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 # Motivation for out of equilibrium studies

⇨ Real time formulation of many body 
     physics avoids analytical continuation

⇨ Ultrafast dynamics in solids

⇨ Transport beyond linear response

from Goldhaber Gordon 
et al. Nature (1998)

⇨ Controlled quantum many body  dynamics in quantum simulators

Trotzky et al, Nature Physics (2012)



 # Ultrafast dynamics in solids

Ultrafast pump-probe experiments: Selective probe of the dynamics of various 
degrees of freedom on different timescales:  Xray, tr-ARPES, XAS

⇨  What can we learn from the dynamics about the 
      relevant degrees of freedom and their interactions?

⇨  Reach novel states out of equilibrium?

• Aoki et al.  Rev. Mod. Phys. 86, 779 (2014) 
• Giannetti et al. Advances in Physics, 65, 58 (2016)
• Basov, Hsieh, Averitt, Nature Materials!16,!1077 (2017) 
• de la Torre et al., Rev. Mod. Phys. 93, 041002 (2021)

some reviews:



 # Early motivation for non-equilibrium DMFT:

Low temperature state of TaS2:
13 atom CDW reconstruction13 atom CDW reconstruction

Leaves half-filled valence 
orbital per cluster

Mott state described by single 
band Hubbard Model (?)

U

T

metal Mott

bad metal

(AFM order suppressed on 
triangular lattice)

A(ω)

U ∼ 0.3eV∙

Perfetti et al. PRL 
(2006), NJP (2008)



Insulating phase (low temperature):

⇨  Almost instantaneous response
     of the lower Hubbard band
⇨ Filling in of gap

Metal (high temperature):

“hot electrons”

|Ψ(t)⟩ ⟶ ρ ∼ e−H/TeffThermalization of the electrons?

(more generally: emergence of universal behavior, 
governed by few almost conserved quantities )

Hidden phases?
Non-thermal electronic structure? 
Photo-induced phase transitions?

Perfetti et al. PRL 
(2006), NJP (2008) # Early motivation for non-equilibrium DMFT:



 # Models

H = ∑
i,j

∑
σ

J(Ri − Rj) c†
i,σcj,σ + U∑

i

ni,↑ni,↓

Standard lattice models  … such as Hubbard model:

J

U

⃗E = − ∂t
⃗A (t)

Jab → Jab exp{ − e∫
⃗R b

⃗R a

d ⃗r ⋅ ⃗A ( ⃗r, t)}
+ Coupling to time-dependent electromagnetic fields:

Peierls Phase 

Derivation (projecting time-dependent continuum model on  Wannier 
orbitals: Luttinger, Phys. Rev. (1951), Li et. al, PRB 101, 205140 (2020)

(gives also dipolar matrix elements)

i.e., for homogeneous fields:  ϵ( ⃗k ) → ϵ( ⃗k − e ⃗A (t))



 # (Simple ) theoretical approaches

,        U∑
j

nj,↑nj,↓ ⟶ ∑
j,σ

nj,σVj,σ(t) + const. Vj,σ = U⟨nj,σ̄(t)⟩

Time-dependent mean field theory (Hartree Fock):

Change of band structure due to population transfer (in 
particular for multi-orbital systems)

∙

Effective time-dependent potential similar to time-dependent density 
functional theory (tdDFT) in the adiabatic approximation

∙

Does not describe thermalization (single particle momentum is 
conserved)

∙



Kinetic equations:

 k4, ϵHF(k4)

 k3, ϵHF(k3)

 k2, ϵHF(k2)

 k1, ϵHF(k1)

Quasiparticles well defined in non-equilibrium state?∙

Response of electronic structure beyond mean field, 
beyond rigid bands?

∙

 Non-perturbative quantum kinetic equations 
without quasiparticle approximation
≡

⇨  Non-equilibrium Green’s functions techniques:

 # (Simple ) theoretical approaches



Keldysh formalism

t
𝒞

t0

t0 − iβ

Coupled equations for time-dependent spectrum and occupation 
Formulation of many-body theory in real time

• Aoki et al.  Rev. Mod. Phys. 86, 779 (2014) 
• A. Kamenev, Field theory of non-equilibrium systems

References



 # General setting:

initial state   or density matrix  |Ψi⟩ ρ = ∑
i

wi |Ψi⟩⟨Ψi | =
1
Z

e−βH(0)∙

time evolution |Ψi(t)⟩ = 𝒰(t, t0) |Ψi⟩              

#

# = Tt exp( − i∫
t

t0

dt̄ H(t̄ ))∙

= tr[ρ 𝒰(t0, t) O 𝒰(t, t0)] ⟨O(t)⟩ = ∑
i

wi⟨Ψi(t) |O |Ψi(t)⟩

⇨ time-dependent expectation values?



