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# Motivation for out of equilibrium studies

= Real time formulation of many body
physics avoids analytical continuation

= Transport beyond linear response

from Goldhaber Gordon
§ et al. Nature (1998)

= Controlled quantum many body dynamics in quantum simulators
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= Ultrafast dynamics in solids




# Ultrafast dynamics in solids

Ultrafast pump-probe experiments: Selective probe of the dynamics of various
degrees of freedom on different timescales: Xray, tr-ARPES, XAS
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=> Reach novel states out of equilibrium?

= What can we learn from the dynamics about the
relevant degrees of freedom and their interactions?

some reviews: - Aoki et al. Rev. Mod. Phys. 86, 779 (2014)
- Giannetti et al. Advances in Physics, 65, 58 (2016)
- Basov, Hsieh, Averitt, Nature Materials 16, 1077 (2017)
- de la Torre et al., Rev. Mod. Phys. 93, 041002 (2021)



# Early motivation for non-equilibrium DMFT:  (o0a 15 o0s,

Low temperature state of TaS::

13 atom CDW reconstruction Mott state described by single
band Hubbard Model (?)

A

T

bad metal |A(w)

Leaves half-filled valence metal
orbital per cluster

(AFM order suppressed on
triangular lattice)



Perfetti et al. PRL

# Early motivation for non-equilibrium DMFT: (2006). NJP (2008)

Metal (high temperature): Insulating phase (low temperature):

ARPES intensity
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E(eV) = Almost instantaneous response
hot electrons of the lower Hubbard band

= Filling in of gap

Thermalization of the electrons? | V(7)) — p ~ e~y

(more generally: emergence of universal behavior,
governed by few almost conserved quantities )

Non-thermal electronic structure?
Photo-induced phase transitions? Hidden phases?



# Models J

"
Standard lattice models ... such as Hubbard model: ?H~*U_’?
H = ZZ](R R) 10_]6+UZ n ;| ®—0—©0

Pl
O—0—@

+ Coupling to time-dependent electromagnetic fields: E = — dtz(t)
Ry
Peierls Phase J , — J , exp{ —e| dr-A(7, t)}
JR

i.e., for homogeneous fields: 6(7) — 6(7 — eX(t))

Derivation (projecting time-dependent continuum model on Wannier
orbitals: Luttinger, Phys. Rev. (1951), Li et. al, PRB 101, 205140 (2020)

(gives also dipolar matrix elements)



# (Simple ) theoretical approaches

Time-dependent mean field theory (Hartree Fock):

UZ 1 11 Z n V. (t) +const, V. = Un 1))

J,0

* Change of band structure due to population transfer (in
particular for multi-orbital systems)

o Effective time-dependent potential similar to time-dependent density
functional theory (tdDFT) in the adiabatic approximation

* Does not describe thermalization (single particle momentum is
conserved)



# (Simple ) theoretical approaches

Kinetic equations:

ki, €yr(ky) \ / ks, €r(ks3)
ky, €pp(ky) / \‘ Ky

e Quasiparticles well defined in non-equilibrium state?

€pr(ky)

* Response of electronic structure beyond mean field,
beyond rigid bands?

=> Non-equilibrium Green’s functions techniques:

= Non-perturbative quantum kinetic equations
without quasiparticle approximation



Keldysh formalism

th— if

Formulation of many-body theory in real time

Coupled equations for time-dependent spectrum and occupation

References - Aoki et al. Rev. Mod. Phys. 86, 779 (2014)
- A. Kameney, Field theory of non-equilibrium systems



# General setting:

1
e initial state |'.) or density matrix p = Z w, | WPV, | = Ee—ﬂH(O)

ot
® time evolution |W,(¥)) = %(t,1)|Y;) #=T exp< — de(D)

ut‘O

#
—> time-dependent expectation values?

(0W) = Y w1 01¥(0) = tr|p %1, 0) 01,1



# Keldysh contour

(O(1)) =tr [p U(ty, 1) O UL, to)] = Representation as contour-
ordered expectation value:

_ %tr[<TTe—fgd1H(to)> <Tte—ij;0de(f)>O<Tte—if,fode(f)>]

1 I o
= —tr| T e=/1e 71D 0()| -t

: lto—iﬁ ¢

A(t)B(t) tlateron €

Contour ordering T A(#)B(t') = {+B(I')A(t) t earlieron €



# Contour-ordered correlation functions

Analogous: Two- and N-point correlation functions:

(TLA(DB(E) ) = %tr(Tcge—ifcgde(f) ADB() >

e.g., fortl > 1 :

