Dynamical Mean-Field Theory for Materials

Eva Pavarini

Institute for Advanced Simulation
[ A" s BNNAIE Y N\, I'"E., O TT"TERMITTVYTSZE

Forschungszentrum Julich
T\ NANTEIOYEENTTIONT Y T UNPNTTEEONY TN SN Y YT P T e A

Peter Grunberg Instltut

}
hhhhhhhhhh n“nm n"ﬂ I | IN ol




organization of the lecture

the many-body problem
* what are strong correlations
* DFT and Kohn-Sham bands
* Mott systems and the Hubbard model

DMFT
* Hubbard dimer

* one-band Hubbard model

DMFT for materials (LDA+DMFT)
* multi-oand Hubbard models
* materials-specific models
* examples

conclusions






strong correlations: what are they?



all of physics and chemistry is correlation

Born-Oppenheimer approximation, non-relativistic
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electron-electron interaction

why is it a problem?
simple interactions among many particles

lead to unexpected emergent co-operative behavior

more IS different

Philip Warren Anderson



emergence in solid-state systems

superconductivity

high-Tc superconductivity

non-conventional superconductivity

BSCC0-2223, photo from wikipedia
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bad news: the exact solution is not an option
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electron-electron interaction
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good news: it would be anyway useless

On the other hand, the exact solution of a many-body
problem is really irrelevant since it includes a large
mass of information about the system which although
measurable in principle is never measured in practice.

[..] An incomplete description of the system s
considered to be sufficient if these measurable
quantities and their behavior are described correctly.

H.J. Lipkin

E. Pavarini and E. Koch, Autumn School on Correlated Electron 2013, Introduction



what can be done then ?
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a way out: density-functional theory
1964
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excitations. of interacting clectrons are developed. These methods are exact for systems of slowly varying or high density.
On the other hand, there has been in existence since For the grownd state, they lead to sell-consistent equations analogous to the Hartree and Hartree-Fock

equations, respeclively. In these cquations the exchange and corrclation portions of the chemical potential
af a uniform electron gas anpear as additional effective potentials. {The exchange portion of our effective
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Appendix T1,

tepresents only a mathematical model, since in all real
systems {atoms, molecules, solids, etc.) the electronic
density is nonuniform,

Tt is then a matter of interest to see how propertics
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1998: Nobel Prize in Chemistry to Walter Kohn



the standard model. density-functional theory




1998: Nobel Prize in Chemistry to Walter Kohn

In my view DFT makes two kinds of contribution to the science of multi-
particle quantum systems, including problems of electronic structure of
molecules and of condensed matter:

The first is in the area of fundamental understanding. Theoretical chemists
and physicists, following the path of the Schroedinger equation, have become
accustomed to think in a truncated Hilbert space of single particle orbitals. The
spectacular advances achieved in this way attest to the fruitfulness of this per-
spective. However, when hlgh accuracy is requlred SO many Slater deter—
ired (in s calct r tOQ*)tht‘comreenszo
y perspective. It focuses on’

minants are reued (in so calcultons
oe 1fﬁlt DFT DI rovides a com emetar
uantlis in the real, 3 “dimensional cordmteace “ p1nc1pally on the
electron density n(r) of the groundstate. Other quantities of great interest




the Kohn-Sham eigenvalues
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from the ground-state wave-function to the electron density

Kohn-Sham auxiliary Hamiltonian
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(in practice: LDA,GGA,...)




unexpected successes of DFT

Kohn-Sham eigenvalues as elementary excitations!
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band structures, material trends, prediction



unexpected successes of DFT

Kohn-Sham eigenvalues as elementary excitations!

successes of the independent electron picture

Kohn-Sham auxiliary Hamiltonian
he =) [——v2+vR ] Zh

mean-field-like Hamiltonian



mean-field-like Hamiltonian

... attention, this is going beyond DFT!
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mean-field form




emergent behavior vs reductionism

(1972)

Philip Warren

Anderson
Nobel Prize in Physics 1977

There is a school which essentially accepts the idea that nothing
further is to be learned in terms of genuine fundamentals and
all that is left for us to do is calculate. . . . [..] This is then the idea
that | call “The Great Solid State Physics Dream Machine”...

