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1 Introduction

Quantum computing is a new emerging computer technology. Current quantum computing
devices are at a development stage where they gradually become suitable for small real-world
applications. This lecture is devoted to the practical aspects of programming such quantum
computing devices.

Over the past twenty years, two major paradigms of quantum computing have emerged. The first
is the gate-based model of quantum computing (also known as universal quantum computing),
and the second is quantum annealing (also known as adiabatic quantum computing). From a
mathematical point of view, both models have the same computational power, but in practice
they operate in a fundamentally different way.

The first part of this lecture focuses on gate-based quantum computers. We will define the
basic unit of computation, the quantum bit (qubit), and how a quantum computer processes
information. Subsequently, basic quantum circuits (i.e., the programs for gate-based quantum
computers) are discussed and simulated. Finally, a more complex algorithm called the quantum
approximate optimization algorithm (QAOA), which is considered to be an approach to address
small optimization problems, is introduced and discussed.

In the second part of this lecture, we give an introduction to quantum annealing and discuss
how to program a quantum annealer, i.e., the quantum processing unit (QPU) that performs the
quantum annealing process. The introductory part starts with a discussion of discrete optimiza-
tion problems and a formulation of the particular set of problems that can be solved on currently
available quantum annealers. Subsequently, we describe the working principles of quantum an-
nealers and the architecture of the currently available quantum annealers by D-Wave Systems
Inc. We also discuss physical aspects including some limitations. Finally, we demonstrate how
to program a D-Wave quantum annealer by means of some example programs.

2 Gate-based quantum computing

This section provides a hands-on introduction to the programming of gate-based quantum com-
puters. After introducing the basic notions of qubits and gates, several examples of quantum
circuits are programmed and discussed. These are either fundamental building blocks in disrup-
tive quantum circuit scenarios, such as the quantum Fourier transform in Shor’s factoring algo-
rithm [1], or potentially relevant for near-term applications such as the QAOA [2]. In this sec-
tion, the term quantum computer always refers to the gate-based model of quantum computing.

2.1 Quantum bits and gates

2.1.1 Single qubits

A gate-based quantum computer is designed to process information in terms of quantum bits
(qubits). The word qubit is derived from the basic unit of computation in a digital computer, a
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Fig. 1: Bloch sphere representation of a pure single-qubit state |1)). The azimuthal angle
¥ € [0, 7| and the polar angle ¢ € [0, 2) are defined in Eq. (3), and the Cartesian coordinates
r®, rY, and r* are given by Eq. (5).

binary digit or bit. While a bit in a digital computer can only ever be either O or 1, a qubit is a
generalization of a bit in the sense that it can also be in a superposition of 0 and 1.
We describe a qubit |¢/) in terms of two complex numbers v, ¢, € C,

9 = ol0) + 1) = (0. 1)
U

which are normalized such that the norm of [¢) is (¥]1)) = |1|* + |11]/*> = 1. In the quantum

computer model, the notions of 0 and 1 are represented by the standard vectors

o) = (é) .= (‘f) @)

For the sake of programming quantum computers, these two notations are equivalent. We call
|1)) the state vector of the qubit.
Informally, a complex superposition like Eq. (1) is sometimes described as “0 and 1 at the same
time”, although it is important to realize that the notion of time plays no role here. Equation (1)
is a well-defined mathematical object that completely describes the state of a single qubit.
A very useful representation of the general single-qubit state |¢/) in Eq. (1) is called the Bloch
sphere representation that is shown in Fig. 1. It is particularly convenient to visualize the states
and operations on a single qubit. We obtain the Bloch sphere representation by using the fact
that (¢[1)) = || + [11]*> = 1, which implies that there exists an angle ¥ € [0, 7] such that
|tho| = cos(¥/2) and |¢)1| = sin(¥/2). Furthermore, as the global phase of a quantum state
is irrelevant, we can choose without loss of generality 1)y = cos(9/2) and ¥, = €' sin(/2),
where ¢ € [0, 27) represents the relative phase between the complex coefficients. We thus
obtain 9 o

[1) :cos§|0)+ewsm§|1). 3)
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For all values of ¢ and ¢, this state can be drawn on the surface of a 3D sphere with radius one
as shown in Fig. 1.

When a qubit is measured, one always obtains one of the two discrete, digital outcomes “0”
and “1”. The complex coefficients of |)) determine the corresponding probabilities py = |1/
and p; = |1|? to measure one of the two outcomes. On the Bloch sphere, the probabilities pg
and p; can be obtained from the projection of |¢) onto the z axis.

Exercise 1: Calculate ¥/ and ¢ for the following states, visualize them on the Bloch sphere
with radius one, and compute the probabilities to measure the qubit in |0) and |1):

(@) [0), (b) [1), () (0) + |1))/v2. (@) (0) +1[1))/v2, (&) (v3/2)]0) + ((1+4)/2V2)|1),
() ((144)/2)[0) + ((1—+/37)/+/8)|1) (hint: remove the global phase here first).

The Cartesian coordinates r*, r¥, and r* of the single-qubit state |¢)) in Fig. 1 can be com-
puted as expectation values of the Pauli matrices,

R
10 10 0 —1

A short calculation yields

rt (o™ ) sin ) cos ¢
r=|r| =\ @lc") | = |sindsing | . &)
r (]o*[) cos ¥

2.1.2 Quantum gates

A quantum gate is a unitary operation that can be performed on a qubit. All single-qubit quan-
tum gates can be visualized as rotations of |¢)) on the Bloch sphere in Fig. 1. One defines three
elementary qubit rotations as matrix exponentials of the Pauli matrices in Eq. (4)

e a2 cos(0/2) —isin(0/2)

RO =" = o) 008(9/2)> ’ ©)
Yoy —ifoY/2 cos(0/2) —sin(6/2)

RO=""C = e cos(e/z)) ’ M
z _ p—i007/2 _ exp(—if/2) 0

R (0) = = 0 exp(i9/2)> | ©

Here, the quantum gate R*(0) for o = x, y, z rotates the qubit |¢)) by an angle # around the axis
« according to the right-hand rule. This means that if the thumb of the right hand points along
the corresponding axis « in Fig. 1, the sense of rotation is given by the curl of the remaining
fingers, i.e., counter-clockwise when looking at the top of the thumb. An example for the gate
RY(7) is shown in Fig. 2.
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Fig. 2: Visualization of the single-qubit gate RY(r) (see Eq. (7)) applied to the state |0) on the
Bloch sphere defined in Fig. 1. The gate represents a counter-clockwise rotation around the vy
axis by an angle of w. Shown is the time evolution of a qubit during the application of a pulse
designed to implement the gate RY(w). The time is encoded in the color of the arrows (from blue
at the beginning over yellow to red at the end of the pulse). The data is taken from a simulation
of transmon qubits [3].

Often, at least one of these elementary qubit rotations is implemented in a hardware realization
of a gate-based quantum computer. When programming quantum computers, the quantum gates
are internally decomposed into products of such elementary rotations. For instance, for the
current generation quantum processors of the IBM Q (which are based on superconducting
transmon qubits [4]), the elementary rotations are R*(7/2) and R*(0) [5,6].

A general single-qubit rotation by an angle ¢ around a unit axis 77 = (n*, n¥, n?) is given by

_ e = 0 0
R () = e ?"9/2 = cos 3 I —isin 3 n-a, )

where 77 - ¢ = n"0” +nY0Y +n*o”, and I is the 2 x2 identity matrix. All single-qubit gates can
be written in this form, up to an arbitrary global phase factor of the form €.

Besides the elementary single-qubit rotations, there are six other important gates that belong to
the so-called standard gate set

X = o%, Y = oY, Z =07, (10)

1 (11 10 10
HZE(l —1)’ SZ(O 2) TZ(O e“f/4>' (v

Especially the X gate (also known as the NOT gate or bit flip gate) and the Hadamard gate H
(which maps a state |0) to a uniform superposition of |0) and |1) and back) are used in many
applications. A comprehensive list of common quantum gates is given in appendix A.

As each quantum gate U is unitary (i.e., U~! = U' where U denotes the Hermitian conjugate),
the inverse of a quantum gate U is again a quantum gate.
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Exercise 2: For all single-qubit gates in Egs. (10) and (11) and their inverses, find the cor-
responding axes 7 and angles # (and optionally the global phase factors €'*) to express them in
the form of Eq. (9) and visualize their operations as rotations on the Bloch sphere, as in Fig. 2.

