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Com putat|onal * Eniac — First programmable computer (US), Electronic

Numerical Integrator and Computer (1940s)

mOdeu-' ng * 30 tons and including 17,468 vacuum tubes.




Emergence of quantum modelling

Cray 1

Titan, Guangzhou (2014)

* Rapid progress with central
architectures

* But .. Most importantly progresses Size  DFT FFT
i : : 10 800 166
N algorlthmlc 100 80000 3321.93

1000 8e+-06 49828.9
5000 4e+08 307193
10000 8e+-08 664386

* Fast Fourier Transform: N? to log(N) 50000 4et10  3.90241e106

100000 8e+410 8.30482e+06
500000 4e+12 4.73289e+07
1000000 8e+412  9.96578e+-07

* Divide and conquer




QO

Quantum
wave-

function

1 atom, 10 electrons

We are looking for a solution of the type of a wave function
for many electrons:

W(x,x,,...,Xy)

The problem is easy to write down ...but the solution ...

Storage required:

x = 10x10x10=1000 data

10 electrons — 1000 data — 10 x16 bytes

=



W-F to density

P1(&1)  P2(&1) ... Yn(F1)
1| i(@2) 2(d2) ... Yn(d2)

¢H(%N) ¢2(éN) e '¢N(fN)

Publications (x10°)

DFT a success story
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Fully Non-Local

Hybrid Meta GGA
Hybrid GGA

Meta GGA
GGA
LDA

Hartree-Fock Theory
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BBY5, MPWIK, TPSS, VSXC
BLYP, BP86, BPWS1, GIBLYP,

HCTH, OLYP, PBE
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Computational

experiment

* Stoichiometry / Geometry

* Structure optimization

e Accuracy test and validation
* Properties (spectroscopy,

thermal/mechanical, electronic, ...
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Interface

Until recently .... o
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Where of course some characters are real and some are imaginary ....



High Throughput
& Automation

Stmctural properties
R | —
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RBand structure e

: N >
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Storage

ooAlIDA— ----------

Accelerates and
automates material
screening for desired
properties

1=



DFT & machine learning, different strategies

Predicting energetics and forces from
direct sampling, large compositional
space for small molecules where
accuracy matters

pubs.acs.org/acs

Research Article

Open Catalyst 2020 (0OC20) Dataset and Community Challenges

Lowik Chanussnt,‘" Abhishek Das,‘” Siddharth Goyal,‘ﬂ Thibaut Lavril,‘" Muhammed Shuaibi,(‘[
Morgane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati,
Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick,*

and Zachary Ulissi*

Cite This: ACS Catal. 2021, 11, 6059-6072 I: I Read Online

ACCESS | ll Metrics & More Article Recommendations | @ Ssupporting Information

ABSTRACT: Catalyst discovery and optimization is key to solving many societal and energy challenges including solar fuel
synthesis, long-term energy storage, and ble fertilizer production. Despite iderable effort by the catalysis community to
apply machine learning models to the computational catalyst discovery process, it remains an open challenge to build models that
can generalize across both elemental compositions of surfaces and adsorbate identity/configurations, perhaps because datasets have
been smaller in catalysis than in related fields. To address this, we developed the OC20 dataset, consisting of 1,281,040 density
functional theory (DFT) relaxations (~264,890,000 single-point evaluations) across a wide swath of materials, surfaces, and
adsorbates (nitrogen, carbon, and oxygen chemistries). We supplemented this dataset with randomly perturbed structures, short
timescale molecular dynamics, and electronic structure analyses. The dataset comprises three central tasks indicative of day-to-day
catalyst modeling and comes with predefined train/validation/test splits to facilitate direct comparisons with future model
development efforts. We applied three state-of-the-art graph neural network models (CGCNN, SchNet, and DimeNet++) to each of
these tasks as baseline demonstrations for the community to build on. In almost every task, no upper limit on model size was
identified, suggesting that even larger models are likely to improve on initial results. The dataset and baseline models are both
provided as open resources as well as a public leader board to encourage community contributions to solve these important tasks.

