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Figure 3 Schematic representation of reference systems in the DFT, DFT+DMFT and
GW+DMFT methods

ture, are indeed most striking in spectroscopic probes, where they take the form of
quasi-particle renormalisations or broadening due to finite lifetimes, and give rise to
satellite features or atomic multiplets. An intrinsic temperature dependence of the
electronic structure of a metal, with a coherence-incoherence crossover delimiting
Fermi liquid properties, or a strongly temperature-dependent gap – beyond what can
be explained by a Fermi factor – are further hallmarks of electronic correlations [11].

Historically, the first non-perturbative electronic structure techniques for correlated
materials evolved from many-body treatments of the multi-orbital Hubbard Hamilto-
nian with realistic parameters. The general strategy of these so-called “DFT++” ap-
proaches [12, 13] consists in the extraction of the parameters of a many-body Hamil-
tonian from first principles calculations and then solving the problem by many-body
techniques. The procedure becomes conceptually involved, however, through the
need of incorporating e�ects of higher energy degrees of freedom on the low energy
part, the so-called “downfolding”.

For the one-particle part of the Hamiltonian, downfolding techniques have been the
subject of a vast literature [14, 15], and are by now well established. The task here
is to define orbitals spanning the low-energy Hilbert space of the electronic degrees
of freedom of a solid in such a way that a low-energy one-particle Hamiltonian can
be constructed whose spectrum coincides with the low-energy part of the spectrum
of the original one-particle Hamiltonian.1) Downfolding of the interacting part of a
many-body Hamiltonian is a less straightforward problem, which has attracted a lot

1) We do not enter here into details concerning the di�erent strategies of achieving such a construction:
various frameworks, such as mu�n-tin orbitals methods [15], maximally localised Wannier functions
[16], or projected atomic orbitals [17] have been employed.

Reference system is important: Archimedes
„Give me the place to stand, and I shall move the earth.“
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Summary for Fermions
ĉi |1i = |0i ĉi |0i = 0

ĉ+i |0i = |1i ĉ+i |1i = 0

{ĉi, ĉ+j } = �ij

Pauli principle

9.4 Alexander Lichtenstein

interactions between dual fermions are related with the connected part of the screened impu-
rity vertex. Standard diagrammatic techniques can be applied for calculations of the bold dual
propagator G̃k,⌫ , which allows to obtain the nonlocal self-energy for the original fermions [2]
and to describe nonlocal correlations beyond the DMFT.
The dual-fermion approach is not necessarily bound to a specific starting point. However, the
DMFT starting point is very efficient. Namely, it corresponds to the elimination of all local
diagrams for any n-particle correlation of dual fermions when using the DMFT self-consistency
equation (1). In the dual space, this simply reduces to

P
k G̃

0
k,⌫ = 0 and means that, on average

over the whole Brillouin zone, �⌫ optimally approximates the electron spectrum "k, including
its local correlation effects. Therefore, the noninteracting dual fermions correspond to strongly
correlated DMFT quasiparticles, and the remaining nonlocal effects can be quite small and
reasonably described by, e.g., ladder summations of dual diagrams. This also explains the
notion “dual fermions”.

2 Path Integral for fermions
We first introduce a formalism of the path integral over fermionic fields [10]. Let us consider a
simple case of a single quantum state |ii occupied by fermionic particles [11] . Due to the Pauli
principle the many-body Hilbert space is spanned only by two orthonormal states |0i and |1i.
In the second quantization scheme for fermions with annihilation ĉi and creations ĉ+

i
operators

with anticommutation relations {ĉi, ĉ+j } = �ij we have the following simple rules

ĉi |1i = |0i ĉi |0i = 0 (1)

ĉ+
i
|0i = |1i ĉ+

i
|1i = 0 .

Moreover, the density operator and the Pauli principle has a form

ĉ+
i
ĉi |ni = ni |ni

ĉ2
i
= (ĉ+

i
)
2

= 0 .

The central object here related with so-called fermionic coherent states |ci which are eigenstates
of annihilation operator ĉi with eigenvalue ci:

ĉi |ci = ci |ci (2)

It is worthwhile to note that such a left-eigenbasis has only annihilation operators, due to the
fact that they are bounded from the bottom and one can rewrite one of equation from Eq. (1) in
the following ”eigenvalue” form

ĉi |0i = 0 |0i

Due to anti-commutation relations for the frmionic operators the eigenvalues of coheren states
ci are so-called Grassmann numbers with the following multiplictions rules [12]:

cicj = �cjci (3)

c2
i

= 0

Fermionic coherent states |c⟩
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ĉ2
i
= (ĉ+
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i
operators
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Left coherent state ⟨c| :

general function of two Grassmann variables 

Eigenvalues of coheren states
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Dual Fermions 9.5

It is convenient to assume that the Grassmann number also anti-commute with the fermionic
operators