. . . In other words the better the machinery, the more likely it is to
conceal the workings of nature, in the sense that it simply gives you
the experimental answer without telling you why the experimental
answer is true (1980)

(R.O. Jones, DFT for emergents, Autumn School on Correlated Electrons 2013)



recognizing the successes

‘the labours and controversies . . . in understanding the
chemical binding in materials had finally come to a resolution
in favour of ‘LDA’ and the modern computer” (1998)

Philip Warren Anderson
... but “very deep problems” remain (1998)

origin of failures: failure of one-electron picture

(R.O. Jones, DFT for emergents, Autumn School on Correlated Electrons 2013)



deep problems: Mott systems

Cu
DFT (LDA): it is a metal!
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Experiments: insulator! Above 40 K a paramagnetic insulator



strongly correlated systems

paramagnetic Mott insulators are either metals or
magnetically ordered insulators
in the Kohn-Sham picture

Li
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Rb

Cs
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Coulomb-induced metal-insulator transition
heavy-Fermions
unconventional superconductivity
spin-charge separation



why does the KS picture fail ?

we can understand it in a simple case



high-T¢ superconducting cuprates

VOLUME 87, NUMBER 4 PHYSICAL REVIEW LETTERS 23 Jury 2001

Band-Structure Trend in Hole-Doped Cuprates and Correlation with 7', ;4%

E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,” O. Jepsen, and O. K. Andersen

Max-Planck-Institut fiir Festkorperforschung, D-70506 Stuttgart, Germany
(Received 4 December 2000; published 10 July 2001)

By calculation and analysis of the bare conduction bands in a large number of hole-doped high-
temperature superconductors, we have identified the range of the intralayer hopping as the essential,
material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between Cu 4s,
apical-oxygen 2p,, and farther orbitals. Materials with higher 7. nax have larger hopping ranges and
axial orbitals more localized in the CuO, layers.

o J J J TI2Ba2Cu06




high-T; superconducting cuprates

phase diagram

CuO:2 planes
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electron counting argument
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to open a gap we must lower the symmetry

ferro
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to open a gap we must lower the symmetry

methods for lowering the symmetry

magnetic/orbital/charge order
spin-glass-like

Slater insulator



high-T; superconducting cuprates

phase diagram

Pl

metal

? holes in CuO2 plane

half filling



deep problems: Mott systems
Cu

DFT (LDA): it is a metal!
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Experiments: insulator! and above 40 K a paramagnetic insulator



it is not only about the gap

coherent global picture not captured

Mott insulators have
different properties
than pure Slater insulators

Figure from E. Pavarini, La Rivista del Nuovo Cimento, https://doi.org/10.1007/s40766-021-00025-8




not a failure of DFT

within DFT, Kohn-Sham bands are merely auxiliary
qguantities to build the density

DFT with exact functional gives exact gap even if
the Kohn-Sham description is wrong

(see lecture of Kieron Burke)



failure of independent-electron picture

Kohn-Sham eigenvalues as elementary excitations

some effects are not captured by the

when this happens, KS bands, while ab-initio,
remain a bad approximation



Mott transition

ab-initio Kohn-Sham approximation fails...

editorial

The Hubbard model at half a century

Models are abundant in virtually all branches of physics, with some achieving iconic status. The Hubbard
model, celebrating its golden jubilee this year, continues to be one of the most popular contrivances of

theoretical condensed-matter physics.

Capturing the essence of a phenomenon refine his model. His ‘Electron correlations
while being simple: the ingredients of a in narrow energy bands’ would eventually
top model in physics. Since the early days comprise six installments. ‘Hubbard IIT**
of quantum mechanics, many models, became especially important as it showed
Hamiltonians and theories aiming to that for one electron per lattice site — the
provide a deeper understanding of Hubbard model at half filling — the Mott (or
various properties of condensed matter Mott-Hubbard) transition is reproduced.
have been put forward — with varying This is a type of metal-insulator transition
degrees of success and fame. One that could not be understood in terms of
truly legendary model is the Hubbard conventional band theory (which predicts
model, independently conceived by that a half-filled band always results in a
Martin Gutzwiller!, Junjiro Kanamori? conducting state).

