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Prelude ﬂ(".

a We consider a Grand canonical ensemble at inverse temperature p = 1/kgT
and chemical potential p

m We introduce a complete set of single particle states ¢, (x) - where for example
« = (nk, o), (i,0) - and the corresponding Fermion operators ¢! and ¢,

m The ‘Grand canonical Hamiltonian’ K = H — u N is K = Ky + Ki with

KO = Z(l‘(\v/;—yéa'ﬁ) C;C‘B,
,p
]
K, = > Yo Vipon c;rcgcwcé.
«,B,7.0

® Then (with K |i) = K; |i))
‘ 1 1 A :
Z=y et 0=-5ig2)  (On=7 YOl e

I
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Green’s function

arlsruhe Institute of Technology

A Green’s function describes the following gedanken experiment

(K K-y B e PKi
Z(/\e cp € Cy € /) >

!

Prepare the system in thermal equlibrium

m Attime t remove a particle from state ¢, (x)

Let the system evolve t — t' and reinsert a particle into state ¢ (x)

a Determine overlap with undisturbed state

iKt! ikt iKt
o +

Kt _ iKUKt _ Kt
= (encie n ence n )p={cit) c(t) )



Green’s function ﬂ(“.

Define the imaginary time Heisenberg operators (it — )

and
Gup(t.T) = —(T (1) c}(7) Inn

= 0t —7){ (1) H(T) )+ O — ) ( SH(¥') c(1) )i

1 CBK T (KK P
! <_@<TT/> L & &% 8 Glal)) Uil
+0(7 —1) Y e K e K=K (jlchj) </cai>> :
inj
Only a function of T — 7/
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Fourier transform ﬂ(".

T

Gup(t) = - ( Ze PR e 5719 (ilc,|j) (lefli)

T

(=7) Z e P e (il ch|)) <j|Ctx|i>>

® Well defined only for T € [-ph, f] = Fourier frequencies 57

m 7€[-Bh0]= G(t+ph) =—G(t) = only odd n

Bh .
G = = ¥ e Gliw,) Gliw,) = [ dr e 6(x)
1377 V=—00 0
With the (Fermionic) Matsubara frequencies w, = (2?71,)"

A



Equation of motion and self-energy AT

We recall ...
Gup(t) = —(Tcu(T)c(T") )

= —0(1)( cy(1) ¢f )in+O(~1)( ¢f 6 (T) )y
... and want to calculate —hd. G, g(7)

We use 0.0 (+7) = +4(1) and —ha-c} (1) = [¢] (1), K]

_-haTsz,ﬁ(T) _h‘S(T)< C&(T) CE + CZ% CA(T)>Ih
—0(7)( [, K](1) €} )in+O(=7)( ¢} [co, KI(T) )

= 10(7) dup — (TlCe KI(T) Sf)in

T ERR2AN G



Equation of motion and self-energy ﬂ(“'

We recall ...
_-haTGlX,ﬂ(T) = h 5(7) 5&',/3 - <T[szv K](T) CE)th
.. use ...
(e K] = Y (tuw = 1aw) 6+ Y. Vawsn Cheyc,
v VALK
.. and find
*—haTGoc,ﬁ(T) = i B + Z fuy — Wouw Gu,ﬁ(T) + th,ﬁ(T)
th,ﬁ(r) = = 2 Vac,v,K,/\<T[(C:C/\CK)(T) C;g])th
VKA

Notice: V, , « o = 0 (noninteracting system!) means F = 0
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Equation of motion and self-energy

Recall

—‘hBTGM;(T) = 3(T) Ou,p +Z tow — Houv) vaﬁ(T) + F,X“B(T)

Fourier transformation gives

t— , 1 .
( jw, — 12 E ) Gliwy) — & Fliwy) = 1
Now define the self-energy F(iw,) = h X(iw,) G(iw,) whence
. t—u . .
iwy — —= = Y(iwy) ) Gliwy) = 1
In this way we arrive at the Dyson equation
G '(iw) = iw,—

