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1. Introduction

H(k) |um(k)) = Epn (k) |un(k))

e Bloch Hamiltonian H (k)

e Band structure of bloch bands {Em (k)}

e Bloch wave functions \um (k)>

?

Under which conditions can the two FE,, (k) and F,, (k)
become degenerate at points or lines in the BZ




2. Accidental band crossings
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Accidental band crossings

Energy
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crystal momentum k:z: W/ @

e (possibly) protected by symmorphic crystal symmetry and/or non-spatial symmetry

i topological invariant
e exhibits a local topological charge ny = o 7{ Fdk € 7 4—5
s

e only perturbatively stable, removable by large deformation

—> classification tells you that band crossing is possible
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Accidental band crossings
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e (possibly) protected by symmorphic crystal symmetry and/or non-spatial symmetry

] topological invariant
e exhibits a local topological charge ny = o 7{ Fdk € 7 4—5

T

¢ Bulk-boundary correspondence:

Inz| = # gapless edge states (or surface states)



2.1 Classification of band crossings

® Approximate band crossing by Dirac Hamiltonian

d
= > kv
j=1

— gamma matrices: {v;,v;} = 20;;1, 5=0,1,....d.

— energy spectrum: E = i\ > k2

are there symmetry preserving mass terms 7717
that open up a gap in the spectrum?

(o} =0G=12...d E=t\/m+¥! K2

NO: topologically non-trivial YES* topologically trivial



2.1 Classification of band crossings

» Classification of topological semimetals depends on:

e symmetry of Hamiltonian (TRS, PHS, SLS)

—> symmetry classes of ten-fold way, spatial symmetries

e co-dimension p = d — dpg of Fermi surface (dpg: dimension of Fermi surface)

* how Fermi surface transforms under nonspatial symmetries

(i) Fermi surface is invariant (ii) Fermi surfaces pairwise
under nonspatial symmetries related by nonspatial symmetries

Dirac point




Classification of accidental band crossings

e Nonspatial symmetries:
* time-reversal invariance: 1T = UrK

T *H(-K)T = +H(k) T? = +1 T? = -1
* particle-hole symmetry: (C = UK
C'H(-k)C = —H(k) C? =+1 C? = -1

* chiral symmetry / sublattice symmetry: S o 1'C
SH(k)+H(k)S =0

{%7 T} = 0, h/iac] = 0, {%'78} = 0,

70, T1=0, {7,C} =0, {%,S8}t=0.

e Spatial symmetries:
* reflection symmetry: R YH(=ki,k)R = H(k1,k),




2.1.2 Band crossings at high-symmetry points

1.

write down d-dim Hamiltonian with minimal matrix dimension,
that is invariant under the considered symmetries

d
= > ki
j=1

- check whether there exist symmetry allowed mass terms 1My

(0} =0G =120 E=x\fut 5L K

NO: topologically non-trivial YES topologically trivial

. to check whether single or multiple band crossings are protected,

consider multiple copies of Hp (k)

Hg):zkﬂri@UzﬂLZki%@]l AC{1,2,..,d}

1€A 1€ A



Band crossings at high-symmetry points
e ClassAiIn 2D
H3p = ko + kyo,
— can be gapped out by mo, = trivial
e Class Ain 3D
Hip = kyoy + kyoy + k.0,

— no mass term exists = topological

Héall,)dbl — k.o, R0, + kyay R oy + k.0, ® oy (mass terms, e.g., 0, @ 0, and 0, ® o, )
A.db2
H.; " =kpo, ® 0¢g + kyo, ® ¢ + k.0, ® 09

A.db2 . .
— no mass term for H ap = 4 classification



Band crossings at high-symmetry points

e ClassA+Rin 2D
H;‘JR = kyo0, + kyo,
— reflection symmetric R Hy5 “(—ks, k)R = Hyp (ks ky) R =0,
— mass term mo, breaks reflection symmetry (R7'o.R = —0,)
= topological
e Class Allin 2D
Y = ko, + kyo,
— time-reversal symmetric with 7 = io,K

— mass term mo, breaks time-reversal (7 'mo,T # mo.)

= topological
AILdb Hyp 0
— doubled Hamiltonians: Hyp P = 2P ATT
0 HM
2D
H2A[I)I/ e {+k,o, + ky0,, £k,0, F kyo,}.