2.1.3 Multiple qubits

While a single-qubit state is described by two complex coefficients 1)y and v, (see Eq. (1)), a
multi-qubit state |¢)) with n > 1 qubits is described by 2" complex coefficients ¢y, . . . , Pan_1,

Yo
U
[y = 1o|0---00) + 1[0 01) + -+ - + hgn_4|1---11) = : , (12)
Pon 1
The corresponding basis vectors |gog; - - - gn—1) forg; = 0,1and i = 0, ..., n—1 are constructed

from the single-qubit standard basis in Eq. (2) by means of the fensor product “®” (also known
as Kronecker product), |qoq1 -+ Gn—-1) = |qo) ® |q1) ® - - - ® |¢n—1). For simplicity, we often do
not write the tensor product explicitly. Consequently, for two qubits, the computational basis

reads
1 0 0 0
0 1 0 0
00) = 01) = 10) = 11) = 13
oo =[] =] nmo={7. =, (13
0 0 0 1

One may notice that in Eq. (12), the basis state |qoq; - - - ¢,—1) corresponding to the coefficient
; for 7 = 0,...,2"—1 contains the binary representation of j, i.e., bin(j) = qoq1 - - - gn—1, Or
equivalently, j = Z?:_Ol q; x 2"~"~1. For this reason, we identify the notations |j) = |bin(j)) =
|goq1 + - - gn—1) so that the state in Eq. (12) is also written as

2"—1

) = > wli). (14)
=0

This notation is needed for the example of the quantum Fourier transform discussed below.
Quantum gates on multiple qubits are, like single-qubit gates, unitary operations on the multi-
qubit state [¢). In practice, most multi-qubit gates are actually single-qubit gates acting on
certain qubits in the multi-qubit state. For instance, a single-qubit gate U from Eqs. (10) or (11)
acting on a certain qubit i (denoted by U;) transforms a basis vector |qq - - - ¢,—1) according to

Ui|CIO o 'C]n—1> = |C]0 e 'Qi—1>(U’(h’>)|Qi+l T qn—l>~ (15)

In other words, U, is given by the tensor product U; = [ ® - - - QU ® - - - ® I.
Another common set of multi-qubit gates derived from single-qubit gates are controlled quan-
tum gates. For a single-qubit gate U, the controlled-U gate (denoted by CU) acts on two qubits
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i1 and i in a multi-qubit state. Its action on a basis vector |qq - - - ¢,,—1) is defined by

90" Gn— (if g¢;, = 0)
CUsin|q0 "+ Gn—1) = o Y ) ' . (16)
190 -+ Gis—1) (U i)) | Gigs1 - - Gn—1)  (f @i, = 1)

In other words, the action is controlled by qubit ¢;,: Only if the control qubit ¢;, is in state 1,
the target qubit ¢;, experiences the single-qubit gate U. On the two-qubit space spanned by the
four basis states in Eq. (13), the matrix representation of the controlled-U gate is given by

I 0
CU = (0 U) , a7

where 0 denotes a 2x2 matrix with all elements equal to zero.

It is important to realize that for controlled quantum gates constructed in this way, the global
phase of the single-qubit gate U becomes a relative phase. In particular, this means that,
even though the single-qubit gates S and R*(7/2) are equivalent, the controlled gates CS and
CR?(m/2) are different two-qubit gates.

Two very important two-qubit gates constructed like this are the controlled-NOT (CNOT or
CX) and the controlled-phase (CZ) gates. Their matrix representations with respect to the
two-qubit basis in Eq. (13) are given by

1000 100 0
1 1

cxor= [0 OO0 cz- |V 100 (18)
0001 001 0
0010 000 —1

The CNOT gate and the CZ gate can be converted into one another using the identity CNOT =
(I ® H)CZ (I ® H), which can be verified by computing the product of the correspond-
ing matrix representations. On a space with more than two qubits, the same identity reads
CNOT
quantum computers can be found in the following exercise and in [7].

iy = Hiy CZ;4, Hi,. More of such circuit identities that are useful when programming

Exercise 3: Verify the following circuit identities, e.g. by computing their matrix represen-
tations on a suitable space and then confirming that they are equivalent (up to a global phase):
@X=HZH,b)Y=HYH,(c)Z=HXH,d) [ =XX=YY=/Z=HH,

(e S=TT,(H) H= SR*(n/2)S,(g) HTH = R*(n/4), (h) XRY(0) X = RY(—0),

(i) CNOT,,;, = H, CZys, Hiys

() CNOT,,;, = H;, H;, CNOT,,;, H; H;,,

(k) CNOT,,;, = H;;H;, CNOT,,,;, H;, H;
()] CZm'g = CZz'Qz‘l, (m) CSm‘g = CSz‘gil,
(n) C(e]) = R*(a) ® I,

(0) R (0) CNOT;,;, = CNOT;,,, i3 (0),
(p) Rf2(9> CNOT;y;, = CNOTilizRZ(Q)-

29
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(a)

(b)
— _ (T
—{ Tt}
Fig. 3: Example quantum circuit diagrams. Note that the diagrams are read from left to right.
(a) Quantum circuit that generates the state cos(m/8)|00) — isin(7/8)|11) (which can be com-
puted using the circuit identity from exercise 3 (g)) when starting with the initial state |00) on
the left. (b) Schematic way of writing a circuit identity for the CS gate.

D
AN
V

N
L

2.2 Programming and simulating quantum circuits

A program for a gate-based quantum computer is called a quantum circuit. A quantum circuit
is a sequence of several quantum gates. It is often expressed with a diagrammatic language that
uses horizontal lines to represent the qubits and boxes to represent the quantum gates. The order
of execution in the quantum gate sequence is from left to right. Controlled quantum gates such
as CU;,;, 1n Eq. (16) are visualized with a filled dot on the control qubit and the single-qubit
gate U on the target qubit. The CNOT gate in particular is visualized with an encircled plus
symbol on the target qubit. Two examples using this schematic language are shown in Fig. 3.
As described in the previous section, each gate in a quantum circuit represents a unitary matrix.
By multiplying all quantum gate matrices in a quantum circuit, we could, in principle, obtain a
large unitary matrix that is equivalent to the quantum circuit. Note that, as the order of execution
in a quantum circuit diagram is from left to right, the corresponding quantum gate matrices must
be multiplied in reverse order. For the right circuit in Fig. 3(a), for instance, this matrix product
would read CNOT (H® I) (T ® 1) (H ® I).

To simulate a quantum circuit, one could use the thus obtained matrix and apply it to a certain
initial state, which is typically chosen as [0 - - - 0) = (1,0, ...,0)7. This method works for small
quantum circuits. However, it quickly becomes prohibitive because the size of the quantum
circuit matrix for N qubits is 2V x 2V,

Larger quantum circuits with, say, N > 30 qubits can be simulated on supercomputers such as
the GPU-cluster JUWELS Booster using JUQCS-G [8], which is a GPU-accelerated version
of the Jiilich Universal Quantum Computer Simulator (JUQCS) [9, 10] that was also used for
benchmarking purposes in Google’s quantum supremacy experiment [11]. For reference, the
standard gate set implemented by JUQCS is given in appendix A.

A giskit [12] interface to JUQCS including the conversion from the giskit gate-set to the
JUQCS gate-set is available through the Jiilich UNified Infrastructure for Quantum computing
(JUNIQ) service at http://jugit.fz—juelich.de/gip/junig-platform.

