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5.2 Eva Pavarini

1 Introduction

In 1965, when the two founding papers [1] of density-functional theory (DFT) had just been
published in the Physical Review, very few could recognize the revolution in the making. Ef-
ficient techniques for materials science applications were missing and computers were not that
powerful. And yet in 50 years, thanks to remarkable ideas, novel algorithms and steady ad-
vance in computational power, brilliant minds brought DFT to its present splendor, making it
the standard model of condensed matter physics. In 1998, in his Nobel lecture [2], Walter Kohn,
described the most important contributions of DFT to science with these words

The first is in the area of fundamental understanding. Theoretical chemists and
physicists, following the path of the Schrödinger equation, have become accus-
tomed to think in a truncated Hilbert space of single particle orbitals. The spec-
tacular advances achieved in this way attest to the fruitfulness of this perspective.
However, when very high accuracy is required, so many Slater determinants are
required (in some calculations up to∼ 109!) that comprehension becomes difficult.

DFT changed the focus from the N -electron ground-state wavefunction Ψ(r1, . . . , rN) to a
three-dimensional variable, the electronic ground-state density n(r), or other directly measur-
able quantities, such as response functions. These, within a given approximation of the DFT
exchange-correlation functional, could be calculated from first principles, i.e., using as input the
type of atoms involved and, at most, their positions. In practice, n(r) is obtained by mapping the
actual many-body problem onto an auxiliary single-electron Hamiltonian with the same ground-
state electron density, the Kohn-Sham Hamiltonian. The associated Kohn-Sham eigenvalues are
thus in principle merely Lagrange multipliers. Remarkably, however, the big success of DFT
came, in part, from bold applications of the theory beyond its actual realm of validity. To general
surprise, the Kohn-Sham eigenvalues turned out to be in many cases excellent approximations to
the actual elementary excitations of a given material. Early on it became clear, however, that this
Ansatz fails qualitatively for a whole category of systems, those in which local Coulomb repul-
sion effects are large, also known as strongly-correlated materials. Paradoxically, in describing
strong-correlation phenomena, simple models describing generic features of the microscopic
mechanism are much more effective than DFT-based materials-specific calculations. This hap-
pens, e.g., for the Kondo effect, heavy-fermion behavior, or the metal-insulator transition. Thus
criticisms arose. Particularly outspoken in this contest was another Nobel laureate, P.W. An-
derson, who emphasized the emergent nature of a true many-body phenomenon [3]. Emergent
states typically elude a simple mapping to an effective non-interacting system. For a while, two
apparently incompatible philosophies thus coexisted. The first-principles school identified in
the materials dependence the essential ingredient for understanding the real world, and tried to
correct the failures of the practical implementations of DFT by corrections, often ad hoc, of
the exchange-correlation potential. Instead, the many-body models school identified canonical
models which explain specific emergent phenomena, dismissing the materials dependence as
non-relevant, non-generic detail. Only in recent years these two world-views started to merge,
and it became apparent that both sides were right and wrong at the same time. While the local



Dynamical Mean-Field Theory for Materials 5.3

Coulomb repulsion is indeed key, materials aspects turn out to be essential for understanding
real correlated materials. In hindsight, we can now put this debate in a different perspective.
The electronic many-body problem, in the non-relativistic limit and in the Born-Oppenheimer
approximation, is described by the Hamiltonian

Ĥe = −1

2

∑

i

∇2
i −

∑

i

∑

α

Zα
|ri−Rα|

+
∑

i>j

1

|ri−rj|
+
∑

α>α′

ZαZα′

|Rα−Rα′ |
, (1)

where {ri} are electron coordinates, {Rα} nuclear coordinates and Zα the nuclear charges.
Using a complete one-electron basis, for example the basis {ϕa(r)}, where {a} are the quantum
numbers, we can write this Hamiltonian in second quantization as

Ĥe = −
∑

ab

tabc
†
acb

︸ ︷︷ ︸
Ĥ0

+
1

2

∑

aa′bb′

Uaa′bb′ c
†
ac
†
a′cb′cb

︸ ︷︷ ︸
ĤU

. (2)

Here the hopping integrals are given by

tab = −
∫
dr ϕa(r)

(
−1

2
∇2−

∑

α

Zα
|r−Rα|

︸ ︷︷ ︸
ven(r)

)
ϕb(r), (3)

while the elements of the Coulomb tensor are

Uaa′bb′ =

∫
dr2

∫
dr2 ϕa(r1)ϕa′(r2)

1

|r1−r2|
ϕb′(r2)ϕb(r1). (4)

In principle, all complete one-electron bases are equivalent. In practice, since, in the general
case, we cannot solve the N -electron problem exactly, some bases are better than others. One
possible choice for the basis are the Kohn-Sham orbitals, {ϕKS

a (r)}, obtained, e.g., in the local
density approximation (LDA) or its simple extensions.1 In this case, it is useful to replace the
electron-nuclei interaction ven(r) with the DFT potential vR(r), which includes in addition the
Hartree term vH(r) and the (approximate) exchange-correlation potential vxc(r)

vR(r) = ven(r) +

∫
dr′

n(r′)

|r−r′|︸ ︷︷ ︸
vH(r)

+ vxc(r) (5)

so that

t̃ab = −
∫
dr ϕKS

a (r)

(
−1

2
∇2 + vR(r)

)
ϕKS
b (r). (6)

To avoid double counting (DC), we have, however, to subtract from ĤU the term ĤDC, which
describes the Coulomb terms already included in the hopping integrals

Ĥe = −
∑

ab

t̃ab c
†
acb

︸ ︷︷ ︸
Ĥ0=ĤLDA

e

+
1

2

∑

aba′b′

Ũaa′bb′ c
†
ac
†
a′cb′cb − ĤDC

︸ ︷︷ ︸
∆ĤU

. (7)

1For the purpose of many-body calculations the differences between LDA, GGA or their simple extensions are
in practice negligible; for simplicity, in the rest of the lecture, we thus adopt LDA as representative functional.
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For weakly-correlated systems, in the Kohn-Sham basis, the effects included in ∆ĤU can, in
first approximation, either be neglected or treated as a perturbation. This implies that ĤLDA

e ∼
Ĥeff , where Ĥeff is the effective model which provides a good description of the system (at least)
at low energy, and which describes emergent effective “elementary particles” and their interac-
tions. Hypothetically, one could imagine that Ĥeff is obtained via a canonical transformation,
so that Ĥeff ∼ Ŝ−1Ĥe Ŝ, although the exact form of the operator Ŝ is unknown.
A defining feature of strong-correlation effects is that they cannot be described via a single-
electron Hamiltonian, however. A model of form ĤLDA

e does not describe correctly the Mott
metal-insulator transition, no matter what the specific values of the parameters t̃ab are.2 Thus
for strongly-correlated systems the low-energy effective model must have a different form. For
Mott systems a canonical Hamiltonian is the Hubbard model

Ĥ = −
∑

σ

∑

ii′

ti,i
′
c†iσci′σ + U

∑

i

n̂i↑n̂i↓, (8)

which includes, in addition to a single-electron term, the on-site Coulomb repulsion. This
Hamiltonian captures the essence of the Mott transition. At half filling, for U= 0 it describes a
paramagnetic metal, and for ti,i′(1−δi,i′)=0 an insulating set of paramagnetic atoms. Unfortu-
nately, differently from Hamiltonians of type ĤLDA

e , Hubbard-like models cannot be solved ex-
actly in the general case. Remarkably, till 30 years ago, no method for describing the complete
phase diagram of (8) in one coherent framework, including the paramagnetic insulating phase,
was actually known. This changed between 1989 and 1992, when the dynamical mean-field
theory (DMFT) was developed [4–7]. The key idea of DMFT consists in mapping the Hubbard
model onto a self-consistent auxiliary quantum-impurity problem, which can be solved exactly.
The mapping is based on the local dynamical self-energy approximation, very good for realistic
three-dimensional lattices—and becoming exact in the infinite coordination limit [4, 5].
DMFT was initially applied to simple cases, due to limitations in model building, computational
power, and numerical methods for solving the auxiliary impurity problem (the quantum impu-
rity solvers). In the last twenty years remarkable progress lifted many of these limitations. First,
reliable schemes to build realistic low-energy materials-specific Hubbard-like models have been
devised, in particular using Kohn-Sham localized Wannier functions. This is remarkable, given
that we do not know the exact operator Ŝ which gives the effective low-energy Hamiltonian,
and thus a truly systematic derivation is not possible. Second, key advances in quantum impu-
rity solvers and increasingly more powerful supercomputers made it possible to study always
more complex many-body Hamiltonians. The approach which emerged, consisting in solving
within DMFT materials-specific many-body Hamiltonian constructed via LDA, is known as the
LDA+DMFT method [8–10]. This technique (and its extensions) is now the state-of-the-art for
describing strongly-correlated materials. In this lecture I will outline the basic ideas on which
the method is based, its successes and its limitations.

2One can obtain an insulator by reducing the symmetry, e.g, by increasing the size of the primitive cell. This
Slater-type insulator has however different properties than a Mott-type insulator.
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2 From DMFT to LDA+DMFT

In this section we introduce the basics of dynamical mean-field theory. We start from a case
for which we can perform analytic calculations, the two-site Hubbard Hamiltonian. This is a
toy model, useful to illustrate how the method works, but for which, as we will see, DMFT is
not a good approximation. Indeed, the Hubbard dimer is the worst case for DMFT, since the
coordination number is the lowest possible. Next we extend the formalism to the one-band and
then to the multi-orbital Hubbard Hamiltonian. For three-dimensional lattices the coordination
number is typically large and thus DMFT is an excellent approximation. In Sec. 3 we describe
modern schemes to construct materials-specific many-body models. They are based on Kohn-
Sham Wannier orbitals, calculated, e.g, using the LDA functional. The solution of such models
via DMFT defines the LDA+DMFT method.

2.1 DMFT for a toy model: The Hubbard dimer

The two-site Hubbard model is given by

Ĥ = εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i

n̂i↑n̂i↓, (9)

with i = 1, 2. The ground state for N = 2 electrons (half filling) is the singlet3

|G〉H =
a2(t, U)√

2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉+

a1(t, U)√
2

(
c†1↑c

†
1↓ + c†2↑c

†
2↓

)
|0〉 (10)

with

a2
1(t, U) =

1

∆(t, U)

∆(t, U)− U
2

, a2
2(t, U) =

4t2

∆(t, U)

2

∆(t, U)− U , (11)

and

∆(t, U) =
√
U2 + 16t2. (12)

The energy of this state is

E0(2) = 2εd +
1

2

(
U −∆(t, U)

)
. (13)

In the T → 0 limit, using the Lehmann representation (see Appendix B), one can show that the
local Matsubara Green function for spin σ takes then the form

Gσ
i,i(iνn) =

1

4

(
1 + w(t, U)

iνn −
(
E0(2)− εd+t−µ︸ ︷︷ ︸
E0(2)−E−(1)−µ

) +
1− w(t, U)

iνn −
(
−E0(2) + U+3εd+t−µ︸ ︷︷ ︸

E+(3)−E0(2)−µ

)

+
1− w(t, U)

iνn −
(
E0(2)− εd−t−µ︸ ︷︷ ︸
E0(2)−E+(1)−µ

) +
1 + w(t, U)

iνn −
(
−E0(2) + U+3εd−t−µ︸ ︷︷ ︸

E−(3)−E0(2)−µ

)
)
, (14)

3Eigenstates and eigenvalues of the Hubbard dimer for arbitrary filling can be found in Appendix A.1.
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where νn = π(2n+1)/β are fermionic Matsubara frequencies and µ = εd+U/2 is the chemical
potential. The weights are

w±(t, U) =
1

4

(
1± w(t, U)

)
, (15)

w(t, U) = 2a1(t, U)a2(t, U) =
4t

∆(t, U)
. (16)

The local Green function can be rewritten as the average of the Green function for the bonding
(k = 0) and the anti-bonding state (k = π), i.e.,

Gσ
i,i(iνn) =

1

2

(
1

iνn + µ− εd + t−Σσ(0; iνn)︸ ︷︷ ︸
Gσ(0;iνn)

+
1

iνn + µ− εd − t−Σσ(π; iνn)︸ ︷︷ ︸
Gσ(π;iνn)

)
. (17)

The self-energy is given by

Σσ(k; iνn) =
U

2
+
U2

4

1

iνn + µ− εd − U
2
− eik 3t

. (18)

The self-energies Σσ(0; iνn) and Σσ(π; iνn) differ due to the phase eik = ±1 in their denomi-
nators. The local self-energy is, by definition, the average of the two

Σσ
l (iνn) =

1

2

(
Σσ(π; iνn)+Σσ(0; iνn)

)
=
U

2
+

U2

4

iνn + µ− εd − U
2

(iνn + µ− εd − U
2

)2 − (3t)2

=
U

2
+

U2

4

iνn
(iνn)2 − (3t)2

(19)

The difference

∆Σσ
l (iνn) =

1

2

(
Σσ(π; iνn)−Σσ(0; iνn)

)
=

U2

4

3t

(iνn + µ− εd − U
2

)2 − (3t)2

=
U2

4

3t

(iνn)2 − (3t)2
, (20)

thus measures the importance of non-local effects; it would be zero if the self-energy was inde-
pendent of k. Next we define the hybridization function

F σ(iνn) =

(
t+∆Σσ

l (iνn)
)2

iνn + µ− εd −Σσ
l (iνn)

(21)

which for U = 0 becomes

F σ
0 (iνn) =

t2

iνn
. (22)

By using these definitions, we can rewrite the local Green function as

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)−Σσ
l (iνn)

. (23)
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Fig. 1: Hubbard dimer: Imaginary (left) and real (right) part of the retarded Green function,
obtained setting iνn → ω + iδ (analytic continuation) in Eq. (14). Red lines: k = 0 contri-
bution. Blue lines: k = π contribution. Dashed lines: Poles of the retarded Green function.
Parameters: t = 1, U = 4. The weight of the poles yielding the smaller peaks, w−(t, U), de-
fined in Eq. (15), goes to zero for U → 0. In the atomic limit, instead, all four poles have the
same weight; the energies of the two positive (negative) poles become identical, however.

