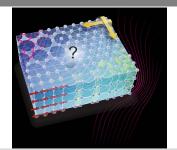


Green functions and self-energy functionals

Robert Eder, Institute for Quantum Matter and Technologies

Institute for Quantum Matter and Technologies



Prelude

- We consider a Grand canonical ensemble at inverse temperature $\beta = 1/k_BT$ and chemical potential μ
- We introduce a complete set of single particle states $\phi_{\alpha}(x)$ where for example $\alpha = (n, \mathbf{k}, \sigma), (i, \sigma)$ and the corresponding Fermion operators $\mathbf{c}_{\alpha}^{\dagger}$ and \mathbf{c}_{α}
- The 'Grand canonical Hamiltonian' $K = H \mu N$ is $K = K_0 + K_1$ with

$$\begin{array}{lcl} \textit{K}_{0} & = & \sum_{\alpha,\beta} \left(t_{\alpha,\beta} - \mu \; \delta_{\alpha,\beta} \right) \; c_{\alpha}^{\dagger} c_{\beta}, \\ \\ \textit{K}_{1} & = & \frac{1}{2} \sum_{\alpha,\beta,\gamma,\delta} \; \textit{V}_{\alpha,\beta,\delta,\gamma} \; c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta}. \end{array}$$

• Then (with $K | i \rangle = K_i | i \rangle$)

$$Z = \sum_{i} e^{-\beta K_{i}}$$
 $\Omega = -\frac{1}{\beta} \log(Z)$ $\langle O \rangle_{th} = \frac{1}{Z} \sum_{i} \langle i | O | i \rangle e^{-\beta K_{i}}$

Green's function

A Green's function describes the following gedanken experiment

$$\sum_{i} \langle i | e^{\frac{iKt'}{\hbar}} c_{\beta}^{\dagger} e^{\frac{-iK(t'-t)}{\hbar}} c_{\alpha} e^{\frac{-iKt}{\hbar}} | i \rangle \frac{e^{-\beta K_{i}}}{Z}$$

- Prepare the system in thermal equlibrium
- At time *t* remove a particle from state $\phi_{\alpha}(x)$
- Let the system evolve $t \to t'$ and reinsert a particle into state $\phi_{\beta}(x)$
- Determine overlap with undisturbed state

$$\Rightarrow \langle e^{\frac{iKt'}{\hbar}} c^{\dagger}_{\beta} e^{-\frac{iKt'}{\hbar}} e^{\frac{iKt}{\hbar}} c_{\alpha} e^{-\frac{iKt}{\hbar}} \rangle_{th} = \langle c^{\dagger}_{\beta}(t') c_{\alpha}(t) \rangle_{th}$$

Green's function

Define the imaginary time Heisenberg operators ($it \rightarrow \tau$)

$$c_{\alpha}(\tau) = e^{\frac{\tau K}{\hbar}} \; c_{\alpha} \; e^{-\frac{\tau K}{\hbar}} \qquad \qquad c_{\beta}^{\dagger}(\tau') = e^{\frac{\tau' K}{\hbar}} \; c_{\beta}^{\dagger} \; e^{-\frac{\tau' K}{\hbar}}$$

and

$$\begin{split} G_{\alpha,\beta}(\tau,\tau') &= -\langle T \; c_{\alpha}(\tau) \; c_{\beta}^{\dagger}(\tau') \; \rangle_{th} \\ &= -\Theta(\tau-\tau') \langle \; c_{\alpha}(\tau) \; c_{\beta}^{\dagger}(\tau') \; \rangle_{th} + \Theta(\tau'-\tau) \langle \; c_{\beta}^{\dagger}(\tau') \; c_{\alpha}(\tau) \; \rangle_{th} \\ &= \frac{1}{Z} \left(-\Theta(\tau-\tau') \; \sum_{i,j} \; e^{-\beta K_i} \; e^{\frac{\tau-\tau'}{\hbar}(K_i-K_j)} \; \langle i|c_{\alpha}|j\rangle \; \langle j|c_{\beta}^{\dagger}|i\rangle \right. \\ &\qquad \qquad + \Theta(\tau'-\tau) \; \sum_{i,j} \; e^{-\beta K_i} \; e^{\frac{\tau-\tau'}{\hbar}(K_j-K_i)} \; \langle i|c_{\beta}^{\dagger}|j\rangle \; \langle j|c_{\alpha}|i\rangle \right). \\ &\qquad \qquad \text{Only a function of } \tau-\tau' \end{split}$$

Fourier transform

$$G_{\alpha,\beta}(\tau) = \frac{1}{Z} \left(-\Theta(\tau) \sum_{i,j} e^{-\beta K_i} e^{\frac{\tau}{\hbar}(K_i - K_j)} \langle i | c_{\alpha} | j \rangle \langle j | c_{\beta}^{\dagger} | i \rangle \right.$$

$$\left. + \Theta(-\tau) \sum_{i,j} e^{-\beta K_i} e^{\frac{\tau}{\hbar}(K_j - K_i)} \langle i | c_{\beta}^{\dagger} | j \rangle \langle j | c_{\alpha} | i \rangle \right)$$

- Well defined only for $\tau \in [-\beta \hbar, \beta \hbar] \Rightarrow$ Fourier frequencies $\frac{n\pi}{\hbar\beta}$
- $\bullet \quad \tau \in [-\beta \, \hbar, 0] \Rightarrow G(\tau + \beta \, \hbar) = -G(\tau) \Rightarrow \text{only odd } n$

$$G(\tau) = \frac{1}{\beta \, \hbar} \, \sum_{\nu = -\infty}^{\infty} \, e^{-i\omega_{\nu}\tau} \, G(i\omega_{\nu}) \qquad \qquad G(i\omega_{\nu}) = \int_{0}^{\beta \, \hbar} \, d\tau \, e^{i\omega_{\nu}\tau} \, G(\tau)$$

With the (Fermionic) Matsubara frequencies $\omega_{\nu}=rac{(2\nu+1)\pi}{eta^{-\hbar}}$

Equation of motion and self-energy

We recall ...

$$\begin{array}{lcl} \textit{G}_{\alpha,\beta}(\tau) & = & -\langle \textit{T} \; \textit{c}_{\alpha}(\tau) \textit{c}_{\beta}^{\dagger}(\tau') \; \rangle_{\textit{th}} \\ \\ & = & -\Theta(\tau) \langle \; \textit{c}_{\alpha}(\tau) \; \textit{c}_{\beta}^{\dagger} \; \rangle_{\textit{th}} + \Theta(-\tau) \langle \; \textit{c}_{\beta}^{\dagger} \; \textit{c}_{\alpha}(\tau) \; \rangle_{\textit{th}} \end{array}$$

... and want to calculate $-\hbar\partial_{\tau}~G_{\alpha,\beta}(\tau)$

We use
$$\partial_{\tau}\Theta(\pm\tau)=\pm\delta(\tau)$$
 and $-\hbar\partial_{\tau}c_{\alpha}^{\dagger}(\tau)=[c_{\alpha}^{\dagger}(\tau),K]$

$$\begin{split} -\hbar \partial_{\tau} \mathcal{G}_{\alpha,\beta}(\tau) &= \hbar \delta(\tau) \langle \ c_{\alpha}(\tau) \ c_{\beta}^{\dagger} + c_{\beta}^{\dagger} \ c_{\alpha}(\tau) \rangle_{th} \\ &- \Theta(\tau) \langle \ [c_{\alpha}, K](\tau) \ c_{\beta}^{\dagger} \ \rangle_{th} + \Theta(-\tau) \langle \ c_{\beta}^{\dagger} \ [c_{\alpha}, K](\tau) \ \rangle_{th} \\ &= \hbar \ \delta(\tau) \ \delta_{\alpha,\beta} - \langle \mathcal{T}[c_{\alpha}, K](\tau) \ c_{\beta}^{\dagger} \rangle_{th} \end{split}$$

Equation of motion and self-energy

We recall ...

$$- \, \hbar \partial_{\tau} \, G_{\alpha,\beta}(\tau) \quad = \quad \, \frac{\hbar}{\delta} \, \delta(\tau) \, \, \delta_{\alpha,\beta} - \langle \, T[c_{\!\alpha}, \, K](\tau) \, \, c_{\!\beta}^{\dagger} \rangle_{\it th}$$

... use ...

$$[c_{\alpha}, K] = \sum_{\nu} (t_{\alpha,\nu} - \mu \delta_{\alpha,\nu}) c_{\nu} + \sum_{\nu,\lambda,\kappa} V_{\alpha,\nu,\kappa,\lambda} c_{\nu}^{\dagger} c_{\lambda} c_{\kappa}$$

... and find

$$\begin{array}{lcl} - \hbar \partial_{\tau} G_{\alpha,\beta}(\tau) & = & \frac{\hbar}{\delta} \frac{\delta(\tau)}{\delta_{\alpha,\beta}} + \sum_{\nu} (t_{\alpha,\nu} - \mu \delta_{\alpha,\nu}) G_{\nu,\beta}(\tau) + F_{\alpha,\beta}(\tau) \\ \\ F_{\alpha,\beta}(\tau) & = & - \sum_{\nu,\kappa,\lambda} V_{\alpha,\nu,\kappa,\lambda} \langle T[(c_{\nu}^{\dagger} c_{\lambda} c_{\kappa})(\tau) c_{\beta}^{\dagger}] \rangle_{th} \end{array}$$