and, of course, John Hubbard® — their The simplicity of the Hubbard model,
original papers all appearing in 1963. The when written down, is deceptive. Not only

NATURE PHYSICS | VOL 9 | SEPTEMBER 2013 | www.nature.com/naturephysics

when the field of cold-atom optical trapping
had advanced so far that experimental
realizations of the Hubbard model could

be achieved. A landmark experiment
demonstrated how a lattice of bosonic
atoms displays a transition from a superfluid
to a Mott insulator®, a result accounted

for by the Bose-Hubbard model (the
Hubbard model for bosons). Many other
variants of the Hubbard model, including
the original model for fermions®, have

been experimentally realized by now, a
development that nicely illustrates how a
model can become the target of experiments

but it can be explained with

523



Hubbard model at half-filling

atomic hoppings atomic
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1. t=0: collection of atoms, insulator
2. U=0: half-filled band, metal

model for Mott transition



high-T; superconducting cuprates

phase diagram

Pl

metal
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1989-1992: dynamical mean-field theory

map LATTICE problem to QUANTUM IMPURITY problem

local self-energy approximation

® W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

® E. Miiller-Hartmann, Z. Phys. B 74, 507 (1989);
Z..Phys. B 76,211 (1989); Int. J. Mod. Phys. B 3, 2169 (1989)

® A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992)

®M. Jarrell, Phys. Rev. Lett. 69, 168 (1992)



1989-1992: dynamical mean-field theory

Hubbard model
H=c1) ) clCis =Y ) oy, +U Y ninyy
1 O (i1’)y O (

k-independent self-energy

exact in the infinite coordination number limit
Metzner and Vollhardt, PRL 62, 324 (1989); Georges and Kotliar, PRB 45, 6479 (1992).



dynamical mean-field theory

_6(1226@0 za_tzzcza za—I_UZnZTnW

U=0

W: band width

Bethe Lattice

DENSITY OF STATES

< U

half-filed metal

‘,

UW =12

spectral weight transfer

=

narrow quasi-particle peak

U=0
%
J)
4

Hubbard bands

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004)






DMFT for the Hubbard dimer

this is a toy model: coordination number is one

DMFT is exact for t=0, U=0, for a single correlated site
and in the infinite dimension limit



the Hubbard dimer



the Hubbard dimer
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@0 (=0: exact diagonalization

N, S, S.) S E(N,S)
0,0,0) 0) 0 0
1,1/2,0): ¢l 10) 1/2 £d
1,1/2,0)5 ¢l 10) 1/2 £d
2,1,1) SREN1) 1 2e4
2,1,—1) ch el 10) 1 2
2,1,0) % _chcg¢ + CLCET_ 0) 1 2eq
2,0,0) % _chca — chch_ 0) 0 2eq
2,0,0), SRE) 0 24+ U
2,0,0)9 C§¢C$¢ 0) 0 2¢0+U
3,1/2,0)1 CLIC;Tcgi 0) 1/2 3eq +U
3,1/2,0)9 chyclict |0) 1/2 3eq+ U
4,0,0) el el el o) 0 deq + 2U
, U, C14C1Ca1Coy Ed +




@—0O finite - exact diagonalization ~ N=

1,5,5.)a E.(1,5) da(1,5)
1,1/2,0)1 = 55(|1,1/2,0)1 - PR’ 2
1,1/2,0>_:%(1,1/2,0>1—|— gq —t 2

A P

e, = €4 — tcos(k) B



@®—0 finite t: exact diagonalization

S=1 states S=0 states half filling (N=2)

( e, 0 0 | 0

|

0 24 0 ¢ 0

. 0 0 241 0
Hg(gd,U, t) =

o o O

0
0
L

0 0 0 | 2q —V2 —V2t ?
0 0 0 (—V2t 2e4+U 0
\ 0O 0 0 ﬁ—\/it 0 244U i)
I 2,1,1) = - ched,]o) 21 24 |
2,1,-1) = ch,cl 10) 2 1 24
2,1,0) = % _chc&—l—chc%_ 0) 2 1 2eq j
20,000 = L clyeh, —elyely] 10) 2 0 24
{
2,0,0); = cl.cl,10) 2 0 25d+U§-
i 2,0,0)y = chych,|0) 2 0 2eq + U