 # Keldysh contour

Representation as contour-
ordered expectation value:

⟨O(t)⟩ = tr[ρ 𝒰(t0, t) O 𝒰(t, t0)]

=
1
Z

tr[(Tτ e− ∫β
0 dτ H(t0))(T̄t e−i ∫t0

t dt̄ H(t̄))O(Tt e−i ∫t
t0

dt̄ H(t̄))]
=

1
Z

tr[T𝒞 e−i ∫𝒞 dt̄ H(t̄) O(t)]

Contour ordering T𝒞A(t)B(t′ ) = {A(t)B(t′ ) t!later!on!!𝒞
±B(t′ )A(t) t!earlier!on!!𝒞

⇨  

t
𝒞

t0

t0 − iβ

(TtTtT e−i ∫t
t0

dt̄ H(t̄))(T̄tTtT e−i ∫t0
t dt̄ H(t̄))(TτTτT e− ∫β

0∫0∫ dτdτd H(t0t0t ))



 # Contour-ordered correlation functions

⟨T𝒞A(t)B(t′ ) ⋯⟩ ≡
1
Z

tr(T𝒞 e−i ∫𝒞 dt̄ H(t̄) A(t)B(t′ ) ⋯)

Contour ordering: convenient bookkeeping of different operator orderings
 (… which all have different physical significance, see below)

Analogous: Two- and N-point correlation functions:

= ± 1
Z

tr[ρ U(t0, t′ )BU(t′ , t)AU(t, t0)]

e.g., for  :t′ − >𝒞 t+

U(t, t0t0t )

A

B

U(t′, t)U(t0t0t , t′)ρ

⟨T𝒞A(t+)B(t′ −)⟩ =

real-time-correlation 
function



 # Keldysh path integral

     tr(T𝒞 e−i ∫𝒞 dt̄ H(t̄ ) ⋯) = ∫ 𝒟[c̄, c] eiS𝒞 ⋯     S𝒞 = ∫𝒞
dt[c̄(t)i∂tc(t) − H(t)]

Contour-ordered ordered evolution operator on “closed contour” has 
path integral representation of analogous to imaginary-time contour:

     integrate over all (anti)-periodic path  c(0+) = ± c(−iβ)

Check: Restriction to imag. time contour:  ,   :t = − iτ τ ∈ [0,β]

⇨     eiS𝒞 → e− ∫β
0 dτ[c̄∂τc+H(t)]  ,    i∫𝒞

dt → ∫
β

0
dτ ∂t → i∂τ

usual imaginary time action

Concepts like Wick’s theorem, effective action, diagrammatic 
perturbation theory,  field theoretical tricks like Hubbard Stratonovich 
transformation  …   carry over 1:1 to Keldysh formalism 

⇨  

∙

∙



 # Contour-ordered Green’s functions

Contour-ordered Green’s functions 
:G(t, x, t′ , x′ ) = − i⟨T𝒞 cx(t)c†

x′ 
(t′ )⟩

:  spin/orbital/momentum 
indices, omitted in the following ⇨ 

 is a matrix in orbital indices

x, x′ 

G(t, t′ )

i⟨c†(t′ )c(t)⟩ ≡

∙

-ordering   bookkeeping of operator orderings … here there are 9:𝒞 ≡∙

−i⟨c(t)c†(t′ )⟩ ≡ G>(t, t′ )

G(t−, t′ +) =
cc†

≡ Gt(t, t′ )

G(t+, t′ +) =  =G(−iτ, t+)

≡ Gvt(τ, t′ )

G(t+, t′ −) =

i⟨c†(t′ )c(t)⟩ ≡ G<(t, t′ ) ≡ Gt̄(t, t′ )

G(t−, t′ −) = G(−iτ, t−) =

= Gvt(τ, t′ )

G(t+t+t , − iτ) =

≡ Gtv(t, τ)