A
(TeA(t)B(1))) = |

B

real-time-correlation

1
= + —tr [P Ulty, DBUW DAV 1) | ¢ i

/

Contour ordering: convenient bookkeeping of different operator orderings
(... which all have different physical significance, see below)



# Keldysh path integral

® (Contour-ordered ordered evolution operator on “closed contour” has
path integral representation of analogous to imaginary-time contour:

tr(Tcge_if%de(f) ) = | DI, clei - Sy =| dt|e@)ioc) — HQ)|
/ J&
integrate over all (anti)-periodic path ¢(0,) = * c(—ip)

® Check: Restriction to imag. time contour: t = —it, 7 € [0,5]:
nﬂ 5 )
i| dt— | dr, 0, -0, = eS¢ o lod [CaTCJrH(I)]
J& Jo

usual imaginary time action

= Concepts like Wick’s theorem, effective action, diagrammatic
perturbation theory, field theoretical tricks like Hubbard Stratonovich
transformation ... carry over 1:1 to Keldysh formalism



# Contour-ordered Green’s functions

® (Contour-ordered Green’s functions X, x": spin/orbital/momentum
PN — +..n\. indices, omitted in the following =
Gt x,1,x) = l<Tcg Cx(t)cx’(t )); G(t,t') is a matrix in orbital indices

® ¢-ordering = bookkeeping of operator orderings ... here there are 9:

G(t,,1,) = 1_‘_0_) G(t_,t,) = l_t_o__) G(—ir,t,) = 5 o

c’ ¢
=G'(t,1) —i{c(H)c'(t)) = G (1, 1) = G"(z7, 1)
G(t,, 1) = S G(t_,t) = G(—ir,t) = )
! oo o °
i(ct(@)e@)) = G, 1) = G/(1,1) = G"(z,1)

)

G(t,, — i7) K] e Gt ,—it)= —5—>  Gl=ir,—it) =
= G™(t, 1) ¢ = — T,c(z)c’ (7)) g
= : — Gtv(t, T) — lGM(T - T,)




# Contour-ordered Green’s functions

Equilibrium:
e T[ranslational invariance in time

o Green’s functions related to spectrum A(w) and
universal distribution function f(@w) = (e’ + 1)~!

1 .
Alw) = — ;Im G¥w +i0) GRe—-1)=—i0(t — ) {[c(?), cT(t)])

= “fluctuation dissipation relations”:

G~ (w) =27i A(w)f(w) “occupied DOS”, photoemission
G”(w) = —2rni A(w)[1 — f(w)] “unoccupied density of states”

= Relation to imag time:  GM(7) = — | dow A(w)e " f(—w)

Y

(analytical continuation)



# Non-equilibrium Green’s functions

Out of equilibrium:
e breaking of time-translational invariance X(z,t") or X(w, )
e real time G(¢, t') parametrized by two independent functions:
GX(t,t) < spectrum A(w, t)
G<(t,t) < non-universal distribution G<(w, 1) = 27iA(w, HF(w, 1)

G(t,, 1)) = ;‘T—O‘) (G(I_,;;r): —@ O_D G(—ir,t,) = >
c' C v

Ci@(r)ﬁ(z’)) = G (1,

= G'(1,1) tj) = G"(1,1)

(G(t L) = : o > )

| G(t_,t) = I-O—‘J G(—ir,t_) = g o—

ki(c*(t’)c(t)) = G<(1, r’)} = G/(1,1) = G"(z,1)

O

G(t+, — I7) :9 e ) G(t_, —ir) = o0— G(—iz, —it) =
G ¢ = — iTe()c!(@)) g
- ’ = G"(¢,7) = iGM(r - 7))




# Non-equilibrium Green’s functions

Out of equilibrium:
e breaking of time-translational invariance X(z,t") or X(w, )
e real time G(¢, t') parametrized by two independent functions:
GX(t,t) < spectrum A(w, t)
G<(t,t) < non-universal distribution G<(w, 1) = 27iA(w, HF(w, 1)

= Keldysh formalism: Equations for contour-ordered G(¢, t)
= coupled equations for time-dependent spectrum and occupation

A(w, 1)

‘ _ /\% MF@, /) m




l# Perturbation theory

Derivation of perturbation theory for ¢-ordered Green’s functions
analogous to imag time ordered Green’s functions

> - ©
_>= » > q

G(t,1') = Gy(t, 1) +

dt,dt,Gy(t, 1)) Z(t;, 1,)G(1,, ')

J&
noninteracting GF (includes /\ N /\\ N
dynamics due to external fields) and : -
time-dependent mean-field potentials

Same rules in diagrammatic perturbation theory:

Diagrams on imag part on € — diagrams for Matsubara Green'’s functions

when — — 7, iJ dt — J dr, G(—ir, — it") —» iGM(7 — ')
€ 0



# Solution of real-time Dyson equation

Give Gy(1,1'), determine G(¢,1') from

G(t, 1) = Gy(1,t') +

y

C

dr,dt, Gy(t, 1)) Z[G, Gyl(f;, 1) G(t,, 1) ?