{c, ĉ} = {c, ĉ+} = 0

The arbitrary function of one Grassmann variable can be represented only by the first two Taylor
coefficients

f(c) = f0 + f1c (4)

One can proof the following general many-body representation of coherent states

|ci = e�
P

i ciĉ
+
i |0i (5)

Let us show this in a simple case of one fermionic states:

ĉ |ci = ĉ(1� cĉ+) |0i = ĉ (|0i � c |1i) = �ĉc |1i = c |0i = c |ci (6)

One can also define a ”left” coherent state hc| as the lef-eigenstates of creations operators ĉ+
i

hc| ĉ+
i
= hc| c⇤

i

Note that new eigenvalues c⇤
i

is just another Grassman nimber and not a complex conjugate of
ci. The left coherent state can be obtained similar to Eq. (5) as following

hc| = h0| e�
P

i ĉic
⇤
i

The general function of two Grassmann variables analogously to Eq. (4) can be represented
only by four Taylor coefficients

f(c⇤, c) = f00 + f10c
⇤
+ f01c+ f11c

⇤c (7)

Using this expansion we can define a derivative of Grassmann variables in the natural way

@ci
@cj

= �ij

One need to be careful with ”right-order” of such a derivative and remember of anti-commutation
rules, i.e.

@

@c2
c1c2 = �c1

For the case of general two-variable function in Eq. (7) we have

@

@c⇤
@

@c
f(c⇤, c) =

@

@c⇤
(f01 � f11c

⇤
) = �f11 = � @

@c

@

@c⇤
f(c⇤, c)

One also need a formal definition of integration over Grassmann variables and the natural way
consists with the following rules [12]:

Z
1dc = 0

Z
cdc = 1,

Proof for one fermionic states
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F. A. Berezin: Method of Second Quantization (Academic Press , New York, 1966)



Grassmann calculus

Due to anti-commutation rule:  

Formal definition of integration over Grassmann variables 

Formal definition of derivative

Example:
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One can also define a ”left” coherent state hc| as the lef-eigenstates of creations operators ĉ+
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9.6 Alexander Lichtenstein

which just shows that the integration over Grassmann variable is equivalent to the differentia-
tion: Z

...dc ! @

@c
...

The coherent states are not orthonormal and the overlap of any two coherent fermionic states
equal to

hc|ci = e
P

i c
⇤
i ci

which is easy to see for the case of one particle

hc|ci = (h0|� h1| c⇤) (|0i � c |1i) = 1 + c⇤c = ec
⇤
c

An important property of coherent states is related with resolution of the unity operator
Z

dc⇤
Z

dc e�
P

i c
⇤
i ci |ci hc| = 1̂ =

Z Z
dc⇤dc

|ci hc|
hc|ci .

For simplicity we demonstrate this relation only for one fermion state:
Z Z

dc⇤dc e�c
⇤
c |ci hc| =

Z Z
dc⇤dc (1� c⇤c) (|0i � c |1i) (h0|� h1| c⇤) =

�
Z Z

dc⇤dc c⇤c (|0i h0|+ |1i h1|) =
X

n

|ni hn| = 1̂

Matrix elements of normally ordered operators is very easy to calculate in coherent basis by
operating of ĉ+ to the write states and ĉ to the left one:

hc⇤| Ĥ(ĉ+, ĉ) |ci = H(c⇤, c) hc⇤|ci = H(c⇤, c) e
P

i c
⇤
i ci (8)

Within the manifold of coherent states we can map the fermionic operators to the Grassmann
variables (ĉ+

i
, ĉi) ! (c⇤

i
, ci).

Finally, we prove the so-called ”trance-formula” for arbitrary fermionic operator in normal
order (in one fermion notation):

Tr
⇣
bO
⌘

=

X

n=0,1

hn| bO |ni =
X

n=0,1

Z Z
dc⇤dc e�c

⇤
c hn| ci hc| bO |ni =

=

Z Z
dc⇤dc e�c

⇤
c
X

n=0,1

h�c| bO |ni hn| ci =
Z Z

dc⇤dc e�c
⇤
c h�c| bO |ci

The fermionic ”minus” sign in the left coherent states come from the commutation of (c⇤) and
(c) coherent state in such a transformation: hn|ci hc|ni = h�c|ni hn|ci. One have to use the
standard Grassmann rules: c⇤

i
cj = �cjc⇤i and |�ci = |0i+ c |1i.