The associated retarded Green function, obtained via analytic continuation (iνn → ω + iδ),
is shown in Fig. 1. It is important to point out that, as one may see from the formulas just
discussed, the local Green function and the local self-energy satisfy the local Dyson equation

Σσ
l (iνn) =

1

Gσ
i,i(iνn)

− 1

Gσ
i,i(iνn)

, (24)

where Gσ
i,i(iνn) is given by

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)
. (25)

Thus, one could think of mapping the Hubbard dimer into an auxiliary quantum-impurity model,
chosen such that, within certain approximations, the impurity Green function is as close as
possible to the local Green function of the original problem. How can we do this? Let us adopt
as auxiliary model the Anderson molecule

ĤA = εs
∑

σ

n̂sσ − t
∑

σ

(
c†dσcsσ + c†sσcdσ

)
+ εd

∑

σ

n̂dσ + Un̂d↑n̂d↓, (26)

where s labels the uncorrelated bath site and d the correlated quantum-impurity site. The first
constraint would be that Hamiltonian (26) has a ground state with the same occupations of the
2-site Hubbard model, i.e., at half filling, nd = ns = 1. Such a self-consistency condition is
satisfied if εs = µ = εd +U/2. This can be understood by comparing the Hamiltonian matrices
of the two models in the Hilbert space with N = 2 electrons. To this end, we first order the
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two-electron states of the Hubbard dimer as

|1〉 = c†1↑c
†
2↑|0〉, |4〉 = 1√

2
(c†1↑c

†
2↓ − c†1↓c†2↑)|0〉,

|2〉 = c†1↓c
†
2↓|0〉, |5〉 = c†1↑c

†
1↓|0〉,

|3〉 = 1√
2
(c†1↑c

†
2↓ + c†1↓c

†
2↑)|0〉, |6〉 = c†2↑c

†
2↓|0〉.

(27)

In this basis the Hamiltonian of the Hubbard dimer has the matrix form

Ĥ2(εd, U, t) =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εd+U




. (28)

The ground state, the singlet given in Eq. (10), can be obtained by diagonalizing the lower
3×3 block. For the Anderson molecule, ordering the basis in the same way (1 → d, 2 → s),
this Hamiltonian becomes

ĤA
2 (εd, U, t; εs) =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




. (29)

Comparing the lower 3×3 block of ĤA
2 (εd, U, t; εs) with the corresponding block of Ĥ2(εd, U, t)

we can see that, unless εs = µ = εd + U/2, the two doubly occupied states |5〉 and |6〉 have
different energies and thus the two sites i = 1, 2 are differently occupied in the ground state.
By setting εs = µ we find that

ĤA
2 (εd, U, t;µ) = Ĥ2(εd+

U
4
, U

2
, t). (30)

TheN = 2 ground state of ĤA
2 (εd, U, t;µ) has thus the form of the ground-state for the Hubbard

dimer

|G〉A =
a2(t, U/2)√

2

(
c†d↑c

†
s↓ − c†d↓c†s↑

)
|0〉+

a1(t, U/2)√
2

(
c†d↑c

†
d↓ + c†s↑c

†
s↓

)
|0〉, (31)

and the condition ns =nd = 1 is satisfied. Since εs 6= εd, however, the eigenstates of ĤA for
one electron (N = 1) or one hole (N = 3) are not the bonding and antibonding states of the
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Hubbard dimer.4 The impurity Green function is then given by

Gσ
d,d(iνn) =

1

4

(
1 + w′(t, U)

iνn − (E0(2)− E−(1)− µ)
+

1− w′(t, U)

iνn − (E+(3)− E0(2)− µ)

1− w′(t, U)

iνn − (E0(2)− E+(1)− µ)
+

1 + w′(t, U)

iνn − (E−(3)− E0(2)− µ)

)
, (32)

where

E0(2)− E±(1)− µ = −
(
E±(3)− E0(2)− µ

)
= −1

4

(
2∆(t, U/2)±∆(t, U)

)
(33)

and

w′(t, U) =
1

2

32t2 − U2

∆(t, U)∆(t, U/2)
. (34)

After some rearrangement we obtain a much simpler expression

Gσ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)−Σσ
A(iνn)

. (35)

The impurity self-energy equals the local self-energy of the Hubbard dimer

Σσ
A(iνn) =

U

2
+
U2

4

iνn
(iνn)2 − (3t)2

, (36)

as one may see comparing it to equation (19). The hybridization function is given by

Fσ0 (iνn) =
t2

iνn
, (37)

as for the non-interacting Hubbard dimer, Eq. (22). For U = 0, Gσ
d,d(iνn) equals the non-

interacting impurity Green function

G0σ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)
. (38)

The impurity Green function thus satisfies the impurity Dyson equation

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

. (39)

In Fig. 2 we show the retarded impurity Green function of the Anderson molecule (orange,
right panels) and the retarded local Green function of the 2-site Hubbard model, both in the
local self-energy approximation (blue, right panels) and exact (blue, left panels). Comparing
left and right panels we can see that setting ∆Σσ

l (ω) = 0 yields large errors. The right panels
demonstrate, however, that the spectral function of the Anderson molecule is quite similar to the
one of the Hubbard dimer with ∆Σσ

l (ω) = 0. The small remaining deviations come from the

4The complete list of eigenvalues and eigenvectors of the Anderson molecule for εs = εd + U/2 and arbitrary
electron number N can be found in Appendix A.2.
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Fig. 2: Retarded Green function of the Hubbard dimer (t = 1, U = 4) and of the Anderson
molecule (εs = εd + U/2) in the zero temperature limit. Left panels: Hubbard dimer, exact
Green function. Right panels, blue: Hubbard dimer in the local self-energy approximation, i.e.,
with ∆Σσ

l (ω) = 0. Right panels, orange: Anderson molecule. Dashed lines: Poles for the
Hubbard dimer (left) or the Anderson molecule (right).

fact that, for the Hubbard dimer, in the impurity Dyson equation, the non-interacting impurity
Green function is replaced by Gσ

i,i(iνn) in the local self-energy approximation, i.e., by the bath
Green function

Gσi,i(iνn) =
1

iνn + µ− εd −Fσl (iνn)
, (40)

where

Fσl (iνn) =
t2

iνn + µ− εd −Σσ
A(iνn)

. (41)

We are now in the position of explaining how DMFT works for the Hamiltonian of the Hubbard
dimer, choosing the Anderson molecule Hamiltonian (26) as the auxiliary quantum-impurity
model. The procedure can be split in the following steps

1. Build the initial quantum impurity model with G0σ
d,d(iνn) = G0σ

i,i (iνn). The initial bath is
thus defined by energy εs = εd and hopping t.

2. Calculate the local Green function Gσ
d,d(iνn) for the auxiliary model.
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3. Use the local Dyson equation to calculate the impurity self-energy

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

.

4. Calculate the local Green function of the Hubbard dimer setting the self-energy equal to
the one of the quantum-impurity model

Gσ
i,i(iνn) ∼ 1

2

(
1

iνn + µ− εd + t−Σσ
A(iνn)

+
1

iνn + µ− εd − t−Σσ
A(iνn)

)
.

5. Calculate a new bath Green function Gσi,i(iνn) from the local Dyson equation

Gσi,i(iνn) =
1

Σσ
A(iνn) + 1/Gσ

i,i(iνn)
.

6. Build a new G0σ
d,d(iνn) from Gσi,i(iνn).

7. Restart from the second step.

8. Iterate till self-consistency, i.e., here till nσd = nσi and Σσ
A(iνn) does not change any more.

The Anderson molecule satisfies the self-consistency requirements for εs = µ. The remaining
difference between Gσ

d,d(iνn), the impurity Green function, and Gσ
i,i(iνn), the local Green func-

tion of the Hubbard dimer in the local self-energy approximation, arises from the difference in
the associated hybridization functions

∆Fl(iνn) = Fσl (iνn)−Fσ0 (iνn) = t2p2

(
− 2

iνn
+

1

iνn − εa
+

1

iνn + εa

)
(42)

where p2 = U2/8ε2
a and εa =

√
9t2 + U2/4. The error made is small, however, as shown in the

right panels of Fig. 2. To further improve we would have to modify the auxiliary model adding
more bath sites. Staying with the Anderson molecule, in Fig. 3 we compare in more detail its
spectral function with the exact spectral function of the Hubbard dimer. The figure emphasizes
several important conclusions. The top right panel reminds us that DMFT is not a good approx-
imation for molecular complexes with two (or few) correlated sites. This is because in such
systems the coordination number is the lowest possible, the worst case for dynamical mean-
field theory. In three-dimensional crystals, instead, the coordination number is typically large
enough to make dynamical mean-field theory an excellent approximation. The bottom left panel
of Fig. 3 shows that, in the local-self-energy approximation, the agreement between Anderson
and Hubbard Green functions remains very good for any U value. This indicates that when
the local-self-energy approximation works well, as in the case of three-dimensional crystals, it
can be successfully used to study the behavior of a given system as a function of U. Leaving
for a moment DMFT aside, the two bottom panels of Fig. 3 show that the evolution with U is
different for the impurity Green function of the Anderson molecule and the exact local Green
function of the Hubbard dimer. Anticipating the discussion of later sections, if we compare to
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Fig. 3: Imaginary part of the retarded Green function of the Anderson molecule (orange) and
Hubbard dimer (blue) in the zero temperature limit. In the bottom left panel the local self-energy
approximation is adopted for the Hubbard dimer; in all other cases the exact Green function of
the Hubbard dimer is shown. Parameters: t = 1, εs = µ. Top: U = 0 (left) and U = 4t (right).
Bottom: Evolution with increasing U from 0 to 4t in equal steps.

the spectral function of the actual lattice Hubbard model, we could say that the Hubbard dimer
captures well the evolution of the Hubbard bands and the gap in the large-U limit. On the other
hand, the Anderson molecule partially captures the behavior of the central “quasi-particle” or
“Kondo” peak, although the Kondo effect itself is unrealistically described; as a matter of fact,
the Kondo energy gain (the “Kondo temperature”) is perturbative (∝ t2/U ) in the case of the
Anderson molecule, while it is exponentially small for a Kondo impurity in a metallic bath.
Going back to DMFT, this also points to the possible shortcomings of calculations in which
the quantum-impurity model for the lattice Hubbard model is solved via exact diagonalization,
however using a single bath site or very few; this might perhaps be sufficient in the limit of
large gap,5 but is bound to eventually fail approaching the metallic regime. Indeed, this failure
is one of the reasons why the solution of the Kondo problem required the development of—at
the time new—non-perturbative techniques such as the numerical renormalization group.

5For a discussion of bath parametrization in exact diagonalization and the actual convergence with the number
of bath sites for the lattice Hubbard model see Ref. [11].