G(t−, − iτ) =

= Gtv(t, τ)

G(−iτ, − iτ′ ) =
= − i⟨Tτc(τ)c†(τ′ )⟩
= iGM(τ − τ′ )



 # Contour-ordered Green’s functions

i⟨c†(t′ )c(t)⟩ ≡

Equilibrium: 
Translational invariance in time
Green’s functions related to spectrum  and 
universal distribution function 

A(ω)
f(ω) = (eβω ± 1)−1

∙
∙

GR(t − t′ ) = − iθ(t − t′ )⟨[c(t), c†(t′ )]⟩A(ω) = −
1
π

Im GR(ω + i0)

G<(ω) = 2πi A(ω)f(ω)  “occupied DOS”, photoemission

“fluctuation dissipation relations”: ⇨  

 G>(ω) = − 2πi A(ω)[1 − f(ω)] “unoccupied density of states”

 GM(τ) = − ∫ dω A(ω)e−ωτf(−ω)Relation to imag time: ⇨  

(analytical continuation)



 # Non-equilibrium Green’s functions

 or X(t, t′ ) X(ω, t)  breaking of time-translational invariance∙
Out of equilibrium:

−i⟨c(t)c†(t′ )⟩ ≡ G>(t, t′ )

G(t−, t′ +) =
cc†

≡ Gt(t, t′ )

G(t+, t′ +) =  =G(−iτ, t+)

≡ Gvt(τ, t′ )

G(t+, t′ −) =

i⟨c†(t′ )c(t)⟩ ≡ G<(t, t′ ) ≡ Gt̄(t, t′ )

G(t−, t′ −) = G(−iτ, t−) =

= Gvt(τ, t′ )

G(t+t+t , − iτ) =

≡ Gtv(t, τ)

G(t−, − iτ) =

= Gtv(t, τ)

G(−iτ, − iτ′ ) =
= − i⟨Tτc(τ)c†(τ′ )⟩
= iGM(τ − τ′ )

 ∙ real time  parametrized by two independent functions:G(t, t′ )

   non-universal distribution   G<(t, t′ ) ↔ G<(ω, t) = 2πiA(ω, t)F(ω, t)
   spectrum GR(t, t′ ) ↔ A(ω, t)



 # Non-equilibrium Green’s functions

 or X(t, t′ ) X(ω, t)  breaking of time-translational invariance∙
Out of equilibrium:

 ∙ real time  parametrized by two independent functions:G(t, t′ )

   non-universal distribution   G<(t, t′ ) ↔ G<(ω, t) = 2πiA(ω, t)F(ω, t)
   spectrum GR(t, t′ ) ↔ A(ω, t)

Keldysh formalism: Equations for contour-ordered  
 coupled equations for time-dependent spectrum and occupation 

G(t, t′ )
≡

!
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A(ω, t)

F(ω, t)

time

!

!

⇨



 # Perturbation theory

Derivation of perturbation theory for -ordered Green’s functions 
analogous to imag time ordered Green’s functions

𝒞

Σ
G

= +
G0

G(t, t′ ) = G0(t, t′ ) + ∫𝒞
dt1dt2G0(t, t1)Σ(t1, t2)G(t2, t′ )

noninteracting GF (includes 
dynamics due to external fields) and 
time-dependent mean-field potentials

Same rules in diagrammatic perturbation theory:

Diagrams on imag part on    diagrams for Matsubara Green’s functions 

when    , , 

𝒞 →

t → − iτ i∫𝒞
dt → ∫

β

0
dτ G(−iτ, − iτ′ ) → iGM(τ − τ′ )

+ + …



GR

G<

t′ 

t
Update on time-slice based on previous 
times (and on initial state Matsubara 
Green’s function)

mixed components  
not shown for simplicity

G(−iτ, t)

 # Solution of real-time Dyson equation

   ?G(t, t′ ) = G0(t, t′ ) + ∫𝒞
dt1dt2 G0(t, t1) Σ[G, G0](t1, t2) G(t2, t′ )

Give , determine  from G0(t, t′ ) G(t, t′ )

Causality: Solution possible via “timestepping”

Dyson equation mapped to causal 
integral equastions: 
“Kadanoff Baym equations”

http://www.nessi.tuxfamily.org/
Schüler et al. Computer Phys. 
Comm. 257, 107484 (2020)