@®—0 finite t: exact diagonalization

half filling (N=2)

2,5,5.)a E.(2,5) d(2,5)
2,0,0)+ = a1]2,0,0)0 — 22 (|2,0,0)1 + [2,0,0)2) 2eq + 5 (U+A(t,U)) 1
2,0,0), = %(|2,0,0>1 —2,0,0)2) 2eq + U 1
2,1,m), = [2,1,m) 24 3

2,0,0)— = a2]2,0,0)0 + 25(|2,0,0)1 + [2,0,0)2)

A(t,U) = VJU? + 162




" the ground state

az (ta U) ay (ta U)
G)g = NG (CJ{Tcg¢ — CLC;T) 0) + 3 (cJ{TcL + 05@0 0)
1 At,U)-U 42 2
2 _ ) 2 _
atU)=Zem— 2 V)= A6 A0 — 0

A(t,U) = /U2 + 16t2

Eo(2) = 2eq4 + %(U — A(t,0))

mix three Slater determinants



@0 finite ¢ exact diagonalization  N=3

3,9,5.)a E,(3) do(3,5)
3,1/2,0), = \%(1,1/2,0)1%— 1,1/2,0)) 3eq+ U+t 2
3,1/2,0)_ = %(1,1/2,@1— 1,1/2,0)2) 3eq+U—t 2

—{, —

B



Lehmann representation

B
G, (ivn) = — / dr T (Te,, (7)cl, (0)),
0

o~ AE)(N')B | o~ AE/(N)B

O y 1

2
Nz//’C;ra‘NlH :

AE|(N) = Ei(N) — uN



@ —® the local Green function

Lehmann representation

Mo 7
o (w)—l 14+ w(t,U) 1 —w(t,U)
BT A iy — (Bo(2) —eqtt—p) vy — (Bo(2) — ea—t—p)
E(2)-E(1)— -
IR~
N 1 —w(t,U) N 1 +w(t,U)
Wy — (— Ey(2) + U—|—38d+t—,u) WUy, — (— Ey(2) + U—I—Sed—t—,u)
EQR)E@QR) ——— -

U=0: E(2) =24 — 2t t=0: B(2) = 2¢,



" the local spectral function




@ —® the local Green function

Lehmann representation

il
o (w)—l 14+ w(t,U) 1 —w(t,U)
BT A iy — (Bo(2) —eqtt—p) vy — (Bo(2) — ea—t—p)
E(2)-E(1)— -
B~
N 1 —w(t,U) N 1 +w(t,U)
Wy — (— Ey(2) + U—|—3€d+t—,u) WUy, — (— Ey(2) + U—I—Ssd—t—,u)
EQR)E@QR) ——— -

|



@ —® the local Green function

change from site to k representation

Cko

ex = €4 — tcos(k)

2t

% (c11 F cat)

AL Er =E4+t k=T
—
_

B (+) eg = €4 —t k=0



@ —® the local Green function

change from site to k representation

1
Cry = —— (C14 F C
k \/5(” 21)

o . 1 1 1
G?7 . (iv,) = = | - — + - :
! 2\ v, +pu—eq+t—23(0,iv,) vy +p—eq—t—X(m, ivy,)

G (0,ivy,) G (m,ivy)

U 2 1
Yo (k,ivy) == + Y

2 4iVn—|—,LL—8d—%—€ik3t.

e, = —tcos(k)



@ —® the local Green function

change from site to k representation

1
Cho = —7= (C11 T C21)
V2

k=0




local Green function

U=0 vs finite U

1
iv, — (eq + FO(iv,) — n)’