T“ — S (iwy) = Gy ' (iwy) — Z(iawy)

Karlsruhe Institute of Technology
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Recall
G51 (iwy)
For example « = (n,k, o),
Hy =
G, '(iw,) =

Go(iwy) =

= in_FTﬂ

+ +
Z En,k Cn,k,a Cn,k,zr

Karlsruhe Institute of Technology

T ERR2AN G



Summary so far

Karlsruhe Institute of Technology

We have defined the Green'’s function which describes the gedanken
experiment of adding/removing a particle at some time and undoing this at a
different time

It is related to the photoemission/inverse photoemission spectrum of the
system and thus of considerable experimental relevance

The Green’s function of a noninteracting system is obtained from its equation of
motion

The effect of interactions can be concisely expressed in terms of the
self-energy which gives the correction to the (inverse) noninteracting Green’s
function

We proceed to give a representation of the Green’s function in terms of a
functional integral over Grassmann variables

The derivation - which is not difficult but too lengthy to give here - can be found
in the excellent textbook by Negele/Orland
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Crash course in Grassmann variables AT

Grassmann variables are objects - here we write them as ¢, or cpf, where i and j
distinguish different Grassman variables - which anticommute

i) = —; 7 oip; = —¢; Pi, ¢ip; = —¢;p;.

The asterisk * is part of the name of the Grassmann variable

¢ P;7 = —¢i$; = 0 - The square of any Grassmann variable is zero

A Grassmann algebra consists of all combinations of nonvanishing products of
the ‘Grassmann basis’, e.g. with basis ¢ and ¢*

ap+aip + ap* + azpo”

The key property of Grassmann variables is the rule for ‘integration’
/d4>4>:1, /d4>1:o
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Crash course in Grassmann variables ﬂ(“'
m Functions of Grassmann variables are defined via the power series expansion

explag +ap’ +ap p) = 1+ (@pta’ +a'9) + yaa(py’ +9'9)

= 14+ (a1¢ + a¢* + as¢p*p)

Then we have

| o dp explag + 29" + asp'e) = a [ dp* dp g
— —a [y dpg g’
= —a / d47* 47* = —as



Grassmann variable representation of Z AT

m Let [0, hp] be divided into M intervals of length e = hp/M

m Define imaginary time grid points 7 = k- ¢, k=1... M

m For each grid point 7 introduce Grassmann variables ¢, , and ¢, ,
m « is the ‘compound index’ on Fermion operators ¢! and ¢,

m Then Z = limy_,+ Zy whereby

M ,
Zu = TITI [ dgixdpese SO
k=1 "«
* 2 ‘Pak 1 1 X
S(¢*,9) = Z Z %k +t3 K(¢k: Pk—1)

® K(¢;, px_1): Grand canonical Hamiltonian with ¢/ — ¢, and ¢, — ¢, , +

® Important: ¢, o = —¢, y

A



Grassman variable representation of Z AT

Recall

M
S(¢"¢) = €}, [Zm(’""“ ;K(ﬁ,cpkq)}

If we treat the Grassmann variables as ‘numbers’ and nominally let
M— co=e="hp/M—0

=5 - / dt (2% + K(q; 4;))



The Green'’s function ﬂ(“'

a Same imaginary-time grid as before

no e T Ty [ A9y gy fuin® gy €50
Guple ) = =, i T
[Tk=1 I1, | d¢3, do, e

® k(t)and k(7'): points on imaginary-time grid closest to T and 7’
@, )

T T

s
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Fourier transform of S ﬂ(“.