KEYWORDS: catalysis, renewable energy, datasets, machine learning, graph convolutions, force field

Facebook / Carnegie collaboration,
OC20 database for catalysis

Global theme:
data sharing & community driven

Finding the exchange functional with
machine learning & non-local functional
for correlation

PHYSICAL REVIEW LETTERS 126, 036401 (2021)

Inter-atomic potential trained with DFT data-set for specific

systems

Kohn-Sham Equations as Regularizer: Building Prior Knowledge
into Machine-Learned Physics

Li Li (3 11),"" Stephan Hoyer®,' Ryan Pederson®,” Ruoxi Sun (f/%1%)®,' Ekin D. Cubuk
Patrick Riley®,” and Kieron Burke
)(inuglz' Research, Mountain View, California 94043, USA
“Department of Physics and Astronomy, University of California, Irvine, Califormia 92697, USA
"Department of Chemistry, University of California, Irvine, California 92697, USA

® (Received 18 September 2020; accepted 3 December 2020; published 20 January 2021)

Including prior knowledge is important for effective machine learning models in physics and is usually
achieved by explicitly adding loss terms or constraints on model architectures. Prior knowledge embedded
in the physics computation itself rarely draws attention. We show that solving the Kohn-Sham equations
when training neural networks for the exchange-correlation functional provides an implicit regularization
that greatly improves generalization. Two separations suffice for learning the entire one-dimensional H,
dissociation curve within chemical accuracy, including the strongly correlated region. Our models also
generalize to unseen types of molecules and overcome self-interaction error.

DOL 10.1103/PhysRevLei.126.036401

Kieron Burke group

An accurate and transferable machine learning
potential for carbon

Cite as: J. Chem. Phys. 153, 034702 (2020} doi: 10.1065/5.0005084 t \!)
Submitted: 17 February 2020 - Accepted: 22 June 2020
Published Online: 15 July 2020

Patrick Rowe, Volker L. Deringer, Piero Gasparotto, Gébor Csanyi,” and Angelos Michaelides

AFFILIATIONS

artment of ics and

dom

oMy,

d, Oxford OX) 3QR, United

CB21PZ, United Kingdom

Note: This paper s part of the JCP Special Topic on Machine Learning Meets Chemical Physics.
Author to whom should be ]

G Csanyi & M Michaelides groups
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ML allows faster & larger

Scope and
limitations

*cost ~ N3
*Length scales

day

hr
*Time scales i
Us

ps

60

—o— ONETEP

- - CASTEP
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o

Total time (h)

Number of atoms
Finite element
analysis
(Process simulation)
Mesoscale
v Modelling

(Segments)

nm um mm m
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Blockers, bottlenecks and
challenges for ML-DFT:

N —

compositional material space is vast
Learning functionals challenging:
complex nature of Kohn-Sham
functionals

In DFT total energies (or other traced
quantities) are meaningful

Various codes and functionals, data-
base to adapt for each implementation,
inter-operability

ML model for DFT won’t better DFT -
issues for self-interaction and
electronic interactions remain

Plane-waves basis sets

VASP commercial®
Quantum Espresso GPL
CASTEP commercial”
ABINIT GPL
CP2K* GPL
CPMD free
ONETEP commercial
BigDFT GPL
Atom-centered basis sets

Gaussian commercial
GAMESS free
Molpro commercial
SIESTA GPL
Turbomole commercial
ORCA free
CRYSTAL commercial”
Q-Chem commercial
FHI-aims commercial
Real-space grids

octopus GPL
GPAW* GPL
Linearized augmented plane waves
WIEN2k commercial
exciting GPL
FLEUR MIT

1o
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Anderson impurity model: Hamiltonian representation

Np
Hamnv = Zt ﬂc cg + Z Mc a, —I—Hc) — Zsua;&au
!
1
Gun(iw,) = T
bath 'me ........... .L.’..'._“' |
t 0 bath -‘
0 Té g ) imp

T is the full hopping matrix, bath and impurtty .



