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Topics to be Covered

What are ’frustrated’ magnets?
Criteria for frustration
Susceptibility vs. long-range ordering
realizations and examples

Why do we care about them?
boring states suppressed
⇒ unconventional statistics, patterns . . .

What do we do about them?
first try ’standard’ approaches
numerics often especially hard
compare numerics and effective theory
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Starting point: localized spins

localized spins = correlated system
Can’t be band insulator: ↑ and ↓ would cancel
Can’t be partially filled non-interacting band: would be itinerant metal

ε↑/↓(~k) = ε(~k)∓ gµB
2 |B|, fill both bands up to µ

temperature hardly enters susceptibility: χ = ∂M
∂B ≈ µBρ(EF ) +O(T 2)

discuss non-interacting spins H = − gµB2 B
∑
i σ

z
i and M = gµB

2N
∑
i〈σzi 〉

⇒ χ = gµB
2N

∑
i
∂〈σzi 〉
∂B

sums go over only two states:

〈σzi 〉 =
∑
j〈σzi 〉je−βEj∑
j e
−βEj

= e−β(− gµB2 B) − e−β( gµB2 B)

e−β(− gµB2 B) + e−β( gµB2 B)
= tanh gµBB2kbT

(1)

linear in B for µBB � kBT

⇒ χ ≈ ∂

∂B
g2µ2

B

B

4kbT
= g2µ2

B

4kbT
= C

T
. (2)

Curie: χ ∝ 1/T indicates localized spins
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Interacting spins: Heisenberg and Ising Models

H =
∑
i,j

Ji,j ~Si~Sj resp. H =
∑
i,j

Ji,jS
z
i S

z
j . (3)

arises in 2nd order perturbation theory for half-filled band at ti,j � U

Heisenberg preserves rotational spin invariance: starting point of ignorance
less symmetric corrections may arise (spin-orbit coupling)

Mean-field approach:
decoupling ~Si~Sj → 〈~Si〉~Sj + ~Si〈~Sj〉 − 〈~Si〉〈~Sj〉
for one bond:

Ha,b =
∑
i=a,b

(
−µ~B + Ji,̄i〈~Sī〉

)
~Si − const. (4)

each spin sees effective field from the other
Ising a bit easier for now
ferromanget even more so: because it is not frustrated!
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Mean-Field approach

effective field for each spin given by all others:

Hi = −µ~Bi,eff~Si =

−µ~B +
∑
j

Ji,j〈~Sj〉

 ~Si (5)

assume translationally invariant (ferromagnetic) solution along z, i.e., 〈~Si〉 → 〈~S〉 = 〈S〉~ez
(reasonable for J < 0)
consider nearest-neighbor coupling to z neighbors:

µBeff = µB − zJ〈S〉 (6)

apply independent-spin formula (mean-field!)

〈S〉 = 1
2 〈σ

z〉 = 1
2 tanh gµBBeff

2kbT
= 1

2 tanh gµBB − zJ〈S〉2kbT
. (7)
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Curie Temperature TC

important parameter at B = 0: critical temperature TC = z(−J)
4kB

implicit equation for 〈S〉:

〈S〉 = 1
2 tanh z(−J)〈S〉

2kbT
→ 〈S〉 = 1

2 tanh 2TC〈S〉
T
(8)

solve implicit equation for 〈S〉 numerically
graphic solution:

slope of tanh < 1 ⇒ only 1 solution 〈S〉 = 0
slope of tanh > 1 ⇒ solutions with 〈S〉 6= 0
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for T < TC : solutions with 〈S〉 6= 0 have lower free energy ⇒ equilibrium state
relevant criterion: T vs. critical temperature TC = z(−J)

kB4
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High-temperature susceptibility

susceptibility for large kBT � kBTC :