Recall: ¢, = —¢,, ), - to incorporate this define
- (A - 1 M
4)*’ = e Witk (P* , ¢ v = el Wrtk ¢ P
¥,V \/M ,(221 7.k TV m = v
with w, = (2";/;)” (Fermionic Matsubara frequencies!) - this can be reverted
M Y
4)* 1 i efwv Tk 43* (P 1 i e—iwv qus
- , k= —— v
%k VM v=—M 11 m ! VM v=—M 11 "
2 2

a The transformation 4’;,;( — ¢5 , is unitary = the Jacobian is unity

m The limit M — oo is trivial to take
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Fourier transform of S: K AT
Ko = (tup — 1 0up) CiCs = €3 (tup— 1Oup)Pa i Ppi—1
k=1

Insert the Fourier amplitudes

M M
) 2 o T 1 2 o (tee)
‘P;,k = W Z elwv Tk ‘Pa,v ¢ﬁ,k71 _ W Z e iw, (tk—€) CP;;,V/

M i i ~ g ~
_ Z % Z gl (wr—w,)Tk e/wv/s([aﬁ — F’étx,ﬁ) Puy ¢/5,v’
k=1

v,V
=€ Z e/a)ve (tlx,ﬁ — }l(sa"g) 43;’]/ 4’3)5'1/
v

A



Fourier transform of S: derivative term

M M
; 1 2 iw s 1 2 i
o = e Tk e Ppk = g iwy
a, VM L'7§7/1+1 o B vM U:;;ﬂJﬂ

e/wl,/e

ﬁ
= |: - :| 43;,1/43&,1/

iwye efiwve_1 Tx T
= 62 € e PavPav

v

- GZ eiwve (_in) (ﬁ;,v(ﬁx,v

v

e % 4);/( (Puc,k 7€¢t\’,k71 _ Z % i(cwy w/ Tk |:1 — e
v k=1

:| 43;4/ &a,v’

A



Fourier transform of S ﬂ(".

Combining the results we find that

M 1
Sol¢*, §] ey, [Z %k%JrﬁKo((P/t:(Pk—O}
k=1

i , . B — Onp M
e) e [ —lwydyp + % } Pav Pp
a,Bv

c Z glwve (760'3\13(1'(4)1/)) 43;,1/ 43,3,1/
a,Bv

A
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Green’s function ﬂ(“.

Our expression for the Green’s function was

M * b . e=S(¢*9)
| d d N e
Gup(r.7) = i k=1 11y [ Pk 9Pk Pask(0) P B k()

M—sc0 I, I, [ agr \ de, e—S(¢*.¢)

Not surprisingly the Fourier transform turns out to be

,H;oz_o" H'Y f d(ﬁ;}l d(ﬁ’)’vﬂ J)t\',l/ (f)ﬁl 6—3(43*,43)

Guplicy) = & Py Pan ¥ By
7w I1; [ 03, di,, & S9"9)
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Our plan

[ S\

Karlsruhe Institute of Technology

We have introduced the Green’s function and self-energy

In 1960 Luttinger and Ward have shown that the grand canonical potential O
can be expressed as a functional of the Green’s function

We now want to proove this theorem
Luttinger and Ward employed the technique of Feynman diagrams

This is questionable for strongly correlated electron systems such as Mott
insulators

We will therefore give a non-perturbative derivation which is due to M. Potthoff
and uses functional derivatives instead
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Change of perspective ﬂ(“'

The Green’s function can be represented as a Grassmann functional integral

Guplicy) = e vadq)wd(pw%% S

e o I, [ o5, d,, e 509

SIF Gl = X Fh. € Gy llin) B+ Ki[F 6]

o

Now we change perspective: all quantities of interest - Gy, G, X - all are ultimately
sets of complex numbers: F, g(iwy), F € {Go, G, L}

Now take the above as definition of a functional Gy — G
Hyffoo H'y f dny u d(pb'y 1z ¢0¢ v (P/S v S@"9)

Gl6," = ~
[Go '] o I, [ d¢;, db,, e=S@"9)

Note: This functional has K - the interaction part of H - as an implicit parameter

T ERR2AN G
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Terminology AT

arlsruhe Institute of Technology

In the following we will call a Green’s function a ‘physical Green’s function’ if it
is the Green’s function corresponding to some noninteracting Hamiltonian Ky
(remember that Kj is fixed - it is a parameter of the functional!)