An example program to simulate the circuit in Fig. 3(a) using this interface is shown in listing 1.
It simulates the quantum circuit by propagating the state vector, sampling from the resulting
probability, and returning the counts for all sampled events (in this case “00” and “11”). Fur-
thermore, instead of sampling, JUQCS also provides an option to return the full state vector
up to a certain number of qubits. An example program for this mode of operation is shown in
listing 2.


http://ju git.fz-juelich.de/qip/juniq-platform
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import giskit

circuit = giskit.QuantumCircuit (2)
circuit.h(0)
circuit.t (0)
circuit.h(0)

circuit.cx (0,1)
circuit.measure_all ()

from juqcs import Jugcs
backend = Jugcs.get_backend (' gasm_simulator’)
backend.allocate (minutes=10, max_qubits=2)

job = giskit.execute(circuit.reverse_bits (), backend=backend, shots=1000)
result = job.result ()

print (result.get_counts())

backend.deallocate ()

Listing 1: Example program to simulate the quantum circuit shown in Fig. 3(a). As the result
of this circuit is cos(m/8)|00) — isin(w/8)|11), the printed counts should correspond to the
probabilities pyy = cos(m/8)* ~ 0.85 and p1; = sin(w/8)* ~ 0.15. Note also the usage
of circuit.reverse_ bits (), because giskit uses the ordering |q,_1 - qo) while all
standard text books as well as these lecture notes use |qqo -+ - Gn—1)-

import giskit

circuit = giskit.QuantumCircuit (2)
circuit.h(0)

circuit.t (0)

circuit.h(0)

circuit.cx (0,1)

from jugcs import Jugcs
backend = Jugcs.get_backend(’ statevector_simulator’)
backend.allocate (minutes=10, max_qubits=2)

job = giskit.execute(circuit.reverse_bits (), backend=backend)
result = job.result ()

print (result.get_statevector())

backend.deallocate ()

Listing 2: Example program to simulate the quantum circuit shown in Fig. 3(a) using the
state vector simulator. The result of this program is a numerical representation of the state
cos(m/8)|00) — isin(mw/8)|11), up to a global phase.
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| | | |

. I®I®QFT, | Addition[l4] | I®I®QFT) |

| | | |
) = g | ’ . A
02) — | —ZHs : M
lg3) — = «—{H}- [z} H}— —A

Fig. 4: Circuit for a quantum adder [ 14] that adds two two-qubit registers modulo four, accord-
ing to the rule Eq. (19). The circuit consists of four parts: Initialization of the qubit registers,
QFT on the last two registers, the phase addition transform from [14], and another QFT on the
last two registers. Note that the swaps that are part of typical QFT circuits (see [7]) are left
out. Finally, a measurement of the qubits, which produces a “0” or a “1” for each qubit, is
indicated at the end. To rewrite the gates, one can use identities from exercise 3 or [7].

Instead of the JUQCS backend, one can also use a simulator from giskit via the function
giskit.Aer.get backend. This one only works for circuits with a small number of
qubits, but it does not need the calls to backend.allocate and backend.deallocate
as it does not run on a supercomputer. Furthermore, backends for real quantum devices can be
accessed in a similar manner through the IBM Q Experience [13].

2.3 Example: Quantum adder

As a first “real-world” example, we consider a four-qubit quantum computer program that adds
two two-qubit registers according to the rule

lq0q1)12a3) — 190q1)| 901 + G23), (19)

where the expression qyq; + ¢2¢s3 is to be understood as integer addition (modulo 4) of the two-
bit integers with binary representations qyq; and g¢2qs, respectively. After the application of the
quantum circuit, the second register contains the sum in binary notation. Some examples of the
operation of the quantum adder are

12)[1) = 12)[3), (20)
0) + 1) 2) +(3)

|2>T = |2>T7 (21)

2) 0) + 1) +|2) = 2) 2) +(3) +0) 22)

V3 YER

The interesting thing is that it can also add superpositions in parallel, as done in Egs. (21)
and (22) (note that this works because quantum circuits are linear maps, so a circuit U applied
to a state [1)1) + [1)o) produces the state U|t1) + Ultbo)).
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Exercise 3: Use the rule Eq. (19) for the quantum adder to work out the result when the initial
state is given by (|0) + |3))/vV2 ® (|1) + [2) + |3))/V/3.

The quantum circuit for the adder consists of four stages that are shown in Fig. 4. The pur-
pose of the INIT block at the beginning is to initialize the registers in a certain initial state, such
as the states on the left-hand side in Egs. (20)—(22).

The second and the fourth stage contain a quantum Fourier transform (QFT) on the second
register. The QFT is an operation that, loosely speaking, moves information from the registers
to the phases of exponential prefactors and vice versa. For an initial N-qubit basis state |j)
(j=0,...,2¥-1), the QFT is defined as the unitary transformation

2N _1

L QFT 1 ik /N
0= s D TR, (23)
k=0

where we identified j and its binary representation qq - - - q—1 as done in Eq. (14). There is a
generic quantum circuit [7] to implement this transformation using only H gates and conditional
z rotations in a number of steps polynomial in N, as opposed to the Fast Fourier Transform
that requires O(N2Y) steps. It is an important component of many quantum algorithms for
which a theoretical exponential speedup is known. One such algorithm is Shor’s factorization
algorithm [1] in which the QFT is basically used to find the period of a suitable function (note
that finding periods is a generic feature of any Fourier transform).

The third part of the quantum adder circuit in Fig. 4 is the addition transform from [14]. It uses
conditional phase shifts from the first to the second register so that an addition is effectively
performed in the exponent of the phase factors. For instance, if the first register represents an
integer [ (e.g. |I) = |qoq1) above), and the second register is given by the QFT of an integer j
(i.e. QFT|j) oc 32, €>™5/2" |k)), the addition transform performs the operation

2N 1 2N 1
> k) o D7 AU ). 24)
k=0 k=0

After this step, the inverse QFT (given by QFT' in Fig. 4) can be used to move the result
(1) of the addition from the exponent back into the second register. Note that the addition is
automatically implemented modulo 2, because the complex exponential function is periodic
with period 273.

As an example, we consider an implementation of the quantum adder using the single-qubit
gate set defined in Egs. (9)—(11) and the CNOT gate as the only two-qubit gate. This requires
rewriting (also known as transpiling) the gates using the circuit identities from exercise 3 and
Fig. 3(b). The result is shown in Fig. 5 and listing 3. Note that the initial state in this example is
chosen to be |2)(|0) + |1))/v/2, i.e., the example from Eq. (21) above. As the output contains a
superposition of the results, each result occurs as separate event in the simulation.
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=]

¢V

S pr
U \d
> H] H—
T

Fig. 5: Example circuit for the quantum adder in Fig. 4 after transpiling some of the quantum
gates using appropriate circuit identities. Note that in this example, an X and an H gate have
been used to explicitly create the initial state for the example in Eq. (21).
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import giskit

circuit = giskit.QuantumCircuit (4)
circuit.x(0)
circuit.h(3)
circuit.barrier ()
circuit.t (1)
circuit.h(2)
circuit.t (3)
circuit.cx (2, 3)
circuit.tdg(3)
circuit.t (2)
circuit.cx (2, 3)
circuit.h(2)
circuit.cx (0, 2)
circuit.h(2)
circuit.cx(2,1)
circuit.tdg(l)
circuit.cx (2,1)
circuit.cx (1, 3)
circuit.cx (2, 3)
circuit.t (3)
circuit.cx (2, 3)
circuit.h(2)
circuit.tdg(3)
circuit.measure_all ()

from jugcs import Jugcs
backend = Juqgcs.get_backend (' gasm_simulator’)
backend.allocate (minutes=10, max_qubits=circuit.num_qubits)

job = giskit.execute(circuit.reverse_bits (), backend=backend, shots=1000)
result = job.result ()

print (result.get_counts())

backend.deallocate ()

Listing 3: Example program for the quantum adder circuit shown in Fig. 5 for the case given
by Eq. (21) with initial state |2)(|0) + [1))/v/2. The circuit is simulated with JUQCS as shown
in listing 1. The output should be the events “1010” (corresponding to state |2)|2)) and “1011”
(corresponding to state |2)|3)) with roughly 50% frequency each.
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Repeat for k£ = 1, ..., p QAOA steps

| Weig,ilting Mixing |
| ~|
70) R#(2vho) — R (26;)
|
’(.I1> Rz(Qthl) Hef’i’YkJijofU; ] R$(2Bk)
i |
: : : : | :
|
|
A
J

Fig. 6: General QAOA circuit [2]. Initially, the qubits are brought into a uniform superposition
over all states using H gates. Then, k = 1,...,p QAOA steps with variational parameters
Bi,...,Bpandy, ..., v, are applied. Each QAOA step k consists of a “weighting step” using z
rotations scaled with vy, and the parameters {h;} and { J;;} that define the optimization problem
(see Eq. (25)), followed by a “mixing step” using x rotations with angle 2. Finally, the qubits
are measured. The result can then be used to update the variational parameters until the energy
is sufficiently low.

2.4 Example: Quantum approximate optimization algorithm

In this section, we consider an approach to address optimization problems on gate-based quan-
tum computers. Gate-based quantum computers are not made to solve optimization problems
by design, which is a key difference to the adiabatic quantum computers covered in the next
section. However, there is a standard (and by now rather common) way of addressing optimiza-
tion problems in QUBO/Ising form on gate-based quantum computers, namely the quantum
approximate optimization algorithm (QAOA) [2].