χ = gµB
2

∂

∂B
tanh gµBB − zJ〈S〉2kbT

≈ gµB
2

∂

∂B

(
gµBB

2kbT
+ 2TC〈S〉

T

)
= g2µ2

B

4kbT
+ TC

T
gµB

∂〈S〉
∂B︸ ︷︷ ︸

=χ

⇒ Curie’s law: χ = C
T−TC

approximation not valid for T . TC

’expected’ TC can be inferred from fit to high-T susceptibility
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Antiferromagnetism

non-interacting spins: χ = C
T

ferromagnetic: χ = C
T−TC

for T → TC , spins form giant
magnetic moment that reacts a lot to
(small) B  0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

Χ

T

non interacting
FM

AFM

(unfrustrated) nearest-neighbor antiferromagnetism:
physics: spins orient opposite ⇒ cancel each other rather than reacting to B
math: same calculation as above, but with one sign change ⇒ χ = C

T+TN
TN : Néel temperature, where mean-field theory gives AFM order
(approximation still only valid for large T )
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Frustrated Magnetism

high-temperature susceptibility:
χT� ∝ 1

T+TN with substantial TN
⇒ localized spins
⇒ spin-spin interactions that suppress χ

low-temperatures:
either no ordering
or only at much lower temperatures: actual TN much smaller than that derived from
fitting χT�

interactions are there and active at short distance, but ’frustrated’ at longer distance
various origins possible:

nearest- vs. next-nearest neighbors
triangular lattice
directionality, e.g. via spin-orbit coupling
. . .
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Classic Example: triangular lattice
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Beyond the triangular lattice

What we can take from here:
’obvious’ state suppressed: here, the ’normal’ AFM state that optimizes all interactions
some ’local’ rule is obeyed by low-energy states: here, for each triangle
globally, many states fulfill local rules (→ spin ice)

Other observations:
extensive ground-state degeneracy unlikely
usually, something else happens

other interactions select ground state
quantum/thermal fluctuations select ground state (’order by disorder’)
completely different state, e.g., spin liquid
that state possibly interesting

but sometimes, it survives well
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Ice rules

originally for water ice:
each oxygen has two hydrogens, coupled by ’short’ bonds
is coupled to other H2O by ’long’ hydrogen bridges
which two of the four bonds are long/short, is arbitrary

⇒ a lot of entropy remains (Pauling):
look at tetrahedron of H, N/2 tetrahedra
total number of configurations: 42 = 16
of which 6 agree with ice rules
⇒ fraction of states available at T → 0: Z = 2N

( 6
16
)N/2 =

( 6
4
)N/2

logZ
N = 1

2 log 3
2 ≈ 0.20273

agrees well with numerics
analogous ideas for Ising spins on pyrochlore/checkerboard lattices
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Spin ice
Dy2Ti2O7

uniaxial spin: along direction to center
spin can point ’in’ or ’out’
ferromagnetic interactions: two-in–two-out
Ising-like degree of freedom
2D version: checkerboard: large degeneracy seen

A. P. Ramirez, A. Hayashi, R. J. Cava, R.
Siddharthan, B. S. Shastry, Nature 399, 333
(1999)

states per site at T � 0: 2
⇒ log 2 = S0 +

∫∞
0

CV (T )
T dT
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Interesting properties of Spin ice

defects, e.g. 3-in–1-out
relevant in a magnetic field
Coulomb-like effective interaction (from long-range dipole-dipole interactions)
become “magnetic monopoles”
⇒ transition in magnetic field becomes crystallization of monopoles

Current topics:
quantum spin ice
artificial spin ice
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Heisenberg spins

can point in arbitrary direction (also an idealization)
defined by commutators between components:

[Ŝk, Ŝl] = i~εklmŜm (9)

unfrustrated square lattice: ordered moment reduced from classical Néel state
Starting point: classical spins

you have to start somewhere
often quite good
solution will at least be plausible competitor for quantum model as well

example: triangular lattice with 120◦ order
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Luttinger-Tisza Method

basic ingredients:
formally relax length of spin

find solutions for x/y/z components
have to fulfill (Sxi )2 + (Syi )2 + (Szi )2 = 1 (’strong’ condition)
relax this to ’weak’ condition:∑

i

(Sxi )2 + (Syi )2 + (Szi )2 = N (10)

afterwards worry about individual spins
Fourier transform: ∑

i,j

Jij ~Si~Sj →
∑
q

Jq ~Sq ~S−q (11)