1

iy, — (eq + 27 (tvy) + Fo(ivy,) — 1)

e = eq — tcos(k) v

local self-energy plus modified hybridization function



@ —® the local Green function

energy level modified energy level

Ed eq + 27 (ivy)

local self-energy

1 U U? Wn+p—ea—5

27 (i) = 5 (Za(w,wn) + Ea(o,wn)) —

204 (ivatp—ea—3)? = (31)
second order in U!
it is a function! »

more poles



@ —® the local Green function

hybridization function

0 t2
F~(ivy,) = -
(i) Wy — (€4 — p)

modified hybridization function

L (t + AX(ivy))?
F (ZVn) _iVn _ (5d — 1+ Ela(ZVn))

non-local self-energy

1 U? 3t

AZ (ivn) = 5 (27 (mivn) = 27 (0,iv0) ) = 5 (ivn +p —ca — 5)% — (3t)?



local Dyson equation

1 1
57 (ivy) = = ,
' (wn) &7, (ivn) G, (ivn)

1
ip + o —eq — Fo(ivy,)

similar to quantum impurity

1 1
2alivn) = o7 — o
. G?Z,d iy Gd,d(’Wn)

VR



map to a quantum impurity model ?

the Anderson molecule

1 2 1 2

oA — £ Zﬁsa — tz (CEUCSO + Clacda) + €4 Zﬁdg + Ungrnay

~ same local self-energy and Green-function?



— 2 self-consistency  half iling: N=2

0 0 0 0 \
0 0 0 0
. 2e4 0 0 0

Hg(gd, U, t) =

0

0 0 2eq —V2t =2t
Hubbard 0

0

0 —V2t 24+U O
0 3t 0 241U )

o o O O

( cqtes 0 0 0 0 0\
0 Eq+e€s 0 0 0 0
A4 0 0 Ed+e€s 0 0 0
HyaUke) =1 0 0 cqte. =3 =3t
Anderson 0 0 0 —V3t 244U 0
\ 0 0 0 =2t 0 2%, |

same occupations of Hubbard dimer Es=Eq+U/2=U



@ —® solution: Hubbard vs Anderson

Anderson molecule

o) ° 1
aa(in) = e T S o) £ B )
O
Hubbard dimer
fi(ivn) = 1
) = e = i T Sy o) + Fo (i)
I

the local self-energies are identical!

let us neglect the non-local self-energy in Hubbard model



@—® solution: Hubbard vs Anderson

hybridization function

F'(ivy,)

local self-energy approximation



o0

-Im G(w)

Green function U=4t

vs Hubbard (local self-ene approx)

only local self-energy




“ DMFT for the dimer

H=eq) iig—t) (010020 T 050010) HU D ey ®_®
10 o i

map to quantum impurity model (QIM) in local self-energy approximation
g \7

oA — £ Zﬁsa — tz (cgacsa + clacda) + €4 Zﬁdo + Unagrnay

QIM solver

self-consistency loop | - L - jbt . Ll .
OO -0 WO




@—® DMVFT for the Hubbard dimer

- U=4




DMFT is exact in the following cases

equantum impurity limit
®

Y(k,w) — X(w)



why only a local U?

Z(k,w) — Zd(W)

non-local self-energy terms
vs non-local interaction
Uijij



" non-local Coulomb terms

how important are they ?

H —&d Z Nig — tz (c{acza + 650010) +U Z M)
10 o

i=1,2

oo’ 171!




" non-local Coulomb terms
(2 0 o o o o\  N=2halffiling

0 2, 0 0 0 0
A 0 0 2, O 0 0
Hy(eyq,U,t) =
2(¢4, U 1) 0 0 0 2, V2 /2
Hubbard 0 0 0 2 244U 0
L\ 0 0 0 VBt 0 204U )
(28d—|—V—3JV 0 0 0 0 0 \
0 2e0 +V —=3Jy 0 0 0 0
R 0 0 2¢q +V —=3Jy 0 0 0
HNL:
2 0 0 0 2+ V—Jy —2 2
Hubbard 0 0 0 —\/2t 2eq +U  —Jy
+non-local K 0 0 0 —V/2t —Jv 2€d+U/

Setting for simplicity Jyy = 0, we can notice that HY" equals ﬁg(sg, U’,t), the Hamiltonian of the Jyy=V=0
Hubbard dimer, with parameters ¢/, = ¢4+ V/2and U'=U—-V.