We are ready now to write a partition function for grand-canonical quantum ensemble with
H = bH�µ bN and inverse temperature �. One have to use the N-slices Trotter decomposition for
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Insert N-times the resolution of unity: 

In continuum limit (N �→ ∞) 
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i
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partition function in the interval [0, �) with imaginary time ⌧n = n�⌧ = n�/N (n = 1, ..., N ),
and insert N-times the resolution of unity as follows
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=
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⇤
n
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��⌧
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In continuum limit (N 7! 1)
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with antiperiodic boundary condition for fermionic Grassmann variables on an imaginary time
c(⌧) and c⇤(⌧)

c(�) = �c(0), c⇤(�) = �c⇤(0)

we ended up in the standard path integral formulation of quantum mechanical Partition function

Z =
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D [c⇤, c] e�

R �
0 d⌧ [c⇤(⌧)@⌧ c(⌧)+H(c⇤(⌧),c(⌧))] (9)

For the later discussion we mention the Gaussian path integral for non-interacting ”quadratic”
fermionic action. For an arbitrary matrix Mij and Grassmann vectors J⇤

i
and Ji one can calcu-

late analytically the following integral
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⇤
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�1)ijJj

To proof this relations one need first to shift variable in order to eliminate J⇤
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and Ji and expand
the exponent function (only N-th oder is non-zero):
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N !
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i,j=1

c⇤
i
Mijcj

!N

Finally, different permutations of c⇤
i
and cj and integration over Grasmann variables will gives

the detM - answer. As a small exercise we will check such integrals for first two many-particle
dimensions. For N = 1 it is trivial:

Z
D [c⇤c] e�c

⇤
1M11c1 =

Z
D [c⇤c] (�c⇤1M11c1) = M11 = detM
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Antiperiodic boundary condition

3.0.1 Trotter Decomposition

TODO Bild
The Trotter decomposition follows from the Liouville operator e.g. form the matrix function of
the Liouville operator with �t = t

N

e≠—H = lim
NæŒ

(e≠�·H)N

Here is e
1
2 [X,Y ]+... negligible, because it follows if the N is huge that

eiL�t = eiL1�t+iL2�t = eiL1�teiL2�t + O(�t2)

and the equation

lim
NæŒ

O(�t2) = lim
NæŒ

O(( t

N
)2) = 0

disappier. In general the solution gets more accurate as bigger the N gets.

3.0.2 Accurate Trotter decomposition and the Strange Decomposition (symplectic)

Definition 3.2.

eiL1�t+iL2�t = eiL1 �t

2 eiL2 �t

2 eiL1 �t

2 + O(�t3)

e.g.

eiL1�t+iL2�t = eiL2 �t

2 eiL1 �t

2 eiL2 �t

2 + O(�t3)

Let H(q, p) be an seperable Hamiltonium
Properties 3.3.

H(q, p) = Ekin(p) + Epot(q) = T (p) + V (q)

so H(q, p) is a symplectic Integrator with

eiL1�t+iL2�t = (
kŸ

j=1

eicjL1�teibjL2�t) + O(�tk+1)

with k. order. Further H(q, p) has the following properties

x =
A

q
p

B
eibj L2�t

æ
A

q
p ≠ bj

ˆV
ˆq �t

B

x =
A

q
p

B
eicj L1�t

æ
A

q + cj
ˆT
ˆp �t

p

B

and for all cj and bj applies the features of
ÿ

j

cj =
ÿ

j

bj = 1

Example 3.4. If k = 1 the factors are c1 = 1, b1 = 1 and the solution is equivalent to the
Euler-Richardson algorithm. For k = 2 the factors are c1 = 1

2
, b1 = 0, c2 = 1

2
, b2 = 1 so its

equal to the quadratic integrator which is equal to the Velet algorithm. For details if k = 3, 4
take a look at R. Ruth‘s work. ⌥
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Non-interacting ”quadratic” fermionic action

Hint for proof:

Exercise for N=1 and 2: 

Shift of Grassmann variable:

correlation functions for a non- interaction action (Wick-theorem) 

Dual Fermions 9.7

partition function in the interval [0, �) with imaginary time ⌧n = n�⌧ = n�/N (n = 1, ..., N ),
and insert N-times the resolution of unity as follows
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n
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�
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=

Z
⇧N

n=1dc
⇤
n
dcne

��⌧
PN
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⇤
n(cn�cn�1)/�⌧+H(c⇤n,cn�1)]

In continuum limit (N 7! 1)
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�
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Z =
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R �
0 d⌧ [c⇤(⌧)@⌧ c(⌧)+H(c⇤(⌧),c(⌧))] (9)

For the later discussion we mention the Gaussian path integral for non-interacting ”quadratic”
fermionic action. For an arbitrary matrix Mij and Grassmann vectors J⇤
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and Ji one can calcu-

late analytically the following integral
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⇤
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⇤
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⇤
i (M

�1)ijJj
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i
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the exponent function (only N-th oder is non-zero):
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i
Mijcj

!N

Finally, different permutations of c⇤
i
and cj and integration over Grasmann variables will gives

the detM - answer. As a small exercise we will check such integrals for first two many-particle
dimensions. For N = 1 it is trivial:

Z
D [c⇤c] e�c

⇤
1M11c1 =

Z
D [c⇤c] (�c⇤1M11c1) = M11 = detM
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and for N = 2 we have
Z

D [c⇤c] e�c
⇤
1M11c1�c

⇤
1M12c1�c

⇤
2M21c1�c

⇤
2M22c2 =

1

2!