AII,db : . .
— for each H, ;""" there exist mass terms == Zg classification



Classification of accidental band crossings

Table 1: Classification of stable band crossings in terms of the ten AZ symmetry classes [2],
which are listed in the first column. The first and second rows give the co-dimensions p =
d — dpc for band crossings at high-symmetry points [Fig. 2(a)] and away from high-symmetry
points of the BZ [Fig. 2(b)], respectively.

at high-sym. point | p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=T7 T C §

off high-sym. point | p=2 p=3 p=4 p=5 p=6 p=7 =8 =1
A 0 Z 0 Z 0 Z 0 Z 0 0 O
ATl Z 0 Z 0 7 0 Z 0 0 0 1
Al 0 0? 0 27 0 78 78 7 + 0 0
BDI Z 0 0? 0 27 0 Zs* 7y |+ 4+ 1
D 75 7 0 0? 0 27 0 Z5° 10 4+ 0
DIII 750 78 7 0 0? 0 27 0 - + 1
All 0 /-l S/ 0 0? 0 2Z | — 0 0
CII 27 0 7y 78 Z 0 0? 0 |
C 0 27 0 7878 7 0 0? 0 — 0
CI 0? 0 27 0 Y/ S/ 0 + - 1

" For these entries there can exist bulk band crossings away from high-symmetry points that are protected by Z

invariants inherited from classes A and AIIIL. (TRS or PHS does not trivialize the Z invariants.)
b

Zi5 invariants protect only band crossings of dimension zero at high-symmetry points.
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Table 1: Classification of stable band crossings in terms of the ten AZ symmetry classes [2],
which are listed in the first column. The first and second rows give the co-dimensions p =
d — dpc for band crossings at high-symmetry points [Fig. 2(a)] and away from high-symmetry
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b

Zi5 invariants protect only band crossings of dimension zero at high-symmetry points.



2.1.3 Band crossings off high-symmetry points

1. write down d-dim Hamiltonian with p = d — dp¢ ,

that is invariant under the considered symmetries ) <v ey
C

p—1 p
HD:Zsinki%—I—(p—l—Zcoski)% &
i=1

1=1

2. check whether there exists

— momentum independent mass term [’

— momentum dependent kinetic term sin £,

NO: topologically non-trivial  YES* topologically trivial

3. To check whether multiple band crossings are protected, consider doubled Hamiltonian



2.2 Weyl semimetal



Weyl semimetal (a)

e 2 x 2 Hamiltonian:
Hip, = sink,o, +sink,o, + (2 — cos k, — cos k, — cos k)0, k.
— no third Pauli matrix — topologically stable k,

e Energy spectrum:

Kz
Ey = j:\/(sin k)% + (sink,)? 4+ (2 — cos k, — cosk, — cosk,)?
= two Weyl points at (0,0, +7/2)
e Chern number:
1 ; A A . ~ d(k)
C(kz) = E ikz dkxdky dy - [akxdk X &gydk} : with dy = W,

d.(k) = sink,, d,(k) = sink,, and d,(k) = (2 — cosk, — cosk, — cosk,)
— guarantees stability of the Weyl points

— |leads to Fermi arc surface state



Weyl semimetal

1 ! . : : )
 Clk) == ¢ dhudky dic- | O, x O, ith  di = ——
e Chern number: (k) = j{k ydic+ | O, dic X O, dx wi <= Td )

dy(k) = sink,, d,(k) = sink,, and d,(k) = (2 — cosk, — cosk, — cosk,)

k-] < 5
(b) d.,
(a)
> dw
(c) (d) ky



Weyl semimetal

Quantum Anomaly:

Symmetry of classical action broken by regularization of quantum theory

® chiral charge e(n, — n_) is not conserved at the quantum level

® presence of electric and magnetic field changes number of electrons as

— —4+—FE - B
T TR




2.1 Dirac nodal-line semimetal



Dirac nodal-line semimetal

» low-energy effective Hamiltonian:
H{A = sink,0y + [2 — cos k, — cos k, — cosk,] o3
» symmetry operators:
— reflection: R = 03 — time-reversal: T' = oo/C — inversion: P = o3
» Gap-opening term moq is symmetry forbidden:

— breaks reflection symmetry: R~ 'moi R = —moy

. = nodal line is stable
— breaks PT symmetry: (PT)” "mo1(PT) = —mo;

» 7 versus Zo classification:

AT+R,db :
H3D+ " =sink,00 ® 09 + |2 — cosk, — cos k, — cos k.| 03 ® 0y

— consider gap opening term m = 01 ® 09:
e (PT)-symmetric:
(03 ® JOIC)_lm(ag R ook) =m = 7 classification
e but breaks R:
(03 ® 0¢) (o3 ® 0g) # ™ = 7 classification