H non-local Coulomb terms

N=2 half filling and Jyv=0

V=0



H non-local Coulomb terms

U=V: N=2, effective non-correlated dimer

Strong-correlation effects when local electron-electron
repulsion dominates over non-local terms

If Coulomb interaction independent on site distance

v

effective weakly-correlated model




DMFT for the one-band Hubbard model

H = ¢4 Z Z czacw — 1 Z Z c,:-rgci,(I +U Z M|
( o (it’) © )



dynamical mean-field theory

Metzner and Vollhardt, PRL 62, 324 (1989); Georges and Kotliar, PRB 45, 6479 (1992)



self-consistency loop
_gdzzcza ’LO‘ tzzcza 10+UZnZTnZ¢

(i4”)

\ ¢

» quantum impurity model (QIM)

Zeknkg + Z ( kckocdo + h.c.) + €4 Z Nde + UNgragy

7 \ . >4
"~ "~ V a

Hyatn Hyyp Himp

) 4

QIM solver: QMC, ED, NRG, DMRG,...

self-consistency loop Gaa=Gii |




guantum-impurity solvers



“ DMFT for the dimer

H=eq) iig—t) (010020 T 050010) HU D ey ®_®
10 o i

map to quantum impurity model (QIM) in local self-energy approximation
g \7

oA — £ Zﬁsa — tz (cgacsa + clacda) + €4 Zﬁdo + Unagrnay

QIM solver

self-consistency loop | - L - jbt . Ll .
OO -0 WO




H gquantum-impurity solver

— £, Znsa — Z (cd(7 C.n + clacda) +e4 ang + Ungrnigy

o
W > \ . 7
V V
Hyatn Hyy, Hioe

hybridization-expansion CT-QMC



" guantum-impurity solver

hybridization expansion

7 =Tr (e—ﬂﬁo—uﬁ >V(5))

~

[ drm™

only even orders survive (m=2k)



H guantum-impurity solver

A
Zbath

bath-impurity decoupling

k k dC tc
:L/ dT/ dT ng.,o.(T,’f)tﬁ.’a.(T,f)
k o,0

d o (T,7) = det (Fg o (7, T))
non-interacting hybridization function

t. |the difficult part: local trace

tclj',&(Tv T)




" guantum-impurity solver

local trace: segment solver

th (7, 7) = Ttioe (e AHecnNOTITL o0 (1)l (7)),

order (k) gives number of creators/annhilators




" analytic expression k=1

T2 T1 T1 T2
feooo O_.. ....... [ |_. ...... O_|
feoroooeneonnenennnannn I feeeeeeonnnneeeeeennnns I
k=1
T1 T2 T2 T1

O |l® |4
@ Vv




" guantum-impurity solver

7 = ch = Z lw,| sign w,

w, =dt,. d. t,

configuration c: expansion order & segments

moves: addition & removal of segments,
antisegments, or complete lines



a real-system case: VOMo0Oq4

S
J2 S
2
>
(@)
| -
\ A b
J1 UCJ

Amin Kiani and Eva Pavarini, Phys. Rev. B 94, 075112 (2016)



a real-system: VOMoO4




why not
with static mean-field methods?



comparison to Hartree-Fock (LDA+U)

Hartree-Fock Hamiltonian and bands
Uiisiiy, — U (i + ) i)

ferromagnetic Hartree-Fock

Nko

Hyp =) [gk U(% - am>

self-energy

m: magnetization



ferromagnetic Hartree-Fock

2d-tight binding model

e = —2t[cos k, + cos k]