Implementation:



 # Illustration: Melting of excitonic insulator

&&'0,(+#4%=,0,(+#4%&*(">,#-%?∙

Σ(t, t′ ) = +

+ +⋯

t-d. mean-field: 

el-el. scattering

Gole" et al.  PRB 94, 035121 (2016)
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(photoemission )∼ G<

k (ω, t)

Equations for contour-ordered Green’s function in  
 coupled equations for time-dependent spectrum and occupation 

(t, t′ )
≡



 # Comment on self-consistency

Interaction quench (sudden switch-
on of interaction) starting from 
Fermi gas (U=0)

H = J ∑
⟨i,j⟩,σ

c†
i,σcj,σ + U∑

i

ni,↑ni,↓

Second order perturbation theory (  Bethe lattice)Z → ∞

Σ(t, t′ ) = U(t)U(t′ )G(t, t′ )G(t, t′ )G(t′ t)

Check of energy conservation:

Solid lines: Self-consistent perturbation theory    (“conserving”)
“IPT”   G → 𝒢0



 # Computational cost / Memory bottleneck

Scaling of numerical cost:
  CPU ∙ 𝒪(N3

t )
  memory ∙ 𝒪(N2

t )

E.g.:  First-principle multi-orbital simulations based on standard 
perturbative approaches?  

not entirely out of range, but definitely some improvement needed!

 orbitals
Energy window 10eV 
   ⇨  eV = 0.1fs)
Simulation time 1000fs

L = 10

Δt ≪ 1/
Memory  

 
complex numbers

nt = 104

G<!and!GR

n2
t × L2 = (104)2 × (102) = 1010

!!!
!!!
!!!
!!!
!!!
!!!
!!!

⇨

2nd order PT Hubbard model

(OMP parallelisation 
possible)

more severe …



 # Memory bottleneck

simulations with vastly different timescales: electrons & lattice; 
electrons & collective modes; prethermalization & thermalisation

Overcoming the memory constraint?
⇨

… needed for 

first-principle multi-orbital simulations based on standard 
perturbative approaches

⇨

• Generalized Kadanoff Baym Ansatz

• Quantum Boltzmann equations
Picano, Li, Eckstein, Phys. Rev. B 104, 085108 (2021)

Schlünzen, Joost, Bonitz, Phys. Rev. Lett. 124, 076601 (2020) additional approximations
“physical insight”

• Systematic truncation of memory integrals

• Hierarchical storage of two-time functions
Kaye and Golez,arXiv:2010.06511

Stahl, Dasari Picano, Li, Werner, Eckstein, PRB 105, 115146 (2022) Reformulation of
numerical solutiuoin 



DMFT



 # Dynamical mean-field theory

 Best approximation for local self-energy, exact in ∙ d = ∞
Metzner & Vollhardt 1989;
Georges & Kotliar 1992; 
Georges et al. RMP 1996

Gk = G0,k + G0,k * Σ * Gk

c†, c
Δ(ω)

:  bath propagator of continuous environmentΔ

Simp = Sloc − ∫
β

0
dτdτ′ c*(τ)Δ(τ − τ′ )c(τ)

  Local (momentum-independent)  from auxiliary impurity model:∙ Σ[G]

⇨   Gimp = 𝒢imp[Δ] + 𝒢imp[Δ] * Σ * Gimp = ∑
k

Gk
!

Monien et al 2002; Freericks et al, 2006
Aoki et al., Rev.Mod.Phys. 2014

  Non-equilibrium formulation of DMFT∙



 # Dynamical mean-field theory

Non-equilibrium formulation of DMFT

Biggest issue: Solution of the non-equilibrium Quantum impurity model

Himp = Hloc + ∑
p,σ

ϵpa†
pσapσ + ∑

p,σ
(Vp(t)c†

σap,σ + h . c . )U

ϵpVp

Equivalent to a time-dependent Anderson model

Solution:

   Quantum Monte Carlo               (dynamical sign problem)
   matrix product states (MPS)     

     (efficient bath representation, entanglement)
   strong-coupling expansion (hybridizaion expansion)
   weak coupling expansions (“IPT”) 

∙
∙

∙
∙

Wolf, Schollwöck, et al. 2014

(no multi-purpose approach like in equilibrium yet)