Causality: Solution possible via “timestepping”

mixed components G(—iz, t)
not shown for simplicity

Implementation:

Schuler et al. Computer Phys.
Comm. 257, 107484 (2020)

Update on time-slice based on previous
times (and on initial state Matsubara
Green’s function)

Dyson equation mapped to causal
integral equastions:
“Kadanoff Baym equations”

N ESSI v1.1.2
The NonEquilibrium Systems SImulation Library
'

vk http://www.nessi.tuxfamily.org/




# lllustration: Melting of excitonic insulator

e Electron-electron scattering

Q E.g. Melting of exciton insulator

+ (photoem|53|on ~ G<(a), t))

2(1,1) =

3 /€ =35 d t=2.38 ||e) t=35 f) t=5.6 g) t=14
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Golez et al. PRB 94, 035121 (2016)

t-d. mean-field:

+ CD e
: :

el-el. scattering

Equations for contour-ordered Green’s function in (z, t')
= coupled equations for time-dependent spectrum and occupation



# Comment on self-consistency

H=/] 4+ U 7. Interaction quench (sudden switch-
<§6 ') Z S o of interaction) starting from
. Fermi gas (U=0)

Second order perturbation theory (Z — oo Bethe lattice)

Q S(t, 1)) = UOUE)G(L, 1)G(t, t')G(t'?)

. . .

Check of energy conservation:
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-tational cost / Memory bottleneck

Scaling of numerical cost: 10”1 2nd order PT Hubbard model
—>® CPU @(NE) m 10°
e memory @(Ntz) — E
=
=
(OMP parallelisation 10!
possible) o -
10Y 161 162 163
more severe ... propagation time ¢

E.g.: First-principle multi-orbital simulations based on standard
perturbative approaches?

)

L = 10 orbitals n, = 10%
Energy window 10eV Memory G=< and GX

= At < 1/eV = 0.1fs) n?x L* = (10%* x (10%) = 10"
Simulation time 1000fs complex numbers

J

not entirely out of range, but definitely some improvement needed!



# Memory bottleneck

Overcoming the memory constraint? ... heeded for

=> simulations with vastly different timescales: electrons & lattice;
electrons & collective modes; prethermalization & thermalisation

= first-principle multi-orbital simulations based on standard
perturbative approaches

e (Generalized Kadanoff Baym Ansatz
Schlinzen, Joost, Bonitz, Phys. Rev. Lett. 124, 076601 (2020)

e Quantum Boltzmann equations
Picano, Li, Eckstein, Phys. Rev. B 104, 085108 (2021)

e Systematic truncation of memory integrals
Stahl, Dasari Picano, Li, Werner, Eckstein, PRB 105, 115146 (2022)

e Hierarchical storage of two-time functions
Kaye and Golez,arXiv:2010.06511




DMFT



# Dynamical mean-field theory

 Best approximation for local self-energy, exact in d = oo

Metzner & Vollhardt 1989;
Gk — GO k + GO k ®YH Gk Georges & Kotliar 1992;
’ ’ Georges et al. RMP 1996

e Local (momentum-independent) 2| G| from auxiliary impurity model:

A: bath propagator of continuous environment
A(@) )

C@ Sy = Sioe J drdr’ *(@)A(r — 7)¢(7)
0

!
D> Gip = CimplAl + €, [A]*2%G,,, = ) G,
k

imp imp

e Non-equilibrium formulation of DMFT  Monien et al 2002; Freericks et al, 2006
Aoki et al., Rev.Mod.Phys. 2014



lDynamicaI mean-field theory

Non-equilibrium formulation of DMFT

Biggest issue: Solution of the non-equilibrium Quantum impurity model

Equivalent to a time-dependent Anderson model

Yo

_Hloc—l_z 6,015, + Y (V(Ocia,,+h.c.)