Weiss field

Gun(iw,) = -

(

A A
Az Ax

)

B11=Gimp

1

I W,

g

B11 B
B>1 By

)

—1

A1 w —1
AIZ — A;l —

A»n =w—e¢€

19



Weiss field

1
Gr(iw,) = - .
futt (7 p) ion — T

—1
(Au Alz) _ (311 BIZ) Aqi
Az Ax B> By

A1

lnverse conditlon:
A By + AppBy =1

By = —A, A» By

> (A1 — A12A2_21A21) By =1

w—Tt

A;:H

A»n =w—e¢€

20



Weiss field
1

G (i wy) = T

(A1l — A12A5) An) By = 1 Ayl = w—t

> Glmwr . A, = A, =6
wetss field A(w) Ay =w—¢

hybridisation matrix A: “dynamic transfer
between impurity and bath”

b



Solver LOFT

/ giDMFT ( Impurity > DFT

Hamnv = Z Lpches + Z (bopcla, +Hel) + Z £ua)a,
“f - AlIM solver - B G

Self-consistency
Condition
Gimp=GIoc .

Ne (1) upfolding

n(r)

J

downfolding

0000
-----------------------------------------------------------------------

5 A =AM =AM =
A|MC| * AlM¢, * AlM<; *




Range of AIM parameters and energy scales
- example of Bethe lattice

O ‘Bethe lattice, semi-cireular OS with half bandwidth D
(rOS from -D to +D)

. 2 o0 D? —¢? :
G(iwy,) = D7/ de— O(D — |e|) /“/\’L

O odiscretized GF approximation:

O local impurity GF:

1 V2 U=6
Gy =iwn+pu— Z T FAYAE
O ®Bouwnds 'fDY database: V € [Vimin, Vimax] € € [emin/ emax] f\ A

-8 -6 -4 =Z o 2 4 & 8

0O Range of parameters (V2 and € scale with bandwith):

2 _ 2 max|{€y,...,en}| —min[{e}, ..., en}]
ZVZ D?/4 1 N - 1 NI _ 4



ML for DMFT, advantages:

N —

B~

N o

compositional AIM space is moderate ~ 20-100 parameters
Various codes and implementations of DMFT, but low entry-cost
to adapt-change solvers, inter-operability

ML model for DMFT will provide improvements beyond-DFT
Learning Green’s functions facilitated in some limits, e.g. high
temperature, weak-coupling or atomic limits

We have fast solvers for generating Green’s functions, we only
need to provide good models for corrections to known
approximations

AIM exponential wall - large benefit and speed-up

DMFT iterations are resilient with respect to errors, high
accuracy not always critical

AIM solutions might be applicable to several close combinations of
structure and stoichiometry (structural relaxation, doping &
pressure phase diagrams, phonons, ...)

24



ML for DMFT - learning solutions of DMFT with
regression kernels for the Hubbard model

PHYSICAL REVIEW B

Highlights Recent Accepted Collections

Anderson impurity model

Inputs: information to be learned, vectors: 0
hybridisation function (tau or Legendre) At
Outputs: ML prediction, vectors: DMFT N
iterations are S515)
Descriptor D (Problem to be solved): input g

function + few scalar parameters (U & chem.pot.)

f(Z) %f:(flaf%---;f]\f)output i

: Interpolate solutions using Kernel Ridge Regression 3

sarch ress 1
Machine learning for many-body physics: The case of the
— 0 0 0
Louis-Francois Arsenault, Alejandro Lopez-Bezanilla, O. Anatole von Lilienfeld, and Andrew J. Millis D - [(fl ) fz RLLY] fN ) Ul .u'
Phys. Rev. B 90, 155136 — Published 31 October 2014
Article References Citing Articles (99) Export Citation - -
impurity model,
ds of

U=2, ML versus exact |

Limitation : one database per model (... and material)

0.5 1

1.5
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Literature

4.