Dynamical Mean-Field Theory for Materials 5.13

2.2 Non-local Coulomb interaction

In Sec. 2.1 we have seen that the local Coulomb interaction gives rise, alone, to non-local self-
energy terms, which can be very important. What is, instead, the effect of the non-local part
of the Coulomb interaction? For a Hubbard dimer, extending the Coulomb interaction to first
neighbors leads to the Hamiltonian

Ĥ =εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓

+
∑

σσ′

(
V−2JV−JV δσσ′

)
n̂1σn̂2σ′ − JV

∑

i6=i′

(
c†i↑ci↓c

†
i′↓ci′↑ + c†i′↑c

†
i′↓ci↑ci↓

)
, (43)

where the parameters in the last two terms are the intersite direct (V ) and exchange (JV )
Coulomb interaction. For two electrons the Hamiltonian, in a matrix form, becomes

ĤNL
2 =




2εd+V−3JV 0 0 0 0 0

0 2εd+V−3JV 0 0 0 0

0 0 2εd+V−3JV 0 0 0

0 0 0 2εd+V−JV −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U −JV
0 0 0 −

√
2t −JV 2εd+U




,

where the basis is defined in Eq. (27). In the atomic (t = 0) limit, the triplet states, |1〉, |2〉 and
|3〉, have lower energy than the singlet states, |4〉, |5〉 and |6〉, as one can see by comparing the
diagonal elements of the upper and lower 3×3 block of the matrix ĤNL

2 here above. This is due
to the fact that JV is positive (ferromagnetic) and V < U . The triplet can remain the ground
multiplet even for finite t. If, however, JV is sufficiently small, the ground state is a singlet,
as in the case V=JV =0. Setting for simplicity JV = 0, we notice that ĤNL

2 = Ĥ2(ε′d, U
′, t),

where the right-hand-side term is the N= 2-electron Hamiltonian of the JV =V= 0 Hubbard
dimer, Eq. (28), with parameters ε′d = εd + V/2 and U ′=U−V . The N= 2 ground state is thus
still given by Eq. (10), provided that we replace U with U ′ in the coefficients. Eventually, in the
limiting case U=V , ĤNL

2 equals the corresponding Hamiltonian of an effective non-correlated
dimer, Ĥ2(ε′d, 0, t). What happens away from half filling? For N= 1 electrons, eigenvectors
and eigenvalues are the same as in the V= 0 case; for N= 3 electrons all energies are shifted by
2V . Summarizing, we can obtain the Green function for V 6= 0 from Eq. (14) setting

E±(N=1, U ;V ) = E±(N=1, U ; 0) = εd ± t

E±(N=3, U ;V ) = E±(N=3, U ; 0) + 2V = 3εd ± t+ U + 2V

E0(N=2, U ;V ) = E0(N=2, U−V ; 0) + V = E0(2, U−V ) + V

µ(U ;V ) = µ(U) + V = µ+ V

w±(t, U ;V ) = w±(t, U−V ; 0).
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Fig. 4: Imaginary part of the retarded Green function of the Hubbard dimer in the zero temper-
ature limit (U = 4, t = 1), increasing the intersite Coulomb repulsion V from 0 to V = U = 4
in equal steps; we have set JV = 0. The dark blue line corresponds to V = 0.

Thus we have, recalling that U ′ = U−V ,

Gσ
i,i(iνn) =

w+(t, U ′)

iνn−
(
E ′0(2)−1

2
V−εd+t−µ′

)+
w−(t, U ′)

iνn−
(
−E ′0(2)+U ′+1

2
V+3εd+t−µ′

)

+
w−(t, U ′)

iνn−
(
E ′0(2)−1

2
V−εd−t−µ′

)+
w+(t, U ′)

iνn−
(
−E ′0(2)+U ′+1

2
V+3εd−t−µ′

) , (44)

where we set µ′ = µ−V/2 = 2εd+U
′/2 and E ′0(2) = E0(2, U ′). The associated spectral

function is shown in Fig. 4. The figure illustrates that increasing V from 0 to U makes the
spectra progressively closer to the one of a non-correlated system. Eventually, for U=V , only
two poles contribute, since w−(t, U ′) = 0. In this limit, the spectral function is identical to
the one of the non-interacting Hubbard dimer, however with an enhanced effective hopping,
t −→ t + V/2. We can thus say that, in first approximation, the (positive) intersite coupling V
effectively reduces the strength of correlations in the Hubbard dimer. In conclusion, the case
of the Hubbard dimer explains why strong-correlation effects typically appear when the local
term of the electron-electron repulsion dominates, i.e., when it is much larger than long-range
terms. A hypothetical system in which the Coulomb interaction strength is independent on
the distance between sites (for the dimer, U=V ) is likely to be already well described via
an effective weakly correlated model. Of course, in real materials, the effects of long-range
Coulomb repulsion can be much more complicated than in the two-site model just discussed,
but the general considerations made here remain true even in realistic cases.
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2.3 Quantum-impurity solvers: Continuous-time quantum Monte Carlo

For the case of the Anderson molecule exact diagonalization is the simplest quantum-impurity
solver and the one that provides most insights. Methods based on quantum Monte Carlo (QMC)
sampling are often, however, the only option for realistic multi-orbital and/or multi-site models.
Thus, here we explain how to obtain the impurity Green function of the Anderson molecule via
hybridization-expansion continuous-time QMC [12], a very successful QMC-based quantum-
impurity solver. In this approach, the first step consists in splitting the Hamiltonian into bath
(Ĥbath), hybridization (Ĥhyb), and local (Ĥloc) terms

ĤA = εs
∑

σ

n̂sσ

︸ ︷︷ ︸
Ĥbath

−t
∑

σ

(
c†dσcsσ + c†sσcdσ

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥloc

. (45)

Next, we write the partition function Z as a perturbation series in the hybridization. To this end,
we define Ĥ0 = Ĥbath + Ĥloc and rewrite the partition function as

Z =Tr
(
e−β(Ĥ0−µN̂)V̂ (β)

)
(46)

where the operator V̂ (β) is given by

V̂ (β) = eβ(Ĥ0−µN̂) e−β(Ĥ0+Ĥhyb−µN̂)=
∑

m

∫ β

0

dτ1 · · ·
∫ β

τm−1

dτm

︸ ︷︷ ︸∫
dτm

(−1)m
∏1

l=m
Ĥhyb(τl)

︸ ︷︷ ︸
Ôm(τ )

, (47)

and

Ĥhyb(τl) = eτl(Ĥ0−µN̂) Ĥhyb e
−τl(Ĥ0−µN̂) = −t

∑

σ

(
c†dσl(τl)csσl(τl) + c†sσl(τl)cdσl(τl)

)
. (48)

In this expansion, the only terms that contribute to the trace are even order ones (m = 2k) and
they are products of impurity (d) and bath (s) creator-annihilator pairs. We can thus rewrite

∫
dτ 2k −→

∫
dτ k

∫
dτ̄ k and Ô2k(τ ) −→

∑

σ,σ̄

Ô2k
σ,σ̄(τ , τ̄ ) (49)

where

Ô2k
σ,σ̄(τ , τ̄ ) = (t)2k

k∏

i=1

(
c†dσ̄i(τ̄i)csσ̄i(τ̄i)c

†
sσi

(τi)cdσi(τi)
)
. (50)

The vector σ = (σ1, σ2, ..., σk) gives the spins {σi} associated with the k impurity annihilators
at imaginary times {τi}, while σ̄ = (σ̄1, σ̄2, ..., σ̄k) gives the spins {σ̄i} associated with the
k impurity creators at imaginary times {τ̄i}. It follows that the local and bath traces can be
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decoupled and the partition function can be rewritten as

Z

Zbath

=
∑

k

∫
dτ k

∫
dτ̄ k

∑

σ,σ̄

dkσ̄,σ(τ , τ̄ ) tkσ,σ̄(τ , τ̄ ) (51)

dkσ̄,σ(τ , τ̄ ) =
t2k

Zbath

Trbath

(
e−β(Ĥbath−µN̂s)T ∏1

i=kc
†
sσi

(τi)csσ̄i(τ̄i)
)

(52)

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d)T ∏1

i=kcdσi(τi)c
†
dσ̄i

(τ̄i)
)
, (53)

where Zbath = 1 + 2e−β(εs−µ) + e−2β(εs−µ) and

cdσ(τ) = eτ(Ĥloc−µN̂d)cdσe
−τ(Ĥloc−µN̂d), csσ(τ) = eτ(Ĥbath−µN̂s)csσe

−τ(Ĥbath−µN̂s).

The trace involving only bath operators is simple to calculate, since Ĥbath describes an inde-
pendent-electron problem for which Wick’s theorem holds. It is given by the determinant

dkσ̄,σ(τ , τ̄ ) = det
(
Fkσ̄,σ(τ , τ̄ )

)
(54)

of the k×k non-interacting hybridization-function matrix, with elements
(
Fkσ̄,σ(τ , τ̄ )

)
i′,i

= F 0
σ̄i′ ,σi

(τ̄i′−τi) (55)

where

F 0
σ̄,σ(τ) = δσ̄,σ

t2

1 + e−β(εs−µ)
×
{
−e−τ(εs−µ) τ > 0,

+e−(β+τ)(εs−µ) τ < 0.
(56)

This is the imaginary time Fourier transform of the hybridization function introduced previously

F 0
σ̄,σ(iνn) =

t2

iνn − (εs−µ)
δσ̄,σ. (57)

The calculation of the local trace is in general more complicated. In the case discussed here,
the Hamiltonian does not flip spins. Thus only terms with an equal number of creation and
annihilation operators per spin contribute to the local trace, and we can express the partition
function in expansion orders per spin, kσ. This yields [13]

Z

Zbath

=

(∏

σ

∞∑

kσ=0

∫
dτ kσσ

∫
dτ̄ kσσ

)
dkσ̄,σ(τ , τ̄ )tkσ,σ̄(τ , τ̄ ) (58)

where the vectors σ = (σ↑,σ↓) and σ̄ = (σ̄↑, σ̄↓) have (k↑, k↓) components, and for each kσ
component σi = σ̄i = σ. Thus

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d) T

∏
σ

∏1

i=kσ
cdσ(τσi)c

†
dσ(τ̄σ̄i)

)
. (59)

The latter can be calculated analytically. To do this, first we parametrize all configurations for a
given spin via a timeline [0, β) plus a number of creator/annihilator pairs which define segments
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β 0

k=0

!2 !1 !2!1

k=1

!1!2 !2!1

!2 !1
k=2

!1 !2 !2

!2 !1

!1

Fig. 5: Representative configurations contributing to the local trace at zeroth, first and second
order. The timelines for spin up are red and those for spin down are blue. The filled circles
correspond to the insertion of a creator (time τ1), and the empty circles to the insertion of an
annihilator (time τ2). Dotted lines represent the vacuum state for a given spin, full lines the
occupied state. The grey boxes indicate the regions in which l↑,↓ 6= 0.

on the timeline. At zeroth order two possible configurations exist per spin, an empty timeline,
which corresponds to the vacuum state |0〉, and a full timeline, which corresponds to the state
c†dσ|0〉. A given configuration yields, at order k = k↑ + k↓

tkσ,σ̄(τ , τ̄ ) =

(∏

σ

skσσ

)
e−

∑
σσ′ ((εd−µ)δσσ′+

U
2

(1−δσ,σ′ ))lσ,σ′ (60)

where lσ,σ′ is the length of the overlap of the τ segments for spins σ and σ′, respectively, while
sσ = sign(τσ1−τ̄σ1) is the fermionic sign. Possible configurations at order k = 0, 1, 2 are
shown in Fig. 5. At order k = 0, summing up the contribution of the four configurations shown
in Fig. 5 yields the local partition function Zloc = 1 + 2e−β(εd−µ) + e−β(2(εd−µ)+U). Order k = 1

is already more complicated. Setting εs = µ as in the self-consistent solution, the contribution
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to the bath trace in this case is

d1
σ̄σ(τ1, τ2) = F 0

σ̄σ(τ1, τ2) = −t
2

2
δσ,σ̄ sign(τ1−τ2). (61)

The local trace at the same order is instead given by

t1σσ̄(τ2, τ1) = Trloc

(
e−β(Ĥloc−µN̂d)T cdσ(τ2)c†dσ(τ1)

)
. (62)

We can now calculate the contribution at half filling of the four k = 1 configurations shown in
Fig. 5. In the case k↑ = 1 and k↓ = 0 we have, going from left to right in each row

t1↑↑(τ2, τ1) =





+e−(τ2−τ1)(εd−µ) = +e+τ21U/2

−e−(β−(τ1−τ2))(εd−µ) = −e(β+τ21)U/2

−e−β(2(εd−µ)+U)+(τ1−τ2)(εd−µ+U) = −e−τ21U/2

+e−(τ2−τ1)(εd−µ+U)−β(εd−µ) = +e(β−τ21)U/2

(63)

where τ21 = τ2 − τ1 and µ = εd + U/2. Similar results can be obtained for k↑ = 0 and k↓ = 1.
Summing up all terms up to order one we find

Z

Zbath

∼Zloc +
∑

σ

∫ β

0

dτ2

∫ β

0

dτ1 d
1
σσ(τ1, τ2) t1σσ(τ2, τ1)