pP,o

Solution:  (no multi-purpose approach like in equilibrium yet)

e Quantum Monte Carlo (dynamical sign problem)

e matrix product states (MPS)  Wolf, Schollwéck, et al. 2014
(efficient bath representation, entanglement)

e strong-coupling expansion (hybridizaion expansion)

e weak coupling expansions (“IPT”)



# Solution of the Anderson model: Hybridization expansion

1 _
(0() = £ —t [p Ulty, HOU(, 1) | D %
e Unfolding the contour:
| — o]
. 0 —ip tr-}lfz_ax

e Expansion of action in J dtdt'c*(t) Az, t')c(t’) (talk by Ph. Werner)

C
o |

max

L] LN |
Ny gu® ...
L 4

1
- Ejd{rj}trzgc[ -

max 1 1 tz

1

= ;d{ ) ( []ac. l}-))tr [?(tmax, t)cE(1,, tz)---O]

—> = G,,,(1,1) = (n| Tge i “Hud | )



# Solution of the Anderson model: Hybridization expansion

lllll
... ......
L 4

* * * *
* * gEEpy . uEEy
1 o o * * o ‘t‘ Yo, A “‘ Ve,
° N ‘s ‘s ° * S . * S
d{t} tr — ——— —— —— el e—— el —— i
I °

tn_fzax tl [2 coe t;;ax

Monte Carlo summation of all configurations (CTQMC-Hyb on 6):
Werner et al. (2006), Werner, Oka, Millis (2009)

(0) = Z w.0. = ZC ‘WC | 50, dynamical sign problem
C ol ZC‘WC‘SC (?,A,WCE(]:)

Note: Z = Z w_. can depend only on Matsubara branch

C



ME, Kollar, Werner (2009)

nch in the Hubbard model
Interaction quench (sudden switch-

H=J c'c. +U n; 1.
Z Lo S0 zl: "R on of interaction starting from
Fermi gas (U=0

(i.j).0

Relaxation of momentum distribution 7, (f) = (CkT ) (bandwidth=4
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Collapse and revival

Thermalization at DPT

“prethermalization”

Moeckel & Kehrein (2008)
Interesting physics, but only few hopping times accessible



Photo-doping a
Mott insulator



# Photo-doping: Ultrafast dynamics in TaS>

Low temperature state of TaS::
13 atom CDW reconstruction

Leaves half-filled valence
orbital per cluster

Mott state described by single
band Hubbard Model (?)

A

T

bad metal |A(w)

metal

(AFM order suppressed on
triangular lattice)



# Photo-doping: Ultrafast dynamics in TaS>

Photo-excitation: Time resolved ARPES (at I ) after 1.5eV excitation
Ligges et al., Phys. Rev. Lett. 120, 166401 (2018)

10" -2
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Transient appearance of UHB ... disappears within < 100 fs

Earlier Experiments: Perfetti et al., Phys. Rev. Lett. 97, 067402 (2006)



# Photo-doping: Ultrafast dynamics in TaS>

Scenario:

T
/\ Small gap Mott insulator
bad
K %
Non-thermal state with
occupation in Hubbard
band

W

m Thermalization to bad
metal

w

=~

= Thermalization time in small gap Mott insulator and bad metal?

=> Spectral signature of transient and final photo-excited state?



# Thermalization of a photo-excited Mott insulator

Simulation for a hypercubic lattice
(Metal insulator transition at U,,;r =~ 3.1)

—
o
~

b T =05
double occupancy (n,n,) after excitation: Lo = 0.5

d(t) ~ d, (T ;) + Ae™""

e

(determined by total energy

t [1/hopping]
Sm
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o 3
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U=1.5 u=1.8 U=2 §U=2.2
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time

: U
Mott transition at T=0

Eckstein & Werner, PRB 84, 035122 Egpponentially slow thermalization for larger Mott gap



# Ultra-fast dynamics in TaS» Ligges et al., Phys. Rev. Lett. 120, 166401 (2018)

Simulation for triangular Hubbard model

1 | .
AS(w,t) = — |ds G=(t + s/2,t — s/2)e'*s

27l |
@ T .
10 E Thermalization in half-filled
{ — efs|g — 12fs |  model too slow to explain
\ — 25fs | —— 25fs _
o |\ — 50°fs |_ —s0fs | disappearance of UHB
& A : . . .
> - consistent with electronic
5 thermalization in slightly
: : |\ doped regime
10% 4 n=1.00 4 n=0.95\
(undoped) (doped) |