Similarly for a ‘physical self-energy’...

A
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Does that make sense? ﬂ(“.

a One might wonder if Q[Gg1] - and other functionals we define in a moment -

well-defined for any Gy

a The answer is: probably not...

= However G[G, '] is well defined for physical Gg

a In the following development we will always take functional derivatives of
G[G, '] taken at physical Go

m This means we need 9[651] only for Gy which are infinitesimally close to
physical ones

is

A
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More functionals ﬂ(".

Recall
Q[G*W _ Hy——oo H'yf d¢'y;4 d‘p'yy (szv ‘P‘Bv S@9)
° I Iy | 0, db,, 75000
S[p" ¢l = =) iy € Gyaglicor) B, + K167, ]
Y.V

The next functional

p=—

0[G," = 5 < H H/d‘l’wdq’w J)'(ﬁ)

G, ' (wy) = iwy — t—“ = Q[G, '] is the grand canonical potential for K = Ky + Kj

T ERR2AN G
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Functional derivative of ()

Recall:
0(6;") = L [T TT [ of, oy, e 504
p p=—co "y ' '
S ¢l = =X Fuy € Gyuylicon) B, + Ki 9 6]
a,Bv
88[43*,43] iwye 1x F iwye 1 oy
9899l | gee g g - ’
aGofl/s(in) oy Ppy =€ Ppy Pu
L 00UGsY) e T T o, 9y Gy, Gy 0 S0
3Gy 4 (i) N I, [ d¢;, d,, e 5@ 9

= e 165 (i)

A
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More functionals... ﬂ(“.

For given ‘self energy’ ¥ and given ‘Green function’ G consider
D[G,X]=G[G'+X] -G
For physical Green’s function and self-energy, Gand . : G~ ' = G51 -
= GG ' +2]=G[G,'] =G = D[G,X] =0

Now assume a given ‘Green’s function’ G - define a new functional S[G] to be the

‘self-energy’ such that

DG S[G)]| = Y Y |Duplicwy)|? — min
BV
For physical Green’s function and self-energy, Gand X : D[G,X] = 0 = S[G| = =

Otherwise

gle'+sle]] = c+dc
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Summary of functionals ﬂ(“'

S(¢*, §]
lcr

0[651]&5

G [6’1 +5[G]]

- Z J’;v eiwve G&;ﬁ(iwv) J)'y,v + K1 [43*, J’]
v

I IL S d4>wd¢r,,,4>m¢ﬁv S

_ — G
HH—*OO I, J d‘rbw d‘Pw #.9)

2 |n< ]‘[ H/dq),”,dq)w >%Q

]4,—700

G + 4G S[G] — =, 5G — 0

T ERR2AN G
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Luttinger-Ward functional ﬂ(“'

The Luttinger-Ward functional of a Green'’s function is

6] =0 [6 " +5(6]] +% Y & [ —In detG(iw, ) + trace G(iw; )S[G] (i, ) |
A

m Physical Green’s function: S[G] — X, G~ " + S[G] — G, ', Q [Gg‘} - Q
® In detG(iwy,) =Y, In(gn) - gn are the eigenvalues of G(iw,)
w In particular, if « = (k, o) = G(iw,) is diagonal with elements G(k, iw,)

In detG(iw,) = 2 ) In Gk, iw,)
k

m Moreover

trace G(iw,)S[G](iwy) = Y. Gys(iwy)S[Cls, (iwy)
7,0
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Functional derivative of ® ﬂ(“'

We had ...
o6 =0 +si6]] + % Y i [ —IndetG(iwy) + trace G(iw, )Z[G] (i, ) |
A

.. and want to calculate oD
aGayﬁ(in)

To differentiate the first term we recall ...

006" e ity
oot ) = o 91 paticr)

.. and use the chain rule (but note that G, — G~ + S[G))

20 BGOM(/w,\)

Pac sl ~ ’Z& 3G, ! (/w\) 3Gy p(iwy)
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Functional derivative of ®

We had ...
o6 =0 +si6]] + % Y i [ —IndetG(iwy) + trace G(iw, )Z[G] (i, ) |
A

... and want to calculate oD
aGayﬁ(in)

To differentiate the first term we recall ...