The optimization problems considered here are discrete Ising problems. The goal of such prob-
lems is to find the minimum of an energy function (or cost function)

N-1
E(S()?...,S]\[,l) = th’31+ZJij5iSj, (25)
i=0 i<j
where sg,...,sy_1 = *£1 are the discrete, two-valued variables, /N is the number of variables

(which is equal to the number of required qubits), and {h;} and {J;;} are real numbers that
define the optimization problem instance (for more information see the following section).

The QAOA is a quantum algorithm to find minima (or low-energy states) of Eq. (25). It is
a variational quantum algorithm, which means that it has a number of variational parameters
B1,...,Bpand 7y, ..., 7, that are varied during the iterations of the algorithm. The order of the
QAOA, denoted by p, determines the number of variational parameters. It is worth mention-
ing that for large p, the QAOA can be related to approximate quantum annealing, which also
provides a method to find a useful initialization of the variational parameters (see [8]).
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Fig. 7: Circuit identity to implement the second part of the weighting step in Fig. 6.

In each iteration of the QAOA, one executes the quantum circuit in Fig. 6 for a given set of
variational parameters 1, .., 3, and 71, ..., ", (note that the quantum circuit depends on the
fixed problem instance given by {h;} and {J;;}). To execute the gate [, ; e~ 3777 in the
weighting step of the QAOA circuit in Fig. 6 using the standard gate set defined above, we need

another circuit identity. This identity is shown in Fig. 7.

Exercise 4: Prove the circuit identity in Fig. 7, e.g. by computing the matrix representations of
both sides and verifying that they are equivalent.

Each measurement at the end of the circuit produces a string of discrete variables sg, ..., sy_1 =
+1, where the qubit measurement ¢; = 0 corresponds to s; = +1 and ¢; = —1 corresponds
to s; = —1. Note that this convention, ¢; = (1—s;)/2, is standard for gate-based quantum
computers [7]; for quantum annealers, one often uses ¢; = (1+s;)/2 instead (see below).

From several executions of the circuit, an expectation value for the energy in Eq. (25) can be
computed. This result can be used to update the variational parameters and perform the next
iteration. This process is continued as long as necessary until it converges.

Note that, when the QAOA is simulated using a state vector simulator (see listing 2), the expec-
tation value can also be computed directly from the state vector |¢). This is done by replacing
the problem variables s; in Eq. (25) by the Pauli matrices o (which yields the Ising Hamiltonian
of the problem) and computing the expectation value

(E) = (WIE(G, - - o 1) ). (26)
As an example, we consider a three-qubit problem characterized by the energy function
1 1 1 1
E(So, S1, 82) = —5p -+ 551 — 552 -+ 58051 + 58152. (27)

In this case, the problem parameters for Eq. (25) are given by (ho, h1, he) = (—1,1/2,—1/2)
and (Jo1, Jog, J12) = (1/2,0,1/2). The minimum is given by (s, s1, s2) = (+1,—1,+1) and
corresponds to the state vector |010). The energy at the minimum is F(+1,—1,+1) = —3.
Constructing the QAOA circuit for p = 1 according to Figs. 6 and 7 yields the quantum circuit
in Fig. 8. The program to simulate this circuit for a certain range of values for ; and v, is
shown in listing 4.

Figure 9 shows the expectation value of the energy, computed from the state vector |¢) accord-
ing to Eq. (26), and the success probability [{010]+/)|. In this case, the energy minimum (see
Fig. 9(a)) is very close to the point with maximum success probability (see Fig. 9(b)). Note that
this is not guaranteed for larger QAOA applications [8, 15].
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R*(271ho) R*(26))
R*(2vih) R*(271J01) R*(261)
R*(271hs) R*(28,)

Fig. 8: Example QAOA circuit for p = 1 to find the minimum of the energy function given by
Eq. (27). The circuit has three qubits (one for each problem variable s;). The qubit values q;
after the measurement at the end are related to the problem variables via q; = (1 — s;) /2 (gate-
based convention). Note that only two of the blocks in Fig. 7 are necessary for the weighting
step, because the third coupling parameter Jyy = 0.

A
A\
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A\

R* (2’71 Jlg)

A
A\

A
YV

(a) (b)

Fig. 9: Example QAOA result for p = 1 that shows (a) the expectation value of the energy (E)
(see Eq. (26)) and (b) the probability to measure the solution state |{010|1))|%. In this case, the
energy minimum at (81,v1) ~ (2.505,0.681) is very close to the point (£1,71) ~ (2.524,0.713)
where the success probability is maximal. The state vector |1)) has been obtained by simulating
the QAOA circuit in Fig. 8 for the whole range of 51 € [0,7) and v, € [0,27). Beyond this
range, the landscapes can be continued periodically; the periodicity in 5, and v, is due to the
periodicity of the R* and R* gates in Fig. 8.

Exercise 5: Run the p = 1 QAOA for the energy function in Eq. (27) by simulating the circuit
in Fig. 8. Either perform a grid scan over 5, € [0,7) and v, € [0,27) (as done to produce
Fig. 9), or write an optimization program to find the location of the minimum (e.g. by using the
scipy package [16]).

Exercise 6: Construct the p = 2 QAOA circuit and run it to improve upon the p = 1 re-
sult. One way to do this is to take the best (/31,71) from exercise 5 or Fig. 9, and optimize for
(B2,72). Another way would be to consider a case with larger p and take values for (G, Vx)
from a quantum annealing schedule as described in [8].



11.16

Kristel Michielsen, Madita Willsch, Dennis Willsch

import giskit

h = [_l/ 1/2, _1/2]
J = [1/2, 1/2]
def E(s0, sl, s2):

return h[0]*s0 + h[l]*sl + h[2]*s2 + J[0]*s0%*sl + J[1]*slxs2

gaoca_circuits = []
gqaoa_parameters = []

for betal in [2.0, 2.5]:
for gammal in [0.5, 0.7, 1.0]:

circuit = giskit.QuantumCircuit (3)
circuit.h(0)
circuit.h (1)
circuit.h(2)
circuit.rz (2xgammal«h[0], O)
circuit.rz (2xgammal«h[1], 1)
circuit.rz (2xgammal+«h[2], 2)
circuit.cx(0,1)
circuit.rz (2xgammal«J[0], 1)
circuit.cx(0,1)
circuit.cx (1, 2)
circuit.rz (2xgammal«J[1], 2)
circuit.cx (1, 2)
circuit.rx (2+«betal, O
circuit.rx (2+xbetal, 1
circuit.rx (2+«betal, 2

(

gaoca_circuits.append
qaoa_parameters.appen

from jugcs import Jugcs
backend = Jugcs.get_backend (’
backend.allocate (minutes=30,

job =

result = job.result ()

giskit.execute (gaoca_circuits,

)

)

)
circuit.reverse_bits())
d([betal,

gammal])

statevector_simulator’)
max_qgqubits=3)

backend=backend)

print (' betal\tgammal\tenergyexpectation\tsuccessprobability’)

for i, (betal,gammal) in enumerate (qaoa_parameters) :
psi = result.get_statevector (i)
prob = abs (psi) *x2
energy = E(+1,+1,+1)*prob[0b000] + E(+1,+1,-1) *xprob[0b001]
energy += E(+1,-1,+1)*prob[0b010] + E(+1,-1,-1)*prob[0b011]
energy += E (- 1 +1,+1) *prob[0b100] + E(-1,+1,-1)*prob[0bl01]
energy += E(-1,-1,+1)#*prob[0bl10] + E(-1,-1,-1)*prob[0bl11]
probability = prob[ObOlO]

print (£’ {betal}\t{gammal}\t{energy}\t{probability}’)

backend.deallocate ()

Listing 4: Example program for the p =
are simulated for all given values of 1 and ;.

1 QAOA circuit shown in Fig. 8. Separate circuits
From the resulting state vector, both energy

and success probability are evaluated. The best result in the output should be at 31 = 2.5 and
~v1 = 0.7 with energy —1.69 and success probability 58.9%.
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3 Quantum annealing

The second part of these lecture notes focuses on quantum annealing. Besides gate-based quan-
tum computers, quantum annealing has emerged as the second major paradigm of quantum
computing. As quantum annealers are somewhat simpler to manufacture, much larger devices
of 5000+ qubits are already available and the technology is closer to the verge of technological
maturity.