 # Solution of the Anderson model: Hybridization expansion

= ± 1
Z

tr[ρ U(t0, t)OU(t, t0)]U(t, t0t0t )]U(t0t0t , t)ρ⟨O(t)⟩

  Unfolding the contour:∙

t−
max

0 −iβ t+
max

tr[ ]

 =
1
Z ∫ d{tj}(∏Δ(ti, tj))tr[𝒢(tmax, t1)c𝒢(t1, t2)⋯O]

=  𝒢n,m(t, t′ ) = ⟨n |T𝒞e−i ∫t′ 

t dsHloc(s) |m⟩

t−
max t1 t+

maxt2 ⋯
trloc[ ] =

1
Z ∫ d{tj}

  Expansion of action in    (talk by Ph. Werner)∙ ∫𝒞
dtdt′ c*(t)Δ(t, t′ )c(t′ )Δ(t, t′)



 # Solution of the Anderson model: Hybridization expansion

dynamical sign problem 
( )𝒢, Δ, . . . wc ∈ ℂ =

∑c |wc |scOc

∑c |wc |sc

Note:    can depend only on Matsubara branchZ = ∑
c

wc

Monte Carlo summation of all configurations (CTQMC-Hyb on ):𝒞

t−
max t1 t+

maxt2 ⋯
tr[ ] 

1
Z ∫ d{tj}

Werner et al. (2006), Werner, Oka, Millis (2009)

 ⟨O⟩ = ∑
c

wcOc



 # Quench in the Hubbard model ME, Kollar, Werner (2009)

H = J ∑
⟨i,j⟩,σ

c†
i,σcj,σ + U∑

i

ni,↑ni,↓ Interaction quench (sudden switch-
on of interaction) starting from 
Fermi gas (U=0)

“prethermalization”

Relaxation of momentum distribution   (bandwidth=4)nk(t) = ⟨c†
k ck⟩

Moeckel & Kehrein (2008)

U=2

Interesting physics, but only few hopping times accessible

Thermalization at DPT

U=3.3

Collapse and revival

U=5



Photo-doping a 
Mott insulator



 # Photo-doping: Ultrafast dynamics in TaS2

Low temperature state of TaS2:
13 atom CDW reconstruction13 atom CDW reconstruction

Leaves half-filled valence 
orbital per cluster

Mott state described by single 
band Hubbard Model (?)

U

T

metal Mott

bad metal

(AFM order suppressed on 
triangular lattice)

A(ω)

U ∼ 0.3eV∙



 # Photo-doping: Ultrafast dynamics in TaS2

Photo-excitation: Time resolved ARPES (at ) after 1.5eV excitationΓ

… disappears within  fs≲ 100

Ligges et al., Phys. Rev. Lett. 120, 166401 (2018)

Earlier Experiments: Perfetti et al., Phys. Rev. Lett. 97, 067402 (2006)

Transient appearance of UHB



 # Photo-doping: Ultrafast dynamics in TaS2

Scenario:

U

T

∙metal Mott

bad 
metal

⇨ Spectral signature of  transient and final photo-excited state?

⇨ Thermalization time in small gap Mott insulator and bad metal?

!

Small gap Mott insulator

!

Non-thermal state with 
occupation in Hubbard 
band
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Thermalization to bad 
metal

?



 # Thermalization of a photo-excited Mott insulator

Mott transition at T=0

Te↵ = 0.5

[1
/h

op
pi

ng
]

Exponentially slow thermalization for larger Mott gap

Simulation for a hypercubic lattice
(Metal insulator transition at  )UMIT ≈ 3.1

'()*+,-%&B&C,#%,#2&DEF&=>2&:G9;55&H5:;;I

determined by total energy

d(t) ∼ deq(Teff ) + Ae−t/τ

double occupancy  after excitation:⟨n↑n↓⟩



Ligges et al., Phys. Rev. Lett. 120, 166401 (2018) # Ultra-fast dynamics in TaS2

Thermalization in half-filled 
model too slow to explain
disappearance of UHB 

Simulation for triangular Hubbard model

  A<(ω, t) =
1

2πi ∫ ds G<(t + s/2,t − s/2)eiωs

consistent with electronic 
thermalization in slightly 
doped regime

Good benchmark for DMFT: Qualitative interpretation of features, 
reasonable timescales … but too simple model to describe TaS2



Photo-doping in a CT insulator



 # Photo-doping in a charge transfer insulator Golez, Boenke, Eckstein, Werner, 
PRB(R) 2019, PRB 2019

3-band Emery model Tight-binding model CuO2 plane in cuprate 

d

px
py

tdd

tpd
tpp

Vpd U

Udd = 8eV, tdd = �0.1eV,

Vpd = 2eV,�pd = �2eV,

tpd = 0.4eV,

p
d

p
d

p

d

Equilibrium spectral function:
Laser excitation?