Notice: $V_{\alpha,\nu,\kappa,\lambda}=0$ (noninteracting system!) means F=0

Equation of motion and self-energy

Recall

$$- \frac{\hbar \partial_{\tau} G_{\alpha,\beta}(\tau)}{G_{\alpha,\beta}(\tau)} = \frac{\hbar}{\delta(\tau)} \delta_{\alpha,\beta} + \sum_{\nu} (t_{\alpha,\nu} - \mu \delta_{\alpha,\nu}) G_{\nu,\beta}(\tau) + F_{\alpha,\beta}(\tau)$$

Fourier transformation gives

$$\left(\frac{i\omega_{\nu} - \frac{\mathbf{t} - \mu}{\hbar}}{\hbar}\right) \mathbf{G}(i\omega_{\nu}) - \frac{1}{\hbar} \mathbf{F}(i\omega_{\nu}) = 1$$

Now define the self-energy $\mathbf{F}(i\omega_{\nu})=\hbar \Sigma(i\omega_{\nu}) \; \mathbf{G}(i\omega_{\nu})$ whence

$$\left(i\omega_{\nu} - \frac{\mathbf{t} - \mu}{\hbar} - \Sigma(i\omega_{\nu})\right)\mathbf{G}(i\omega_{\nu}) = 1$$

In this way we arrive at the Dyson equation

$$\mathbf{G}^{-1}(i\omega_{\nu}) = i\omega_{\nu} - \frac{\mathbf{t} - \mu}{\hbar} - \Sigma(i\omega_{\nu}) = \mathbf{G}_{0}^{-1}(i\omega_{\nu}) - \Sigma(i\omega_{\nu})$$

Recall

$$\mathbf{G}_0^{-1}(i\omega_{\nu}) = i\omega_{\nu} - \frac{\mathbf{t} - \mu}{\hbar}$$

For example $\alpha = (n, \mathbf{k}, \sigma)$,

$$H_0 = \sum_{n,\mathbf{k},\sigma} E_{n,\mathbf{k}} c_{n,\mathbf{k},\sigma}^{\dagger} c_{n,\mathbf{k},\sigma}^{\dagger} c_{n,\mathbf{k},\sigma}^{\dagger}$$

$$\mathbf{G}_0^{-1}(i\omega_{\nu}) = i\omega_{\nu} - \frac{E_{n,\mathbf{k}} - \mu}{\hbar}$$

$$\mathbf{G}_0(i\omega_{\nu}) = \frac{1}{i\omega_{\nu} - \frac{E_{n,\mathbf{k}} - \mu}{\hbar}}$$

Summary so far

- We have defined the Green's function which describes the gedanken experiment of adding/removing a particle at some time and undoing this at a different time
- It is related to the photoemission/inverse photoemission spectrum of the system and thus of considerable experimental relevance
- The Green's function of a noninteracting system is obtained from its equation of motion
- The effect of interactions can be concisely expressed in terms of the self-energy which gives the correction to the (inverse) noninteracting Green's function
- We proceed to give a representation of the Green's function in terms of a functional integral over Grassmann variables
- The derivation which is not difficult but too lengthy to give here can be found in the excellent textbook by Negele/Orland

Crash course in Grassmann variables

Grassmann variables are objects - here we write them as ϕ_i or ϕ_j^* , where i and j distinguish different Grassman variables - which anticommute

$$\phi_i^*\phi_j^* = -\phi_j^*\phi_i^* \qquad \qquad \phi_i\phi_j^* = -\phi_j^*\phi_i, \qquad \qquad \phi_i\phi_j = -\phi_j\phi_i.$$

- The asterisk * is part of the name of the Grassmann variable
- $\phi_i^*\phi_i^*=-\phi_i^*\phi_i^*=0$ The square of any Grassmann variable is zero
- A Grassmann algebra consists of all combinations of nonvanishing products of the 'Grassmann basis', e.g. with basis ϕ and ϕ^*

$$a_0 + a_1 \phi + a_2 \phi^* + a_3 \phi \phi^*$$

The key property of Grassmann variables is the rule for 'integration'

$$\int d\phi \ \phi = 1, \qquad \qquad \int d\phi \ 1 = 0$$

Crash course in Grassmann variables

Functions of Grassmann variables are defined via the power series expansion

$$exp(a_1\phi + a_2\phi^* + a_3\phi^*\phi) = 1 + (a_1\phi + a_2\phi^* + a_3\phi^*\phi) + \frac{1}{2!}a_1a_2(\phi\phi^* + \phi^*\phi)$$
$$= 1 + (a_1\phi + a_2\phi^* + a_3\phi^*\phi)$$

Then we have

$$\int d\phi^* d\phi \exp(a_1\phi + a_2\phi^* + a_3\phi^*\phi) = a_3 \int d\phi^* d\phi \phi^* \phi$$

$$= -a_3 \int d\phi^* d\phi \phi^*$$

$$= -a_3 \int d\phi^* \phi^* = -a_3$$

Grassmann variable representation of Z

- Let $[0, \hbar \beta]$ be divided into M intervals of length $\epsilon = \hbar \beta / M$
- Define imaginary time grid points $\tau_k = k \cdot \epsilon$, $k = 1 \dots M$
- For each grid point au_k introduce Grassmann variables $\phi_{\alpha,k}^*$ and $\phi_{\alpha,k}$
- lacktriangle lpha is the 'compound index' on Fermion operators c_{lpha}^{\dagger} and c_{lpha}
- Then $Z = \lim_{M \to \infty} Z_M$ whereby

$$Z_M = \prod_{k=1}^M \prod_{\alpha} \int d\phi_{\alpha,k}^* d\phi_{\alpha,k} e^{-S(\phi^*,\phi)}$$

$$S(\phi^*,\phi) = \epsilon \sum_{k=1}^{M} \left[\sum_{\alpha} \phi_{\alpha,k}^* \frac{\phi_{\alpha,k} - \phi_{\alpha,k-1}}{\epsilon} + \frac{1}{\hbar} K(\phi_k^*,\phi_{k-1}) \right]$$

- $K(\phi_k^*, \phi_{k-1})$: Grand canonical Hamiltonian with $c_{\alpha}^+ \to \phi_{\alpha,k}^*$ and $c_{\alpha} \to \phi_{\alpha,k-1}$
- Important: $\phi_{lpha,0} = -\phi_{lpha,M}$

Grassman variable representation of Z

Recall

$$S(\phi^*,\phi) = \epsilon \sum_{k=1}^{M} \left[\sum_{\alpha} \phi_{\alpha,k}^* \frac{\phi_{\alpha,k} - \phi_{\alpha,k-1}}{\epsilon} + \frac{1}{\hbar} K(\phi_k^*,\phi_{k-1}) \right]$$

If we treat the Grassmann variables as 'numbers' and nominally let

$$M o \infty \Rightarrow \epsilon = \hbar \beta / M o 0$$

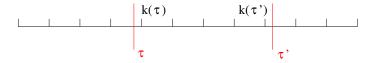
$$\Rightarrow S \rightarrow \int_0^{\hbar\beta} d\tau \left(\sum_{\alpha} \phi_{\alpha}^* \frac{\partial \phi_{\alpha}}{\partial \tau} + \frac{1}{\hbar} K(\phi^*, \phi) \right)$$

The Green's function

Same imaginary-time grid as before

$$G_{\alpha,\beta}(\tau,\tau') \quad = \quad -\lim_{M\to\infty} \; \frac{\prod_{k=1}^M \; \prod_{\gamma} \int \; d\phi_{\gamma,k}^* \; d\phi_{\gamma,k} \; \phi_{\alpha,k(\tau)} \phi^*_{\beta,k(\tau')} \; e^{-S(\phi^*,\phi)}}{\prod_{k=1}^M \; \prod_{\gamma} \int \; d\phi_{\gamma,k}^* \; d\phi_{\gamma,k} \; e^{-S(\phi^*,\phi)}}$$

• $k(\tau)$ and $k(\tau')$: points on imaginary-time grid closest to τ and τ'



Fourier transform of S

Recall: $\phi_{\gamma,0} = -\phi_{\gamma,M}$ - to incorporate this define

$$\tilde{\phi}_{\gamma,\nu}^* = \frac{1}{\sqrt{M}} \sum_{k=1}^M e^{-i \omega_\nu \tau_k} \phi_{\gamma,k}^*, \qquad \qquad \tilde{\phi}_{\gamma,\nu} = \frac{1}{\sqrt{M}} \sum_{k=1}^M e^{i \omega_\nu \tau_k} \phi_{\gamma,k}$$

with $\omega_{\nu}=\frac{(2\nu+1)\pi}{\hbar\beta}$ (Fermionic Matsubara frequencies!) - this can be reverted

$$\phi_{\gamma,k}^* = \frac{1}{\sqrt{M}} \sum_{\nu = -\frac{M}{2}+1}^{\frac{M}{2}} e^{i\omega_{\nu} \tau_{k}} \tilde{\phi}_{\gamma,\nu}^*, \qquad \qquad \phi_{\gamma,k} = \frac{1}{\sqrt{M}} \sum_{\nu = -\frac{M}{2}+1}^{\frac{M}{2}} e^{-i\omega_{\nu} \tau_{k}} \tilde{\phi}_{\gamma,\nu}.$$