For this reason, the quantum annealing programs discussed in section 3.5 of these lecture notes
exclusively target real devices, in contrast to the simulators discussed in the gate-based case
above. Furthermore, with the garden optimization problem [17] as an application, the program
type reflects the typical kind of problems solved on current quantum annealers that are a little
bit closer to actual real-world applications.

3.1 Optimization problems with binary variables

Optimization of parameters in high-dimensional spaces can, in general, be a (computationally)
demanding task. Gradient-based algorithms as well as non-gradient based algorithms usually
require many evaluations of the cost function or its gradient. Typically, they rely on the con-
tinuity of the parameter space and often also on the continuity of the function itself. In high
dimensional spaces, cost functions usually have many local optima in which optimization al-
gorithms can get stuck as well as plateaus which slow down the convergence. There exist
algorithms that use an adaptive step size to mitigate these effects. However, usually it is still
necessary to start the optimizer with different (random) initial parameters and take at the end
the overall best solution that was returned. In that sense, these algorithms also do not guarantee
that the globally optimal solution has been found.

For cost functions of discrete or binary variables, these optimization algorithms are not appli-
cable because the functions are only defined at discrete values. In general such optimization
problems are NP-hard, and only a brute-force search over all possible inputs can deliver the op-
timal solution. For large configuration spaces, however, this is not feasible. For many discrete
optimization problems, heuristic algorithms have been developed which work well for many
cases. A heuristic algorithm may find the globally optimal solution but it may also return just
a locally optimal solution as the outcome usually depends on the initialization. The advantage
of heuristic algorithms is that the run time is much shorter than for a brute-force search. An
example for such a heuristic algorithm is the simulated annealing algorithm [18].

A common discrete optimization problem in physics is to find the ground state of the Ising spin
Hamiltonian

N
Higng = Y _hiof + > Jy0i07, (28)
i=1

i<j

where N denotes the number of spins, /; denotes the local field for spin 7, J;; denotes the
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coupling strength between spins 7 and j, and o7 denotes the Pauli 2 matrix

. (1 0
o —(0 _1> 29)

for spin ¢ with eigenstates |1) and |}) such that o*|1) = |1) and 0%|]) = —|]). This kind of
problems can be solved on the D-Wave quantum annealer.

Another form of discrete optimization that can be solved on the D-Wave quantum annealer is
Quadratic Unconstrained Binary Optimization (QUBO). The QUBO cost function to minimize

is given in the form
N

Cx)=> az;+ Y bymix;, (30)
i=1 i<j

where N is the number of binary variables x; € {0,1}, x = x1z5 ...z denotes the bitstring
obtained by concatenating the problem variables, a;z; are the linear terms and b;;x;x; are the
quadratic terms in the binary variables, and a;, b;; € R are the parameters that define the prob-
lem instance to be solved. In the definition of a QUBO, the term “Unconstrained” means that
there are no constraints in the optimization of C'(x) such as “subject to f(x) = 0”. Solving a
QUBO is equivalent to solving for the ground state of an Ising Hamiltonian Eq. (28). Many op-
timization problems that can be formulated in terms of an Ising or QUBO model are discussed
in Ref. [19].

3.2 Working principle of a quantum annealer

Initially, quantum annealing was invented as an heuristic algorithm for a classical computer
[20-22]. It was inspired by the simulated annealing algorithm [18] where thermal fluctuations
are replaced by quantum fluctuations. For simulated annealing, thin but high energy barriers are
difficult to overcome as thermal hopping processes become unlikely for high barriers. There-
fore, the idea was that quantum fluctuations in quantum annealing allow for tunneling through
these thin but high energy barriers. The quantum annealing Hamiltonian can be expressed as

HQA<t/tmaX) = F(t/tmax)HQF + Hproblem ) (31)

where Hopiem €ncodes the optimization problem to be solved, and Hr denotes the Hamiltonian
introducing the quantum fluctuations. The function I'(f/tu.) controls the strength of these
fluctuations. It has to satisfy I"(0) > energy scale of Hproplem and I (1) = 0.
Later, adiabatic quantum computation was proposed [23,24]. The idea to perform the com-
putation is based on the adiabatic theorem: The quantum system is to be initialized in the
known ground state of an initial Hamiltonian H;,;;. Then, the time-dependent Hamiltonian of
the system

H(t/tmax) = A(t/tmax) Hinit + B(t/tmax) Hinal (32)

is changed over time into the Hamiltonian Hy,, which encodes an optimization problem (e.g.,
the Ising Hamiltonian Eq. (28)). The annealing functions A(t/tm.x) and B(t/tm.x) satisfy
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Fig. 10: The annealing functions A(t/ta.) and B(t/t,.) for a linear annealing schedule.

A(0) > B(0) and B(1) > A(1). An example for a linear annealing schedule is shown in
Fig. 10. With Hina = Hprobtems Hinit = Hor, A(t/tmax) = I'(t/tmax) and B(t/tma) = 1,
Hamiltonian Eq. (32) implements the quantum annealing Hamiltonian Eq. (31). The adiabatic
theorem [25] states that if the Hamiltonian H (¢/t,,.x) changes sufficiently slowly with time, the
system stays in the instantaneous ground state so that a measurement at the end of the process
yields the state that encodes the solution to the optimization problem. A detailed review on the
ideal (i.e., closed-system) model of adiabatic quantum computation is given in Ref. [26].

For a single spin-1/2 particle in a time-dependent external magnetic field, the closed-system
model can be solved analytically exactly and is described by the Landau-Zener theory [27]:
The Hamiltonian describing the spin in the external field A, = vt which changes with time ¢
from —oo to co with sweep velocity v and a time-independent transverse field 5, is given by

Hiz(t) = —hyo" — h,(t)o® = —h,0" — vto*® (33)

. (01
a_<1 0>’ (34)

with eigenstates |[+) = (|1) + [1))/v2 and |=) = (|1) — |1))/V/2. The spin is prepared in the
ground state of Hyz(t — —oo) which is the state |¢i,;;) = |J). The spin then evolves with the

where o% is the Pauli x matrix

Hamiltonian H,z(¢) and the Landau-Zener theory gives the probability to find the spin in the
ground (|1)) or excited state (|{.)) of Hyz(t) fort — oo

Py=1—e /v p =Y (35)

These probabilities show that for fast sweeping (large v), Py — 0 and P, — 1. They also show
that for h, — 0, P, — 0 and P, — 1. Since the minimal energy gap is proportional to |h,|,
the probabilities scale not only with the sweep velocity but also with the minimal energy gap
squared.
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(a)

Fig. 11: Small-size examples of the connectivity graphs of the (a) Chimera topology of the D-
Wave 2000Q processors and (b) Pegasus topology of the Advantage processors. Blue nodes in
the Pegasus graph show the embedding of the Chimera graph onto the Pegasus graph.

In practice however, the annealing system is always connected to an environment at a finite
temperature. This means that some sources of noise can never be removed completely. So not
only a too rapid change of the Hamiltonian but also a too slow annealing procedure may excite
the system.

3.3 Architecture of D-Wave quantum annealers

There are currently two generations of D-Wave quantum annealers available: The previous gen-
eration (D-Wave 2000Q) with about 2000 qubits and up to 6 couplers per qubit, and the current
generation (Advantage) with more than 5000 qubits and up to 15 couplers per qubit. The qubits
of the D-Wave 2000Q quantum processors are arranged in the so-called Chimera topology and
the qubits of the Advantage systems are arranged in the so-called Pegasus topology (see Fig. 11).
The Chimera graph is a subgraph of the Pegasus graph.
In the case of D-Wave quantum annealers, the final Hamiltonian is given by the Ising Hamilto-
nian

N

Hinat = Higng = Y _hio] + > o707, (36)
i=1

1<j
%,J neighbors

and the initial Hamiltonian is given by

N
Hie = = )0} (37)
1=1

The ground state of the initial Hamiltonian is given by the equal superposition of all computa-
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Fig. 12: The annealing functions A(t/t,.) and B(t/t,.) of the annealing schedule of
D-Wave’s 5000+ qubit processor Advantage_systeml. 1.

tional basis states,

1
[Yinie) = |[H)EN = — Z |z129 ... ZN). (38)
28 z {11}

The qubits (two-level systems) of the Hamiltonians in Eqs. (36) and (37) are built of supercon-
ducting circuits. The particular design of these circuits is called flux qubits. The flux qubits
as well as the couplers which allow for a tunable coupling between the qubits are controlled
via external fluxes. The parameters h; and J;; of the final Hamiltonian given in Eq. (36) are
controlled by time-independent external magnetic fluxes. The annealing process is controlled
through time-dependent external magnetic fluxes which change the effective Hamiltonian from
the initial Hamiltonian to the final Hamiltonian. As an example, in Fig. 12 we show the anneal-
ing schedule of the processor Advantage_systeml. 1. The annealing schedule is obviously
different from the linear annealing schedule shown in Fig. 10. The reason for this is that the
hardware design of the flux qubits does not allow for an independent control of the functions
A(t/tmax) and B(t/tmax) [28]. Like all superconducting qubits, these systems are actually multi-
level systems of which only a two-dimensional subspace (spanned by the two lowest energy
eigenstates) functions as the qubit. More detailed information can be found in, for instance,
Refs. [28-30].