J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946)
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Luttinger-Tisza Method: example I

Bravais lattice: all sites equivalent, crystal momentum k good quantum number
minimize with weak constraint:∑

ij

Jij ~Si~Sj − λ

(∑
i

|~Si|2 −N

)
(12)

Derivative: ∑
δ

Jδ ~Si+δ − 2λ~Si = 0 (13)

Ansatz: ~Si = ~uei~q~ri∑
δ

Jδ~uei~q(~ri+~δ) = 2λ~uei~q~ri ⇒
∑
δ

Jδei~q
~δ

︸ ︷︷ ︸
=J~q

= λ̃ (14)
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Luttinger-Tisza Method: example II

find ~q that minimizes J~q
Examples:

NN AFM Heisenberg: ~q = (π, π))
NN FM Heisenberg: ~q = (0, 0))
dominant AFM NNN coupling: ~q1 = (π, 0) and ~q2 = (0, π)

set up solution that obeys strong constraint:

~Si = ~u cos ~q~ri + ~v sin ~q~ri with ~u~v = 0 (15)

coplanar spiral in ~u-~v plane (e.g. ~u = ~ex and ~v = ~ey)
examples:

triangular lattice 120◦ pattern
1D chain: spiral
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Conclusions from Luttinger-Tisza

does not necessarily work for more than one spin per unit cell
many ~q might optimize J~q
coplanar spiral may not be unique ground state (kagome!)
anisotropic interactions: Sx/y/z may prefer different ~q
example: skyrmions

Dzyaloshinskii-Moriya interaction provide anisotropies
one solution: spirals
competing solution: superposition of spirals
length is then not always one
⇒ way out can be skyrmions

Step beyond Luttinger-Tisza: Classical simulation, e.g. by Markov-chain Monte-Carlo
’straightforward’ optimization
many parameters!
MCMC helps to get out of local minima
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Example: Anisotropic couplings

90◦ bond angle: Isotropic coupling reduced
Such bonds in honeycomb A2IrO3, RuCl3
Or in triangular lattice (Ba3IrTi2O9)

H = JK
∑
γ

∑
〈i,j〉‖γ

Sγi S
γ
j +JH

∑
〈i,j〉

SiSj

G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009); J.
Chaloupka, G. Jackeli, and G. Khaliullin, PRL 105, 027204 (2010).
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Kitaev-Heisenberg on a triangular lattice

Frustration: Tendency to
incommensurate states
But: Each spin component Sγ
optimized by different momentum
Qγ .
What about I?
Incommensurate spiral makes only
one Sγ happy.
Next step: Markov-chain Monte Carlo

I. Rousochatzakis et al., PRB 93, 104417 (2016)
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Monte Carlo ’close to’ Heisenberg model

Sγ(k) = |
∑
i eik·riSγi |2 for JH = 1, JK = −0.3
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Monte Carlo ’close to’ Heisenberg model

Sγ(k) = |
∑
i eik·riSγi |2 for JH = 1, JK = −0.3
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Local Energy: defects
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Continuum limit

Vortices form lattice
Lattice constant depends on JK/JH
Lattice constant much larger than that of underlying lattice
Make original triangular lattice continuum, on which vortices (‘particles’) arise
Inhomogeneous solutions of homogeneous problem:
Particle-like solutions usually unstable
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Lifshitz invariants allow ‘particles’

Lifshitz invariants (µ∂γν − ν∂γµ) needed for ‘particles’
Non-centrosymmetric systems

Multiferroics
S. C. Chae et al., PNAS 107, 21366 (2010)
Helimagnets: DM ×∇M ⇒ skyrmions
U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006)
Chiral liquid crystals ⇒ blue phases
D. Wright and N. Mermin, RMP 61, 385 (1989)