Z
D [c⇤c] (�c⇤1M11c1 � c⇤1M12c1 � c⇤2M21c1 � c⇤2M22c2)

2
= M11M22 �M12M21 = detM

For a shift (change) of variables in the path integral one use the following transformation with
the unit Jacobian: c ! c�M�1J and

c⇤Mc� c⇤J � J⇤c =
�
c⇤ � J⇤M�1

�
M

�
c�M�1J

�
� J⇤M�1J .

Using Gaussian path integral it is very easy to calculate any correlation functions for a non-
interaction action (Wick-theorem) :

⌦
cic

⇤
j

↵
0

= � 1

Z0

�2Z0 [J⇤, J ]

�J⇤
i
�Jj

|J=0 = M�1
ij

hcicjc⇤kc⇤l i0 =
1

Z0

�4Z0 [J⇤, J ]

�J⇤
i
�J⇤

j
�Jl�Jk

|J=0 = M�1
il

M�1
jk

�M�1
ik

M�1
jl

Corresponding bosonic path-integral can be formulated in a similar way with a complex vari-
ables and periodic boundary conditions on imaginary time. The Gaussian path integral over
bosonic fields is equal to inverse of the M-matrix determinant [10] .

3 Functional approach
We introduce a general functional approach which will cover the DFT, Dynamical Mean Field
Theory (DMFT) and Baym-Kadanoff (BK) theories [9]. Let us start from the full many–body
Hamiltonian describing electrons moving in the periodic external potential of ions V (r) with
the chemical potential µ and interacting via Coulomb law: U(r � r0) = 1/|r � r0|. We use
the atomic units ~ = m = e = 1. In the field-operator representation the Hamiltonian has the
following form:

H =

X

�

Z
dr b +

�
(r)[�1

2
52

+ V (r)� µ] b �(r) (10)

+
1

2

X

��0

Z
dr

Z
dr0 b +

�
(r) b +

�0(r0)U(r� r0) b �0(r0) b �(r).

We can always use the single-particle orthonormal basis set in solids �n(r) for example Wannier
orbitals with full set of quantum numbers, e.g. site, orbital and spin index: n = (i,m, �) and
expand the fields in creation and annihilation operators:

b (r) =

X

n

�n(r)bcn (11)

b +
(r) =

X

n

�⇤
n
(r)bc+

n
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One- and two-electron matrix elements:

Euclidean action

Shot notation:

1.4 Alexander Lichtenstein

2 Functional approach: Route to fluctuations

We introduce a general functional approach which will cover Density Functional (DFT), Dy-

namical Mean-Field (DMFT), and Baym-Kadanoff (BK) Theory [10]. Let us start from the full

many–body Hamiltonian describing electrons moving in the periodic external potential of ions

V (r), with chemical potential µ, and interacting via Coulomb law: U(r − r′) = 1/|r− r′|. We

use atomic units ! = m = e = 1. In the field-operator representation the Hamiltonian takes the

form

H =
∑

σ

∫

dr ψ̂†
σ(r)

(

−
1

2
∇2 + V (r)− µ

)

ψ̂σ(r) (1)

+
1

2

∑

σσ′

∫

dr

∫

dr′ ψ̂†
σ(r)ψ̂

†
σ′(r′)U(r − r

′) ψ̂σ′(r′)ψ̂σ(r).

We can always use a single-particle orthonormal basis set φn(r), for example Wannier orbitals,

with a full set of quantum numbers, e.g., site, orbital and spin index: n = (imσ) and expand

the fields in creation and annihilation operators

ψ̂(r) =
∑

n

φn(r)ĉn (2)

ψ̂†(r) =
∑

n

φ∗
n(r)ĉ

†
n

Going from fermionic operators to the Grassmann variables {c∗n, cn}, we can write the func-

tional integral representation of the partition function of the many-body Hamiltonian in the

imaginary time domain using the Euclidean action S

Z =

∫

D[c∗, c]e−S (3)

S =
∑

12

c∗1 (∂τ + t12) c2 +
1

4

∑

1234

c∗1c
∗
2 U1234 c4c3 , (4)

where the one- and two-electron matrix elements are defined as

t12 =

∫

drφ∗
1(r)

(

−
1

2
#2 + V (r)− µ

)

φ2(r) (5)

U1234 =

∫

dr

∫

dr′ φ∗
1(r)φ

∗
2(r

′)U(r− r
′)φ3(r)φ4(r

′).

and we use the following short definition of the sum:

∑

1

... ≡
∑

im

∫

dτ... (6)

The one-electron Green function is defined via a simplest non-zero correlation function