∼Zloc

(
1− β 1− eβU2

1 + e
βU
2

2t2

U

)
. (64)

The exact formula of the partition function can be obtained from the eigenvalues and eigenvec-
tors in Appendix A.2

Z

Zbath

= Zloc

3(1 + e
βU
2 ) + e

βU
4

(
4e−

β∆(t,U)
4 + 4e+

β∆(t,U)
4 + e+

β∆(t,U/2)
2 + e−

β∆(t,U/2)
2

)

8
(
1 + e

βU
2

) . (65)

Its Taylor expansion in powers of t/U yields, at second order, the expression above. Going
back to Eq. (62), one can observe that, for k = 1, the local trace is proportional to the lo-
cal Green function, Gσ

d,d(τ). Indeed, Gσ
d,d(τ) can be calculated using the configurations just

described—provided that we start from k = 1 and we divide by the hybridization function.
More specifically, for k = 1 and τ > 0 we have

Gσ
d,d(τ) ∼ − 1

β

∫ β

0

∫ β

0

dτ2dτ1 d
1
σσ(τ1, τ2)t1σσ(τ2, τ1)︸ ︷︷ ︸

w1

δ
(
τ − (τ2−τ1)

) 1

F 0
σσ(τ1−τ2)

. (66)

We are now ready to generalize to arbitrary order. Taking all k values into account, the partition
function can be expressed as the sum over all configurations {c}, i.e., in short

Z =
∑

c

wc =
∑

c

|wc| sign wc. (67)
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In a compact form, we can write wc = dτc dc tc where dτc =
∏

σ

∏kσ
i dτσidτ̄σ̄i , and dc and tc

are the bath and local traces for the configuration c. This expression of the partition function
shows that we can interpret |wc| as the sampling weight of configuration c. A generic observable
Ô can then be obtained as the Monte Carlo average on a finite number of configurations Nc

〈Ô〉 =

∑
c〈Ô〉c|wc| sign wc∑
c |wc| sign wc

=

∑
c sign wc〈Ô〉c |wc|/

∑
c |wc|∑

c sign wc |wc|/
∑

c |wc|
≈

1
Nc

∑Nc
c 〈Ô 〉c sign wc

1
Nc

∑
c sign wc

. (68)

The term 1
Nc

∑
c sign wc in the denominator is the average fermionic sign. When this is small,

much longer runs are required to obtain data of the same quality; eventually the computational
time can become so long that the calculation is unfeasible—in these cases we have a sign prob-
lem. In practice, the QMC simulation starts from a random configuration c. Next we propose
an update c→ c′. Within the Metropolis algorithm, the acceptance ratio is

Rc→c′ = min

(
1,
pc′→c
pc→c′

|wc′ |
|wc|

)
(69)

where pc→c′ is the proposal probability for the update c → c′. In the approach described here,
known as segment solver, the basic updates are addition and removal of segments, antisegments
(segments winding over the borders of the timeline, see Fig. 5), or complete lines. As example,
let us consider the insertion of a segment for spin σ. A segment is made by a creator and an
annihilator. The creator is inserted at time τin; the move is rejected if τin is in a region where
a segment exists. If created, the segment can have at most length lmax, given by the distance
between τin and the time at which the next creator is, hence

pc→c′ =
dτ̄

β

dτ

lmax

. (70)

The proposal probability of the reverse move (removing a segment) is instead given by the
inverse of the number of existing segments

pc′→c =
1

kσ + 1
. (71)

The acceptance ratio for the insertion of a segment becomes then

Rc→c′ = min

(
1,
βlmax
kσ+1

∣∣∣∣
dc′

dc

tc′

tc

∣∣∣∣
)
. (72)

For the impurity Green function, here the most important observable, the direct average yields

〈Ô〉c = 〈Gσ
d,d〉c =

∑

σ′

kσ∑

i=1

kσ∑

j=1

∆(τ, τσ′j−τ̄σ′j)
(
Mk′σ

)
σ′j,σ′i

δσ,σσ′jδσ,σ̄σ′i (73)

where Mk =
(
Fk
)−1 is the inverse of the hybridization matrix and

∆(τ, τ ′) = − 1

β

{
δ(τ − τ ′) τ ′ > 0

−δ(τ − (τ ′+β)) τ ′ < 0
. (74)

One can verify that at order k = 1 this indeed returns Eq. (66).
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2.4 Hartree-Fock versus DMFT approximation

Let us now compare the exact solution of the Hubbard dimer with the result of the Hartree-Fock
(HF) approximation, which consists in replacing

ĤU = U
∑

i

n̂i↑n̂i↓ → ĤHF
U = U

∑

i

(
n̂i↑n̄i↓ + n̂i↓n̄i↑ − n̄i↑n̄i↓

)
, (75)

where n̄iσ is the HF expectation value of the operator n̂iσ. It is convenient to define

ni = n̄i↑+n̄i↓ n =
1

2

(
n1+n2

)
δn =

1

2

(
n1−n2

)

mi =
1

2

(
n̄i↑−n̄i↓

)
m+ =

1

2

(
m1+m2

)
m− =

1

2

(
m1−m2

)

Inverting these relations, in the absence of charge disproportionation (δn = 0), we find

n̄i↑ =
(
m+ + (−1)i−1m−

)
+ n/2 n̄i↓ = −

(
m+ + (−1)i−1m−

)
+ n/2 .

The Hartree-Fock version of the Hubbard dimer Hamiltonian equals the non-interacting Hamil-
tonian plus a shift of the on-site level. This shift depends on the site and the spin

ĤHF =
∑

iσ

(
εd +∆iσ

)
n̂iσ − t

∑

σ

(
c†1σc2σ + c†2σc1σ

)
−∆0 (76)

∆0 = 2U

(
n2

4
−m2

+ −m2
−

)
(77)

∆iσ = U

(
1

2
n− σ

(
m+ + (−1)i−1m−

))
, (78)

where σ = +1 for spin up and σ = −1 for spin down. Thus we can write immediately the local
Green function matrix for site i. It is convenient to use the site basis, hence, to calculate the
matrix Gσ

i,i′(iνn). Then we have

Gσ
i,i(iνn) =

(
iνn −

(
εd − µ+Σσ

1,1(iνn)
)

t

t iνn −
(
εd − µ+Σσ

2,2(iνn)
)
)−1

i,i

(79)

where we introduced the diagonal self-energy matrix Σσ
i,i′(iνn) = ∆iσ δi,i′ . This shows that

the Hartree-Fock self-energy is not dependent on the frequency, i.e., Hartree-Fock is a static
mean-field approach. The value of the parameters m+ and m− have to be found solving the
self-consistent equations

n̄iσ = 〈n̂iσ〉 =
1

β

∑

n

e−iνn0−Gσ
i,i(iνn) = Gσ

i,i(0
−). (80)

Since the exact ground state of the Hubbard dimer is a singlet, let us consider first the anti-
ferromagnetic Hartree-Fock solution (m+=0 and m− 6=0). In this case, the Hartree-Fock self-
energy depends on the site and the interaction couples states with different k. This becomes
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clear rewriting the Green-function matrix in the basis of the bonding (k = 0) and anti-bonding
(k = π) creation/annihilation operators

Gσ(iνn) =
1

2

(
iνn−

(
εd−t−µ+1

2

∑
iΣiσ(iνn)

)
1
2

∑
i(−1)i−1Σiσ(iνn)

1
2

∑
i(−1)i−1Σiσ(iνn) iνn−

(
εd+t−µ+1

2

∑
iΣiσ(iνn)

)
)−1

. (81)

The diagonal terms of the matrix Σσ
k,k′(iνn) are thus identical

Σσ
0,0(iνn) = Σσ

π,π(iνn) =
1

2

(
Σσ

1,1(iνn) +Σσ
2,2(iνn)

)
. (82)

The off-diagonal terms Σσ
0,π(iνn) and Σσ

π,0(iνn) are not zero, however. This tells us that, by
introducing the antiferromagnetic HF correction, we lower the symmetry of the system. Let
us now calculate explicitly the eigenstates for different fillings. It is sufficient to diagonalize
Ĥ1, the Hamiltonian in the 1-electron sector; the many-electron states can be obtained by filling
the one-electron states respecting the Pauli principle. The Hamiltonian Ĥ1 can be written as
Ĥ1 = Ĥ ′1 + εdN̂ −∆0, and, in the antiferromagnetic case we then have

Ĥ ′1 =




U
(

1
2
n−m−

)
−t 0 0

−t U
(

1
2
n+m−

)
0 0

0 0 U
(

1
2
n+m−

)
−t

0 0 −t U
(

1
2
n−m−

)



. (83)

This leads to the (normalized) states

|1〉l El(1)

|1〉3 = a2|1, 1/2, ↑〉1 − a1|1, 1/2, ↑〉2 ε0(1) +∆1(t, U)

|1〉2 = a1|1, 1/2, ↓〉1 − a2|1, 1/2, ↓〉2 ε0(1) +∆1(t, U)

|1〉1 = a1|1, 1/2, ↑〉1 + a2|1, 1/2, ↑〉2 ε0(1)−∆1(t, U)

|1〉0 = a2|1, 1/2, ↓〉1 + a1|1, 1/2, ↓〉2 ε0(1)−∆1(t, U)

where ε0(1) = εd + U
(
1/2 + 2m2

− − n2/2
)

and a2
1 = 1

2

(
1 + Um−

∆1(t,U)

)
, while ∆1(t, U) =

√
(m−U)2 + t2. At half filling, if we assume that only the ground doublet is occupied, solving

the self-consistent equations (80) yields

m− = 0 or m− =
1

2

√
1− 4t2

U2
. (84)

As a result, for the non-trivial solution (m− 6=0), the gap at half filling is EHF
g = 2∆1(t, U) = U.

In Fig. 6, Hartree-Fock and exact spectral function are compared for a specific parameter choice.
Looking at the size of the gap only, one could naively infer that, for the case shown, Hartree-
Fock is an excellent approximation, better than DMFT (see Fig. 3, top-right panel). This would
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Fig. 6: Local retarded Green function Gσ(ω) of the Hubbard dimer (t = 1, U = 4) at half
filling and in the zero temperature limit. Left: Antiferromagnetic Hartree-Fock (HF) approxi-
mation; green and violet distinguish G↑(ω) and G↓(ω) at a given site. Right: Exact local Green
function, for which G↑(ω) = G↓(ω). Dashed lines: Poles of the exact local Green function.

be, however, the wrong conclusion. Although, due to the small coordination number, in this spe-
cific case, DMFT indeed sizably underestimates the gap, it nevertheless captures the essential
nature of the ground state. Instead, while HF, in this specific case,6 gives an almost exact gap,
it does it via a qualitatively incorrect description (antiferromagnetic instead of singlet ground
state). Increasing the coordination number, DMFT approaches the exact solution both in the
paramagnetic and magnetic phase, while HF does not. Let us analyze in more detail the dif-
ferences between the HF approximation and the exact solution of the Hubbard dimer. The HF
Hamiltonian for two electrons is given by Ĥ2 = Ĥ ′2 + εdN̂ −∆0, and

Ĥ ′2 =




U 0 0 −2Um− 0 0

0 U(1−2m+) 0 0 0 0

0 0 U(1+2m+) 0 0 0

−2Um− 0 0 U −
√

2t −
√

2t

0 0 0 −
√

2t U 0

0 0 0 −
√

2t 0 U




. (85)

6The Hartree-Fock approximation often overestimates the size of the gap, however.
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For m+=0 and m− 6= 0 (antiferromagnetic solution) the eigenvalues and eigenvectors are

|2〉l El(2)

|2〉5 = 1√
2

(
|2, 0, 0〉0 + a2|2, 1, 0〉 − a1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε0(2) + 2∆1(t, U)

|2〉4 = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
ε0(2)

|2〉3 = |2, 1, 1〉 ε0(2)

|2〉2 = |2, 1,−1〉 ε0(2)

|2〉1 = a1|2, 1, 0〉+ a2
1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
ε0(2)

|2〉0 = 1√
2

(
|2, 0, 0〉0 − a2|2, 1, 0〉+ a1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε0(2)− 2∆1(t, U)

where ε0(2) = 2εd + U
(
1 + 2m2

− − n2/2
)
, and a2

1 = t2/∆2
1(t, U). The antiferromagnetic

Hartree-Fock ground state has an overlap with the correct ground state, however incorrectly
mixes triplet and singlet states, thus breaking the rotational symmetry of the model. For this
reason, its energy, in the large U limit, is 2εd− 2t2/U and not 2εd− 4t2/U as in the exact case.
For the ferromagnetic solution of the Hartree-Fock equations (m−=0 and m+ 6= 0) the eigen-
values and eigenvectors are instead

|2〉l El(2)

|2〉5 = |2, 1,−1〉 ε+
0 (2) + 2Um+

|2〉4 = 1√
2

(
|2, 0, 0〉0 − 1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε+

0 (2) + 2t

|2〉3 = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
ε+

0 (2)

|2〉2 = |2, 1, 0〉 ε+
0 (2)

|2〉1 = 1√
2

(
|2, 0, 0〉0 + 1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε+

0 (2)− 2t

|2〉0 = |2, 1, 1〉 ε+
0 (2)− 2Um+

where ε+
0 (2) = 2εd + U(1 + 2m2

+ − n2/2). The ferromagnetic Hartree-Fock correction thus
yields an incorrect sequence of levels; the ground state for large U/t, indicated as |2〉0 in the
table, has no overlap with the exact ground state of the Hubbard dimer. It is, instead, one of the
states of the first excited triplet. An important observation is that, despite the errors, the energy
difference between ferro- and antiferro-magnetic ground state is