Here: Hamiltonian inversion symmetric,
120◦ order breaks inversion symmetry
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Lifshitz invariants

Order parameter SO(3)
Spins on plaquette at origin: To corners of planar triangle
Spins on plaquette at ~r:

(non co-planar)
plane rotated; triangle rotated within plane

R(r) =
(

µ(r),ν(r),µ(r)× ν(r)
)

Assumption: R(r) changes slowly with r
⇒ Taylor expansion

Heisenberg terms: (∂xµ)2

elastic terms, favor 120◦ state
Kitaev terms: µx∂cνx − νx∂cµx

Lifshitz invariants, favor twisting
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Potential classical ground state

Continuum analysis would put vortices all
over incomm. phase
But:

Thermal fluctuations prefer more
directional/collinear order
I. Rousochatzakis et al., PRB 93, 104417
(2016)
Quantum fluctuations prefer more
collinear order M. Becker et al., PRB 91,
155135 (2015); G. Jackeli & A. Avella, PRB
92, 184416 (2015); T. Shirakawa & S.
Yunoki, arXiv:1604.00721

⇒ discuss QUANTUM spins
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From classical to Quantum: add spin waves

Holstein-Primakoff transformation

Szi = 1− a†iai , S+
i =

√
2S − a†iaiai , S−i = a†i

√
2S − a†iai (16)

in principle exact
but we plan to drop a†iai from

√
. . .: ’linear spin-wave theory’

⇒ 〈a†iai 〉 � 2S
〈Szi 〉 should be large ∀i
⇒ choose z axis along direction locally preferred by classical order

⇒ bilinear Hamiltonian, but with terms ∝ a†ia
†
j :

HLSW =
∑
i,j

(
Aija

†
ia
†
j +Bija

†
iaj

)
+ H.c.+

∑
i

Cia
†
iai (17)

Aij , Bij and Ci depend on classical ground state!
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Bogoliubov and Fourier transforms

solution very similar to BCS theory for superconductors:

αk = ukak + vka
†
−k (18)

with

ωk =
√
B2
k −A2

k, uk =
√
Bk + ωk

2ωk
, vk = sgn(Ak)

√
Bk − ωk

2ωk
(19)

Hamiltonian is then diagonal:

HLSW =
∑
k

ωk

(
a†kak + 1

2

)
+ E0 (20)

ground-state energy
classical energy E0

zero-point energy 1
2
∑
k ωk depending on on classical pattern

⇒ classical degeneracy may be lifted!
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Conclusions from linear spin-wave theory

gives excitation spectrum (→ neutron scattering)
any ωk < 0: staring point was not actually a ground state!
may lift ground-state degeneracy
〈a†iai 〉 gives quantum correction to classical ordered moment:

if it is too large ⇒ LSWT invalid ⇒ different ground state?
e.g. triangular lattice: 〈a†a 〉 ≈ 0.26
⇒ ordered moment MS = 0.24 rather than S = 1

2
numerics (ED, DMRG . . . ): MS ≈ 0.2

LSWT surprisingly good
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What happened so far?

Ising spins:
triangular lattice: ground-state degeneracy
pyrochlore: spin ice
’magnetic monopoles’ as excitations

Heisenberg spins:
Luttinger-Tisza: frustration can give incommensurate states (e.g. spirals)
classical continuum limit: skyrmions, vortices
linear spin-wave theory:

first step towards quantum spins
excitations
may select ground state
may destabilize ordered moment
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What else can happen?

look at quantum spins
beyond Ising (Ising is always classical)
focus on S = 1

2 : LSWT better for larger spins
valence bond crystal
quantum spin liquid a possibility

short-range correlations
no long-range order
but: long-range entanglement
topological order
exotic excitations with fractional quantum numbers
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Pairing into singlets

e.g. Shastry-Sutherland

singlets on diagonals ⇒ magnetism gone
in ground state
⇒ investigate magnetic field
gapped excitations: ’triplon’
triplons can move