- The transformation $\phi_{\gamma,k}^* \to \tilde{\phi}_{\gamma,\nu}^*$ is unitary \Rightarrow the Jacobian is unity
- The limit $M \rightarrow \infty$ is trivial to take

Fourier transform of S: K_0

$$K_{0} = (t_{\alpha,\beta} - \mu \, \delta_{\alpha,\beta}) \, c_{\alpha}^{\dagger} c_{\beta} \quad \Rightarrow \quad \epsilon \sum_{k=1}^{M} \, (t_{\alpha,\beta} - \mu \delta_{\alpha,\beta}) \phi_{\alpha,k}^{*} \, \phi_{\beta,k-1}$$

Insert the Fourier amplitudes

$$\phi_{\alpha,k}^* = \frac{1}{\sqrt{M}} \sum_{\nu = -\frac{M}{2}+1}^{\frac{M}{2}} e^{i\omega_{\nu} \tau_{k}} \ \tilde{\phi}_{\alpha,\nu}^* \qquad \qquad \phi_{\beta,k-1} = \frac{1}{\sqrt{M}} \sum_{\nu' = -\frac{M}{2}+1}^{\frac{M}{2}} e^{-i\omega_{\nu'} (\tau_{k} - \epsilon)} \ \tilde{\phi}_{\beta,\nu'}$$

$$\epsilon \sum_{k=1}^{M} (t_{\alpha,\beta} - \mu \delta_{\alpha,\beta}) \phi_{\alpha,k}^* \phi_{\beta,k-1} =$$

$$\begin{split} &= \sum_{\nu,\nu'} \frac{\epsilon}{M} \sum_{k=1}^{M} e^{i(\omega_{\nu} - \omega_{\nu'})\tau_{k}} e^{i\omega_{\nu'}\epsilon} \left(t_{\alpha,\beta} - \mu \delta_{\alpha,\beta} \right) \tilde{\phi}_{\alpha,\nu}^{*} \tilde{\phi}_{\beta,\nu'} \\ &= \epsilon \sum_{\nu,\nu'} e^{i\omega_{\nu}\epsilon} \left(t_{\alpha,\beta} - \mu \delta_{\alpha,\beta} \right) \tilde{\phi}_{\alpha,\nu}^{*} \tilde{\phi}_{\beta,\nu} \end{split}$$

Fourier transform of S: derivative term

$$\phi_{lpha,k}^* = rac{1}{\sqrt{M}} \sum_{v=-rac{M}{2}+1}^{rac{M}{2}} e^{i\omega_v \, au_k} \, ilde{\phi}_{lpha,v}^*$$

$$\phi_{lpha,k}^* = rac{1}{\sqrt{M}} \sum_{
u = -rac{M}{2}+1}^{rac{M}{2}} e^{i\omega_
u \, au_k} \, ilde{\phi}_{lpha,
u}^* \qquad \qquad \phi_{eta,k} = rac{1}{\sqrt{M}} \sum_{
u = -rac{M}{2}+1}^{rac{M}{2}} e^{-i\omega_
u \, au_k} \, ilde{\phi}_{eta,
u}$$

$$\begin{split} \varepsilon \sum_{k=1}^{M} \phi_{\alpha,k}^{*} & \frac{\phi_{\alpha,k} - \phi_{\alpha,k-1}}{\varepsilon} &= \sum_{\nu,\nu'} \frac{\varepsilon}{M} \sum_{k=1}^{M} e^{i(\omega_{\nu} - \omega_{\nu'})\tau_{k}} \left[\frac{1 - e^{i\omega_{\nu'}\varepsilon}}{\varepsilon} \right] \tilde{\phi}_{\alpha,\nu}^{*} \tilde{\phi}_{\alpha,\nu'} \\ &= \varepsilon \sum_{\nu} \left[\frac{1 - e^{i\omega_{\nu}\varepsilon}}{\varepsilon} \right] \tilde{\phi}_{\alpha,\nu}^{*} \tilde{\phi}_{\alpha,\nu} \\ &= \varepsilon \sum_{\nu} e^{i\omega_{\nu}\varepsilon} \left[\frac{e^{-i\omega_{\nu}\varepsilon} - 1}{\varepsilon} \right] \tilde{\phi}_{\alpha,\nu}^{*} \tilde{\phi}_{\alpha,\nu} \\ &\to \varepsilon \sum_{\nu} e^{i\omega_{\nu}\varepsilon} & (-i\omega_{\nu}) & \tilde{\phi}_{\alpha,\nu}^{*} \tilde{\phi}_{\alpha,\nu} \end{split}$$

Fourier transform of S

Combining the results we find that

$$S_{0}[\phi^{*},\phi] = \epsilon \sum_{k=1}^{M} \left[\sum_{\alpha} \phi_{\alpha,k}^{*} \frac{\phi_{\alpha,k} - \phi_{\alpha,k-1}}{\epsilon} + \frac{1}{\hbar} K_{0}(\phi_{k}^{*},\phi_{k-1}) \right]$$

$$= \epsilon \sum_{\alpha,\beta,\nu} e^{i\omega_{\nu}\epsilon} \left[-i\omega_{\nu}\delta_{\alpha\beta} + \frac{t_{\alpha\beta} - \delta_{\alpha\beta} \mu}{\hbar} \right] \tilde{\phi}_{\alpha,\nu}^{*} \tilde{\phi}_{\beta,\nu}$$

$$= \epsilon \sum_{\alpha,\beta,\nu} e^{i\omega_{\nu}\epsilon} \left(-G_{0,\alpha\beta}^{-1}(i\omega_{\nu}) \right) \tilde{\phi}_{\alpha,\nu}^{*} \tilde{\phi}_{\beta,\nu}$$

$$\mathbf{G}_0^{-1}(i\omega_{\nu}) = i\omega_{\nu} - \frac{\mathbf{t} - \mu}{\hbar}$$

Green's function

Our expression for the Green's function was

$$G_{\alpha,\beta}(\tau,\tau') = -\lim_{M\to\infty} \frac{\prod_{k=1}^{M} \prod_{\gamma} \int d\phi_{\gamma,k}^* d\phi_{\gamma,k} \phi_{\alpha,k(\tau)} \phi^*_{\beta,k(\tau')} e^{-S(\phi^*,\phi)}}{\prod_{k=1}^{M} \prod_{\gamma} \int d\phi_{\gamma,k}^* d\phi_{\gamma,k} e^{-S(\phi^*,\phi)}}$$

Not surprisingly the Fourier transform turns out to be

$$\mathcal{G}_{\alpha,\beta}(i\omega_{\nu}) \quad = \quad -\frac{\prod_{\mu=-\infty}^{\infty} \ \prod_{\gamma} \int \ d\tilde{\phi}_{\gamma,\mu}^{*} \ d\tilde{\phi}_{\gamma,\mu}^{*} \ \tilde{\phi}_{\alpha,\nu}^{*} \ \tilde{\phi}_{\beta,\nu}^{*} \ e^{-S(\tilde{\phi}^{*},\tilde{\phi})}}{\prod_{\mu=-\infty}^{\infty} \ \prod_{\gamma} \int \ d\tilde{\phi}_{\gamma,\mu}^{*} \ d\tilde{\phi}_{\gamma,\mu}^{*} \ e^{-S(\tilde{\phi}^{*},\tilde{\phi})}},$$

Our plan

- We have introduced the Green's function and self-energy
- In 1960 Luttinger and Ward have shown that the grand canonical potential Ω can be expressed as a functional of the Green's function
- We now want to proove this theorem
- Luttinger and Ward employed the technique of Feynman diagrams
- This is questionable for strongly correlated electron systems such as Mott insulators
- We will therefore give a non-perturbative derivation which is due to M. Potthoff and uses functional derivatives instead

Change of perspective

The Green's function can be represented as a Grassmann functional integral

$$\begin{split} \mathcal{G}_{\alpha,\beta}(i\omega_{\nu}) & = & -\frac{\prod_{\mu=-\infty}^{\infty} \ \prod_{\gamma} \int \ d\tilde{\phi}_{\gamma,\mu}^{*} \ d\tilde{\phi}_{\gamma,\mu} \ \tilde{\phi}_{\alpha,\nu} \ \tilde{\phi}_{\beta,\nu}^{*} \ e^{-S(\tilde{\phi}^{*},\tilde{\phi})}}{\prod_{\mu=-\infty}^{\infty} \ \prod_{\gamma} \int \ d\tilde{\phi}_{\gamma,\mu}^{*} \ d\tilde{\phi}_{\gamma,\mu} \ e^{-S(\tilde{\phi}^{*},\tilde{\phi})}}, \\ \mathcal{S}[\tilde{\phi}^{*},\tilde{\phi}] & = & -\sum_{\gamma,\nu} \ \tilde{\phi}_{\alpha,\nu}^{*} \ e^{i\omega_{\nu}\epsilon} \ \mathcal{G}_{0,\alpha\beta}^{-1}(i\omega_{\nu}) \ \tilde{\phi}_{\beta,\nu} + \mathcal{K}_{1}[\tilde{\phi}^{*},\tilde{\phi}] \end{split}$$