3.4 Limitations

Current quantum annealers are subject to various limitations which may have an impact on the
performance. For instance, due to the limited connectivity of the qubits (up to 6 connections per
qubit on the Chimera architecture; up to 15 connections per qubit on the Pegasus architecture),
the variables of a given problem may not be directly mappable to the qubits. In that case, an
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embedding of the problem graph onto the hardware graph is necessary. Finding an (optimal)
embedding is in general a hard problem itself. However, there exist heuristic methods to find
embeddings and the Ocean package provides such an algorithm (cf. section 3.5.4). The need
to find an embedding limits the performance due to the time overhead required to generate an
embedding and it often also increases the required number of qubits (see section 3.5.4 for more
details). Thus, although problem instances that feature the native hardware graphs (Chimera or
Pegasus graphs) can be put on the D-Wave 2000Q and Advantage systems with sizes of 2000+
and 5000+ qubits, respectively, only 64- and 124-qubit fully-connected problems can be placed
on these systems, respectively.

Other limiting factors are the restricted range and the limited precision of the parameters h; and
J;ij. In order for the parameter values to fit into the available range they have to be rescaled
(see section 3.5.1). Thus, for problem instances which cover a large range of values but at the
same time include parameters with small differences, these differences may not be resolvable
anymore within the available precision, i.e., configured parameters on the hardware may differ
from the specified ones.

A general limiting factor in practical quantum annealing is that in practice the quantum system
can never be completely isolated from the environment and noise sources. As a consequence,
the system can be thermally excited. In particular, for theoretical closed-system quantum an-
nealing, the annealing time cannot be too long. However, for open systems, a long annealing
time means long time for the system to interact with the environment and a higher probability
to leave the ground state.

Apart from these practical limitations, there are also theoretical issues. The adiabatic theorem
states that the quantum system stays in its instantaneous ground state if the Hamiltonian changes
sufficiently slowly in time. In particular, the annealing time should satisfy (s = ¢ /tyay) [31]

E, (s)|22|Ey(s
tmax>>max{< ()| 54 | o 2>‘ for n % 0. (39)

s€[0,1] (Eo(s)—En(s))
Thus, for an adiabatic evolution and for exponentially small energy gaps, the annealing time is
expected to also increase exponentially.

3.5 Programming a D-Wave quantum annealer

In this section, we focus on programming the D-Wave quantum annealer using D-Wave’s python
package Ocean—-SDK [32,33], as well as some practical aspects which are useful when pro-
gramming a D-Wave quantum annealer. It is worth mentioning that, even though the previ-
ous sections contain useful technical details for background information, the only knowledge
required to program a quantum annealer is about the kind of optimization problem (Ising or
QUBO) that it solves. This makes quantum annealers particularly attractive for non-physicists.
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3.5.1 Problem specification

Optimization problems that can be put onto D-Wave quantum annealers have to be formulated
as QUBO

N-1 N-1 N-1

min E a; r; + E bijZL‘il'j = min E xiQijxj s (40)

z;=0,1 x;=0,1
1=0 1<j 1<j

or as an Ising Hamiltonian

N-1 N-1
sririiill (ZO hiSi + Z Ji]’SiS]’> s (41)

1<j

where s; € {—1,+1} are the eigenvalues of the Pauli-z matrix o7. Reformulating a QUBO as
Ising Hamiltonian can be done by substituting

1+Si

= (42)

This convention is commonly used in quantum annealing and maps x; = 0 and x; = 1to s; =
—1 and s; = 1, respectively. Note that this convention is different from the one commonly used
for gate-based quantum computing (see above). When converting problems between QUBO
and Ising formulation, constants which arise from the substitution Eq. (42) can be neglected as
they only lead to an energy shift but do not change the solution of the optimization.

To specify the problem instance using the Ocean—-SDK, the coefficients can be stored in a dic-
tionary 0 = {(i,7) : Q;;} (QUBO) or two dictionaries h = {i:h;}and J = {(4,7) : J;}
(Ising).

In practice, the coupling strength J;; can only be set to values in a certain interval [Jmin, Jmax),
where usually Jiin = —Jmax, With a limited precision. The same applies to the single-qubit bias
h; with interval [Amin, hmax|. Thus, all h; and J;; need to be rescaled by a factor [34]

r = max {max {%{hi}, O} , max {%{]h}, 0] , max {M, 0] , max [M, 0] } ,

(43)
to fit into the ranges Nipin < Ny < Nimax and Jipin < Jij < Jnax. If 7 < 1, rescaling is optional, but
it may be useful to exhaust a larger parameter range and potentially improve the performance.
When auto_scale is set to true (default), the rescaling is performed automatically when
submitting a problem through Ocean. When auto-scaling is disabled and the problem parame-
ters do not fit into the parameter range, the submission of the problem fails. Note that rescaling
does not change the solution of the problem. In general, it is advised to have the auto-scaling
feature enabled (default). However, there may be certain cases where it has to be disabled. If
in such a study, unexpected results are obtained, one should check to disable the auto-scaling

feature.
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from dwave.system import DWaveSampler

sampler = DWaveSampler (solver='DW_20000_6", token=’insert_your_token_ here’)
h = {0:1, 4:-0.5}

J = {(0,4):1, (0,5):-1}

response = sampler.sample_ising(h, J)

print (response)

Listing 5: A minimal working example to run a program on a D-Wave quantum annealer.

from dwave.system import DWaveSampler, EmbeddingComposite

sampler = EmbeddingComposite (DWaveSampler (solver="DW_20000_6", token=’
insert_your_token_here’))
Q= {(0,0):1, (0,1):1, (0,2):-1, (1,2):-0.8}

response = sampler.sample_qubo (Q, num_reads=100, chain_strength=2,
annealing_time=5)
print (response)

Listing 6: Example showing how to use an EmbeddingComposite.

3.5.2 Submitting a problem to the D-Wave quantum annealer through the
Ocean package

Listing 5 shows a minimal working example of a submission to the D-Wave quantum annealer.
The class DWaveSampler takes a solver (for example the current hardware solvers, at the
time of writing, ‘DW_20000Q_6’ or ‘Advantage_systeml.1’) to which to submit the prob-
lem. If one did not create a config-file during or after the installation of the Ocean—SDK,
the personal token also has to be provided to DWaveSampler. Depending on the formu-
lation of the problem (Ising or QUBO), one has to create the h and J or Q dictionaries, re-
spectively. The example code in listing 5 shows the case for the Ising formulation. For larger
problems, the dictionaries should be generated algorithmically. The class DWaveSampler has
the member functions sample_ising and sample_qubo which submit the specified prob-
lem to the QPU. The function sample_ising takes the h and J dictionaries and the function
sample_qubo takes the Q dictionary.

Optional parameters of the functions sample_ising and sample_qubo are for instance the
number of samples obtained per submission (num_reads), the annealing_time (in ps), or
the chain_strength (see section 3.5.4). An example is shown in listing 6.

Listing 6 also illustrates how to use an EmbeddingComposite (see section 3.5.4). The re-
turn value contains the solutions returned by the quantum annealer as well as some additional
information. An example output is shown in listing 7: The first column labels the different
solutions returned (rows). The following Ny (in this case Nypi = 3) columns give the values
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0 1 2 energy num_oc. chain_.
O 0 1 1 -0.8 79 0.0
1 0 0 1 0.0 5 0.0
2 1 0 1 0.0 5 0.0
3 0 0 O 0.0 7 0.0
4 0 1 O 0.0 1 0.0
5 1 1 1 0.2 2 0.0
6 1 0 O 1.0 1 0.0
["BINARY’, 7 rows, 100 samples, 3 variables]

Listing 7: Example output of the program given in listing 6.

import dwave.inspector

SRR R SRR R Rk
# previous code #
FHEHFREE RS

dwave.inspector.show (response)

Listing 8: Example showing how to use dwave.inspector to visualize the result. A
screenshot using the Leap IDE is shown in Fig. 13.

of the qubits in the returned solution. The next three columns contain the energy, the number
of occurrences of this solution in all samples, and the chain break fraction (see section 3.5.4),
respectively. In our example output, we obtained 79 times the solution no. O with energy —0.8
(the energy of the ground state) and no chain breaks. In addition, the response also contains
the information that the result is given in BINARY, i.e. QUBO, format (in the Ising represen-
tation it would be SPIN), that 7 distinct answers were returned by the quantum annealer (the
number of rows), that the number of samples is 100 (equals num_reads), and that the number
of qubits (variables) is three. Further information can be accessed through response.info.