Dirac nodal-line semimetal (

a) Surface Bz

Pe = =i  diy (u-(K)| Vi Ju- (K)

—
7

— In CaszP2 Berry phase is quantized due to:

Energy
bulk BZ

(i) reflection symmetry 2 — —=2

(ii) inversion + time-reversal symmetry

— P(k)) quantized to m = stable line node \
k

x

Bulk-boundary correspondence: Berry phase
€ H

— surface charge: ogyf = 2_73 mod e 1.4
7

Nearly flat 2D surface states
— y

connecting Dirac ring 0.5




Dirac nodal-line semimetal

Quantum Anomaly:
Symmetry of classical action broken by regularization of quantum theory

Anomaly in topological semimetals:
Top. semimetals with FS of co-dimension p, generally, exhibit (p+1)-dim anomaly:

ep = 3: (3+1)D chiral anomaly in Weyl semi-metals

ep = 2: (2+1)D parity anomaly in graphene

9 Is there an anomaly in nodal-line semimetals?
|

—> consider family of 2D subsystems

— study (241)D parity anomaly

as a function of angle ¢




Dirac nodal-line semimetal

Parity anomaly for a 2D subsystem:
Action for (2+1)D Dirac fermions coupled to gauge field A,

‘// breaks PT symmetry

S = /d?’azw iy (0, +ieA,) +m] Y

—> effective action Sfff[A, 0] with m = 0 is UV divergent

— Pauli-Villars regularization of theory breaks PT symmetry

SR[A] = S q[A] — lim S g[A, M

it Al fr ] M—s o0 il | Berry phase

e Pauli-Villars mass term remains finite for e P B A 5. A
M — o0, yielding Chern-Simons term: ©5 8t v e

D

e anomalous current from one Dirac point: j#* = 4—6“’”‘6,,%1 A
7

transverse charge response to applied electric field



Dirac nodal-line semimetal

Anomalous transport within semi-classical response theory:

e anomalous velocity: v(k) = % — %E x (k) Karplus, Kohn, Luttinger
. 02 B Berry curvature
e transverse current: Jt= 7 PE f(k)E x Q(k
s
2
e differential current: jt.o = %S_RQ (1 — E) E x e,
HRACE
universal part
transverse
current

Berry

} curvature

Anomalous current vanishes after integrating over ¢



Dirac nodal-line semimetal

Drumhead surface states as a momentum filter:

e Consider dumbbell geometry:

y i \
X/ measure
anomalous
— band structures for k, = 0: current
A i ii iii
S R v 'A___L ______________________ o v vA____A _________
T A A A A
. )_ )_ >
T ky T -7k, T - ky T

— Drumbhead surface states act as a filter

— Transverse current can be measured!

transverse
current

b

b k.




3. Symmetry-enforced band crossings




Symmetry-enforced band crossings
+ +

A

Energy

+1 4+ -1 -1 +1

0 > 27 /a
crystal momentum k..

e protected by non-symmorphic crystal symmetry (possibly together with non-spatial sym)
e exhibits local topological charge 717, and global topological charge 17,

e globally stable, movable but not removable

— classification tells you that band crossing is symmetry required!
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Symmetry-enforced band crossings
+ +

A

Energy

+1 4+ -1 -1 +1

0 > 27 /a
crystal momentum k..

e protected by non-symmorphic crystal symmetry (possibly together with non-spatial sym)
e exhibits local topological charge 717, and global topological charge 17,

¢ Bulk-boundary correspondence:

Inz| = # gapless edge states (or surface states)



Strategy for discovery of topological semi-metals

(i) Consider 157 non-symmorphic space groups

= identity those space groups with symmetry-enforced band crossings
using symmetry eigenvalues and compatibility between irreps

P6, (#169) | P6,/m (#176) , P6,22 (#178)

(if) Perform a database search for materials in these space groups

In2Ses LaBr; AuF;

(ifi) Compute DFT band structures, topological invariants, surface states, etc.