EF − EAF ∼
2t2

U
, (86)

which is indeed the correct value in the small t/U limit. It does not correspond, however, to the
actual singlet-triplet excitation energy, Γ ∼ 4t2/U .
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We can now directly compare the Hartree-Fock and the dynamical mean-field approximation
for the two-site Hubbard model. Both approaches are based on the solution of self-consistent
mean-field-type equations, and therefore they are both mean-field methods. In Hartree-Fock
the self-energy is frequency-independent (static), while in DMFT depends on the frequency
(dynamical). In Hartree-Fock the self-energy can be site-dependent, as we have seen in the
antiferromagnetic case. In DMFT, allowing for a site-dependent self-energy leads to cluster or
cluster-like extensions of the method. If the same unit cell is used in DMFT and Hartree-Fock,
we can identify another relation between the two methods. In the infinite-frequency limit, the
DMFT self-energy equals the Hartree-Fock self-energy. This can be shown analytically in a
simple way. For the case of the two-site Hubbard model, the expansion of the local lattice
Green function at high frequency in the local-self-energy approximation is

Gσ
i,i(iνn) =

1

iνn
−
(
µ− εd −Σσ

l (∞)
)

(iνn)2
+O

(
1

(iνn)3

)
. (87)

Instead, the expansion of the impurity Green-function can be written as

Gσ
d,d(iνn) =

∫ β

0

dτ eiνnτGσ
d,d(τ)

=
1

iνn

∫ β

0

dτ
deiνnτ

dτ
Gσ
d,d(τ) =

1

iνn

(
−Gσ

d,d(β
−)−Gσ

d,d(0
+)−

∫ β

0

dτ eiνnτ
dGσ

d,d(τ)

dτ

)

=
1

iνn
+

1

(iνn)2

(
dGσ

d,d(τ)

dτ

∣∣∣∣
β−

+
dGσ

d,d(τ)

dτ

∣∣∣∣
0+

+

∫ β

0

dτ eiνnτ
d2Gσ

d,d(τ)

dτ 2

)

=
1

iνn
+

dGσd,d(τ)

dτ

∣∣∣
β−

+
dGσd,d(τ)

dτ

∣∣∣
0+

(iνn)2
+O

(
1

(iνn)3

)
(88)

where

dGσ
d,d(τ)

dτ

∣∣∣∣
β−

+
dGσ

d,d(τ)

dτ

∣∣∣∣
0+

= −
〈{[

ĤA−µN̂, cdσ
]
, c†dσ

}〉
= −µ+ εd + U〈n̂−σ〉. (89)

From this result we can conclude that, assuming self-consistency has been reached,

Σσ
l (∞) = U〈n̂−σ〉. (90)

This is exactly the Hartree-Fock expression of the self-energy that we found earlier, and indeed
equals the infinite-frequency limit of the DMFT self-energy we previously calculated; however,
the occupations 〈n̂−σ〉 in DMFT and Hartree-Fock calculations are typically not the same. In
the case of the dimer, DMFT yields 〈n̂−σ〉 = 1/2; this would correspond in Hartree-Fock to a
trivial solution, in which the self-energy merely shifts all the energy levels by the same amount,
and has therefore no relevant effects.
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2.5 DMFT for the one-band Hubbard model

The Hubbard Hamiltonian (8) is in principle the simplest model for the description of the Mott
metal-insulator transition. In the tight-binding approximation it becomes

Ĥ = εd
∑

σi

n̂iσ − t
∑

σ〈ii′〉

c†iσci′σ + U
∑

i

n̂i↑n̂i↓, (91)

where 〈ii′〉 is a sum over first neighbors. As discussed in the introduction, for U = 0, at
half-filling, this Hamiltonian describes a metallic band. For t = 0 it describes an insulating
collection of disconnected atoms. Somewhere in between, at a critical value of t/U, a metal
to insulator transition must occur. In this section we will discuss the DMFT solution of (91)
and the picture of the metal-insulator transition emerging from it. The first step consists in
mapping the original many-body Hamiltonian into an effective quantum-impurity model, such
as the Anderson Hamiltonian

ĤA =
∑

kσ

εskn̂kσ

︸ ︷︷ ︸
Ĥbath

+
∑

kσ

(
V s
k c
†
kσcdσ + h.c.

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥimp

. (92)

In this model the on-site Coulomb repulsion U appears only in the impurity Hamiltonian, Ĥimp,
while the terms Ĥbath and Ĥhyb, describe, respectively, the bath and the bath-impurity hybridiza-
tion. In the next step, the quantum-impurity model is solved. Differently from the case of the
Anderson molecule, this cannot be done analytically. It requires non-perturbative numerical
methods, such as exact diagonalization, the numerical renormalization group, density-matrix
renormalization group or QMC. Here we describe the DMFT self-consistency loop for a QMC
quantum-impurity solver. Solving the quantum-impurity model yields the impurity Green func-
tion Gσ

d,d(iνn). From the impurity Dyson equation we can calculate the impurity self-energy

Σσ
A(iνn) =

(
G0σ
d,d(iνn)

)−1 −
(
Gσ
d,d(iνn)

)−1
. (93)

Next, we adopt the local self-energy approximation, i.e., we assume that the self-energy of the
Hubbard model equals the impurity self-energy. Then, the local Green function is given by

Gσ
ic,ic(iνn) =

1

Nk

∑

k

1

iνn + µ− εk −Σσ
A(iνn)

, (94)

where Nk is the number of k points. The local Dyson equation is used once more, this time
to calculate the bath Green function Gσ(iνn), which in turn defines a new quantum-impurity
model. This procedure is repeated until self-consistency is reached, i.e., the number of electrons
is correct and the self-energy does not change anymore (within a given numerical accuracy). In
this situation we have

Gσ
ic,ic(iνn) ∼ Gσ

d,d(iνn). (95)
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Fig. 7: The metal-insulator transition in ferromagnetic Hartree-Fock. The calculation is for a
square lattice tight-binding model with dispersion εk = −2t(cos kx + cos ky).

It is important to underline that self-consistency is key to the success of DMFT in describing the
metal-to-insulator transition. This can, perhaps, be best understood looking once more at the
effects of self-consistency in a simpler approach, the static mean-field Hartree-Fock method.7

If we chose the same primitive cell as in DMFT, the Hartree-Fock self-energy matrix is

Σσ
i,i′(iνn) = U

(
n

2
− σm

)
δi,i′ , (96)

where σ = +1 for spin up and σ = −1 for spin down and m = m+ = (n↑ − n↓)/2, with
nσ = niσ. The approximation is then identical to replacing the Hubbard Hamiltonian with

ĤHF =
∑

kσ

[
εk + U

(
1

2
− σm

)]
n̂kσ. (97)

This shows that heff = 2Um plays the role of an effective magnetic field (Weiss field). The
self-consistency criterion is

n̄σ = n̄iσ = 〈n̂iσ〉HF , (98)

where the expectation value 〈n̂iσ〉HF is calculated using the Hamiltonian ĤHF, which in turn
depends on n̄σ via m. This gives the self-consistency equation

m =
1

2

1

Nk

∑

kσ

σe−β(εk+U( 1
2
−σm)−µ)

1 + e−β(εk+U( 1
2
−σm)−µ)

. (99)

If we set m = 0 the equation is satisfied; for such a trivial solution the static mean-field cor-
rection in Eq. (97) merely redefines the chemical potential and has therefore no effect. For
sufficiently large U, however, a non-trivial solution (m 6= 0) can be found. If m 6= 0 the spin up
and spin down bands split, and eventually a gap can open. This is shown in Fig. 7. The static
mean-field correction in Eq. (97) equals the contribution of the Hartree diagram to the self-
energy, Σσ

H(iνn) = Un̄−σ. In many-body perturbation theory, however, n̄σ = 1/2, i.e., m = 0.
7Keeping in mind that many self-consistent solutions obtained with the Hartree-Fock method are spurious.
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Fig. 8: VOMoO4: LDA+DMFT spectral function at finite temperature for 0 ≤ U ≤ 4. Energies
are in eV and spectral functions in states/spin/eV. The calculations have been done using a
continuous-time hybridization-expansion QMC solver [13]. A detailed LDA+DMFT study of
the electronic and magnetic properties VOMoO4 can be found in Ref. [14].

In the self-consistent static mean-field approximation, instead, m can differ from zero, and a
phenomenon not described by the mere Hartree diagram can be captured, ferromagnetism in a
correlated metal. If mU is larger than the bandwidth, the system can even become an insulator.
In DMFT the role of the Weiss mean field is played by the bath Green function Gσi,i(iνn). The
emerging picture of the Mott transition is described in Fig. 8 for a representative single-band
material. In the U = 0 limit, the spectral function A0(ω) is metallic at half filling (top left
panel). For finite U, if we set Σσ

A(ω) = 0 as initial guess, the DMFT self-consistency loop
starts with A(ω) = A0(ω). For small U/t, the converged spectral function A(ω) is still similar
to A0(ω). This can be seen comparing the U = 0.5 and U = 0 panels in Fig. 8. Further
increasing U/t, sizable spectral weight is transferred from the zero-energy quasi-particle peak
to the lower (LH) and upper (UH) Hubbard bands, centered at ω ∼ ±U/2. This can be observed
in the U = 1 panel of Fig. 8. The system is still metallic, but with strongly renormalized masses
and short lifetimes, reflected in the narrow quasi-particle (QP) peak. Finally, for U larger than
a critical value (U ≥ 1.5 in the figure) a gap opens and the system becomes a Mott insulator.
When this happens the self-energy diverges at low frequency, where

Σσ
A(ω + i0+) ∼ U

2
+
U2

4

a(t, U)

ω + i0+
. (100)

In the large U/t limit the gap increases linearly with the Coulomb repulsion, i.e., Eg(1) ∼
U −W , where W is the bandwidth.
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2.6 DMFT for multi-orbital models

The multi-orbital Hubbard-like Hamiltonian has the form

Ĥ = Ĥ0 + ĤU (101)

Ĥ0 = −
∑

ii′

∑

σσ′

∑

mm′

ti,i
′

mσ,m′σ′ c
†
imσci′m′σ′ (102)

ĤU =
1

2

∑

i

∑

σσ′

∑

mm′

∑

pp′

Umpm′p′ c
†
imσc

†
ipσ′cip′σ′cim′σ, (103)

where m,m′ and p, p′ are different orbitals and the Coulomb tensor is local. The DMFT ap-
proach can be extended to solve models of this form, mapping them to multi-orbital quantum-
impurity models. The main changes with respect to the formalism introduced in the previous
section are then the following

εk → (Hk)mσ,m′σ′ (iνn+µ)→ (iνn+µ) 1̂mσ,m′σ′

ti,i
′ → ti,i

′

mσ,m′σ′ εd → εi,i
′

mσ,m′σ′ = −ti,imσ,m′σ′

where 1̂ is the identity matrix. As a consequence, the local Green function, the bath Green
function, the hybridization function, and the self-energy also become matrices

Gσ(iνn)→ Gσ,σ′m,m′(iνn) Gσ(iνn)→ Gσ,σ′

m,m′(iνn) Σσ(iνn)→ Σσ,σ′

m,m′(iνn).