 # Manipulating electronic structure: The role of screening

Wq(ω) =
Vbare,q(ω)

ϵq(ω)

spectrum of polarization modes 
(el-hole excitation, plasmons)

Needed for any quantitative understanding of the dynamics⇨

Manipulate screened interactions out of equilibrium?⇨

Treatment of electrons with self-consistently screened interaction?



 # GW+DMFT

= + Σ

Π= +
VW

G G0
Σ = Σ[G, W ]

+Πloc[Gloc, Wloc] − d . c .

+Σloc[Gloc, Wloc] − d . c .
Biermann, Aryasetiawan, 
Georges PRL 2003

GW+DMFT

:

 Self-consistent expansion in terms of fully screened interaction∙

Π[G, W ] =
G
G

G

“GW” approximation Hedin 1965

+  Diagrammatic approximation:

Σ[G, W ] =

W

Π = Π[G, W ]



 # GW+DMFT

 Evaluation of local contributions from auxiliary impurity problem:∙

⇨     Gimp, χimp = ⟨n(τ)n(τ′ )⟩

c†, c
Δ(ω) U(ω)

Impurity with self-consistent bath 
and self-consistent interaction U(ω)

  Wimp = U(ω) + U(ω)χimpU(ω)
  = U(ω) + U(ω)ΠimpWimp

  Wk = Vk + VkΠimpWk

  Wloc = ∑
k

Wk = Wimp

DMFT self-consistency for 
 and   plus self-

consistency of interaction:
Δ Σ

!



 # Photo-doping in a charge transfer insulator Golez, Boenke, Eckstein, Werner, 
PRB(R) 2019, PRB 2019

p
d

p
d

p

d

Spectral function:

~ 5% charge transfer ⇨  Modification of spectrum:
Band shifts and broadening (basically instantaneous)Band shifts and broadening (basically instantaneous)

Laser excitation:

Different possible origins:
 Dynamic screening (renormalization of “U”)∙
 Mean-field shifts due to inter-site interaction (HF)∙
Hpd → Vpdnp⟨nd⟩ + Vpd⟨np⟩nd + const .

Distinguish?



Only mean-field like shifts (DMFT + Hartree Fock)

equi
40fs

Simulation including screening (GW+DMFT)
Screening modes

Δ(CT) = − 150meV

Δ(CT) = − 150meV
ΔU(ω) = − 140meV

Δ(CT) = Vpd⟨np⟩nd

 # Photo-doping in a charge transfer insulator Golez, Boenke, Eckstein, Werner, 
PRB(R) 2019, PRB 2019



Effect of dynamical screening on population dynamics:

(electron boson scattering)

 # Photo-doping in a charge transfer insulator Golez, Boenke, Eckstein, Werner, 
PRB(R) 2019, PRB 2019

⇨ No population dynamics

DMFT+Hartree Fock:

⇨ Ultrafast relaxation of 
electron and hole populations

DMFT+GW:



 # Photo-doping in a charge transfer insulator

Cu edge

Baykusheva et al., Phys. Rev. X 12, 011013 (2022)
Optical excitation on cuprate LSCO, XAS probe

Final state: strongly bound (localized) core-valence exciton: 
Sensitive to dynamic screening … more specific theory needed

… but Xrays are different from ARPES:



 # Summary / Outlook

Coupled equations for time-dependent spectrum and occupation 
Formulation of many-body theory in real time

Keldysh formalism:

Non-equilibrium DMFT (+GW)

Electronic structure of correlated 
systems out of equilibrium p

d
p

d

p

d

Outlook, future (technical) developments:

Non-equilibrium Green’s function simulations at long times
⇨ realistic many-band simulations
Non-perturbative impurity solvers
Electron boson systems, electron lattice dynamics