1
X (k,ivy,) = U(§ — Jm>

mU=0 mU=2t

™~ TN
AN
// \\

M rr X M r



antiferromagnetic case

O

-
@,
N

%ﬂ

. — ﬁ —
e
x




Mott transition: HF vs DMFT

LDA+U LDA+DMFT

Hartree-Fock DMFT

X I
0 23 (w) K

see also my lecture notes in correl17



dynamical self-energy

two-site Hubbard dimer

1 U
7 (i) = 5 (57 i) + 27 0uiv) ) = 5+

RRRRRRRRRRRRRRRR






multi-band Hubbard model



DMFT for real materials

realistic models

R 1
H. = Ztabcgcb + 5 Z Ucdd’c’clcjicc’cd’
ab cdc’d’

realistic self-
consistent
quantum-impurity
(Ql) model



iIn theory, more indices

YES

Z(‘)C ;Z o NO Jolly good show! (i)
3 = c ..
: : You converged G(iyn)




in practice, QMC-based solvers

computational time

[imited number of orbitals/site
finite temperature

sign problem
some /nteractions are worse than others

some bases are worse than others

we need minimal material-specific models



materials-specific models
from DFT band-structure calculations



let us go back to the basics

1 1 1
_§§Z:v§ +§Z |I‘Z'—I'Z'/|

i

Za 1 ZaZa’
_ZZ; - Ro| 5@;/ R, — Ro

N

electronic Hamiltonian in 2nd quantization

H, 4 — E tabc};cb
ab

N

A

Hg

1
2

A\

_i.
E U.,a'bb clca, Cp Cy,

aa’bb’

N

A

Hy

complete one-electron basis set!




parameters

hopping integrals ven (1)

sy = [ drs [ dra Gu(ry) Bur(r) — im, By () (1)

Coulomb integrals




In theory all basis are identical

In practice some bases are better than others

E tabc cb—l— E U.,a'bb c cb,cb

aa’bb’

_J/

VO VO

A

I:IO HU

Kohn-Sham Wannier orbitals

9

. - 1 ~ A
He=— Z Lab Clcb * 5 Z Uaa'vby CILCJ;,Cb,Cb — Hpc

ab aba’b’

\ J/ \

_J/

flo=FLDA N



what do the parameters contain?

by == [ G () (52 + () )8 (r)

Hartree
|
vr(r) o — Za r’ n(r) 6EXC[n]:v r) + vg(r) + vee(r
f) 4= Rl et | ) ) )
| |
potential exchange-correlation

Walter Kohn ) )
understand and predict properties

Nobel Prize in Chemistry (1998) of solids, molecules, biological

Kohn-Sham equations systems, geological systems...



In theory all basis are identical

In practice some bases are better than others

E tabc cb—l— E U.,a'bb c cb,cb

aa’bb’

_J/

VO VO

A

I:IO HU

Kohn-Sham Wannier orbitals

9

. - 1 ~ A
He=— Z Lab Clcb * 5 Z Uaa'vby CILCJ;,Cb,Cb — Hpc

ab aba’b’

\ J/ \

_J/

flo=FLDA N



remember

this is not foreseen in DFT

© AVING ©

SECTOR

Bbl BblESHAETE U3

AMEPHKAHCKOIO CEKTOPA
-VOUS SORTEZ

DU SECTEUR AMERICAIN
SIEVERLASSEN DEN AMERIKANISCHEN SEKTOR

O
@)

we are using the KS basis
no matter how it was produced



weakly-correlated systems

one-electron approximation




strongly-correlated systems

Hubbard-like approximation

E tap Ch cb+ E Ugarpy C! a/cb/cb Hpc

aba’b’
N 4
WV WV

ﬁ[ozﬁg;DA AHy

| y

/\_1 A A A
Heff ~ S He S ~ HHubbard—like

LDA, GGA & so on: minor differences in this context



why Wannier functions?

span exactly the one-electron Hamiltonian
can be constructed site-centered & orthogonal & localized

natural basis for local Coulomb terms
very good for weakly correlated systems

information on lattice and chemistry

E. Pavarini, A. Yamasaki, J. Nuss, O.K. Andersen, New. J. Phys 7, 188 (2005)



why Wannier functions?

AU
= Ho + iy — 0PN 4]y —

If long range Hartree and mean-field exchange-correlation
already are well described by LDA (GGA,..), AU is local

E. Pavarini, A. Yamasaki, J. Nuss, O.K. Andersen, New. J. Phys 7, 188 (2005)



H E tabc Cp + E Uecagrer € cgc /C g1
cdc’d’

— E gab Cl: Cp
ab



heavy electrons

aba’b’

TV TV

ﬁozﬁLDA AHy

A

/\_1 A A A
Heff ~ S He S ~ HHubbard—like

>

minimal model for a given class of phenomena
as system-specific as possible



how many degrees of freedom?