G12 = −〈c1c
∗
2〉S = −

1

Z

∫

D[c∗, c] c1c
∗
2 e

−S (7)
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†
n

Going from fermionic operators to the Grassmann variables {c∗n, cn}, we can write the func-

tional integral representation of the partition function of the many-body Hamiltonian in the

imaginary time domain using the Euclidean action S

Z =

∫

D[c∗, c]e−S (3)

S =
∑

12

c∗1 (∂τ + t12) c2 +
1

4

∑

1234

c∗1c
∗
2 U1234 c4c3 , (4)

where the one- and two-electron matrix elements are defined as

t12 =

∫

drφ∗
1(r)

(

−
1

2
#2 + V (r)− µ

)

φ2(r) (5)

U1234 =

∫

dr

∫

dr′ φ∗
1(r)φ

∗
2(r

′)U(r− r
′)φ3(r)φ4(r

′).

and we use the following short definition of the sum:

∑

1

... ≡
∑

im

∫

dτ... (6)

The one-electron Green function is defined via a simplest non-zero correlation function

G12 = −〈c1c
∗
2〉S = −

1

Z

∫

D[c∗, c] c1c
∗
2 e

−S (7)

1.4 Alexander Lichtenstein

2 Functional approach: Route to fluctuations

We introduce a general functional approach which will cover Density Functional (DFT), Dy-

namical Mean-Field (DMFT), and Baym-Kadanoff (BK) Theory [10]. Let us start from the full

many–body Hamiltonian describing electrons moving in the periodic external potential of ions

V (r), with chemical potential µ, and interacting via Coulomb law: U(r − r′) = 1/|r− r′|. We

use atomic units ! = m = e = 1. In the field-operator representation the Hamiltonian takes the

form

H =
∑

σ

∫

dr ψ̂†
σ(r)

(

−
1

2
∇2 + V (r)− µ

)

ψ̂σ(r) (1)

+
1

2

∑

σσ′

∫

dr

∫

dr′ ψ̂†
σ(r)ψ̂

†
σ′(r′)U(r − r

′) ψ̂σ′(r′)ψ̂σ(r).

We can always use a single-particle orthonormal basis set φn(r), for example Wannier orbitals,

with a full set of quantum numbers, e.g., site, orbital and spin index: n = (imσ) and expand

the fields in creation and annihilation operators

ψ̂(r) =
∑

n

φn(r)ĉn (2)
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Fig. 3: Representation of the full two-particle Green function in terms single-particle Green

functions and the full vertex function Γ .

The main problems of strongly interacting electronic systems are related to the fact that the

higher order correlation functions do not separate into a product of lower order correlation

functions. For example the two-particle Green function or generalized susceptibilities, χ, are

defined in the following form [11]
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and can be expressed graphically through Green functions and the full vertex function Γ1234 [12]

as shown in Fig. 3
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In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
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The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field
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Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).
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2 Functional approach: Route to fluctuations
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dr′ ψ̂†
σ(r)ψ̂

†
σ′(r′)U(r − r
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Fig. 3: Generic Hubbard lattice for correlated lattice fermions with the local Coulomb interac-

tion U and hopping parameters t: m can label different orbitals or lattice sites.

magnons, which can be obtained from a generalized susceptibility or from the second variation
of the free-energy.
One can probably find the Baym-Kadanoff interacting potential �[G] for simple lattice models
using quantum Monte Carlo (QMC). Unfortunately due to the sign problem in lattice simula-
tions this numerically exact solution of the electronic correlations is not feasible. On the other
hand, one can obtain the solution of a local interacting quantum problem in a general fermionic
bath, using the QMC scheme, which has no sign problem if it is diagonal in spin and orbital
space. Therefore, a reasonable approach to strongly correlated systems is to keep only the local
part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one can
obtain numerically the correlated part of the local functional. In this scheme we only use the
local part of many electron vertex and obtain, in a self-consistent way, an effective functional
of the local Green function. In the following section we discuss the general dual fermion (DF)
transformations [3] which help us to separate the local fluctuations in many-body system and
show a perturbative way to go beyond the DMFT approximations.

3 Dual fermion approach with a general reference system

We start with a general lattice fermion model with the local Hubbard-like interaction vertex U.
Generalization to the multi-orbital case is straightforward [14]. All equations will be written
in matrix form, giving an idea of how to rewrite the dual fermion (DF) formula to the multi-
orbital or multi-site case. The general strategy is related with the formally exact separation of
the local and non-local correlation effects. We introduce auxiliary dual fermionic fields which
will couple local correlated impurities or clusters back to the original lattice [3].
Using the path-integral formalism (Appendix A) the partition function of a general fermionic
lattice system (Fig. 3) can be written in following form as a functional integral over Grassmann
variables [c⇤, c]

Z =

Z
D[c⇤, c] exp

�
�SL[c

⇤, c]
�
.