T L i . T T ¥ T : ¥ 1
0.0 0.4 0.8 0.0 0.4 0.¢
E-E (eV) E-E- (eV)

Good benchmark for DMFT: Qualitative interpretation of features,
reasonable timescales ... but too simple model to describe TaSy



Photo-doping in a CT insulator



Golez, Boenke, Eckstein, Werner,

# Photo-doping in a charge transfer insulator ;- 070 as oo s

3-band Emery model Tight-binding model CuO2 plane in cuprate

¥ X V4 U

Q000000

x xpypx x Uija = 8eV,tyqg = —0.1eV,
O oodo;o O Voa = 2eV, Apq = —2eV,
S 3)tpd t,qa = 0.4eV,

N N @

Equilibrium spectral function:
0.4 -Laser excitation? —

Orbital character




# Manipulating electronic structure: The role of screening

Viinin; spectrum of polarization modes
(el-hole excitation, plasmons)

= Needed for any quantitative understanding of the dynamics

= Manipulate screened interactions out of equilibrium?

Treatment of electrons with self-consistently screened interaction?



lGW+DMFT

e Self-consistent expansion in terms of fully screened interaction

W 4
VN =/vvm+wvv\®w 11 =[G, W]

G
— —>+ —»9—» > = Y[G, W]

+ Diagrammatic approximation:
W

2|G, W] =

G, W] = @ +Hloc[Gloc’ VVZOC] —d.c.

“GW” approximation Hedin 1965

+ZZOC[GZOC’ Wloc] —d.c.

¥

GW+DMFT

Biermann, Aryasetiawan,
Georges PRL 2003



# GW+DMFT

e Evaluation of local contributions from auxiliary impurity problem:

Impurity with self-consistent bath
and self-consistent interaction U(w)

Alw) Ulw) DMFT self-consistency for
( @ ) A and 2 plus self-
consistency of interaction:
Wimp = Ulw) + U(a)))(impU(a))

= szp’ Ximp = (n(0)n(z')) = U(w) + U(a))nzmp

Y,

Wk V., + VkH W,

imp

Wloc Z Wk zmp



# Photo-doping in a charge transfer insulator 55 sors prs sors

Spectral function: Laser excitation:

dOCC

0.15 @)

0.10 —

dOCC

0.05 —

0.00 , ,

0 5 10 (
t [fs]

~ 5% charge transfer © Modification of spectrum:
Band shifts and broadening (basically instantaneous)

Different possible origins:
e Dynamic screening (renormalization of “U”)
e Mean-field shifts due to inter-site interaction (HF) | Distinguish?

H,,— V,n(ng) +V, (n,)n; + const .




# Photo-doping in a charge transfer insulator 555 0r rracors

Only mean-field like shifts (DMFT + Hartree Fock) A(CT) = Vpd(np)nd

b -
| ™= — equi | [ACT) == 150meV
3 0.4 -
(@]
< 0.2 - ::
0.0 | [
-5 0 5
w [eV] Screening modes
Simulation including screening (GW+DMFT) ()
0.5 -
e A(CT) = — 150meV —0.4 4
5 AU(w) = — 140meV S .
3 04 T
K 02 - ﬂ
0.2 -
0.1
0.0 R J T T
-5 0] 5 0 5 10 15 (



# Photo-doping in a charge transfer insulator 55 sors prs sors
Effect of dynamical screening on population dynamics:

DMFT+Hartree Fock: DMFT+GW:

T hole occupation ~ i ~el. occupation T hole occupation ™ ; ~el. occupation™ %%
: wr - u.04 E

wleV]

= No population dynamics => Ultrafast relaxation of
electron and hole populations

(electron boson scattering) 4%



# Photo-doping in a charge transfer insulator

Optical excitation on cuprate LSCO, XAS probe
Baykusheva et al., Phys. Rev. X 12, 011013 (2022)
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— . —T— . b
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—e— fransient
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AS (arb.

0.25<

- I

0.00

931 932 933 934
Photon energy (eV)

... but Xrays are different from ARPES:

Final state: strongly bound (localized) core-valence exciton:
Sensitive to dynamic screening ... more specific theory needed



# Summary / Outlook

Keldysh formalism:

Formulation of many-body theory in real time
Coupled equations for time-dependent spectrum and occupation

Non-equilibrium DMFT (+GW)

Electronic structure of correlated
systems out of equilibrium

Outlook, future (technical) developments:

Non-equilibrium Green’s function simulations at long times
= realistic many-band simulations

Non-perturbative impurity solvers
Electron boson systems, electron lattice dynamics