SrCu2(BO3)2
quite some additional frustration via
Dzyaloshinskii-Moriya

magnetic field: triplons topologically non
trivial

J. Romhányi et al., Nat. Commun. 6, 6805 (2015); P.
McClarty et al., Nat. Phys. 13, 736 (2017)
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Cartoon for one dimension

AFM chain, only NN interactions

create one excitation (usually ’magnon’):
∆S = 1
two ’spinons’ move apart
each spinon carries S = 1

2

cartoon is extremely well supported by
numerics and experiment

M. Mourigal et al., Nat. Phys. 9, 435 (2013)
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(Resonating) valence bonds in two dimensions

valence-bond crystal: spins form (static) NN singlets, magnetism gone
valence-bond liquid: change partners dynamically ⇒ very entangled

topological sector: odd/even number of dimers cut
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Candidates

anisotropic triangular-lattice organic compounds
Herbertsmithite
volborthite

different route: ’Kitaev’ model
RuCl3 with magnetic field
H3LiIr2O6 . . .
interactions at first sight very frustrated
but can be solved exactly!
gapless/gapped spinon excitations
experiment: difficult to distinguish interacting spinons from interacting magnons
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How to treat frustrated magnets I

read the literature
(find plausible parameter ranges)
first look at classical model

check whether Luttinger-Tisza works
if so, check whether coplanar state only solution
if not: numerics (e.g. Monte Carlo)

linear spin-wave theory
as a check (classical solution stable?)
resolve classical degeneracies
get excitation spectra

By now, you ideally have an idea what might happen in your system.

Daghofer, Universität Stuttgart: Frustrated Magnets 37



More elaborate treatments of quantum model

variational approaches
your Ansatz needs to contain the
right physics!
first advantage: energy estimate
converges easily
disadvantage: energy estimate
converges easily, i.e., crappy
approximation may still look good!
real advantage: better solution always
lower energy

if your system is (quasi–)one-dimensional:
DMRG

exact diagonalization
tiny systems
but no additional approximations
not affected by frustration

DMRG for higher dimensions
Quantum Monte Carlo

usually sign problem for frustrated
systems
unless you find the right basis (→
variational)
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Example: What can you do with exact diagonalization?

Lanczos method for sparse Hermitian matrices
needs to store a few vectors worth of data
ground state converges fast
Green’s functions (excitations) also accessible

ground state energy to compare approximations with
ground state to try to understand (Which patterns have large weight?)
a few excited states
excitation spectra to compare with experiment
finite-temperature properties with modified algorithms

If your cluster is too small for the relevant physics, there is not much you can do about it.
(Possibly: use information gained to reduce Hilbert space.)
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Example: What can you do with Monte Carlo?
classical MCMC:

start from some configuration (random or
ordered) → extra check on convergence
good at getting out of local minima
can be complemented by optimization
once one is close to ground state
gives upper bound for classical energy
configurations to look at
correlation functions
finite-temperature properties

Quantum MCMC:
an art of its own
frustration often causes ’sign problem’
’language’ needs to be adapted to problem
at hand
⇒ you need to have some idea first
if it works, it can give excellent information
correlations, order parameters
finite-size scaling
excitations (analytic continuation)
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Sources of frustration

’pure’ geometry (triangular motif)
longer-range couplings (J1-J2 square lattice)
directionality

Dzyaloshinskii-Moriya from spin-orbit coupling
’Kitaev’ Ising-like interactions (from SOC of t2g orbitals)
Kanamori-Goodenough rules: connection of spin and orbital without SOC

other processes:
two holes in t2g: strong SOC wants ~L+ ~S to form singlet → triplon as excitation
double exchange from electron itineracy wants ferromagnetism

competition more generally
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Summary

Frustrated magnets can be interesting:
residual degeneracy
exotic excitations (monopoles, spinons)
toological order

Frustrated magnets can be hard:
the point is that the ’obvious’ solution does not work
sometimes a differnt point of view helps (Kitaev’s spin liquid)
method needs to be adapted to problem

Competing interaction are also simply often present and have to be dealt with.
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