The original lattice action of interacting lattice fermions, similar to Eq. (3), can be written in
Matsubara space as a sum of the lattice one-electron contributions with the Fourier transformed
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hopping tk (or energy spectrum in the single-orbital case) and the local interaction part U

SL[c
⇤, c] = �

X

k⌫�

c⇤k⌫�
�
i⌫+µ�tk

�
ck⌫� +

X

i

Z
�

0

d⌧ U n⇤
i⌧"ni⌧# . (19)

In the following, ⌫ = (2n+1)⇡/�, (! = 2n⇡/�), n = 0,±1, . . . are the fermionic (bosonic)
Matsubara frequencies, � is the inverse temperature, ⌧ 2 [0, �) the imaginary time, and µ the
chemical potential. The index i labels the lattice sites, m refers to different orbitals, � is the
spin projection and the k-vectors are quasimomenta. In order to keep the notation simple, it is
useful to introduce the combined index |1i ⌘ |i,m, �, ⌧i and assume summation over repeated
indices. Translational invariance is assumed for simplicity in the following, although a real
space formulation is straightforward. The local part of the action, SU , may contain any type of
local multi orbital interaction.
In order to formulate an expansion around the best possible reference action, Fig. 4, a quan-
tum impurity (cluster) problem is introduced by a general frequency-dependent hybridization
function �⌫ and the same local interaction

S�[c
⇤
i
, ci] = �

X

⌫ ,�

c⇤
i⌫�

�
i⌫+µ��⌫

�
ci⌫� +

X

⌫

Un⇤
i⌫"ni⌫# , (20)

where �⌫ is the effective hybridization matrix describing the coupling of the impurity to an
auxiliary fermionic bath. The main motivation for rewriting the lattice action in terms of a
quantum impurity model is that such a reference system can be solved numerically exactly
for an arbitrary hybridization function using the CT-QMC methods [1]. Using the locality of
the hybridization function �⌫ , the lattice action Eq. (19) can be rewritten exactly in terms of
individual impurity models and the effective one-electron coupling (�⌫�tk) between different
impurities, Fig. 5,

SL[c
⇤, c] =

X

i

S�[c
⇤
i
, ci]�

X

k⌫�

c⇤k⌫�
�
�⌫�tk

�
ck⌫� . (21)

We will find the condition for the optimal choice of the hybridization function later. Although
we can solve the individual impurity model exactly, the effect of spatial correlations due to
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the second term in Eq. (21) is very hard to treat, even perturbatively, since the impurity ac-
tion is non-Gaussian and on cannot use of the Wick theorem. The main idea of the dual
fermion transformation is to change of variables from strongly correlated fermions (c⇤, c) to
weakly correlated “dual” Grassmann fields (d⇤, d) in the path-integral representation for the
partition function of Eq. (3), followed by a simple perturbation treatment. The new variables
were introduced through the following Hubbard-Stratonovich(HS)-transformation with the ma-
trix e�k⌫ = (�⌫�tk)

ec
⇤
1

e�12 c2 = det e�
Z

D [d⇤, d] e�d
⇤
1
e��1
12 d2�d

⇤
1c1�c

⇤
1d1 . (22)

We can immediately seen that using this HS-transformation we “localize” the [c⇤
i
, cj] fermions:

while on the left-hand side they are still “hopping” through the lattice, on the right-hand side
they are localized on one site [c⇤

i
, ci].

With this reference system the lattice partition function becomes
Z

Zd

=

Z
D[c⇤, c, d⇤, d] exp

�
� S[c⇤, c, d⇤, d]

�
(23)

with Zd = det e�. The lattice action transforms to

S[c⇤, c, d⇤, d] =
X

i

Si

�
+

X

k,⌫,�

d⇤k⌫�
�
�⌫�tk

��1
dk⌫� . (24)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions

Si

�
[c⇤

i
, ci, d

⇤
i
, di] = S�[c

⇤
i
, ci] +

X

⌫,�

�
d⇤
i⌫�

ci⌫� + c⇤
i⌫�

di⌫�
�

(25)

For the last term we use the invariance of the trace so that the sum over all states labeled by k

could be replaced by the equivalent summation over all sites by a change of basis in the second
term. The crucial point is that the coupling to the auxiliary fermions is purely local and Si

�

decomposes into a sum of local terms. The lattice fermions can therefore be integrated out from
Si

�
for each site i separately. This completes the change of variables

1

Z�

Z
D[c⇤, c] exp

�
�Si

�
[, c⇤

i
, ci, d

⇤
i
di]

�
= exp

✓
�

X

⌫ �

d⇤
i⌫�

g⌫di⌫� � Vi[d
⇤
i
di]

◆
, (26)
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where Z� is the partition function of the impurity action Eq. (20) and g⌫ is the exact impurity
Green function

g12 = �hc1c⇤2i� =
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D[c⇤, c] c1c

⇤
2 e

�S�[c⇤,c]. (27)