Now we change perspective: all quantities of interest - \mathbf{G}_0 , \mathbf{G} , Σ - all are ultimately sets of complex numbers: $F_{\alpha,\beta}(i\omega_{\nu})$, $F\in\{G_0,G,\Sigma\}$

Now take the above as definition of a functional $G_0 \to G$

$$\mathcal{G}[\mathbf{G}_0^{-1}] \quad = \quad -\frac{\prod_{\mu=-\infty}^{\infty} \ \prod_{\gamma} \int \ d\tilde{\phi}_{\gamma,\mu}^* \ d\tilde{\phi}_{\gamma,\mu} \ \tilde{\phi}_{\alpha,\nu} \ \tilde{\phi}_{\beta,\nu}^* \ e^{-S(\tilde{\phi}^*,\tilde{\phi})}}{\prod_{\mu=-\infty}^{\infty} \ \prod_{\gamma} \int \ d\tilde{\phi}_{\gamma,\mu}^* \ d\tilde{\phi}_{\gamma,\mu} \ e^{-S(\tilde{\phi}^*,\tilde{\phi})}}$$

Note: This functional has K_1 - the interaction part of H - as an implicit parameter

Terminology

In the following we will call a Green's function a 'physical Green's function' if it is the Green's function corresponding to some noninteracting Hamiltonian K_0 (remember that K_1 is fixed - it is a parameter of the functional!)

Similarly for a 'physical self-energy'...

Does that make sense?

- One might wonder if $\mathcal{G}[\mathbf{G}_0^{-1}]$ and other functionals we define in a moment is well-defined for any \mathbf{G}_0
- The answer is: probably not...
- However $\mathcal{G}[\mathbf{G}_0^{-1}]$ is well defined for physical G_0
- In the following development we will always take functional derivatives of $\mathcal{G}[\mathbf{G}_0^{-1}]$ taken at physical G_0
- This means we need $\mathcal{G}[\mathbf{G}_0^{-1}]$ only for G_0 which are infinitesimally close to physical ones

More functionals

Recall

$$\begin{split} \mathcal{G}[\mathbf{G}_0^{-1}] &=& -\frac{\prod_{\mu=-\infty}^{\infty} \prod_{\gamma} \int \, d\tilde{\phi}_{\gamma,\mu}^* \, d\tilde{\phi}_{\gamma,\mu} \, \tilde{\phi}_{\alpha,\nu} \, \tilde{\phi}_{\beta,\nu}^* \, e^{-S(\tilde{\phi}^*,\tilde{\phi})}}{\prod_{\mu=-\infty}^{\infty} \prod_{\gamma} \int \, d\tilde{\phi}_{\gamma,\mu}^* \, d\tilde{\phi}_{\gamma,\mu} \, e^{-S(\tilde{\phi}^*,\tilde{\phi})}}, \\ S[\tilde{\phi}^*,\tilde{\phi}] &=& -\sum_{\gamma,\nu} \, \tilde{\phi}_{\alpha,\nu}^* \, e^{i\omega_{\nu}\epsilon} \, G_{0,\alpha\beta}^{-1}(i\omega_{\nu}) \, \tilde{\phi}_{\beta,\nu} + \mathcal{K}_1[\tilde{\phi}^*,\tilde{\phi}] \end{split}$$

The next functional

$$\Omega[\mathbf{G}_0^{-1}] = -\frac{1}{\beta} \ln \left(\prod_{\mu=-\infty}^{\infty} \prod_{\gamma} \int d\tilde{\phi}_{\gamma,\mu}^* d\tilde{\phi}_{\gamma,\mu} e^{-S(\tilde{\phi}^*,\tilde{\phi})} \right)$$

$$\mathbf{G}_0^{-1}(\omega_{\nu})=i\omega_{\nu}-rac{\mathbf{t}-\mu}{\hbar}\Rightarrow\Omega[\mathbf{G}_0^{-1}]$$
 is the grand canonical potential for $K=K_0+K_1$

Functional derivative of Ω

Recall:

$$\begin{split} &\Omega[\mathbf{G}_{0}^{-1}] &= -\frac{1}{\beta} \ln \left(\prod_{\mu=-\infty}^{\infty} \prod_{\gamma} \int d\tilde{\phi}_{\gamma,\mu}^{*} \, d\tilde{\phi}_{\gamma,\mu} \, e^{-S(\tilde{\phi}^{*},\tilde{\phi})} \right) \\ &S[\tilde{\phi}^{*},\tilde{\phi}] &= -\sum_{\alpha,\beta,\nu} \tilde{\phi}_{\alpha,\nu}^{*} \, e^{i\omega_{\nu}\epsilon} \, \mathbf{G}_{0,\alpha\beta}^{-1}(i\omega_{\nu}) \, \tilde{\phi}_{\beta,\nu} + \mathcal{K}_{1}[\tilde{\phi}^{*},\tilde{\phi}] \\ &\Rightarrow \frac{\partial S[\tilde{\phi}^{*},\tilde{\phi}]}{\partial \mathbf{G}_{0,\alpha\beta}^{-1}(i\omega_{\nu})} \, = -e^{i\omega_{\nu}\epsilon} \, \tilde{\phi}_{\alpha,\nu}^{*} \, \tilde{\phi}_{\beta,\nu} = e^{i\omega_{\nu}\epsilon} \, \tilde{\phi}_{\beta,\nu} \, \tilde{\phi}_{\alpha,\nu}^{*} \end{split}$$

$$\begin{split} \Rightarrow \beta \,\, \frac{\partial \Omega[\mathbf{G}_0^{-1}]}{\partial G_{0,\alpha,\beta}^{-1}(i\omega_{\nu})} \quad = \quad e^{i\omega_{\nu}\epsilon} \,\, \frac{\prod_{\mu=-\infty}^{\infty} \,\, \prod_{\gamma} \int \,\, d\tilde{\phi}_{\gamma,\mu}^* \,\, d\tilde{\phi}_{\gamma,\mu} \,\, \tilde{\phi}_{\beta,\nu}^* \,\, \tilde{\phi}_{\alpha,\nu}^* \,\, e^{-S(\tilde{\phi}^*,\tilde{\phi})}}{\prod_{\mu=-\infty}^{\infty} \,\, \prod_{\gamma} \,\, \int \,\, d\tilde{\phi}_{\gamma,\mu}^* \,\, d\tilde{\phi}_{\gamma,\mu} \,\, d\tilde{\phi}_{\gamma,\mu} \,\, e^{-S(\tilde{\phi}^*,\tilde{\phi})}}, \\ = \quad -e^{i\omega_{\nu}\epsilon} \,\, \mathcal{G}[\mathbf{G}_0^{-1}]_{\beta,\alpha}(i\omega_{\nu}) \end{split}$$

More functionals...

For given 'self energy' Σ and given 'Green function' ${\bf G}$ consider

$$\mathbf{D}[\mathbf{G}, \Sigma] = \mathcal{G}[\mathbf{G}^{-1} + \Sigma] - \mathbf{G}$$

For physical Green's function and self-energy, **G** and Σ : $\mathbf{G}^{-1} = \mathbf{G}_0^{-1} - \Sigma$

$$\Rightarrow \mathcal{G}[\boldsymbol{\mathsf{G}}^{-1} + \boldsymbol{\Sigma}] = \mathcal{G}[\boldsymbol{\mathsf{G}}_0^{-1}] = \boldsymbol{\mathsf{G}} \Rightarrow \boldsymbol{\mathsf{D}}[\boldsymbol{\mathsf{G}}, \boldsymbol{\Sigma}] = \boldsymbol{\mathsf{0}}$$

Now assume a given 'Green's function' ${\bf G}$ - define a new functional ${\cal S}[{\bf G}]$ to be the 'self-energy' such that

$$|\textbf{D}\left[\textbf{G},\mathcal{S}[\textbf{G}]\right]| \quad = \quad \sum_{\alpha,\beta} \sum_{\nu} \; |D_{\alpha,\beta}(i\omega_{\nu})|^2 \to \textit{min}$$

For physical Green's function and self-energy, ${\bf G}$ and Σ : ${\bf D}[{\bf G},\Sigma]=0\Rightarrow {\cal S}[{\bf G}]=\Sigma$

Otherwise

$$\mathcal{G}\left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}]\right] = \mathbf{G} + \delta \mathbf{G}$$

