hartree-like terms, we use the
screened interactions. While this can be justified in the
case of the d-d interaction,13 it is an approximation for
the Upp and Upd terms which should be considered as
a lower bound estimate. At present, it is unclear how
the frequency-dependence should be incorporated into a
static description if the screening modes for different in-
teration terms are different.

With this approximate self-energy, we then compute
the local lattice Green’s function as

Gloc(iωn) =

∫

(dk)[(iωn + µ)I −Hk − Σ̃(iωn)]
−1

which is a 3×3 matrix, and then extract the d-component
in order to define a new hybridization function for the im-
purity model. In the self-consistent iteration, the chemi-
cal potential is adjusted such that the total number of p-
and d-electrons is

∑3
α=1 Gαα(τ = 0−) = 5.

D. Analytical continuation

In order to compute spectral functions for models with
frequency dependent interactions, one can use the strat-
egy proposed in Ref. 29. We define the bosonic function
exp[−K(τ)], with

K(τ) =
1

π

∫ ∞

0
dω′ ImU(ω′)

ω′2
[b(ω′, τ) − b(ω′, 0)]

and b(ω′, τ) = cosh[(τ − β/2)ω′]/ sinh[βω′/2], and
compute the auxiliary Green’s function Gaux(τ) =
Gdd(τ)/ exp[−K(τ)]. The spectral function correspond-
ing to Gaux(τ) is expected to have no high-frequency
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FIG. 2: Dynamically screened interactions in the one-band
model (top panel) and in the three-band model (bottom
panel). Because only the d-orbital is considered in the im-
purity calculation, we only remove the d-d screening in the
three-orbital case.

components and can be obtained using the maximum
entropy analytical continuation procedure.30 Finally, the
spectral function A for G is obtained from a convolu-
tion of the auxiliary spectral function Aaux and the ex-
actly computable spectral function of the bosonic fac-
tor exp[−K(τ)].13,29 In this convolution, the low-energy
structures of the spectral function are replicated at ener-
gies which are directly related to the dominant screening
modes.

We can employ the same strategy to analytically con-
tinue the self-energy. For this, we first compute a Green’s
function G̃(iωn) = 1/(iωn + µ̃ − Σ(iωn)) with a suit-
ably chosen µ̃ and apply the above procedure to obtain
the corresponding spectral function Ã(ω) and (using the
Kramers-Kronig transformation) the Green’s function
G̃(ω). The real-frequency self-energy, including high-
energy features, is then given by Σ(ω) = ω+ µ̃−1/G(ω).

<latexit sha1_base64="Eevr572oni5lB8OtHqG2mUBm5m4=">AAACBnicbVDLSsNAFJ34rPUVdSnCYCPUTUmK+NgVunEhWMG0hTaEyXTSDp3JhJmJUEpXbvwVNy4Uces3uPNvTNMstPWsDufcyz33BDGjStv2t7G0vLK6tl7YKG5ube/smnv7TSUSiYmLBROyHSBFGI2Iq6lmpB1LgnjASCsY1qd+64FIRUV0r0cx8TjqRzSkGOlU8s0jyy13BSd9dGrBUEh4gyy/atWTW8s/s3yzZFfsDHCRODkpgRwN3/zq9gROOIk0ZkipjmPH2hsjqSlmZFLsJorECA9Rn3RSGiFOlDfO3pjAk1TpZSFCEWmYqb83xogrNeJBOsmRHqh5byr+53USHV56YxrFiSYRnh0KEwa1gNNOYI9KgjUbpQRhSdOsEA+QRFinzRXTEpz5lxdJs1pxzivOXbVUu8rrKIBDcAzKwAEXoAauQQO4AINH8AxewZvxZLwY78bHbHTJyHcOwB8Ynz+yFJYK</latexit>

U(!) for La2CuO4



Questions about 

electron-boson systems?                 