The above equation may be viewed as the defining equation for the dual potential V [d⇤, d]. The
choice of matrices in Eq. (22) ensures a particularly simple form of this potential. An explicit
expression is found by expanding both sides of Eq. (26) and equating the resulting expressions
by order. Formally this can be done up to all orders and in this sense the transformation to the
dual fermions is exact. For most applications, the dual potential is approximated by the first
non-trivial interaction vertex

V [d⇤, d] =
1

4

X

1234

�1234 d
⇤
1d

⇤
2d4d3 , (28)

where for the local vertex the combined index 1 ⌘ {m⌫�} comprises orbital degrees of freedom
(or cluster sites), frequency, and spin. � is the exact, fully antisymmetric, reducible two-particle
vertex of the local quantum impurity problem. With the present choice of normalization in the
HS-transformation we did not “amputate” the impurity “legs” or g12 Greens function which will
be very useful choice for CT-QMC calculations of local vertex for multi-orbital case. It is given
then by connected part of the local two-particle correlations function

�1234 = �1234 � �0
1234 (29)

with the two-particle Green function of the local impurity (reference system) being defined as

�1234 = hc1c2c⇤3c⇤4i� =
1
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D[c⇤, c] c1c2c

⇤
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⇤
4 e

�S�[c⇤,c] . (30)

The disconnected part of a generalized susceptibility reads

�0
1234 = g14g23 � g13g24 . (31)

The single- and two-particle Green functions can be calculated using the CT-QMC Monte Carlo
algorithms [1]. After integrating-out the lattice fermions, the dual action depends on the new
variables only and for the one-orbital paramagnetic case reads

S̃[d⇤, d] = �
X

k ⌫�

d⇤k⌫� G̃�1
0k⌫ dk⌫� +

X

i

Vi[d
⇤
i
, di] (32)

while the bare dual Green function is has the form

G̃0
k⌫ =

⇣�
tk��⌫

��1 � g⌫
⌘�1

. (33)

This formula involves only the local Green function g⌫ of the impurity model. It is important to
note, that the HS-transformation to dual fermion variables, allows us to “perform the analytical
amputation” of impurity “legs” which causes enormous problems in the multi-orbital CT-QMC
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Fig. 5: Schematic view on the non-local DF perturbation beyond a DMFT solution.

the second term in Eq. (21) is very hard to treat, even perturbatively, since the impurity ac-
tion is non-Gaussian and on cannot use of the Wick theorem. The main idea of the dual
fermion transformation is to change of variables from strongly correlated fermions (c⇤, c) to
weakly correlated “dual” Grassmann fields (d⇤, d) in the path-integral representation for the
partition function of Eq. (3), followed by a simple perturbation treatment. The new variables
were introduced through the following Hubbard-Stratonovich(HS)-transformation with the ma-
trix e�k⌫ = (�⌫�tk)

ec
⇤
1

e�12 c2 = det e�
Z

D [d⇤, d] e�d
⇤
1
e��1
12 d2�d

⇤
1c1�c

⇤
1d1 . (22)

We can immediately seen that using this HS-transformation we “localize” the [c⇤
i
, cj] fermions:

while on the left-hand side they are still “hopping” through the lattice, on the right-hand side
they are localized on one site [c⇤

i
, ci].

With this reference system the lattice partition function becomes
Z

Zd

=

Z
D[c⇤, c, d⇤, d] exp
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�
(23)

with Zd = det e�. The lattice action transforms to
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Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions
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For the last term we use the invariance of the trace so that the sum over all states labeled by k

could be replaced by the equivalent summation over all sites by a change of basis in the second
term. The crucial point is that the coupling to the auxiliary fermions is purely local and Si

�

decomposes into a sum of local terms. The lattice fermions can therefore be integrated out from
Si

�
for each site i separately. This completes the change of variables
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We can immediately seen that using this HS-transformation we “localize” the [c⇤
i
, cj] fermions:

while on the left-hand side they are still “hopping” through the lattice, on the right-hand side
they are localized on one site [c⇤
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Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions
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For the last term we use the invariance of the trace so that the sum over all states labeled by k

could be replaced by the equivalent summation over all sites by a change of basis in the second
term. The crucial point is that the coupling to the auxiliary fermions is purely local and Si

�

decomposes into a sum of local terms. The lattice fermions can therefore be integrated out from
Si
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for each site i separately. This completes the change of variables
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Fig. 5: Schematic view on the non-local DF perturbation beyond a DMFT solution.
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where Z� is the partition function of the impurity action Eq. (20) and g⌫ is the exact impurity
Green function

g12 = �hc1c⇤2i� =
1

Z�

Z
D[c⇤, c] c1c

⇤
2 e

�S�[c⇤,c]. (27)

The above equation may be viewed as the defining equation for the dual potential V [d⇤, d]. The
choice of matrices in Eq. (22) ensures a particularly simple form of this potential. An explicit
expression is found by expanding both sides of Eq. (26) and equating the resulting expressions
by order. Formally this can be done up to all orders and in this sense the transformation to the
dual fermions is exact. For most applications, the dual potential is approximated by the first
non-trivial interaction vertex