Summary of functionals

$$\begin{split} \mathcal{S}[\tilde{\boldsymbol{\phi}}^*,\tilde{\boldsymbol{\phi}}] &= -\sum_{\gamma,\nu} \, \tilde{\boldsymbol{\phi}}_{\gamma,\nu}^* \, \, \boldsymbol{e}^{i\omega_{\nu}\epsilon} \, \, \boldsymbol{G}_{0,\alpha\beta}^{-1}(i\omega_{\nu}) \, \, \tilde{\boldsymbol{\phi}}_{\gamma,\nu} + \mathcal{K}_1[\tilde{\boldsymbol{\phi}}^*,\tilde{\boldsymbol{\phi}}] \\ \\ \mathcal{G}[\mathbf{G}_0^{-1}] &= -\frac{\prod_{\mu=-\infty}^{\infty} \, \prod_{\gamma} \int \, d\tilde{\boldsymbol{\phi}}_{\gamma,\mu}^* \, \, d\tilde{\boldsymbol{\phi}}_{\gamma,\mu} \, \, d\tilde{\boldsymbol{\phi}}_{\gamma,\mu} \, \, \tilde{\boldsymbol{\phi}}_{\beta,\nu}^* \, \, \boldsymbol{e}^{-S(\tilde{\boldsymbol{\phi}}^*,\tilde{\boldsymbol{\phi}})}}{\prod_{\mu=-\infty}^{\infty} \, \prod_{\gamma} \int \, d\tilde{\boldsymbol{\phi}}_{\gamma,\mu}^* \, \, d\tilde{\boldsymbol{\phi}}_{\gamma,\mu} \, \, \boldsymbol{e}^{-S(\tilde{\boldsymbol{\phi}}^*,\tilde{\boldsymbol{\phi}})} \to \mathbf{G} \\ \\ \Omega[\mathbf{G}_0^{-1}]_{\alpha,\beta} &= -\frac{1}{\beta} \, \ln \left(\prod_{\mu=-\infty}^{\infty} \, \prod_{\gamma} \int \, d\tilde{\boldsymbol{\phi}}_{\gamma,\mu}^* \, \, d\tilde{\boldsymbol{\phi}}_{\gamma,\mu} \, \, \boldsymbol{e}^{-S(\tilde{\boldsymbol{\phi}}^*,\tilde{\boldsymbol{\phi}})} \right) \to \Omega \\ \\ \mathcal{G}\left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}]\right] &= \mathbf{G} + \delta \mathbf{G} \qquad \mathcal{S}[\mathbf{G}] \to \Sigma, \qquad \delta \mathbf{G} \to 0 \end{split}$$

Luttinger-Ward functional

The Luttinger-Ward functional of a Green's function is

$$\Phi[\mathbf{G}] = \Omega\left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}]\right] + \frac{1}{\beta} \; \sum_{\lambda} \; e^{i\omega_{\lambda}\varepsilon} \; \left[\; -\ln \; \det \mathbf{G}(i\omega_{\lambda}) + \operatorname{trace} \; \mathbf{G}(i\omega_{\lambda}) \mathcal{S}[\mathbf{G}](i\omega_{\lambda}) \; \right]$$

- Physical Green's function: $\mathcal{S}[\mathbf{G}] o \Sigma$, $\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}] o \mathbf{G}_0^{-1}$, $\Omega\left[\mathbf{G}_0^{-1}\right] o \Omega$
- In det $\mathbf{G}(i\omega_{
 u})=\sum_{n}\,\ln(g_{n})$ g_{n} are the eigenvalues of $\mathbf{G}(i\omega_{
 u})$
- In particular, if $\alpha=({f k},\sigma)\Rightarrow {f G}(i\omega_{
 u})$ is diagonal with elements $G({f k},i\omega_{
 u})$

$$\ln \, \det \mathbf{G}(i\omega_{\boldsymbol{\nu}}) \quad = \quad 2 \, \sum_{\mathbf{k}} \, \ln \, \, G(\mathbf{k}, i\omega_{\boldsymbol{\nu}})$$

Moreover

$$\operatorname{trace} \mathbf{G}(i\omega_{\lambda})\mathcal{S}[\mathbf{G}](i\omega_{\lambda}) \quad = \quad \sum_{\gamma,\delta} \, \mathcal{G}_{\gamma\delta}(i\omega_{\lambda})\mathcal{S}[\mathbf{G}]_{\delta\gamma}(i\omega_{\lambda})$$

We had ...

$$\Phi[\mathbf{G}] = \Omega\left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}]\right] + \frac{1}{\beta} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \left[-\ln\det\mathbf{G}(i\omega_{\lambda}) + \operatorname{trace}\,\mathbf{G}(i\omega_{\lambda}) \Sigma[\mathbf{G}](i\omega_{\lambda}) \right]$$

... and want to calculate

$$\beta \; \frac{\partial \Phi}{\partial \textit{G}_{\alpha,\beta}(\textit{i}\omega_{\nu})}$$

To differentiate the first term we recall ...

$$\beta \frac{\partial \Omega[\mathbf{G}_0^{-1}]}{\partial G_{0,\alpha,\beta}^{-1}(i\omega_{\nu})} = -e^{i\omega_{\nu}\epsilon} \mathcal{G}[\mathbf{G}_0^{-1}]_{\beta,\alpha}(i\omega_{\nu})$$

... and use the chain rule (but note that $\textbf{G}_0^{-1} \to \textbf{G}^{-1} + \mathcal{S}[\textbf{G}])$

$$\beta \frac{\partial \Omega}{\partial G_{\alpha,\beta}(i\omega_{\nu})} = \beta \sum_{\gamma,\delta,\lambda} \frac{\partial \Omega}{\partial G_{0,\gamma,\delta}^{-1}(i\omega_{\lambda})} \frac{\partial G_{0,\gamma,\delta}^{-1}(i\omega_{\lambda})}{\partial G_{\alpha,\beta}(i\omega_{\nu})}$$

We had ...

$$\Phi[\mathbf{G}] = \Omega\left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}]\right] + \frac{1}{\beta} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \left[-\ln\det\mathbf{G}(i\omega_{\lambda}) + \operatorname{trace}\,\mathbf{G}(i\omega_{\lambda}) \Sigma[\mathbf{G}](i\omega_{\lambda}) \right]$$

... and want to calculate

$$\beta \; \frac{\partial \Phi}{\partial \textit{G}_{\alpha,\beta}(\textit{i}\omega_{\nu})}$$

To differentiate the first term we recall ...

$$\beta \frac{\partial \Omega[\mathbf{G}_0^{-1}]}{\partial G_{0,\alpha,\beta}^{-1}(i\omega_{\nu})} = -e^{i\omega_{\nu}\epsilon} \mathcal{G}[\mathbf{G}_0^{-1}]_{\beta,\alpha}(i\omega_{\nu})$$

$$\beta \, \, \frac{\partial \Omega \left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}] \right]}{\partial \mathcal{G}_{\alpha,\beta}(i\omega_{\nu})} \quad = \quad - \sum_{\lambda} \sum_{\delta,\gamma} \, \mathcal{G} \left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}] \right]_{\delta,\gamma}(i\omega_{\lambda}) \, \, \frac{\partial (\mathcal{G}^{-1} + \mathcal{S}[\mathbf{G}])_{\gamma,\delta}(i\omega_{\lambda})}{\partial \mathcal{G}_{\alpha,\beta}(i\omega_{\nu})}$$

$$\beta \; \frac{\partial \Omega \left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}] \right]}{\partial \mathcal{G}_{\alpha,\beta}(i\omega_{\nu})} \;\; = \;\; -\sum_{\lambda} \sum_{\delta,\gamma} \; \left(\mathcal{G}_{\delta,\gamma} + \delta \mathcal{G}_{\delta,\gamma} \right) (i\omega_{\lambda}) \; \frac{\partial (\mathcal{G}^{-1} + \mathcal{S}[\mathbf{G}])_{\gamma,\delta}(i\omega_{\lambda})}{\partial \mathcal{G}_{\alpha,\beta}(i\omega_{\nu})}$$

Next, notice that for each ω_{λ}

$$\text{trace } \mathbf{G}\mathbf{G}^{-1} = \sum_{\gamma,\delta} \underline{G}_{\delta,\gamma}(i\omega_{\lambda}) G_{\gamma,\delta}^{-1}(i\omega_{\lambda}) = \textit{const}, \qquad \quad \frac{\partial G_{\delta,\gamma}(i\omega_{\lambda})}{\partial G_{\alpha,\beta}(i\omega_{\nu})} = \delta_{\nu,\lambda} \; \delta_{\alpha,\delta} \; \delta_{\beta,\gamma}$$

$$\begin{split} \Rightarrow \sum_{\gamma,\delta,\lambda} \left(\delta_{\nu,\lambda} \; \delta_{\alpha,\delta} \; \delta_{\beta,\gamma} \; G_{\gamma,\delta}^{-1}(i\omega_{\nu}) + G_{\delta,\gamma}(i\omega_{\lambda}) \; \frac{\partial G_{\gamma,\delta}^{-1}(i\omega_{\lambda})}{\partial G_{\alpha,\beta}(i\omega_{\nu})} \right) &= 0 \\ \Rightarrow -\sum_{\gamma,\delta} \; G_{\delta,\gamma}(i\omega_{\lambda}) \; \frac{\partial G_{\gamma,\delta}^{-1}(i\omega_{\lambda})}{\partial G_{\alpha,\beta}(i\omega_{\nu})} &= \delta_{\nu,\lambda} \; G_{\beta,\alpha}^{-1}(i\omega_{\nu}), \end{split}$$

$$\beta \; \frac{\partial \Omega \left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}] \right]}{\partial G_{\alpha,\beta}(i\omega_{\nu})} \;\; = \;\; -\sum_{\lambda} \sum_{\delta,\gamma} \; \left(G_{\delta,\gamma} + \delta G_{\delta,\gamma} \right) (i\omega_{\lambda}) \; \frac{\partial (G^{-1} + \mathcal{S}[\mathbf{G}])_{\gamma,\delta}(i\omega_{\lambda})}{\partial G_{\alpha,\beta}(i\omega_{\nu})}$$