2Q[G,"] e i ,
,3 Wﬁ(o/wy) = —€ 9[601]ﬁ,a(’wv)
0 [G T +S[G)] _ - (G +8[G])y s(iwp)
PGl _;gg[e 1*‘9[6]]5,7(""” aGa,ﬂ(/w:)



Functional derivative of ® ﬂ(“'

61 +8[6]] (G +8[6]),s(iwp)
aG:x,/S(iwv) - _;5” (GJ,W+5GJ,7) (Iw)L) aGlx,,B(/Wv)

Next, notice that for each w)

0Gs, (iwy)

1 _
trace GG~ Z Gy, (i) (/w;\) = const, 3G pliwn) v Ou6 0B

9G. §(iwy)
1 e A =
= & ( VA 0&5 0,177 G’y o(’wl/) + Gs 7(!&)\) aGa,[;(iwy) 0
3G, Kiwy) 1y
= _Z G&;y(lw)L) 8677(160) = (51/’)L G ';(va)y
7.0 mply

T ERR2AN G
31
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Functional derivative of ® ﬂ("'

06"+ 5(c] (G~ + 816l an)

- = (Gs.y +6G; ) (iw
ach,/S(lwv) ;&,}/ % 0,1) ( )\) aGA”g(/(Uy)
We just found ;
8G’~(iw,\)
= — Gy (iwy) —10 "0 = 8y 1 Gl (iw
% AUV 3G, p(icwy) A Gp i)

The derivative of the 15! term in the Luttinger-Ward functional is

o0 (6! +5[6 3S[G]., 5 icw, ‘
ﬁ W = ‘B[x Iwu Z Z G()’y I(U/\ W +O<OG)
%
7 Gpalier) Z 2 Gsoliwn) 55 7o ;(( wi;

T ERR2AN G
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Functional derivative of ®

We had

AT

Karlsruhe Institute of

P[G] = O [G*‘ +S[G]} —1—% Z giwre [ —IndetG(iw, ) + trace G(iw,)S[G](iw,) ]
A

To differentiate the second term we use

dln (detA) A,1

aAZXﬁ o /3,0(

J 1 , Ay
ﬁ%mn(’ﬁ 3 ndet G“‘"”) ~ Gl
Then the last term

S[Glp.aliwy) +; ; GMU‘*’UW
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Functional derivative of ® ﬂ("'

Recall

@[G] = O [G*1 —I—S[G]} + % Z glwre [ —IndetG(iw, ) + trace G(iw,)S[G](iw,) ]
A

and
0 [G " +S[6]] 25161, (icon)
TGty Ol R b Gl g gy 010)
B(f% Y, Indet G(iwA)) o
P 3Gy p(icwy) = —Gﬁ;(/wv)
2 tiace Btu)SBIL : L 3S[6], (i)
P traceaG(:;?i)wv[) J(iwp) S[G}ﬁ,a(/wv)Jr; g G - (iwy) W

(= = rHAR
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Functional derivative ﬂ(“'

Adding up everything we obtain the final result

3 ©[G]

_ plwye : iwy, € :
7860('#(/6%) e'“v¢ S[Glp o (iwy) +0(0G) — e X (icwy)

The derivative of the Luttinger-Ward functional with respect to G is %

Recall

ole] = 06 +s(6]| + % Y €3¢ [ —IndetG(iw,) + trace G(iw,)S[G](iw,) ]
A

For physical G and £ we obtain the famous expression of Luttinger and Ward for )

a - % Z glwre <|n det (G—1 (iwy)) + trace G(iw) )Z(iw)) ) + @[]
A

T ERR2AN G
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What we have shown ﬂ(“.

m There exists a functional of the Green’s function ®[G] such that the Q) can be
represented in terms of the Green’s function