The corresponding generalization of the self-consistency loop is shown schematically in Fig. 9.
Although the extension of DMFT to Hubbard models with many orbitals might appear straight-
forward, in practice it is not. The bottleneck is the solution of the generalized multi-orbital
quantum-impurity problem. The most flexible solvers available so far are all based on QMC.
Despite being flexible, QMC-based approaches have limitations. These can be classified in
two types. First, with increasing the number of degrees of freedom, calculations become very
quickly computationally too expensive—how quickly depends on the specific QMC algorithm
used and the actual implementation. Thus, going beyond a rather small number of orbitals and
reaching the zero-temperature limit is unfeasible in practice. The second type of limitation is
more severe. Increasing the number of degrees of freedom leads, eventually, to the infamous
sign problem; when this happens, QMC calculations cannot be performed at all. In order to
deal with limitations of the first type, it is crucial to restrict QMC calculations to the essential
degrees of freedom; furthermore, we should exploit symmetries, develop fast algorithms and
use the power of massively parallel supercomputers to reduce the actual computational time.
For the second type of problems not a lot can be done; nevertheless, it has been shown that a
severe sign problem might appear earlier with some basis choices than with others [13]. Al-
though eventually we cannot escape it, this suggests that the model set up can be used as a tool
to expand the moderate sign-problem zone. For what concerns symmetries, in the paramagnetic
case and in absence of spin-orbit interaction or external fields, an obvious symmetry to exploit
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Fig. 9: LDA+DMFT self-consistency loop. The one-electron Hamiltonian is built in the basis
of Bloch states obtained from localized Wannier functions, for example in the local-density
approximation (LDA); this givesHLDA

k . The set {ic} labels the equivalent correlated sites inside
the unit cell. The local Green-function matrix is at first calculated using an initial guess for the
self-energy matrix. The bath Green-function matrix is then obtained via the Dyson equation
and used to construct an effective quantum-impurity model. The latter is solved via a quantum-
impurity solver, here quantum Monte Carlo (QMC). This yields the impurity Green-function
matrix. Through the Dyson equation the self-energy is then obtained, and the procedure is
repeated until self-consistency is reached.

is the rotational invariance of spins, from which follows

Aσ,σ
′

m,m′(iνn) = δσ,σ′ Am,m′(iνn), (104)

where A = G, G,Σ. In addition, if we use a basis of real functions, the local Green-function
matrices are real and symmetric in imaginary time τ , hence

Aσ,σ
′

m,m′(iνn) = δσ,σ′ Am,m′(iνn) = δσ,σ′ Am′,m(iνn). (105)

Finally, often the unit cell contains several equivalent correlated sites, indicated as {ic} in Fig. 9.
In order to avoid expensive cluster calculations, we can use space-group symmetries to construct
the matrices G, G,Σ at a given site i′c from the corresponding matrices at an equivalent site, e.g.,
ic = 1. Space-group symmetries also tell us if some matrix elements are zero. For example, for
a model with only t2g (or only eg) states, in cubic symmetry, in the paramagnetic case and in
absence of spin-orbit interaction or external fields, we have

Aσ,σ
′

m,m′(iνn) = δσ,σ′ Am,m(iνn) δm,m′ . (106)
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3 Building materials-specific many-body models

3.1 Model construction

How do we build realistic Hubbard-like models for correlated materials? The state-of-the art
approach relies on constructing, for a given system, materials-specific Kohn-Sham Wannier
functions ϕKS

imσ(r). These can be obtained via electronic structure calculations based on density-
functional theory [8–10], e.g., in the LDA approximation.8 After we constructed the complete
one-electron basis, the first steps in model-building are those described in the introduction. We
recall here the essential points and then discuss the next stage. The many-body Hamiltonian
can be expressed as Ĥ = Ĥ0 + ĤU − ĤDC, with Ĥ0 = ĤLDA and

Ĥ0 = −
∑

ii′

∑

σσ′

∑

mm′

ti,i
′

mσ,m′σ′c
†
imσci′m′σ′ , (107)

ĤU =
1

2

∑

ii′jj′

∑

σσ′

∑

mm′pp′

U iji′j′

mp m′p′c
†
imσc

†
jpσ′cj′p′σ′ci′m′σ. (108)

The hopping integrals in Ĥ0 are calculated replacing the electron-nuclei interaction, ven(r),
with the self-consistent DFT reference potential, vR(r) = ven(r) + vH(r) + vxc(r), defined in
Eq. (5). The latter includes the long-range Hartree term, vH(r), and the exchange-correlation
contribution, vxc(r); to avoid including the effects of these terms twice, we thus introduce the
double-counting correction, ĤDC, so that

ĤU → ∆ĤU = ĤU − ĤDC.

Unfortunately we do not know which important correlation effects are included in Ĥ0 via vR(r),
and therefore the exact expression of ∆ĤU is also unknown. The remarkable successes of the
LDA suggest, however, that in many materials the LDA is overall a good approximation, and
therefore, in those systems at least, the term ∆ĤU can be completely neglected. What about
strongly-correlated materials? Even in correlated systems, most likely, the LDA works rather
well for the delocalized electrons or in describing the average or the long-range Coulomb ef-
fects. Thus one can think of separating the electrons into uncorrelated and correlated; only
for the latter we do take the correction ∆ĤU into account explicitly, assuming furthermore that
∆ĤU is local or almost local [8], since we know that it is the local term which is responsible
for most non-trivial many-body effects. Typically, correlated electrons are those that partially
retain their atomic character, e.g., those that originate from localized d and f shells; for conve-
nience, here we assume that in a given system they stem from a single atomic shell l (e.g., d for
transition-metal oxides or f for heavy-fermion systems) and label their states with the atomic
quantum numbers l and m = −l, . . . , l of that shell. Thus

U iji′j′

mpm′p′ ∼
{
U l
mpm′p′ iji′j′ = iiii ∧ mp,m′p′ ∈ l

0 iji′j′ 6= iiii ∨ mp,m′p′ /∈ l.
8Using GGA or similar functionals in place of LDA yields minor differences in the many-body Hamiltonian;

on the other hand, using LDA+U or similar approximations yields Hartree-Fock-like effects that would have to be
subtracted via the double-counting correction.
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Within this approximation ∆ĤU is replaced by ∆Ĥ l
U = Ĥ l

U − Ĥ l
DC, where Ĥ l

DC is, e.g.,
given by the static mean-field contribution of Ĥ l

U . There is a drawback in this procedure,
however. By splitting electrons into correlated and uncorrelated we implicitly assume that
the main effect of the latter is the renormalization or screening of parameters for the former,
in particular of the Coulomb interaction. The computation of screening effects remains, un-
fortunately, a challenge. The calculation of exact screening would require the solution of the
original many-body problem, taking all degrees of freedom into account, an impossible task.
Commonly-used approximate schemes are the constrained LDA approximation (cLDA) and
the constrained random-phase approximation (RPA) [8–10]. Both methods give reasonable es-
timates of screened Coulomb parameters for DMFT calculations. Typically cRPA calculations
include more screening channels and are performed for less localized bases than cLDA calcula-
tions; thus cRPA parameters turn out to be often smaller than cLDA ones. To some extent, the
difference can be taken as an estimate of the error bar.
After we have selected the electrons for which we think is necessary to include explicitly the
Hubbard correction, in order to build the final Hamiltonian for DMFT calculations, it is often
convenient to integrate out or downfold, in part or completely, the weakly correlated states.
There are different degrees of downfolding. The two opposite extreme limits are (i) no down-
folding, i.e., keep explicitly in the Hamiltonian all weakly-correlated states (ii) massive down-
folding, i.e., downfold all weakly correlated states. If we perform massive downfolding, e.g.,
downfold to the d (or eg or t2g) bands at the Fermi level, the Hamiltonian relevant for DMFT
takes a simpler form. The LDA part is limited to the selected orbitals or bands, which, in the
ideal case, are decoupled from the rest

ĤLDA = −
∑

ii′

∑

σσ′

∑

mαm
′
α

ti,i
′

mασ,m
′
ασ
′ c
†
imασ

ci′m′ασ′ . (109)

The local screened Coulomb interaction for this set of orbitals is the on-site tensor

Ĥ l
U =

1

2

∑

i

∑

σσ′

∑

mαm′α

∑

mβm
′
β

Umαmβm′αm′β c
†
imασ

c†imβσ′cim′βσ′
cim′ασ. (110)

It is important to point out that the level of downfolding does not modify the hardness of the
quantum-impurity problem. If, for example, in studying a transition-metal oxide, we plan to
treat only 3d bands as correlated, it does not matter if we perform calculations with a Hamilto-
nian containing also, e.g., O p states, or we rather downfold all states but the 3d and work with
a set of Wannier basis spanning the 3d-like bands only. The number of correlated orbitals in the
quantum-impurity problem is the same.9

One advantage of massive downfolding is that the double-counting correction typically becomes
a shift of the chemical potential, and it is therefore not necessary to calculate it explicitly. A
second important advantage is that the interpretation of the final results is simpler. Instead, a
disadvantage is that the basis functions are less localized, and therefore the approximation of
the Coulomb interaction to a local operator might be less justified, and in some cases it might be

9The choice might influence how severe the QMC sign problem is, however.
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Fig. 10: NMTO Wannier-like orbitals for t2g states in LaTiO3 obtained via massive downfolding
to the t2g bands. The t2g-like orbitals have O p tails at the neighboring O sites reflecting the
distortions of the lattice. The figure has been taken from Ref. [15].

necessary to include non-local Coulomb terms. The effect of downfolding on the localization of
Wannier functions is illustrated for example in Fig. 10. Finally, another disadvantage of massive
downfolding is that the energy window in which the model is valid is more narrow.

Considered all advantages and disadvantages, what is then the best way of performing DMFT
calculations? There is no universal answer to this question; it depends on the problem we are
trying to solve and the system we are studying. Independently of the degree of downfolding
we choose, it is important to point out that a clear advantage of Wannier functions in general
is that they carry information about the lattice, bonding, chemistry and distortions. This can be
seen once more in Fig. 10, where orbitals are tilted and deformed by the actual structure and
chemistry of the compound. Indeed, one might naively think of using a “universal” basis, for
example atomic functions, the same for all systems, and thus calculating the hopping integrals
using simply the electron-nuclei interaction ven(r). Besides the complications arising from the
lack of orthogonality, such a basis has no built-in materials-specific information, except lattice
positions. It is therefore a worse starting point to describe the electronic structure, even in the
absence of correlations; larger basis sets are required to reach the same accuracy. From the
point of view of LDA+DMFT, an advantage of a universal basis would be that it is free from
double-counting corrections; on the other hand, however, exactly because we do not use the
LDA potential and LDA orbitals to calculate the hopping integrals, we also cannot count on
the successes of LDA in the description of average and long-range Coulomb effects. For these
reasons ab-initio Wannier functions remain so far the basis of choice. They can be built via the
Nth-Order Muffin-Tin Orbital (NMTO) method [15], the maximal-localization scheme [16], or
projectors. Fig. 10 shows examples of NMTO-based Wannier functions.
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3.2 Localization of the basis and range of the Coulomb interaction

No matter what construction procedure is used, a common characteristic of ab-initio Wannier
functions is that they are site-centered and localized.10 A question naturally arises: How crucial
is it to use localized functions as one-electron basis? This is an important point, since we have
seen that strong-correlation effects arise in systems in which the on-site Coulomb interaction
is much larger than longer-range terms. Let us consider therefore two opposite extreme limits.
The first is the case in which the basis functions are independent of the lattice position (i.e., they
are totally delocalized). For such a basis choice the Coulomb interaction parameters would be
the same for every couple of lattice sites, no matter how distant. Thus a Hubbard-like model
would be hard to justify. In the second extreme case, we adopt a hypothetical basis so localized
that ψimσ(r)ψi′m′σ′(r) ∼ δi,i′δ(r−Ti). Even for such a basis choice, the unscreened Coulomb
interaction is not local. It is given by

U iji′j′

mp m′p′ ∝
δi,i′δj,j′

|Ti−Tj|
, (111)

hence it decays slowly with distance, although the (divergent) on-site term dominates. More
generally, we can conclude that by increasing the localization of the basis we enhance the im-
portance of the on-site Coulomb repulsion with respect to long-range terms; this better justifies
Hubbard-like models—although we have to remember that most of the long-range part of the
Coulomb interaction is in any case subtracted via the double-counting correction ĤDC. The
extreme case of the δ(r−Ti) functions also illustrates, however, how far we can go. A major
problem with the extremely localized basis discussed above is that it would make it impossible
to properly describe bonding, since the hopping integrals would be zero. Although such a basis
is, of course, never used to build many-body models, there is a tempting approximation that
has similar flaws. If one uses DFT-based electronic-structure techniques that tile the space in
interstitial and non-overlapping atomic spheres (e.g., the LAPW method), it is tempting to use
as basis for correlated electrons the atomic functions defined inside the atomic spheres. These
functions are, by construction, much more localized than Wannier orbitals (even when no down-
folding is performed in the Wannier construction). However, they do not form a complete basis
set in the space of square-integrable functions. This is obvious because such a basis does not
even span the LDA bands; to reproduce the bands we need, in addition, functions defined in
the interstitial region. This is illustrated in Fig. 11 for a simple example of two quantum well
potentials.11 We therefore cannot use it to write the many-body Hamiltonian in the usual form
Ĥ0 + ĤU . In conclusion, a basis which, as ab-initio Wannier functions, is complete and indeed
spans the bands, is better justified, although we somewhat lose in localization.