Andrew Ng class on
machine learning (open
access course https./
www.andrewng.org/courses/ )
stepping stone to dive into
the field

Physics-based Deep
Learning (arxiv.org/abs/
2109.05237) Focus on deep
learning.

Kieron Burke: Machine
Learning in Materials
Science and Electronic

Structure Theory (https:/
www.youtube.com/watch?

v=vceNTbOGU-4&t=282s) -
covers regression,
classification, outliers ...

.. many more!

@L‘E—? Cornell University

=) I'<iV > cs > arXiv:2109.05237

Computer Science > Machine Learning

[Submitted on 11 Sep 2021 (v1), last revised 25 Apr 2022 (this version, v3)]

Physics-based Deep Learning
Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, Kiwon Um

This digital book contains a practical and comprehensive introduction of everything related to deep learning in the
context of physical simulations. As much as possible, all topics come with hands-on code examples in the form of
Jupyter notebooks to quickly get started. Beyond standard supervised learning from data, we'll look at physical loss
constraints, more tightly coupled learning algorithms with differentiable simulations, as well as reinforcement
learning and uncertainty modeling. We live in exciting times: these methods have a huge potential to fundamentally
change what computer simulations can achieve.

Comments: PBDL v0.2, available online at: this https URL
Subjects:  Machine Learning (cs.LG); Computational Physics (physics.comp-ph)
Cite as: arXiv:2109.05237 [cs.LG]
(or arXiv:2109.05237v3 [cs.LG] for this version)
https://doi.org/10.48550/arXiv.2109.05237 @

J

= ©Voulube —

ML tasks

+ Classification

+ Regression

+ Qutlier detection
*+ Matrix completion

« Density estimation
+ Dimensionality reduction
+ Clustering

WIEN 27_
Kieron Burke: Machine Learning in Materials Science and Electronic Structure
Theory



ML and neural network

Neural networks: a subset of machine learning

techniques, itself part of the larger scope of Al

What is machine learning: multi-step process to intsmpariell | el

Deep Learning

Machine Learning Multilayered neural networks
which learn representations

SR iedTes progressively improve at tasks

provide predictions based on previous observations

1.
2.

3.
4

intelligence
dimensionality reduction

Dataset
Representation of datas (possibly classification
into features)

Problem to solve (materials property)

Learning algorithm (compare the model with the
dataset)

An inference process to make predictions

Step 0: Problem

Property
> Predictions!
M- ? \

Step 1: Data Step 3: Learning Algorithm
Step 2: Representation

Features

Material Property

2L



Supervised learning - linear regression

Model with two variables

X1: weight
Xo: battery capacity

—> Predict : mileage

Vehicle List

Vehicle weight (Kg)

Battery Capacity (kWh)

Mileage (MPGe)

1000
1500
2000
2500
3000
3500
4000

54

81

108
135
162
189
217

108
103
98
93
88
83
78

We want a good model for the dataset, we choose two parameters (weights)

and a constant (bias):

d
h(X) — (90 + 0121 + G5 — h(X) — Z 0;x;
1=0

(sake of notations, we add the variable xo=1)

How can we find the parameters 6 ? We minimise a “distance” between model
and dataset (or cost function):.

n

J(0) = Z (hg(il?(i)) _ y(z'))z

1=1

29




Minimising the cost functions (steepest descent)

Minimum of cost function will provide a model to predict mileages for unknown
battery capacity and vehicle weights (inference)

Initial guess for 6; and iterate by steps in directions that decrease the cost function
(following derivatives or steepest gradients)

0 9
Hj — @j _ &%J(@) — a—ejJ(Q):(he(éU)—y)xj
J
a : arbitrary parameter (learning rate)
a >>1 : optimisation ‘jumpy’
a <<-| : Iarge number Of StepS required ,
_ (G MY

lterative process: 9]' T ‘9j T O‘é(y(Z) B he(x(r&)))émj

............................................................