We just found

$$\Rightarrow -\sum_{\gamma,\delta} G_{\delta,\gamma}(i\omega_{\lambda}) \frac{\partial G_{\gamma,\delta}^{-1}(i\omega_{\lambda})}{\partial G_{\alpha,\beta}(i\omega_{\nu})} = \delta_{\nu,\lambda} G_{\beta,\alpha}^{-1}(i\omega_{\nu})$$

The derivative of the 1st term in the Luttinger-Ward functional is

$$\beta \frac{\partial \Omega \left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}] \right]}{\partial G_{\alpha,\beta}(i\omega_{\nu})} = G_{\beta,\alpha}^{-1}(i\omega_{\nu}) - \sum_{\lambda} \sum_{\delta,\gamma} G_{\delta,\gamma}(i\omega_{\lambda}) \frac{\partial \mathcal{S}[\mathbf{G}]_{\gamma,\delta}(i\omega_{\lambda})}{\partial G_{\alpha,\beta}(i\omega_{\nu})} + 0(\delta G)$$

$$\rightarrow G_{\beta,\alpha}^{-1}(i\omega_{\nu}) - \sum_{\lambda} \sum_{\delta,\gamma} G_{\delta,\gamma}(i\omega_{\lambda}) \frac{\partial \Sigma_{\gamma,\delta}(i\omega_{\lambda})}{\partial G_{\alpha,\beta}(i\omega_{\nu})}$$

We had

$$\Phi[\mathbf{G}] = \Omega\left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}]\right] + \frac{1}{\beta} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \left[-\ln\det\mathbf{G}(i\omega_{\lambda}) + \operatorname{trace}\,\mathbf{G}(i\omega_{\lambda})\mathcal{S}[\mathbf{G}](i\omega_{\lambda}) \right]$$

To differentiate the second term we use

$$\frac{\partial \ln(\mathrm{det} A)}{\partial A_{\alpha,\beta}} = A_{\beta,\alpha}^{-1}$$

$$\beta \frac{\partial}{\partial G_{\alpha,\beta}(i\omega_{\nu})} \left(-\frac{1}{\beta} \sum_{\lambda} \ln \det \mathbf{G}(i\omega_{\lambda}) \right) = -G_{\beta,\alpha}^{-1}(i\omega_{\nu})$$

Then the last term

$$\mathcal{S}[\mathbf{G}]_{\beta,\alpha}(i\omega_{\nu}) + \sum_{\lambda} \sum_{\delta,\gamma} G_{\delta,\gamma}(i\omega_{\lambda}) \frac{\partial \mathcal{S}[\mathbf{G}]_{\gamma,\delta}(i\omega_{\lambda})}{\partial G_{\alpha,\beta}(i\omega_{\nu})}$$

Recall

$$\Phi[\mathbf{G}] = \Omega\left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}]\right] + \frac{1}{\beta} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \left[-\ln\det\mathbf{G}(i\omega_{\lambda}) + \operatorname{trace}\,\mathbf{G}(i\omega_{\lambda})\mathcal{S}[\mathbf{G}](i\omega_{\lambda}) \right]$$

and

$$\beta \, \, \frac{\partial \Omega \left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}] \right]}{\partial \mathcal{G}_{\alpha,\beta}(i\omega_{\nu})} \quad = \quad \mathcal{G}_{\beta,\alpha}^{-1}(i\omega_{\nu}) - \sum_{\lambda} \, \sum_{\delta,\gamma} \, \, \mathcal{G}_{\delta,\gamma}(i\omega_{\lambda}) \, \frac{\partial \mathcal{S}[\mathbf{G}]_{\gamma,\delta}(i\omega_{\lambda})}{\partial \mathcal{G}_{\alpha,\beta}(i\omega_{\nu})} + \mathbf{0}(\delta \mathcal{G})$$

$$\beta \frac{\partial \left(-\frac{1}{\beta} \sum_{\lambda} \ln \det \mathbf{G}(i\omega_{\lambda})\right)}{\partial G_{\alpha,\beta}(i\omega_{\nu})} = -G_{\beta,\alpha}^{-1}(i\omega_{\nu})$$

$$\beta \,\, \frac{\partial \, \operatorname{trace} \, \mathbf{G}(i\omega_{\lambda}) \mathcal{S}[\mathbf{G}](i\omega_{\lambda})}{\partial G_{\alpha,\beta}(i\omega_{\nu})} \quad = \quad \mathcal{S}[\mathbf{G}]_{\beta,\alpha}(i\omega_{\nu}) + \sum_{\lambda} \, \sum_{\delta,\gamma} \,\, G_{\delta,\gamma}(i\omega_{\lambda}) \,\, \frac{\partial \mathcal{S}[\mathbf{G}]_{\gamma,\delta}(i\omega_{\lambda})}{\partial G_{\alpha,\beta}(i\omega_{\nu})}$$

Functional derivative

Adding up everything we obtain the final result

$$\beta \frac{\partial \Phi[\mathbf{G}]}{\partial G_{\alpha,\beta}(i\omega_{\nu})} = \mathbf{e}^{i\omega_{\nu}\epsilon} \, \mathcal{S}[\mathbf{G}]_{\beta,\alpha}(i\omega_{\nu}) + \mathbf{0}(\delta \mathbf{G}) \to \mathbf{e}^{i\omega_{\nu}\epsilon} \, \Sigma_{\beta,\alpha}(i\omega_{\nu})$$

The derivative of the Luttinger-Ward functional with respect to G is Σ

Recall

$$\Phi[\mathbf{G}] = \Omega\left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}]\right] + \frac{1}{\beta} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \left[-\ln\det\mathbf{G}(i\omega_{\lambda}) + \operatorname{trace}\,\mathbf{G}(i\omega_{\lambda})\mathcal{S}[\mathbf{G}](i\omega_{\lambda}) \right]$$

For physical ${\it G}$ and Σ we obtain the famous expression of Luttinger and Ward for Ω

$$\Omega = -\frac{1}{\beta} \sum_{\lambda} e^{i\omega_{\lambda} \epsilon} \left(\ln \det \left(\mathbf{G}^{-1}(i\omega_{\lambda}) \right) + \operatorname{trace} \mathbf{G}(i\omega_{\lambda}) \Sigma(i\omega_{\lambda}) \right) + \Phi[\mathbf{G}]$$

What we have shown

There exists a functional of the Green's function $\Phi[\mathbf{G}]$ such that the Ω can be represented in terms of the Green's function

$$\Omega[\mathbf{G}] \quad = \quad -\frac{1}{\beta} \, \sum_{\boldsymbol{\lambda}} \, \mathbf{e}^{i\omega_{\boldsymbol{\lambda}}\epsilon} \, \left(\ln \det \left(\mathbf{G}^{-1}(i\omega_{\boldsymbol{\lambda}}) \right) + \operatorname{trace} \, \mathbf{G}(i\omega_{\boldsymbol{\lambda}}) \boldsymbol{\Sigma}(i\omega_{\boldsymbol{\lambda}}) \, \right) + \Phi[\mathbf{G}]$$

 $lack \Phi[{f G}]$ depends only on the interaction part K_1

Summary of functionals

$$\begin{split} \mathcal{S}[\tilde{\phi}^*,\tilde{\phi}] &= -\sum_{\gamma,\nu} \tilde{\phi}_{\gamma,\nu}^* \; e^{i\omega_{\nu}\varepsilon} \; G_{0,\alpha\beta}^{-1}(i\omega_{\nu}) \; \tilde{\phi}_{\gamma,\nu} + K_1[\tilde{\phi}^*,\tilde{\phi}] \\ \\ \mathcal{G}[\mathbf{G}_0^{-1}] &= -\frac{\prod_{\mu=-\infty}^{\infty} \prod_{\gamma} \int \; d\tilde{\phi}_{\gamma,\mu}^* \; d\tilde{\phi}_{\gamma,\mu} \; \tilde{\phi}_{\alpha,\nu} \; \tilde{\phi}_{\beta,\nu}^* \; e^{-S(\tilde{\phi}^*,\tilde{\phi})}}{\prod_{\mu=-\infty}^{\infty} \prod_{\gamma} \int \; d\tilde{\phi}_{\gamma,\mu}^* \; d\tilde{\phi}_{\gamma,\mu} \; d\tilde{\phi}_{\gamma,\mu} \; e^{-S(\tilde{\phi}^*,\tilde{\phi})}} \rightarrow \mathbf{G} \\ \\ \Omega[\mathbf{G}_0^{-1}]_{\alpha,\beta} &= -\frac{1}{\beta} \; \ln \left(\prod_{\mu=-\infty}^{\infty} \prod_{\gamma} \int \; d\tilde{\phi}_{\gamma,\mu}^* \; d\tilde{\phi}_{\gamma,\mu} \; e^{-S(\tilde{\phi}^*,\tilde{\phi})} \right) \rightarrow \Omega \\ \\ \mathcal{G}\left[\mathbf{G}^{-1} + \mathcal{S}[\mathbf{G}]\right] &= \mathbf{G} + \delta \mathbf{G} \qquad \mathcal{S}[\mathbf{G}] \rightarrow \Sigma, \qquad \delta \mathbf{G} \rightarrow 0 \end{split}$$