10Differences in localizations between the various construction procedures are actually small for the purpose of
many-body calculations, provided that the same bands are spanned in the same way.

11Another, but less severe, problem of atomic sphere truncations is that the results will depend on the sphere
size, in particular when atomic spheres are small.
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Fig. 11: The problem of two quantum wells. The figure shows (schematically) for each well
the wavefunction of a bound state. If we consider only the part of the wavefunction inside its
own well (red in the figure), the differential overlap (and hence the hopping integral) between
functions centered on different wells would be zero.

3.3 Hubbard Hamiltonians for t2g and eg systems

Several strongly-correlated transition-metal oxides can be described via minimal materials-
specific Hubbard-like models which involve only t2g or only eg bands. A representative system
of this kind is the layered perovskite Sr2RuO4 with the 4d t42g electronic configuration. Its crys-
tal structure is shown in Fig. 12 (left side), together with the associated LDA bands crossing
the Fermi level (top-right panel). Due to the layered structure the xz and yz bands are quasi
one-dimensional and the xy band is quasi two-dimensional. Thus, the t2g bands give rise, in
first approximation, to a Fermi surface made of four crossing lines (from the xz, yz bands) and
a circle (from the xy band), shown schematically in the bottom-right panel of Fig. 12. Exper-
imentally, Sr2RuO4 is a correlated metal down to 1.5 K; below this temperature it becomes an
anomalous superconductor. Other representative cases of t2g systems are the Mott insulating
perovskites LaTiO3 and YTiO3, with the electronic configuration 3d t12g. A paradigmatic eg
system is instead the orbitally ordered insulator KCuF3, with the electronic configuration t62ge

3
g.

For all these materials, if we massively downfold all LDA bands but the t2g (or the eg), the
resulting 3-band (or 2-band) generalized Hubbard model takes the form

Ĥ =
∑

iσ

∑

mm′

εm,m′ c
†
imσcim′σ −

∑

σ

∑

i6=i′

∑

mm′

ti,i
′

m,m′ c
†
imσci′m′σ

+U
∑

i m

n̂im↑n̂im↓ +
1

2

∑

iσσ′

m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′

− J
∑

i m6=m′

(
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

)
, (112)

where m,m′ = xy, yz, xz for t2g and m,m′ = 3z2−r2, x2−y2 for eg. The parameters U and J
are the direct and exchange screened Coulomb integrals. The Coulomb interaction ĤU is here
assumed to have full O(3) rotational symmetry, as in the atomic limit.12 The first two terms of

12A derivation of the Coulomb interaction tensor for the free atom can be found in my chapter in Ref. [8]. There
the difference in the values of U and J for the t2g and eg orbitals is also discussed.
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Fig. 12: Left: Crystal structure of the tetragonal layered perovskite Sr2RuO4. Right: Low-
energy LDA band structure (top) and schematic representation of the associated Fermi surface
(bottom). The band structure was calculated using the Nth-Order Muffin-Tin Orbital (NMTO)
method. The figure is rearranged from Ref. [17].

ĤU are the so-called density-density terms, and the last two are the pair-hopping and spin-flip
interactions. We dropped the double-counting correction ĤDC, which in this case is a mere shift
of the chemical potential. The energies εm,m′ are the elements of the crystal-field matrix. In
the case of cubic symmetry, the crystal-field matrix, the self-energy, the Green function and the
spectral function are all diagonal in orbital space. For low-symmetry systems, however, this is
not true. It can be seen in Fig. 13, which shows the diagonal and off-diagonal elements of the
spectral-function matrix for the orthorhombic Mott insulator YTiO3.

3.4 Spin-orbit interaction and effects of the basis choice

In many interesting systems the spin-orbit interaction ĤSO plays an important role. In the atomic
limit, for the d shells the spin-orbit interaction is

ĤSO =
∑

µ

λµ
∑

mm′

∑

σσ′

εµmσ,m′σ′ c
†
mσcm′σ′ , εµmσ,m′σ′ = 〈mσ|lµsµ|m′σ′〉, (113)

where µ = x, y, z, and λµ are the spin-orbit couplings, with λµ = λ in O(3) symmetry, and

λ ∼ gµ2
B

〈
1

r

d

dr
vR(r)

〉
. (114)
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Fig. 13: The LDA+DMFT spectral function matrix of the orbitally-ordered t12g system YTiO3,
in the (xz, yz, xy) basis (left panels) and in the crystal-field basis (right panels) [15, 22].

For a given material, the on-site one-electron Hamiltonian is thus the matrix ε̂ with elements
ε̂mσ,m′σ′ = εm,m′ +

∑
µ λµε

µ
mσ,m′σ′ , where the terms εm,m′ arise from the crystal field. More

specifically, for a t2g system with tetragonal site symmetry we have

ε̂ =




εxy 0 0 0 λy
2
− iλx

2

0 εyz
iλz
2

−λy
2

0 0

0 − iλz
2

εxz
iλx
2

0 0

0 −λy
2
− iλx

2
εxy 0 0

λy
2

0 0 0 εyz − iλz
2

iλx
2

0 0 0 iλz
2

εxz




. (115)

Although ĤSO looks like an innocent one-body term, it turns out that, for materials, simulations
including this term are more difficult. This has two reasons: (i) QMC calculations involve
Green function matrices of larger size, e.g., 6×6 as in the case just discussed, hence they are
from the start computationally more demanding; (ii) QMC calculations are often hampered by
a much stronger sign problem; even when it can be tamed, this often happens at the price of
further increasing the computational time. Thus, specific basis choices and approximations are
used. A possible approach consists in working in the basis that diagonalizes the non-interacting
local Green function or the non-interacting local Hamiltonian; such a choice is known to reduce
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Fig. 14: Fermi surface of Sr2RuO4 calculated with LDA (a), LDA+SO (b), LDA+DMFT (c) and
LDA+SO+DMFT (d). Figure from [18]. The grey maps are experimental results from Ref. [21].

the sign problem, as was first shown in Ref. [13] for the case without spin-orbit interaction. For
a system with tetragonal symmetry, the states that diagonalize the local Green function belong
either to the Γ6 or to the Γ7 irreducible representations, both 2-dimensional. There are two
(coupled) Γ7 representations, defining the space Γ ′7⊕Γ ′′7 . The analytic expression of these states
can be found in Refs. [17–19]. The transformation to the Γ6 ⊕ Γ ′7 ⊕ Γ ′′7 basis is, of course, in
principle, a mere basis change. Approximations are made, however, if all off-diagonal elements
of the Green function are set to zero or the Coulomb tensor is truncated to further tame the sign
problem or to reduce the computational time.

It has to be noticed that the Coulomb interaction of the t2g Hubbard Hamiltonian is only invari-
ant under orthogonal transformations of the basis. Thus if we change basis to the Γ6-Γ ′7-Γ ′′7
representation, the form of the interaction tensor changes. The exact expression of the Coulomb
tensor in the angular momentum basis (i.e., the one relevant when the t2g crystal-field splitting
is zero) can be found in Ref. [20]. For the Coulomb interaction tensor in the basis of spherical
harmonics you can instead look the derivation in Ref. [8].

In the presence of crystal-field splitting, if the spin-orbit interaction does not dominate, it is
often preferable to perform the calculations in the t2g basis. To this end, it is key to make
QMC codes very efficient in order to reduce as much as possible statistical errors and increase
the average sign. Exact LDA+SO+DMFT calculations in the t2g basis have been successfully
performed, e.g., for Sr2RuO4, using an interaction-expansion continuous-time quantum Monte
Carlo solver, and an orbital-dependent phase which makes the Green function matrix real [18,
19]. This approach allowed us to study, for example, the effects of the spin-orbit interaction on
the Fermi surface without approximations. The results are shown in Fig. 14 in comparison with
experimental data; we will discuss them in the next section.
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3.5 Non-spherical Coulomb terms and double-counting correction

While for a free atom the Coulomb tensor is spherical (symmetry O(3)), in a material the
screened Coulomb tensor has, in general, the symmetry of the lattice. Taking into account non-
spherical Coulomb terms is, in general hard, both because they make QMC calculations more
difficult and can worsen the sign problem, and because in their presence the double-counting
correction has to be explicitly accounted for, even when massive downfolding is used. For these
reasons they are typically neglected. Recently it was shown that they can play, however, a very
important role for the Fermi surface [18]. Let us therefore discuss how the double-counting
correction can be treated with and without such terms, following the approach of Ref. [18].
One of the classical approximations for the double-counting correction is the so called “around
mean-field” approximation. The idea is that LDA describes well the average Coulomb term, in
the absence of orbital polarization. This is equivalent to using as double-counting correction
the Hartree term of the Coulomb interaction tensor, i.e., the operator

ĤDC
U = U

∑

m

(
n̂m↑n̄m↓ + n̄m↑n̂m↓

)
+ (U−2J)

∑

m6=m′

(
n̂m↑n̄m′↓ + n̄m↑n̂m′↓

)

+ (U−3J)
∑

σ

∑

m>m′

(n̂mσn̄m′σ + n̄mσn̂m′σ)− µN̂d (116)

− U
∑

m

n̄m↑n̄m↓ + (U−2J)
∑

m6=m′
n̄m↑n̄m′↓ + (U−3J)

∑

σ

∑

m>m′

n̄mσn̄m′σ

where n̄mσ = n/d, if n is the number of the correlated electrons per site and d the orbital
degeneracy. Within this approximation we have, after collecting all terms,

ĤDC
U =(δµ−µ)N̂d −

n2

d

(
U (2d−1)− 5 (d−1)

)

δµ =
n

d

(
U(2d−1)− 5J(d−1)

)
.

If we perform massive downfolding to the correlated bands, as previously mentioned, this is
merely a shift of the chemical potential and can therefore be neglected. Let us now consider the
case in which the Coulomb interaction has an additional term that does not change the averageU
but has tetragonal symmetry

∆ĤU =
∆U

3

(
2n̂xy↑n̂xy↓ − n̂xz↑n̂xz↓ − n̂yz↑n̂yz↓

)

We can now use the around mean-field approximation for this term as well. We find

∆ĤDC
U =

n

6

∆U

3

∑

σ

(
2n̂xyσ−n̂xzσ−n̂yzσ

)
=
n

6
∆U

∑

σ

n̂xyσ − δµ′N̂

δµ′ =
n

6

∆U

3
.

This term, in addition to a shift of the chemical potential, yields an effective change of the
crystal-field splitting εCF, and has therefore to be accounted for explicitly.
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How does ∆U change the Fermi surface of Sr2RuO4? The Fermi surface is determined by the
poles of the Green function at zero frequency. These depend on the non-interacting Hamilto-
nian and the self-energy matrix at zero frequency. In the Fermi-liquid regime, and within the
DMFT approximation, the effect of the self-energy is merely to modify the on-site part of the
Hamiltonian, i.e., the crystal-field splitting εCF = εxz/yz − εxy and the spin-orbit couplings λµ

εCF →εCF +∆εCF(0),

λµ →λµ +∆λµ(0).

Both ∆εCF(0) and ∆λµ(0) are positive for Sr2RuO4, and lead to an almost doubling of the
LDA parameters. The positive ∆εCF(0) shrinks the β sheet (xz/yz bands) and enlarges the
γ (xy band) sheet. This can be understood from the schematic Fermi surface and the LDA
band structure in Fig. 12. Enhancing the crystal-field splitting corresponds to slightly moving
the xy band downwards and the xz/yz bands upwards with respect to the Fermi level. The
enhancement of the spin-orbit couplings has a large Hartree-Fock component [19], since the
spin-orbit interaction yields a small but finite off-diagonal occupation matrix. For an O(3)-
symmetric Coulomb tensor, the Hartree-Fock enhancement of the spin-orbit coupling is thus

∆λz
2

= i
(
U−3J

)
n↑↑xz,yz

∆λy
2

= −
(
U−3J

)
n↑↓xy,yz,

∆λx
2

= −i
(
U−3J

)
n↑↓xz,xy,

where nσσ′m,m′ are the off-diagonal elements of the density matrix. The Coulomb-enhanced spin-
orbit coupling improves the agreement with the experimental Fermi surface at the degeneracy
points (e.g., along the Γ -X direction). The agreement with ARPES data, however, further
deteriorates for the γ sheet. This can be seen in Fig. 14, in which the LDA and LDA+DMFT
Fermi surface are shown on top of ARPES data from Ref. [21].
Including correlation effects has thus two opposite effects: on the one hand, the agreement with
experiments improves (with respect to LDA) for the β sheet; on the other hand, it deteriorates
for the γ sheet. This can be seen comparing either panels (a) and (c) or panels (b) and (d)
in Fig. 14. Introducing tetragonal Coulomb terms, and in particular the term ∆U, however,
reduces the crystal-field enhancement to

εCF → εCF +∆ε′CF(0),

where ∆ε′CF(0) becomes almost zero for cRPA-based estimates of ∆U . This leads to an almost
perfect Fermi surface, as shown in Fig. 15. Non-spherical Coulomb terms turn out to be more
important for properties that reflect the point symmetry of the lattice, like the Fermi surface,
than for properties that average over orbitals, like the total spectral function [19].
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Fig. 15: The LDA+SO+DMFT Fermi surface of Sr2RuO4 calculated including the effects of the
non-spherical Coulomb term ∆U . Figure from [18].