Another tool of the Ocean package which can be handy when studying the returned results
is dwave.inspector. With this tool, the response object can be visualized. The usage is
illustrated in listing 8 and Fig. 13.

3.5.3 Implementing constraints

As mentioned previously, D-Wave quantum annealers are designed to solve QUBO or Ising
problems by minimizing the corresponding energy function without constraints. However, in
practice optimization problems often require constrained optimization, i.e., the objective func-
tion C'(x) needs to be minimized under a certain constraint f(x) = ¢, where f is a function
that takes a string of bits x and returns a scalar, and c is a scalar, i.e., the optimization task is to
“minimize C'(x) subject to f(x) = ¢”.

We can consider such a constraint by formulating it as a QUBO (or Ising Hamiltonian) and
adding it to the objective function: We can write the constraint f(x) = cas f(x) —c = 0. The
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Fig. 13: Running the example program from listing 6 and visualizing the result on the D-Wave
using the inspector (see listings 7 and 8). The Leap IDE with an example template to run such an
experiment can be opened at ht tps://ide.dwavesys.io/#https://github.com/
dwave-examples/template.

square (f(x) — c)? is always greater than zero, except if the constraint f(x) = c is satisfied in
which case the square is equal to zero and thus minimal. By adding the square term ( f(x) — c)?
to the objective function, we effectively add a penalty to the objective function if the constraint
is not satisfied. To keep things simple, we assume that f(x) is a linear function in the bits z;
(further information can be found in [35]). We add the penalty term to the objective function
C(x) so that the new/modified objective function reads C'(x) + A(f(x) — ¢)?, where A is a
scalar called Lagrange multiplier and has to be chosen reasonably. The optimization task is
now “minimize C(x) + A(f(x) — ¢)*".

A “reasonable” choice for A means that A should neither be too small nor too large. If A is
chosen too small, the constraint will likely not be satisfied in the optimal solution for C'(x) +
A(f(x) — ¢)? as it may be more favorable to accept a penalty multiplied by a small ) than to
return a state with a larger cost function value C'(x). On the other hand, a too large A will force
the constraint to be satisfied but due to the rescaling of the parameters (see section 3.5.1), the
problem parameters might become so small that they cannot be represented accurately enough
with the limited precision, and also the energy differences become so small that excitations to
higher energy states, which do not encode the optimal solution to the original problem anymore,
become very likely.
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a4

\

Fig. 14: A graph with triangular connectivity (left) cannot be directly mapped onto the Chimera
hardware graph (right).

3.5.4 Embedding of problem graphs onto the hardware graph

As soon as problem sizes become larger so that we cannot immediately find a mapping of the
problem graph onto the hardware graph, it is convenient to call a dedicated routine to find
this mapping for us. Generating the optimal embedding of a graph onto another one is in
general NP-hard, but a heuristic algorithm is provided by the Ocean-SDK. This algorithm
uses probabilistic methods, which means that each time we call the function, it may return a
different embedding and these may be of different quality. Thus, one typically tries several
different embeddings and chooses the best one (see also [15, 17]). It may also be possible that
the problem graph requires connectivities which are not present on the hardware graph. For
instance, a triangular connectivity as shown in Fig. 14 cannot be mapped onto the Chimera
graph. In such a case, we have to use more than a single physical qubit (the ones on the
hardware) to represent a logical qubit (the ones in the problem specification), see Fig. 15. If we
have more than a single physical qubit representing a logical qubit, i.e., a chain of two or more
physical qubits represents a single logical qubit, the physical qubits should behave as a single
entity, i.e., at the end of the annealing process, they should all have the same value.

To achieve this, the couplings J;; between these physical qubits are set to a negative value with
large magnitude. The magnitude (also called chain strength) determines how strongly these
qubits couple and how easily the chain may “break”. In this context, a “‘chain break” means that
different qubits of a chain representing the same logical qubit end up in different states. The
Ocean package includes post-processing procedures which, in this case, determine the value to
return for the logical qubit by majority vote of the physical qubits. Thus, the values returned
will always be valid for the original problem, although they could be far from optimal. Too
many chain breaks should be avoided as the returned solutions become “randomized” and may
be rather poor.

The optimal value of the chain strength depends on the particular problem and possibly also
on the particular embedding. If the chain strength is chosen too weak, the optimal and close-
to-optimal solutions may likely contain chain breaks as it is energetically favorable to break
these couplings instead of the ones that encode the actual problem instance. In theory, the chain
strength should be chosen as large as possible to satisfy the constraints. In practice however,
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Fig. 15: A graph with triangular connectivity (left) can be mapped onto the Chimera hardware
graph (right) by using two physical qubits for one of the logical qubits.

we have to keep in mind that the coupling strength J;; can only be set to values in the interval
[Jmin, Jmax] With a limited precision (cf. section 3.5.1). Thus, all h; and .J;; are rescaled by the
factor r (see Eq. (43)). If the chain strength is chosen too strong, all parameters defining the
problem instance will be rescaled to small values which might be no longer resolvable with the
given precision. Moreover, the energy differences of the original problem are also rescaled and
become very small which could more likely lead to excitations to higher energy states. This, in
turn, would lead to worse results for the original problem than if a weaker chain strength had
been chosen. The chain strength is a parameter called chain_strength that can be given to
the sample_qubo or sample_ising functions.

The Ocean package provides several EmbeddingComposite classes [33] to handle the
generation of embeddings:

* EmbeddingComposite tries to find an embedding each time one of the sample func-
tions (sample_qubo or sample_ising)is called. This can be useful when submitting
different problems or when studying the dependence on different embeddings.

* LazyFixedEmbeddingComposite tries to find an embedding the first time one of
the samp1le functions is called. Later, it reuses this embedding. This can be useful when
submitting the same problem with different hyperparameters such as annealing time or
chain strength.

* FixedEmbeddingComposite takes an embedding as argument which is then used
each time one of the sample functions is called. This can be useful when we already
have an embedding for a particular problem (either by generating it ourselves or by load-
ing a previously stored embedding) and we want to reuse it again.

* TilingComposite can be passed to any of the EmbeddingComposites to place
several copies of small embedded graphs.
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Leek Celery Peas Corn
Leek o Q@ X o
Celery | © o o X
Peas X o o Q
Corn o X Q o

Table 1: Companion planting example of good (), neutral (o), and bad (X ) neighbors.
4

)

6
7

Fig. 16: Labeling of the qubits in a Chimera graph unit cell of the D-Wave 2000Q quantum
Processors.

3.6 Example: Garden optimization

As an example, we consider a simplified four-qubit problem from the garden optimization prob-
lem presented in [17]. The task is to place four plants in two pots such that good neighbors are
in the same pot and bad neighbors are not. The relationships between the four plants that we
consider in this example are shown in table 1.

The two pots have the labels —1 and +1 and the value s; of qubit ¢ denotes into which pot
we place the plant of type i (i € {leek, celery, peas, corn}). Since we consider minimization
problems, we want to minimize the energy when good neighbors are placed in the same pot.
Assume we place plants 7 and j in the same pot (i.e., s; = s;). According to Eq. (41), the energy
is lowered if we choose J;; negative (which we want for good neighbors 7 and j7), and the energy
is increased if we choose J;; positive (which we want for bad neighbors i and j). Thus, we set
Jieek, celery = Jpeas, com = —1 and Jieek, peas = Jeelery, com = 1. The energy function is then given by

E (Sleeka Scelery Speas) Scorn> = Sleek Speas + SceleryScorn — SleekScelery — SpeasScorn- (44)

The next step is to map the qubits onto the hardware graph. The labeling of the qubits in the first
unit cell of the Chimera topology used in the D-Wave 2000Q processors is shown in Fig. 16.
Since the problem is small and can be directly mapped onto the hardware graph, we define the
mapping without an EmbeddingComposite. We use the mapping

leek — 0, corn — 3, (45)

celery — 4, peas — 7, (46)
which gives

J04 = J37 =—1 and J()7 = J34 =1. (47)
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The program to submit and solve the problem on the D-Wave 2000Q chip DW_20000Q_6 is
shown in listing 9.