KCu

— K|
d |
T~ |

energy (eV)

® O A MM O N A O O®

rest

m integrate out light electrons




how many degrees of freedom?

no downfolding

more parameters & Hpc

WF more localized

massive downfolding

€9

fewer parameters & no Hpc
WEF less localized

E. Pavarini, E. Koch, A.l. Lichtenstein, Phys. Rev. Lett. 101, 266405 (2008)



how important is localization?

= Ho + iy — 0PN 4]y —

local or almost local

strong correlations arise from strong local Coulomb

1
7?”:;9%7{19’ —/drl/er ¢zna 1’1)%;90 (r2)| r, — 2|¢j p’ o’ (1‘2)% n’ a(rl)-

77D’L'ma (T)wi’m’a’ (T‘) ~ 5i,i’5(r — frz)

Y
UZJ’L] X s
mem'y O I T3]




LDA+DMFT

ZOC 29’ » NO YES Jolly good show! X (ivn)
2 = ce
: : You converged G (ivn)




details matter!

week ending
VOLUME 92, NUMBER 17 PHYSICAL REVIEW LETTERS 30 APRIL 2004

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic 3d! Perovskites

E. Pavarini,1 S. Biermann,2 A. Poteryaev,3 AL Lichtenstein,3 A. Georges,2 and O. K. Andersen*

A=200-300 meVy sSmall crystal-field+hoppings play key role



spectral functions

correlated bands

what can we do so far?

p (DMFT)

many orbitals

phase transitions

low T

m (T)

05

FM

T103

PM

0

20 30

40

: °-
50 60 70 80

T (K)

susceptibilities

X




what can we do so far?

orbital order Fermi surface spin-orbit

conductivity realistic Coulomb spin waves

(%)
o

Sr,RuO,
T=150 K

o

N W s
o O

Energy (meV)

-y
o




the LDA+DMFT Fermi surface

LDA a ¥ LDA+SO

ECF A

(a)

LDA+DMFT
ECF

v

ccr +Aecr

LDA+SO+DMFT

(c)

~2ECF

G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)



? a crucial mechanism is still missing ?

Is the Coulomb interaction spherical?

the bare Coulomb interaction is spherical
but the screened interaction has the symmetry of the site

AV

/
eck +A\'ecF ~ ecr

G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)



flexible and efficient solvers

HE — YSSES e self-energy matrix in spin-orbital space
S 16384 N,
t U My JARSSS
1 8192 .
+ 5 : Z (U VTR Jéaa’)”imanim’a’ o
im#m/ oo’ § 4096 |
= T 2 (ot Coney oyt + Ot Cong Gty :
m#m/ 2048 |
DMFT and cDMFT 1024 | —
- . . 1024 2048 4096 8192 16384
generalized quantum impurity solvers: # Py

general HF QMC
general CT-INT QMC Ui
general CT-HYB QMC TIO3

+ CT-HYB: A. Flesch, E. Gorelov, E. Koch and E. Pavarini
Phys. Rev. B 87, 195141 (2013)

m (T)

05

+ CT-INT: E. Gorelov et al, PRL 104, 226410 (2010) FM PM
+ CT-INT+SO: G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, 3 : £ “y
Phys. Rev. Lett. 116, 106402 (2016) 20 30 40 50 60 70 80

T (K)

sign problem: smart adapted basis choice






DMFT

dimer strong-correlations are local
OO0 ®-0O ®-O u=v - O-0=0-0
one band DMFT vs HF
— P/T — =i >¥
. T, T, T, \
multiband S

_ ¢
>



DMFT for materials

basis choice light & heavy electrons

o (O

downfolding, localization, spin-orbit coupling &
double counting & screening non-spherical U




reductionism vs emergence
minimal model for a given class of phenomena

eweakly-correlated systems
p minimal model: mean-field like

estrongly-correlated Mott systems
p minimal model: Hubbard like

...but the world is full of surprises :)
unknown unknown






