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Strongly correlated systems ?
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Not necessarily
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correlations

— correlated excited state
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Extra difficulties in nonequilibrium

More than just one state... how many? It depends on
the time-dependent perturbation

Different states may experience different correlation
effects

No equilibrium shortcuts: everything changes in time



Preparing the stage
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Time-dependent averages

J correlation is
O(t) = (¥,|U(0,6)0U (¢,0)[W,) everywhere

noninteracting
Adiabatic switching of the interaction: for ¢t < 0 /' ground state

H(t)=Ho+e " iy s |0,) = U(0,—00)[®,)

Let’s try again



Time-dependent averages

Times on the contour: z =1t%_ (forward branch) z =14 (backward branch)

A

Operators on the contour: O(t_) = O(t;.) = O(t)

N CONTOUR
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Pay attention

O(t) = <<I>9\U(—oo7t)OA(A](t, —00)|D,) to the ?rdering
of times




Time-dependent averages

Times on the contour: z =1t%_ (forward branch) z =14 (backward branch)

A

Operators on the contour: O(t_) = O(t;.) = O(t)

N CONTOUR
O(t) = (4| T, {B_II’Y ) (Z)O(Z)} |Dy) IDEA
—00 X }/\[77({) .t_ {\{(E) _____ 100
""" () t aey

Examples: z =1_

O(t) = (@, T{e—if;oo dt’ ﬁ(t')} T{e—iffo dtﬁ(ﬂ} OAT{e—iffoo dtﬁ(f)} P,)
-————————— S, —
U (—00,00) U (o0,t) U(t,—o0)

A

— <(I)9’U(_Oov t)OU(t7 _OO) ‘(I)g>



NEGF

NEGF is a nonperturbative approach to calculate time-dependent averages

The fundamental bit is the contour Green’s function

Gij (Z, Z/) —

If z is earlier than z’ (lesser Green’s function)
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What can we get from G?

Time-dependent average of one-body operators () = Z O,,;jczzcij
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Time-dependent average of interaction energy (two-body operator)
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Momentum-resolved photoemission current
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How do we get G ?

Starting point — Inside the contour ordering the operators commute, e.g.,
T { Ho(2) Hin () b = Ty { Hine (/) o (=) §

Back to the definition H(z) = Hy(2) + Hine(2)
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How do we get G ?
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Same expansion as the standard time-ordered Green’s function !!!

Only difference is: time t — contour time z

Dyson equation on the contour *

G(z,72") = Go(z,2") + / dz1dze Go(z, 21)2(21, 22)G(22, 2')
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The Kadanoff-Baym equations

We must convert the eom into equations for the real-time functions G< and G~
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Intermezzo: the self-energy
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Intermezzo: the self-energy
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Back to KBE P
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Time-stepping numerical solution scales like the number of time steps
N (for t) x N (for t') x N (for the integral) = N3

Is there any chance to reduce
the computational cost?




Back to KBE 2
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TOo summarize

Through the GKBA we can generate an eom for the
density matrix for any self-energy approximation

Time-stepping algorithm to solve NEGF+GKBA eom
scales like N 2

Is this really the

GKBA is exact at the mean-field level ultimate limit?

GKBA partially neglects self-consistency since
diagrams are calculate with mean-field-like G’s
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Back to the collision integral
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In short for all times
X" (¢, 1) = PR(t, 1) p™> (¢') — pP)> (1) PR (¢, )
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Mutatis mutandis
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Time-=linear ODE scheme (Joost, Schliinzen, Bonitz PRL 2019)

g1 [ P eaeoPiE |
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Linear scaling
achieved

R
|
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Beyond second-order self-energies

Don’t get too excited, the trick works
just for a second-order self-energy

—

Not really !!!

Joost, Schlunzen, Bonitz PRB 2020

GW
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Beyond second-order self-energies
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Joost, Schlunzen, Bonitz PRB 2020

T=-matrix
ph

S
|
p—
ek
DO
S @



30

Beyond second-order self-energies
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Beyond second-order self-energies

Pavlyukh, Perfetto, GS PRB 2021

31



32

Beyond second-order self-energies

Pavlyukh, Perfetto, GS PRB 2021
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Beyond second-order self-energies

Electron self-energy
due to phonons

Phonon self-energy
due to electrons
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How do the eom change ??

i—G(t) =—-¥(@)+ R ()G (1) — G2 (1)
M (2) v (2)1
heff heff
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Photoinduced dynamics in organic molecule 3
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Photoinduced dynamics in organic molecule 3
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Photoinduced dynamics in organic molecule

& GW+X

1“/\/\/\“
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Carrier and phonon relaxation
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Conclusions

Exceptional reduction in computational scaling of
NEGF simulations

Several nonperturbative approximations available

Unifying method for electron-electron and electron-
boson interations

Possibility of merging NEGF with DFT for first-
principles simulations

Plenty of room for studying new nonequilibrium
correlated phenomena
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