Changes in parameters according to the “error’

No changes / update when model is accurate. 20



Neural networks - perceptron model, two neurons

model

Classification task - class 1 or O

Two parameters dataset (same as battery, but now instead of mileage we predict

whether commercially viable or not):

Training set

o

)

outcome

0.8
0.4

0.3
0.1

1
0

Find coefficients w to obtain model for the outcome:

O is threshold value

if

if

n
Z X;W; S 0
1=1

n
ZCIZL’W@' > 0

1=1

21



Neural networks - perceptron model, two neurons
model

Training set
X To outcome
0.8 0.3 1
0.4 0.1 0
e —_ 0.1 g......../)./;/....................................._

logical threshold unit or

Random set of initial weights activation function

lteration through database - cost function =1 }

Training set l
T1 To W1 W Prediction P Dataset D
0.8 0.3 0.4 0.2 1 1 — > Correct
0.4 0.1 0.4 -0.2 1 0 — Wrong!

Correction to account for error, weights update:

lterate until convergence

Aw; = a(t — 2) x;

T

Model

Training set

32



Class -1

logical threshold unit or
activation function

—— Correct

—— Wrong!

In,
= |
mm) Out,
In, /
- T - OUt2 Class +1
==) Out, ;
Ing o
-—) Artlf/c:/aiﬁleuron
. signhals
S'Qr?ls ____\Q/_eight bi_a_s_ _______ ‘9
Yo xiw; >0
1=1 }
Training set l
T To W1 Wo Prediction P Dataset D
0.8 0.3 0.4 -0.2 1 1
0.4 0.1 0.4 -0.2 1 0
Aw; = a(t — 2) z;

T

Model

Training set



Neural networks - general

i )

Hidden layer 1 Hidden layer N

Input layer

Middle Threshold
laye"r > . ]

Input & fully connected layer (=perceptron model)
Addition : intermediate neuron middle layer (hidden layer)

Generalisation of learning formula - for each sample in training set calculate
contribution to cost function, sum over entire training set (N samples):

N
1 . .
C = _N E ,(yzZOQ(@z) + (1 L yi)ZOQ(l . :&z)) Regressmn]\cf:ostfunctlon
= =S (- )’
High confidence y=0 (cat), High confidence y=1 (dog),

weak contribution weak contribution 34



Neural networks - BP/back-
prop(-agation)

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

All is well - but now that there are multiple
connections between inputs and outputs,

how can we update weights after the cost

function is evaluated?

perceptron model. simple relation between
iInputs&weights, hidden layer complications

Evaluate activation function in each layers: hi =0 [Z wh i+
k

N
. . 1
Final cost function: O = . K12
IN Z v = 1y

h is a nested function: hf = o (Z wh ot (Z whot 2 ]+ bfl> + bf)
k k

Steepest gradient, minimise cost function ! l oC l ,oC
. . . wk—>’wk—77 B b—)b—f]’,_
with respect to weights and biases: ’ T Owy, o ol
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Data representation

Green’s function (Gimp or Weiss field) represented in imaginary time

Absorbing temperature dependence: r(T) = %T — 1 [—1, +1]

Compact representation of Green’s function, polynomial support basis (Legendre

or Chebyshev):
G¢W(r) = PG
i>0
Data preparation: G(T) _ GS(T) 4 GAS(T)

D v

=Y ppmia, @0 =L Al

odd

(>0
even

Each contribution can be learned separately, asymmetric is naught away from
half-filling

Particle-hole symmetry - allows augmenting database at no cost: G¢(7) = G"(3 — )



Activation functions for
DMFT

Mapping/transforming input data,
example Legendre coefficients:

Negative and positive entries not treated
on same footing - activation functions not
symmetric in general

From physical coefficients to intermediate
representation layer (reversible
transformation)

Helpful to map inputs to a scale suitable for
activation functions (and avoids network
being dominated by large weights)

Ti 7,
To G G
Ti tanh(G;) tanh™ " (G})
T2 — tanh(G1) —tanh™(G))

Sigmoid

v

o(z) = Jﬁ

X

RelLU

max (0, ) l/

X

Linear

/ fxX)=x

X

38




Learning corrections to known approximations

Instead of predicting Green’s functions of the AIM for wide range of parameters, we
learn the error or corrections of known approximations to the exact result

less ambitious - but requires fast solvers

Library of solvers for ML : Hubbard-l1 (H1), lterative perturbation theory (IPT),
Exact diagonalisation (Nb~2,3,4) (ED-Nb)

ML : model for corrections to known approximation
Solvers used individually, or collectively (input and output vector X msolver )

Motivation: combining approximations obtained from different limits, interpolation

Set of exact solutions of AIM

Cost function: | | N,

CX,Y,a) = — Z[Yj _ ga(Xj)]2

| RN

Training set: ED with Nb=8 329
(or CTQMOQ)



Learning corrections to known approximations

Dyson equation : Gy't(iw,) = X(iw,) + G (iwy)

G Go s,
> = > + B

Learning self-energy = learning corrections from free GF

Physically insightful : we know the free GF analytically

But not meaningful for the network : offers a generalisation, learn corrections to
an effective theory as a starting point, any theory valid.

Absorbs steep behaviour in self energies in the reference theory. Example, IPT:

Reference approximate model

ST (Gw,) = Siw,) + X2%(iw,) e .

U

B :
=5+ U2/o dre™TGE(T)Go(—7)



Neural networks for AIM

Database ~ 10°000

Parameter range:
U (eV) {1,...,10}
Noatns €, Vi 4
W (eV) {1,...,10}
£ {—-1,...,1}
BV {1,2,5,10,20,50}
N, samples 1 O,OOO
S Hubbard-I, IPT, NCA, ED-[1,2,3]

Generate random parameters for training
set, here with ED and Nb=4.

Training : 80% of database
Validation : 20% of database
Provide mean to test the network on

reference data that aren’t include into the
training set (inference)

Hidden
layer

Input
layer

Output
layer

Model output

20(200 + 1) +20(20 + 1) + 100(20 + 1) = 6540
7 o e total

Basis representation of
Approximate solutions
to the Anderson
Impurity Model

- - ,TN) time basis

<o lM) Legendre basi

Na

input layer hidden layer output layer

U
250
200 4 200
150 4 150
100 4 100
50 50
0- 0

2 4 6 8 10

ooooo

w




Hyperparameter gridsearch - optimising the network

data augmentation : combining
approximate solvers

data transformation : transforming
inputs in adequate format for
activation

1073 4
] —— 7o
G, transformations —— 7
. 1074 —— 7
g —— 7i/2
| T
=
5 1075 4 %
© To Gy
i) T tanh(G))
;u — tanh(G))
106 E
10_7 = ] T T T |
0 10 20 30 40

Epoch
validation : testing the network

/ Exact solutions

-0.30

-0.35 4

—0.40 1

-0.45 4

G(1)

««+ NCA
— =0
3PT

—0.50 1

u=0
&  QuSpin-ED
— CTQMC
-0.60 4 POMOROL-ED

-0.55 1

0.0 0.2 0.4 0.6 0.8 1.0

Loss

Approximate Solvers = [HI, IPT, NCA]

103

-X- Validation data
-®- Training data

1074 ¢
1075F
1
2
10°6{ —e— 5
e 10\
—— B=20
50 aha s S SR M
10_7- T T T T T T T
0 5 10 15 20 25 30 35 40
Epochs
E o
U Q0.
422