Q6] = ‘% Y € (Indet (6" (iwp)) +trace G(iwn)E(iwp) ) +@[G]
A

m ®[G] depends only on the interaction part K;
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Summary of functionals ﬂ(“'

S(¢*, §]
lcr

0[651]&5

G [6’1 +5[G]]

- Z J’;v eiwve G&;ﬁ(iwv) J)'y,v + K1 [43*, J’]
v

I IL S d4>wd¢r,,,4>m¢ﬁv S

_ — G
HH—*OO I, J d‘rbw d‘Pw #.9)

2 |n< ]‘[ H/dq),”,dq)w >%Q

]4,—700

G + 4G S[G] — =, 5G — 0

T ERR2AN G
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What we have shown ﬂ(“.

m There exists a functional of the Green’s function ®[G] such that the Q) can be
represented in terms of the Green’s function

Q6] = ‘% Y € (Indet (6" (iwp)) +trace G(iwn)E(iwp) ) +@[G]
A

m ®[G] depends only on the interaction part K;

m The derivative of ®[G] with respect to G is the self-energy

3 O[G]

_ glwve :
3G, gliw)  © Zp.alicon)

a Now we want to change variables and express () as a functional of &

a This can be done by Legendre transform



Recap Legendre transform ﬂ(“'

ma Knowing U(S, V, N) contains all thermodynamical information about a system

U= U(S, V, N) = T(S, V, N) = %‘V,N

a We may change variables by Legendre transform

® Revert T(S, V,N) = S(T,V,N)

w Define F(T,V,N) = U(S(T,V,N),V,N)—T S(T, V,N) - then

9F U, aS i
57lvn = 5glvn 57lvn = S(T,V.N) = T oZ|yw = =S(T. V,N)
Since 1 IP[G]
PN S = A 7
ﬂ e Zp,z\’(’(‘)1> aGl\ﬁ(i(‘]l’),

we can use this formalism to change from ®[G] to F[Z]

A
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Legendre Transform of &

We had

90[G]

1 .
§ o Bpalio) = SO
«,

p

Recal: ® & U,  G,pliw,) < S /l e e X (iwy) & T

= F=U-— S T becomes

FIEl = ool - £ T 0l (n) 4 )
e
— ®[6[g] f% ) 1€ trace G[Z] (iwy )% (iw,)

Karlsruhe Institute of Technology

A
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Legendre Transform of ® ﬂ("'

We had
Qe = - % Z glware (In det (G*1(/a;/\)) + trace G(iw,) Z(iw,) > + ®[G]
)
and
Fz| = [G[z)) 7% Y &€ trace G[E](iwy )iy )
A

Combining this we find

Qg = Y indet ( 67N(iwy) )+ FI
A

m\—*

Y &€ Indet (G (iwy) — ):(iwA)>+F[Z}
A

Tm\—*

T ERR2AN G
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Stationarity of ()

Q[ 1Y € Indet (G iwy) — 2(/%)) + F[2)
A

ey

Since F[X] is the Legendre transform of ®[G] we know that

IF[Z]

— _ plwve P
0%, (i0y) & Gpaliiwn)

This is the equivalent of 2 aT =-S

Therefore
Q)

B W = glwe G/gya(iwv) _ glwve Gﬁ'w(iwv) =0
o,

We have represented Q) as a functional of &

This functional is stationary at the exact £

Karlsruhe Institute of Technology

A
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Summary

m There exists a functional of the self energy F[X] such that Q) is

AT

o = _% ;e/w,\e Indet (Ga1(iwA)—Z(iwA)> +F[x.

® F[X] depends only on the intraction part Kj;
m The Grand canonical potential is stationary under variations of &
Q)
azwyﬁ(iwv)

® The Green’s function is the variation of F[%]

IF[Z]

—  _ plwye i
P as i) & Gpalicwon),



a4

Variational principle emerging ﬂ(“'

a We have seen that Q) can be expressed as a functional of the self energy ....