Exercise 7: Consider the case that leek has already been placed in the pot with label “—1".
Replanting it would require additional work. How could this additional cost be considered in
the energy function? Modify the program in listing 9 accordingly. How does the result change?

from dwave.system import DWaveSampler
import dwave.inspector

sampler = DWaveSampler (solver='DW_20000_6’, token=’insert_your_token_ here’)
h = {}

# We choose:

# 0 = leek

# 4 = celery

# 7 = peas

# 3 = corn

J={ (0,4): -1, (0,7): +1, (3,4): +1, (3,7): -1 }

response = sampler.sample_ising(h, J, num_reads=100)

dwave.inspector.show (response)

Listing 9: Example code solving the four-qubit garden problem.
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Appendix
A JUQCS standard gate set

This appendix contains the standard gate set implemented by the Jiilich Universal Quantum
Computer Simulator (JUQCS) [10]. JUQCS is a large-scale simulator for gate-based quan-
tum computers that was also used for Google’s quantum supremacy experiment [11]. A GPU-
accelerated version was recently used to benchmark JUWELS Booster [8] with over 2048 GPUs
across 512 compute nodes. A giskit [12] interface to JUQCS including the conversion from
the giskit gate set to the JUQCS gate set is available through the Jiilich UNified Infras-
tructure for Quantum computing (JUNIQ) service at https://jugit.fz-juelich.de/
gip/junig-platform. This interface was used for the example programs in this lecture.

I gate
Description  performs an identity operation on qubit 7. [ < 10 >
Syntax In 01
Qiskit syntax circuit.id(n)
Argument n integer, 0 < n < N with IV the number of qubits.

H gate
Description  performs a Hadamard operation on qubit n. o L ( 1
Syntax Hn 2\ 1 -1
Qiskit syntax circuit.h(n)
Argument n integer, 0 < n < N with IV the number of qubits.

X gate
Description  performs a bit flip operation on qubit 7. ¥ = ( 0 1 >
Syntax Xn 10
Qiskit syntax circuit.x(n)
Argument n integer, 0 < n < N with [V the number of qubits.

Y gate
Description  performs a bit and phase flip operation on qubit 7. v — < 0 —i >
Syntax Yn i 0
Qiskit syntax circuit.y(n)
Argument n integer, 0 < n < N with NV the number of qubits.

Z gate
Description  performs a phase flip operation on qubit 7. 7 ( 1 0 >
Syntax Zn 0 -1
Qiskit syntax circuit.z(n)
Argument n integer, 0 < n < N with IV the number of qubits.

S gate
Description  rotates qubit n about the z-axis by 7 /2. g < 10 )
Syntax Sn 0 =1
Qiskit syntax circuit.s(n)
Argument n integer, 0 < n < N with N the number of qubits.



https://jugit.fz-juelich.de/qip/juniq-platform
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ST gate
Description
Syntax
Qiskit syntax
Argument

T gate
Description
Syntax
Qiskit syntax
Argument

TT gate
Description
Syntax
Qiskit syntax
Argument

Ul gate
Description
Syntax
Qiskit syntax
Arguments

U2 gate
Description
Syntax
Qiskit syntax
Arguments

U3 gate
Description
Syntax
Qiskit syntax
Arguments

+X gate
Description
Syntax
Qiskit syntax
Argument

-X gate
Description
Syntax
Qiskit syntax
Argument

rotates qubit n about the z-axis by —m/2

S+n

circuit.sdg(n)

n integer, 0 < n < N with IV the number of qubits.

rotates qubit 7 about the z-axis by 7/4

Tn

circuit.t (n)

n integer, 0 < n < N with IV the number of qubits.

rotates qubit n about the z-axis by —m /4

T+n

circuit.tdg(n)

n integer, 0 < n < N with IV the number of qubits.

performs a U1(\) operation [6] on qubit n.

Uln A

circuit.p(lam, n)

n integer, 0 < n < N with N the number of qubits,
A angle in radians (floating point or integer).

performs a U2(¢, A\) operation [6] on qubit n.
U2n oA
circuit.u(pi/2,

phi, lam, n)

n integer, 0 < n < N with N the number of qubits,
¢, A angles in radians (floating point or integer).

performs a U3(8, ¢, \) operation [6] on qubit n.
U3nbdoA

circuit.u(theta, phi, lam, n)

n integer, 0 < n < N with N the number of qubits,

0, ¢, A angles in radians (floating point or integer).

rotates qubit n by —7 /2 about the z-axis.

+Xn

circuit.rx (-pi/2, n)

n integer, 0 < n < N with N the number of qubits.

rotates qubit n by +7/2 about the z-axis.

-Xn

circuit.rx(pi/2, n)

n integer, 0 < n < N with IV the number of qubits.

1 _ei)\

U2(6,2) = 5 (ew ei(¢+>\)>

U2(p, N)
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+Y gate
Description rotates qubit n by —7/2 about the y-axis. 1 11 )
+Y = =
Syntax +Yn 2\ -1 1
Qiskit syntax circuit.ry(-pi/2, n)
Argument n integer, 0 < n < N with N the number of qubits.
-Y gate
Description  rotates qubit n by +7 /2 about the y-axis. Ly 1 < 1 -1 )
Syntax -Yn 2\ 1 1
Qiskit syntax circuit.ry(pi/2, n)
Argument n integer, 0 < n < N with N the number of qubits.
R(k) gate
Description changes the phase of qubit n by 27 /2*. R 1 0
Syntax Rnk (k) = ( 0 e2mi/2* )
Qiskit syntax circuit.p(2xpi/2*xk, n)
Arguments n integer, 0 < n < N with N the number of qubits, R(k)
k is non-negative integer.
R (k) gate
Description  changes the phase of qubit n by —27 /2%, ok 1 0
Syntax Rn —k R(k) = ( 0 e—2mi/2*
Qiskit syntax circuit.p(-2xpi/2%xk, n)
Arguments n integer, 0 < n < N with N the number of qubits, gt () |—
k is non-negative integer.
Two-qubit gates
CNOT gate
Description  flips the target qubit if the control qubit is 1. CNOT =
Syntax CNOT control target 10 00
Qiskit syntax circuit.cx(control, target) 01 00
Arguments control # target integers in the range 0 0 01
0,...,N—1 with N the number of qubits. 0 010
Note The matrix looks different from the giskit documen-
tation as giskit uses the ordering |g,—1 - - - go) While
all standard text books as well as these lecture notes use $
|90 - - - @n—1)- To fix this, the supplied example programs
invoke the circuit.reverse_bits () function.
U(k) gate
Description  shifts the phase of the target qubit by 27 /2" if the U(k) =
control qubit is 1. 1 00 0
Syntax U control target k 0 1 0 0
Qiskit syntax circuit.cp(2+xpi/2+xk, control, target) 0 0 1 0
Arguments control # target integers in the range 0, ..., N—1 0 0 0 e2mi/2*
with N the number of qubits, k£ non-negative integer. ————
U(k)
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U (k) gate
Description

Syntax
Qiskit syntax
Arguments

Toffoli gate
Description
Syntax
Qiskit syntax
Arguments

Note

shifts the phase of the target qubit by —27 /2 if the
control qubit is 1.

U control target —k

circuit.cp(-2xpi/2+xk, control,target)
control # target integers in the range 0, ..., N—1
with N the number of qubits, k£ non-negative integer.

flips the target qubit if both control qubits are 1.
TOFFOLI controly controly target
circuit.ccx(controll,control2, target)
controly # controly # target # control; integers in
the range 0, ..., N—1 with IV the number of qubits.
The matrix looks different from the giskit
documentation because giskit uses the ordering
|gn—1 - - - qo) while all standard text books as well as
these lecture notes use |qg - - - ¢n—1). To fix this, the
supplied example programs invoke the
circuit.reverse bits () function.

OO OO oo o

o O O

[lelelelBaNel e

TOFFOLI =

[lelelalall ol
[llelelNel =Nl

)

&

SO O H OO O oo

_ o OO0 oo oo

O OO OO oo
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