Results Adaptive tau mesh learning loss functions

] ) Approximate Solvers = [IPT, NCA]
Target solution = ED-4 (4 bath sites) .
1G24 -X- Val?d.ation data
Database size: 10,000 samples | X\ -@- Training data

Training data: 9,000 samples

10734~ - ==k d
] e }

e 3 x” x

kValidation data: 1,000 samples

Loss

J
)

( Beta (inverse temperature) 100 o N i) ) S5 R 0 0 S
1, 2,5, 10, 20, 50 o G
) sl L AR i . ) il i o . o o
Impurity solvers: Sl e S
—e— =20 x _._/"\‘ o el
ED-1, ED-2, ED-3, IPT, NCA, HI B=50 e e a2
0 é fO 13 Zb 23 30 35 40
Epochs

Neural Network

® Fully connected

X- Validation dat -
10-2 4 -X- Validation data i G
o) layers x -@- Training data gt g=§
® 51 neurons per layer Lo
—o— f=20
® Tanh activations TR N | = S <~ N o i1
® Learning rate = 0.0002 \ - e N
® Batch size = 8 3 | -
e Adaptive tau mesh = 51 b ~ A
LR R P
® 90/10 data split \ P bty
k J 10—5 N ———— ): ’( —— ——Iﬁ- —x—- — x— ————————
¥ W ‘1(A S
6 é lb 1% Zb 55 3b 33 4b

Epochs
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One vand crossing tne rFermi leval

LEst)
[

tunnaling/transrer intzegral

rliloert space 44 sirmole thaory, out nard o solve.

t

N\ Vilovior] 5or 3ovossilons RN LT )
DY 'SP O 2l to insulaior iransiiion:
VN U\
() () () () ()
N N N \/* N
— ) () VRN ) )
YOO Y Y Y
O O O
O
— ) () T\ “i ()
NN N ) N



1e/atom

U

increasing

insulator

A. Georges and G. kot/ian PRB (1992)

A. Georges et al., RMP (1996)
4o




Hallmark of the Mott transition, quasi-particle weight

Test of NeuraNet on Bethe lattice at half-filling : Full DMFT iteration until
convergence

Exact - CTQMC
0.8 - —&®— Neural Network

] U =3eV
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Software download and testing =

¢> Code (O Issues I Pullrequests (® Actions [ Projects [0 Wiki @ Security [~ In

¥ main ~ ¥ 1branch © 0tags Go to file Add file ~ Code ~

ZZ updated 578afeb 3 daysago ‘O 134 commits

Documen t updated 12 days ago

Github link : https://github.com/zelong-zhao/ -
KC L m I d mf't BB ML_models/RF pytorch train added to bin 2 months ago

Code development: Evan Sheridan e o
(@phasecraft) and currently maintained/ O rerouene
3 clean.sh done 21 days ago

developed further by Zelong Zhao (@KCL) o s
[3 install_pytorch.sh added patch.sh 29 days ago

. . . . (3 patch.sh error corrected 29 days ago
Linux : installation via conda D sy
[ update.sh added patch.sh 29 days ago

guestions, pull request or contribute ->

zelong.zhao@kcl.ac.uk
cedric.weber@kcl.ac.uk

Evan Sheridan Zelong Zhao

48



What’s next ?

1. Feature layers, variational encoders : Compress information by using
diminishing hidden layers (alternative to Legendre representation)

2. Geometrical conformation : use geometrical constraints on Green’s function,
e.g. convex, smooth, angles etc... Inspired from image classification

3. Dynamic database : super-perturbation theory, adapt automatically
approximate solver entries with corrections provided by DMFT hybridisation
(database adapt dynamically)

4. Beyond deep learning : Generative adversarial network (GAN), use another
network to arbitrate the learning of Green’s functions - "indirect" training through
another neural network that can tell how "realistic" the input seems, for instance to
discriminate between the choice of approximate solvers
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