1 ;
o = -4 Y- 1€ Indet (Gy™ (i) — (iwy) ) + FIx]
A
a ... which is stationary at the exact self-energy

Q)
BZ,X,/g(iwv)

We therefore might choose a ‘trial self-energy’ of the form

o(w)

(iwy) = consz‘—i—/ dww o
J —00 - v

and derive the Euler-Lagrange equation for o(w)!

A
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Dynamical mean-field theory

Consider the Hubbard model with N sites and pbc
H = Y Y tclc,+UY miny =Y ekci,cur+U Y nisny
k,o i

i i

In addition consider the ‘reference system’

~ N ~
H = Z H;
i=1
":Il' = ZGV /ITU,(T /i,u,a + Z (VV /I?X:L’,(YCI',U‘ +H.c. ) +U nj4njy
v v

45



Dynamical mean-field theory ﬂ(“'

Consider the Hubbard model with N sites and pbc

H = Y Y tyclc,+UY nignyg =Y e oo+ U nigny
k,o i

i i

In addition consider the ‘reference system’

Ho= Yel, et Y (VI co+He )+Unin
v

v
The crucial point: Both models have the same interaction term

K1 = U Z n,-yTn,'L
i

46

A



AT

Dynamical mean-field theory

® Hubbard model and reference system have the same F[Z]

I, are uncorrelated - only £ ¢ (iw, ) is different from zero

a The ‘ligands’

i=1
: Zev /ITL',U' //',1/,0 + Z (VV /I?l,—l",(”cf,(7 + H.c. ) +U nj4nj,
v

v
m () is stationary under variations of the self-energy - we restrict the
‘domain of self-energies’ to those of the reference system ¢ ¢ (iw, )
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with t € {e,, i}
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AT

Dynamical mean-field theory

Recall:

i=1
Hoo= Yel, et Y (VI co+He )+Unn
v v

We compute the derivative of F[Z] with respect to a parameter t € {e,, V, }
OF[S] 0% p(iwy)
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Jat zxz,ﬁ:; ait\ﬁ(/w,\) ot
o I(U\F G) Ia)\> w.p
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Dynamical mean-field theory ﬂ(“'

We apply our general formula ...

QF = 51 1y~ s Indet (G (iwy) — z(iwA)) +F[x).
.. to the Hubbard model
Quy = - 2 ZZei“’/\e In {/WA — ek_,; K —ic,c(iwA)} + F[5)
B %R
We recall
oF %] B e & 0% c(iwy)
aa B Z ° olicon) =5
aQ/att _ g /w\g . o P . aicyc(iw/\) o
ot T B ; Xk: G(k, iwy) — NGg ¢ (iw)) e =




Dynamical mean-field theory ﬂ(“'

We found that for any ¢ € {e,, V, }

Wy 2 Y ewre | "Gk, iwy) — N Go,cliwy) Pocliwnr) _ g
Jat B 5 M ot
The simplest way to solve this is to set for each w,

Y Glk,iwy) = N Beoliwy) = 0
k

= Gecliwy) 1ZG(kiw) 1 !

c.c A = N WA ) = 5 X - = ,
N 4 N S iwy — 258 — S o(iwy)

This is precisely the self-consistency equation for Dynamical Mean-Field Theory!
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Generalizations ﬂ( T

arlsruhe Institute of Technology

In the same way one can derive cluster generalizations of dynamical mean-field
theory

Another way is to numerically evaluate the Luttinger-Ward functional in the
reference system - this is the Variational Cluster Approximation

And there is probably more to be discovered...for example even an approximate
form of F[X]
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Summary AT

Karlsruhe Institute of Technology

a We have seen that the grand canonical potential of an interacting electron
system can be expressed as a functional of its self-energy: Q[X]

a This functional is stationary at the exact self-energy

a Unfortunately this involves (the Legendre transform of) the Luttinger-Ward
functional for which we do not have any explicit expression

a This problem can be circumvented by combination with numerical methods -
a.g. in dynamical mean-field theory or cluster generalizations

52