4 Conclusion

The LDA+DMFT approach and its extension has proved very successful for describing corre-
lated materials. It has shown us that materials details do matter, contrarily to what often was
assumed in the past; for example a crystal field much smaller than the bandwidth can favor the
Mott metal-insulator transition [22]. The method is also becoming very versatile. It is now
possible, e.g., to study multi-orbital models including the full Coulomb vertex and spin-orbit
interaction, and to calculate response functions or bosonic excitations. Still, many challenges
remain. Models with more than a few orbitals or sites and out-of-equilibrium phenomena re-
main, e.g., very hard to study. Furthermore, since the birth of DFT, Moore’s law constantly
helped as much as new algorithms in extending the frontier; that has come now slowly to a halt.
Quantum computers and artificial intelligence, or other new, not yet foreseeable, technological
advances might help us in the future. The present deceleration, however, urges us to think
to what we should strive for. It is perhaps easier to discuss first what we do not need. We
do not need a magical calculating machine that gives us, either via an “exact” first principles
scheme or via artificial intelligence, answers with no explanations. Reproducing the data is,
of course, the aim of theory, but not the only goal. As scientists we need to know why. The
danger of giving this question up is evident if we look back at the historical controversy between
copernican and ptolemaic system [23]. At the time, the ptolemaic system was the one which
agreed better with experiments. Indeed, it had been fine-tuned along the years, via a series of ad
hoc assumptions. The copernican system was initially not performing so well, because it was
based on circular orbits. But, at the end, it is the copernican system that made a contribution to
science, by identifying the correct picture. A theory should reproduce the generic aspects of a
phenomenon, but providing at the same time, as Walter Kohn underlined, understanding, via a
coherent description and the essential details. This should be our aim.
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Appendices

A Eigenstates of two-site models

A.1 Hubbard dimer

The Hamiltonian of the Hubbard dimer is given by

Ĥ = εd
∑

σ

∑

i=1,2

niσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓.

It commutes with the number of electron operator N̂ , with the total spin Ŝ, and with Ŝz. Thus
we can express the many-body states in the atomic limit as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1
2
, σ〉1 = c†1σ|0〉 1 1

2
εd

|1, 1
2
, σ〉2 = c†2σ|0〉 1 1

2
εd

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 2εd

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 2εd

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 2εd

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 2εd

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εd + U

|3, 1
2
, σ〉1 = c†1σc

†
2↑c
†
2↓|0〉 3 1

2
3εd + U

|3, 1
2
, σ〉2 = c†2σc

†
1↑c
†
1↓|0〉 3 1

2
3εd + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 4εd + 2U

Let us order the N = 1 states as in the table above, first the spin up and then spin down block.
For finite t the Hamiltonian matrix for N = 1 electrons takes then the form

Ĥ1 =




εd −t 0 0

−t εd 0 0

0 0 εd −t
0 0 −t εd



.
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This matrix can be easily diagonalized and yields the bonding (−) and antibonding (+) states

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1
2
, σ〉+ = 1√

2

(
|1, 1

2
, σ〉1 − |1, 1

2
, σ〉2

)
εd + t 2

|1, 1
2
, σ〉− = 1√

2

(
|1, 1

2
, σ〉1 + |1, 1

2
, σ〉2

)
εd − t 2

where dα(N) is the spin degeneracy of the α manifold.
For N = 2 electrons (half filling), the hopping integrals only couple the three S = 0 states, and
therefore the Hamiltonian matrix is given by

Ĥ2 =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εd+U




.

The eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = a1|2, 0, 0〉0 − a2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2
(U+∆(t, U)) 1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd 3

|2, 0, 0〉− = a2|2, 0, 0〉0 + a1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2
(U−∆(t, U)) 1

where

∆(t, U) =
√
U2 + 16t2,

and

a2
1 = a2

1(t, U) =
1

∆(t, U)

∆(t, U)− U
2

a2
2 = a2

2(t, U) =
4t2

∆(t, U)

2

∆(t, U)− U ,

so that a1a2 = 2t/∆(t, U). For U = 0 we have a1 = a2 = 1/
√

2, and the two states |2, 0, 0〉−
and |2, 0, 0〉+ become, respectively, the state with two electrons in the bonding orbital and the
state with two electrons in the antibonding orbital; they have energy E±(2, 0) = 2εd ± 2t; the
remaining states have energy 2εd and are non-bonding. For t > 0, the ground state is unique
and it is always the singlet |2, 0, 0〉−; in the large U limit its energy is

E−(2, 0) ∼ 2εd − 4t2/U.
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In this limit the energy difference between the first excited state, a triplet state, and the singlet
ground state is thus equal to the Heisenberg antiferromagnetic coupling

Eo(2, 1)− E−(2, 0) ∼ 4t2/U = Γ.

Finally, for N = 3 electrons, eigenstates and eigenvectors are

|3, S, Sz〉α Eα(3) dα(3, S)

|3, 1
2
, σ〉+ = 1√

2

(
|1, 1

2
, σ〉1 + |1, 1

2
, σ〉2

)
3εd+U + t 2

|3, 1
2
, σ〉− = 1√

2

(
|1, 1

2
, σ〉1 − |1, 1

2
, σ〉2

)
3εd+U − t 2

If we exchange holes and electrons, the N = 3 case is identical to the N = 1 electron case.
This is due to the particle-hole symmetry of the model.

A.2 Anderson molecule

The Hamiltonian of the Anderson molecule is given by

Ĥ = εs
∑

σ

n̂2σ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ εd

∑

σ

n̂1σ + Un̂1↑n̂1↓.

In the atomic limit, its eigenstates states can be classified as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1
2
, σ〉1 = c†1σ|0〉 1 1

2
εd

|1, 1
2
, σ〉2 = c†2σ|0〉 1 1

2
εs

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 εd + εs

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 εd + εs

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 εd + εs

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 εd + εs

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εs

|3, 1
2
, σ〉1 = c†1σc

†
2↑c
†
2↓|0〉 3 1

2
εd + 2εs

|3, 1
2
, σ〉2 = c†2σc

†
1↑c
†
1↓|0〉 3 1

2
2εd + εs + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 2εd + 2εs + U
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For N = 1 electrons the Hamiltonian can be written in the matrix form

Ĥ1 =




εd −t 0 0
−t εs 0 0
0 0 εd −t
0 0 −t εs


 .

The eigenstates are thus

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1
2
, σ〉+ = α1|1, 1

2
, σ〉1 − α2|1, 1

2
, σ〉2 1

2

(
εd + εs +

√
(εd−εs)2 + 4t2

)
2

|1, 1
2
, σ〉− = α2|1, 1

2
, σ〉1 + α1|1, 1

2
, σ〉2 1

2

(
εd + εs −

√
(εd−εs)2 + 4t2

)
2

where dα(N) is the spin degeneracy of the α manifold. For εs = εd + U/2 the eigenvalues are

E±(1, S) = εd +
1

4

(
U ±∆(U, t)

)
,

while the coefficients are α1 = a1(t, U) and α2 = a2(t, U).

For N=2 electrons, the hopping integrals only couple the S=0 states. The Hamiltonian is

Ĥ2 =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




For εs = εd + U/2 the eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = b1|2, 0, 0〉0 − b2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U+2∆(t, U

2
)
)

1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd + U
2

3

|2, 0, 0〉− = b2|2, 0, 0〉0 + b1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U−2∆(t, U

2
)
)

1

where b1 = a1(t, U/2) and b2 = a2(t, U/2). These states have the same form as in the case
of the Hubbard dimer; the ground state energy and the weight of doubly occupied states in
|2, 0, 0〉− differ, however. Finally, for N = 3 electrons, the eigenstates are

|3, S, Sz〉α Eα(3, S) dα(3, S)

|3, 1
2
, σ〉+ = α2|1, 1

2
, σ〉1 + α1|1, 1

2
, σ〉2 3εd + U + 1

4

(
U+∆(t, U)

)
2

|3, 1
2
, σ〉− = α1|1, 1

2
, σ〉1 − α2|1, 1

2
, σ〉2 3εd + U + 1

4

(
U−∆(t, U)

)
2
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B Lehmann representation of the local Green function

For a single-orbital model, the local Matsubara Green function for a given site i is defined as

Gσ
i,i(iνn) = −

∫ β

0

dτ eiνnτ
〈
T ciσ(τ)c†iσ(0)

〉
, (117)

where T is the time-ordering operator, β = 1/kBT , and νn a fermionic Matsubara frequency.
Let us assume to know all eigenstates |Nl〉 and their energy El(N), for arbitrary number of
electrons N . Thus, formally

Gσ
i,i(iνn) =− 1

Z

∑

Nl

∫ β

0

dτ eiνnτe−∆El(N)β〈Nl|ciσ(τ)c†iσ(0)|Nl〉, (118)

where Z =
∑

Nl e
−∆El(N)β is the partition function, ∆El(N) = El(N) − µN with µ the

chemical potential, and c†iσ(0) = c†iσ. We now insert a complete set of states, obtaining

Gσ
i,i(iνn) =− 1

Z

∑

ll′NN ′

∫ β

0

dτ eiνnτe−∆El(N)β〈Nl|ciσ(τ)|N ′l′〉〈N ′l′ |c†iσ|Nl〉

=− 1

Z

∑

ll′NN ′

∫ β

0

dτ e−∆El(N)βe(iνn+∆El(N)−∆El′ (N ′))τ
∣∣〈N ′l′|c†iσ|Nl〉

∣∣2

=
1

Z

∑

ll′NN ′

e−∆El′ (N
′)β + e−∆El(N)β

iνn +∆El(N)−∆El′(N ′)
∣∣〈N ′l′ |c†iσ|Nl〉

∣∣2. (119)

Due to the weight |〈N ′l′|c†iσ(0)|Nl〉|2 only the terms for whichN ′ = N+1 contribute. Thus, after
exchanging the labels l′N ′ ↔ lN in the first addend, we obtain the Lehmann representation

Gσ
i,i(iνn)=

∑

ll′N

e−β∆El(N)

Z

( ∣∣〈(N−1)l′ |ciσ|Nl〉
∣∣2

iνn −∆El(N)+∆El′(N−1)
+

∣∣〈(N+1)l′ |c†iσ|Nl〉
∣∣2

iνn −∆El′(N+1)+∆El(N)

)
.

Let us consider as example the atomic limit of the Hubbard model at half filling. In this case
all sites are decoupled; there are four eigenstates per site, the vacuum |0〉, with ∆E(0) = 0, the
doublet |1σ〉 = c†iσ|0〉, with ∆Eσ(1) = −U/2, and the doubly-occupied singlet |2〉 = c†i↑c

†
i↓|0〉,

with ∆E(2) = 0. Furthermore, Z = 2
(
1 + eβU/2

)
and

∣∣〈(N−1)l′ |ciσ|Nl〉
∣∣2=

{
1 if |Nl〉=|2〉 ∨ |1σ〉
0 otherwise

∣∣〈(N+1)l′|c†iσ|Nl〉
∣∣2=

{
1 if |Nl〉=|0〉 ∨ |1−σ〉
0 otherwise

Thus, after summing up the four non-zero contributions, we find

Gσ
i,i(νn) =

1

2

(
1

iνn + U/2
+

1

iνn − U/2

)
. (120)



5.46 Eva Pavarini

References

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

[2] W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)

[3] P.W. Anderson: More and different – Notes from a thoughtful curmudgeon
(World Scientific, Singapore, 2011)

[4] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

[5] E. Müller-Hartmann, Z. Phys. B 74, 507 (1989);
Z. Phys. B 76, 211 (1989); Int. J. Mod. Phys. B 3, 2169 (1989)

[6] A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992)

[7] M. Jarrell, Phys. Rev. Lett. 69, 168 (1992)

[8] E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein (Eds.):
The LDA+DMFT approach to strongly-correlated materials,
Reihe Modeling and Simulation, Vol. 1 (Forschungszentrum Jülich, 2011)
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