What we have shown

 \blacksquare There exists a functional of the Green's function $\Phi[\mathbf{G}]$ such that the Ω can be represented in terms of the Green's function

$$\Omega[\mathbf{G}] = -\frac{1}{\beta} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \left(\ln \det \left(\mathbf{G}^{-1}(i\omega_{\lambda}) \right) + \operatorname{trace} \mathbf{G}(i\omega_{\lambda}) \Sigma(i\omega_{\lambda}) \right) + \Phi[\mathbf{G}]$$

- $lack \Phi[\mathbf{G}]$ depends only on the interaction part K_1
- The derivative of $\Phi[\mathbf{G}]$ with respect to \mathcal{G} is the self-energy

$$\beta \frac{\partial \Phi[\mathbf{G}]}{\partial G_{\alpha,\beta}(i\omega_{\nu})} = e^{i\omega_{\nu}\epsilon} \Sigma_{\beta,\alpha}(i\omega_{\nu})$$

- Now we want to change variables and express Ω as a functional of Σ
- This can be done by Legendre transform

Recap Legendre transform

• Knowing U(S, V, N) contains all thermodynamical information about a system

$$U = U(S, V, N)$$
 \Rightarrow $T(S, V, N) = \frac{\partial U}{\partial S}|_{V,N}$

- We may change variables by Legendre transform
- Revert $T(S, V, N) \rightarrow S(T, V, N)$
- Define F(T, V, N) = U(S(T, V, N), V, N) TS(T, V, N) then

$$\frac{\partial F}{\partial T}|_{V,N} = \frac{\partial U}{\partial S}|_{V,N} \frac{\partial S}{\partial T}|_{V,N} - S(T,V,N) - T \frac{\partial S}{\partial T}|_{V,N} = -S(T,V,N)$$

Since

$$\frac{1}{\beta} e^{i\omega_{\nu}\epsilon} \Sigma_{\beta,\alpha}(i\omega_{\nu}) = \frac{\partial \Phi[\mathbf{G}]}{\partial G_{\alpha,\beta}(i\omega_{\nu})},$$

we can use this formalism to change from $\Phi[G]$ to $F[\Sigma]$

Legendre Transform of Φ

We had

$$\frac{1}{\beta} \; e^{i\omega_{\scriptscriptstyle V}\varepsilon} \; \Sigma_{\beta,\alpha}(i\omega_{\scriptscriptstyle V}) \quad = \quad \frac{\partial \Phi[\mathbf{G}]}{\partial G_{\alpha,\beta}(i\omega_{\scriptscriptstyle V})},$$

$$\text{Recall: } \Phi \Leftrightarrow \textit{U}, \qquad \textit{\textbf{G}}_{\alpha,\beta}(\textit{i}\omega_{\lambda}) \Leftrightarrow \textit{\textbf{S}} \qquad \tfrac{1}{\beta} \ e^{\textit{i}\omega_{v}\epsilon} \ \Sigma_{\beta,\alpha}(\textit{i}\omega_{\lambda}) \Leftrightarrow \textit{\textbf{T}}$$

$$\Rightarrow F = U - ST$$
 becomes

$$\begin{split} F[\Sigma] &= \Phi\left[\mathbf{G}[\Sigma]\right] - \frac{1}{\beta} \sum_{\lambda} \sum_{\gamma,\delta} \mathbf{G}[\Sigma]_{\delta,\gamma}(i\omega_{\lambda}) \ e^{i\omega_{\lambda}\epsilon} \ \Sigma_{\gamma,\delta}(i\omega_{\lambda}) \\ &= \Phi\left[\mathbf{G}[\Sigma]\right] - \frac{1}{\beta} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \ \mathrm{trace} \ \mathbf{G}[\Sigma](i\omega_{\lambda}) \Sigma(i\omega_{\lambda}) \end{split}$$

Legendre Transform of Φ

We had

$$\Omega[G] = -\frac{1}{\beta} \sum_{\lambda} e^{i\omega_{\lambda} \epsilon} \left(\ln \det \left(\mathbf{G}^{-1}(i\omega_{\lambda}) \right) + \operatorname{trace} G(i\omega_{\lambda}) \Sigma(i\omega_{\lambda}) \right) + \Phi[\mathbf{G}]$$

and

$$F[\Sigma] = \Phi[\mathbf{G}[\Sigma]] - \frac{1}{\beta} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \operatorname{trace} \mathbf{G}[\Sigma](i\omega_{\lambda})\Sigma(i\omega_{\lambda})$$

Combining this we find

$$\begin{split} \Omega[\Sigma] &= & -\frac{1}{\beta} \, \sum_{\lambda} e^{i\omega_{\lambda} \epsilon} \, \ln \det \, \left(\quad \mathbf{G}^{-1}(i\omega_{\lambda}) \right. \left. \right) + F[\Sigma] \\ &= & -\frac{1}{\beta} \, \sum_{\lambda} e^{i\omega_{\lambda} \epsilon} \, \ln \det \, \left(\mathbf{G}_{0}^{-1}(i\omega_{\lambda}) - \Sigma(i\omega_{\lambda}) \right) + F[\Sigma] \end{split}$$

Stationarity of Ω

$$\Omega[\Sigma] \quad = \quad -\frac{1}{\beta} \; \sum_{\lambda} e^{i\omega_{\lambda}\varepsilon} \; \ln \det \; \left(\mathbf{G}_{0}^{-1}(i\omega_{\lambda}) - \Sigma(i\omega_{\lambda}) \right) + F[\Sigma]$$

Since $F[\Sigma]$ is the Legendre transform of $\Phi[G]$ we know that

$$\beta \frac{\partial F[\Sigma]}{\partial \Sigma_{\alpha,\beta}(i\omega_{\nu})} = -e^{i\omega_{\nu}\epsilon} G_{\beta,\alpha}(i\omega_{\nu})$$

This is the equivalent of $\frac{\partial F}{\partial T} = -S$

Therefore

$$\beta \; \frac{\partial \Omega}{\partial \Sigma_{\alpha,\beta}(i\omega_{\nu})} \;\; = \;\; e^{i\omega_{\nu}\varepsilon} \; G_{\beta,\alpha}(i\omega_{\nu}) - e^{i\omega_{\nu}\varepsilon} \; G_{\beta,\alpha}(i\omega_{\nu}) = 0$$

We have represented Ω as a functional of Σ

This functional is stationary at the exact Σ

Summary

■ There exists a functional of the self energy $F[\Sigma]$ such that Ω is

$$\Omega[\Sigma] \quad = \quad -\frac{1}{\beta} \; \sum_{\boldsymbol{\lambda}} e^{i\omega_{\boldsymbol{\lambda}}\epsilon} \; \ln \det \; \left(\mathbf{G}_0^{-1}(i\omega_{\boldsymbol{\lambda}}) - \Sigma(i\omega_{\boldsymbol{\lambda}}) \right) + \boldsymbol{F}[\Sigma].$$

- $F[\Sigma]$ depends only on the intraction part K_1
- $\,\blacksquare\,$ The Grand canonical potential is stationary under variations of Σ

$$\frac{\partial\Omega}{\partial\Sigma_{\alpha,\beta}(i\omega_{\nu})} = 0$$

■ The Green's function is the variation of $F[\Sigma]$

$$\beta \frac{\partial F[\Sigma]}{\partial \Sigma_{\alpha,\beta}(i\omega_{\nu})} = -\mathbf{e}^{i\omega_{\nu}\epsilon} G_{\beta,\alpha}(i\omega_{\nu}),$$

Variational principle emerging

lacktriangle We have seen that Ω can be expressed as a functional of the self energy

$$\Omega[\Sigma] \quad = \quad -\frac{1}{\beta} \; \sum_{\lambda} e^{i\omega_{\lambda}\varepsilon} \; \ln \det \; \left(\mathbf{G}_{0}^{-1}(i\omega_{\lambda}) - \Sigma(i\omega_{\lambda}) \right) + F[\Sigma]$$

... which is stationary at the exact self-energy

$$\frac{\partial\Omega}{\partial\Sigma_{\alpha,\beta}(i\omega_{\nu})} = 0$$

We therefore might choose a 'trial self-energy' of the form

$$\Sigma(i\omega_{\nu}) = const + \int_{-\infty}^{\infty} d\omega \, \frac{\sigma(\omega)}{\omega - i\omega_{\nu}}.$$

and derive the Euler-Lagrange equation for $\sigma(\omega)$!