— to check whether band crossings and surface states are near Er



3.2 How non-symmorphic symmetries lead
to enforced band crossings

® screw rotation symmetry:

G(k) _ (O eik> GQ(/C) _ O_Oe—ik

e eigenvalues: G |y (k)) = +e /2 [y, (k)) a/z[

180°

180°

rotation

slation

]a/Q



Nonsymmorphic symmetries lead to enforced band crossings

e (G(k) does not commute with o3

= H(k) = (q*?k) Q(Ok)> E

|

[
lan
R
VR

2
—

e symmetry constraint: ¢(k)e" = ¢* (k)

e show that q(k) must have zero, using contradiction

winds once winds twice

—> f(2) , q(k) must vanish at some k by contradiction



3.2 Weyl nodal-line semimetal

e Glide reflection
(rank two):




Weyl nodal-line semimetal

e glide reflection symmetry: M, : (z,y,2) = (—x,y,%2 + %)

e invariant planes: k, =0 & k= 77/ due to spin part
—ik. = BEVs: &+ je tF=/2

e symmetry eigenvalues: M2 = —T, = Z¢ - 1€

e [1/(k)) in invariant planes are simultaneous eigenstates of M,




Weyl nodal-line semimetal

e add time-reversal symmetry: T' = io, K

—> pairs up states with complex
conjugate EVs at the TRIMs

—> hourglass dispersion



Weyl nodal-line semimetal

e add time-reversal symmetry: 1" = o, K

—> pairs up states with complex
conjugate EVs at the TRIMs

E
‘. ‘l 10 1
i, =i -1, -1
a)
M U
k,=0 k,=m

—> Weyl nodal line within mirror plane



Weyl nodal-line semimetal

e consider time-reversal invariant little-group Irrep\ Element E
irreps at TRIMs and within mirror plane C’: 10
_ _ _ _ _ M;
M: M5 L: L2L3, L4L5 C’ é, 04/1 (O +1
ZQ +1

e compatibility relation between irreps tell us how
irreps split as we move from M.L — C’ L +1

L4 +1
DM \l, gc/ — DC/ (SUdeCtion) I 1

C, +1

C +1

\ Al /%
Y—Tr=—1

N < ’
N

Miller, Love, Pruett 1967




Weyl nodal-line semimetal

e consider time-reversal invariant little-group
irreps at TRIMs and within mirror plane C’:

M: M5 L: Zgig, E4E5 07: _Zl’)a CZL

e compatibility relation between irreps tell us how
irreps split as we move from M,L — C’

DM \l, QC/ — DC’ (Subduction)

I
~l

— 5
> L,Ls

=
Ol
Ol

23

=i
i

4
> E4E5 e /
L

M s M

475

L

e bands need to connect, such that compatibility relations are satisfied

—> Weyl nodal line within mirror plane C’

Miller, Love, Pruett 1967




Weyl nodal-line semimetal

e DFT band structure of ZrirSn:

— Weyl nodal line characterized by quantized 7{-Berry phase



Weyl nodal-line semimetal

e DFT band structure of ZrirSn:

e EXxperimental consequences:

— Bulk-boundary correspondence:
— drumhead surface state

k
— Large Berry curvature: y ke

—> large anomalous Hall effect

: drumhead surface state
—> anomalous magnetoelectric responses



3.2 Dirac nodal-line semimetal

Off-center symmetries:

e Pair of non-symmorphic symmetries

G=(g|7), G =(47)

with different reference points




Dirac nodal-line semimetal

e off-centered symmetries: (]sz, P)

N

M, (Qf,y,Z) — (ZIZ‘,y, —Z + %) P : (CC,y,Z) — (_337 — Y, _Z)

e invariantplanes: k, =0 & k, =

P N

e symmetry eigenvalues: (M,)* = —1 = M, |¢4(k)) = %i ¢4 (k))

—~— R —~—

M. P ¢+ (k)) = e PM, i1 (k))




Dirac nodal-line semimetal
M, P [+ (k)) = e PM, |4 (k))

e add time-reversal symmetry: 1" = o, K

P

M., [PT ¢4 (k)] = Fie"™ PT [+ (k)) k. € {0,7}

= the crossing of two Kramers degenerate bands

within the k, = 7 plane is protected by M,




Dirac nodal-line semimetal

— Dirac nodal line is in fact symmetry enforced

e at the TRIMs K, Bloch states form quartet of
mutually orthogonal, degenerate states

v+(K)) , PlY+(K)), TY+(K)) , PT|[¢+(K))

e consider pair of degenerate states:
P, T
V(K +k)) «— [v+(K-k))

1¥). PT|)

R«
k.

opposite M , eligenvalue



Dirac nodal-line semimetal

e DFT calculation of LaBrs:

— star-shaped nodal line characterized by Wilson loop

— Bulk-boundary correspondence:

— double drumhead surface state




4. Conclusion and outlook h

— studied accidental band crossings /

— symmetry enforced band crossings

— strategy for materials discovery

— several examples

e Open questions for future research

— topology of magnets
— effects of electron-electron correlation

— need for better topological materials

= use, e.g., discussed strategy for materials discovery