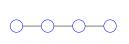
Consider the Hubbard model with N sites and pbc

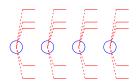
$$H = \sum_{i,j} \sum_{\sigma} t_{i,j} c_{i,\sigma}^{\dagger} c_{i,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i\downarrow} = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k},\sigma}^{\dagger} c_{\mathbf{k},\sigma} + U \sum_{i} n_{i,\uparrow} n_{i\downarrow}$$

In addition consider the 'reference system'

$$\tilde{H} = \sum_{i=1}^{N} \tilde{H}_i$$

$$\tilde{H}_{i} = \sum_{\nu} \epsilon_{\nu} I_{i,\nu,\sigma}^{\dagger} I_{i,\nu,\sigma} + \sum_{\nu} (V_{\nu} I_{i,\nu,\sigma}^{\dagger} c_{i,\sigma} + H.c.) + U n_{i,\uparrow} n_{i\downarrow}$$





Consider the Hubbard model with N sites and pbc

$$H = \sum_{i,j} \sum_{\sigma} t_{i,j} c_{i,\sigma}^{\dagger} c_{i,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i\downarrow} = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k},\sigma}^{\dagger} c_{\mathbf{k},\sigma} + U \sum_{i} n_{i,\uparrow} n_{i\downarrow}$$

In addition consider the 'reference system'

$$\begin{split} \tilde{H} &= \sum_{i=1}^{N} \tilde{H}_{i} \\ \tilde{H}_{i} &= \sum_{\nu} \epsilon_{\nu} I_{i,\nu,\sigma}^{\dagger} I_{i,\nu,\sigma} + \sum_{\nu} \left(V_{\nu} I_{i,\nu,\sigma}^{\dagger} c_{i,\sigma} + H.c. \right) + U n_{i,\uparrow} n_{i\downarrow} \end{split}$$

The crucial point: Both models have the same interaction term

$$K_1 = U \sum_i n_{i,\uparrow} n_{i\downarrow}$$

- lacktriangle Hubbard model and reference system have the same $F[\Sigma]$
- The 'ligands' $I_{i,\nu,\sigma}^{\dagger}$ are uncorrelated only $\tilde{\Sigma}_{c,c}(i\omega_{\lambda})$ is different from zero

$$\tilde{H} = \sum_{i=1}^{N} \tilde{H}_{i}$$

$$\tilde{H}_{i} = \sum_{\nu} \epsilon_{\nu} I_{i,\nu,\sigma}^{\dagger} I_{i,\nu,\sigma} + \sum_{\nu} (V_{\nu} I_{i,\nu,\sigma}^{\dagger} c_{i,\sigma} + H.c.) + U n_{i,\uparrow} n_{i\downarrow}$$

 Ω is stationary under variations of the self-energy - we restrict the 'domain of self-energies' to those of the reference system $\tilde{\Sigma}_{c,c}(i\omega_{\lambda})$

$$\frac{\partial\Omega}{\partial\Sigma_{\alpha,\beta}(i\omega_{\nu})}=0\quad\Rightarrow\quad\frac{\partial\Omega}{\partial t}=0$$

with $t \in \{\epsilon_{\nu}, V_{\nu}\}$

Recall:

$$\tilde{H} = \sum_{i=1}^{N} \tilde{H}_{i}$$

$$\tilde{H}_{i} = \sum_{\nu} \epsilon_{\nu} I_{i,\nu,\sigma}^{\dagger} I_{i,\nu,\sigma} + \sum_{\nu} (V_{\nu} I_{i,\nu,\sigma}^{\dagger} c_{i,\sigma} + H.c.) + U n_{i,\uparrow} n_{i\downarrow}$$

We compute the derivative of $F[\tilde{\Sigma}]$ with respect to a parameter $t \in \{\epsilon_{\nu}, V_{\nu}\}$

$$\begin{split} \frac{\partial F[\tilde{\Sigma}]}{\partial t} &= \sum_{\alpha,\beta} \sum_{\lambda} \frac{\partial F[\tilde{\Sigma}]}{\partial \tilde{\Sigma}_{\alpha,\beta}(i\omega_{\lambda})} \frac{\partial \tilde{\Sigma}_{\alpha,\beta}(i\omega_{\lambda})}{\partial t} \\ &= -\frac{1}{\beta} \sum_{\alpha,\beta} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \tilde{G}_{\beta,\alpha}(i\omega_{\lambda}) \frac{\partial \tilde{\Sigma}_{\alpha,\beta}(i\omega_{\lambda})}{\partial t} \\ &= -\frac{2N}{\beta} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \tilde{G}_{c,c}(i\omega_{\lambda}) \frac{\partial \tilde{\Sigma}_{c,c}(i\omega_{\lambda})}{\partial t} \end{split}$$

We apply our general formula ...

$$\Omega[\Sigma] \quad = \quad -\frac{1}{\beta} \; \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \; \ln \det \; \left(\mathbf{G}_{0}^{-1}(i\omega_{\lambda}) - \Sigma(i\omega_{\lambda}) \right) + F[\Sigma].$$

... to the Hubbard model

$$\Omega_{\textit{latt}} \quad = \quad -\frac{2}{\beta} \; \sum_{\mathbf{k}} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \; \ln \left[i\omega_{\lambda} - \frac{\epsilon_{\mathbf{k}} - \mu}{\hbar} - \tilde{\Sigma}_{\textit{c,c}}(i\omega_{\lambda}) \right] + F[\tilde{\Sigma}]$$

We recall

$$\frac{\partial F[\tilde{\Sigma}]}{\partial t} \quad = \quad -\frac{2N}{\beta} \; \sum_{\lambda} \; e^{i\omega_{\lambda}\varepsilon} \; \tilde{G}_{c,c}(i\omega_{\lambda}) \; \frac{\partial \tilde{\Sigma}_{c,c}(i\omega_{\lambda})}{\partial t}$$

$$\Rightarrow \frac{\partial \Omega_{latt}}{\partial t} = \frac{2}{\beta} \sum_{\lambda} e^{i\omega_{\lambda}\epsilon} \left[\sum_{\mathbf{k}} G(\mathbf{k}, i\omega_{\lambda}) - N\tilde{G}_{c,c}(i\omega_{\lambda}) \right] \frac{\partial \tilde{\Sigma}_{c,c}(i\omega_{\lambda})}{\partial t} = 0$$

We found that for any $t \in \{\epsilon_{\nu}, V_{\nu}\}$

$$\frac{\partial \Omega_{\textit{latt}}}{\partial t} \quad = \quad \frac{2}{\beta} \; \sum_{\lambda} \textit{e}^{\textit{i}\omega_{\lambda}\varepsilon} \; \left[\; \sum_{\mathbf{k}} \textit{G}(\mathbf{k},\textit{i}\omega_{\lambda}) - \textit{N} \; \tilde{\textit{G}}_{\textit{c},\textit{c}}(\textit{i}\omega_{\lambda}) \; \right] \; \frac{\partial \tilde{\Sigma}_{\textit{c},\textit{c}}(\textit{i}\omega_{\lambda})}{\partial t} = 0 \label{eq:equation_of_the_sign}$$

The simplest way to solve this is to set for each ω_{λ}

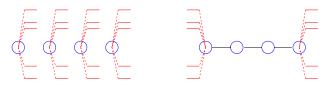
$$\sum_{\mathbf{k}} G(\mathbf{k}, i\omega_{\lambda}) - N \, \tilde{G}_{c,c}(i\omega_{\lambda}) = 0$$

$$\Rightarrow \tilde{G}_{c,c}(i\omega_{\lambda}) = \frac{1}{N} \sum_{\mathbf{k}} G(\mathbf{k}, i\omega_{\lambda}) = \frac{1}{N} \sum_{\mathbf{k}} \frac{1}{i\omega_{\lambda} - \frac{\epsilon_{\mathbf{k}} - \mu}{\hbar} - \tilde{\Sigma}_{c,c}(i\omega_{\lambda})}$$

This is precisely the self-consistency equation for Dynamical Mean-Field Theory!

Generalizations

In the same way one can derive cluster generalizations of dynamical mean-field theory



Another way is to numerically evaluate the Luttinger-Ward functional in the reference system - this is the Variational Cluster Approximation

And there is probably more to be discovered...for example even an approximate form of ${\cal F}[\Sigma]$

Summary

- We have seen that the grand canonical potential of an interacting electron system can be expressed as a functional of its self-energy: $\Omega[\Sigma]$
- This functional is stationary at the exact self-energy
- Unfortunately this involves (the Legendre transform of) the Luttinger-Ward functional for which we do not have any explicit expression
- This problem can be circumvented by combination with numerical methods a.g. in dynamical mean-field theory or cluster generalizations