V [d⇤, d] =
1

4

X

1234

�1234 d
⇤
1d

⇤
2d4d3 , (28)

where for the local vertex the combined index 1 ⌘ {m⌫�} comprises orbital degrees of freedom
(or cluster sites), frequency, and spin. � is the exact, fully antisymmetric, reducible two-particle
vertex of the local quantum impurity problem. With the present choice of normalization in the
HS-transformation we did not “amputate” the impurity “legs” or g12 Greens function which will
be very useful choice for CT-QMC calculations of local vertex for multi-orbital case. It is given
then by connected part of the local two-particle correlations function

�1234 = �1234 � �0
1234 (29)

with the two-particle Green function of the local impurity (reference system) being defined as

�1234 = hc1c2c⇤3c⇤4i� =
1

Z�

Z
D[c⇤, c] c1c2c

⇤
3c

⇤
4 e

�S�[c⇤,c] . (30)

The disconnected part of a generalized susceptibility reads

�0
1234 = g14g23 � g13g24 . (31)

The single- and two-particle Green functions can be calculated using the CT-QMC Monte Carlo
algorithms [1]. After integrating-out the lattice fermions, the dual action depends on the new
variables only and for the one-orbital paramagnetic case reads

S̃[d⇤, d] = �
X

k ⌫�

d⇤k⌫� G̃�1
0k⌫ dk⌫� +

X

i

Vi[d
⇤
i
, di] (32)

while the bare dual Green function is has the form

G̃0
k⌫ =

⇣�
tk��⌫

��1 � g⌫
⌘�1

. (33)

This formula involves only the local Green function g⌫ of the impurity model. It is important to
note, that the HS-transformation to dual fermion variables, allows us to “perform the analytical
amputation” of impurity “legs” which causes enormous problems in the multi-orbital CT-QMC
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Two equivalent forms for partition function:

Hubbard-Stratanovich transformation:

Relation between Green functions:

T-matrix like relations via dual self-energy
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B Exact relations between Green functions
After appropriate diagrammatic results for the dual self-energy and the dual Green function
have been obtained, they have to be transformed back to the corresponding physical quantities
in terms of real lattice fermions. The fact that dual fermions are introduced through the exact
Hubbard-Stratonovich transformation, Eq. (22), allows to establish exact identities between
dual and lattice Greens function [3, 15].
The relations between the n-particle cumulants of dual and lattice fermions can be established
using the cumulant (linked cluster) technique. To this end one may consider two different,
equivalent representations of the following generating functional

eF [J⇤
J,L

⇤
L] = Zd

Z
D[c⇤c, d⇤d] e�S[c⇤c,d⇤,d]+J

⇤
1 c1+c

⇤
2J2+L

⇤
1d1+d

⇤
2L2 . (51)

Integrating-out the lattice fermions from this functional similar to (26) (this can be done with
the sources J and J⇤ set to zero) yields

eF [L⇤
,L] = Z̃d

Z
D[d⇤, d] e�Sd[d⇤,fd+L

⇤
1d1+d

⇤
2L2 (52)

with Z̃d = Z/Z̃ . The dual Green function and the two-particle correlator related with non-local
susceptibilities are obtained from (52) by suitable functional derivatives, e.g.,

G̃12 = � �2F

�L2�L⇤
1

����
L⇤=L=0

(53)

where G ⌦ G is the antisymmetrized direct product of Green functions, so that the angular
bracket is the connected part of the dual two-particle Green function. Conversely, integrating
out the dual fermions from Eq. (51) using the HS-transformation, one obtains an alternative
representation, which more clearly reveals the connection of the functional derivatives with
respect to the sources J , J⇤, and L, L⇤. The result is

F [J⇤J, L⇤L] = L⇤
1(�� t)12L2 (54)

+ ln

Z
D[c⇤, c] exp

⇣
�S[c⇤, c] + J⇤

1 c1 + c⇤2J2 + L⇤
1(��t)12c2 + c⇤1(��t)12L2

⌘
.

In analogy to (53), the cumulants in terms of lattice fermions are obviously obtained by func-
tional derivative with respect to the sources J and J⇤ with L and L⇤ set to zero. Applying the
derivatives with respect to L, L⇤ to (54) with J = J⇤ = 0 and comparing to (53), e.g., yields
the identity

G̃12 = �(��t)12 + (��t)110G1020(��t)202. (55)

Solving for G provides the rule how to transform the dual Green function to the physical quan-
tity in terms of lattice fermions.
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B Exact relations between Green functions
After appropriate diagrammatic results for the dual self-energy and the dual Green function
have been obtained, they have to be transformed back to the corresponding physical quantities
in terms of real lattice fermions. The fact that dual fermions are introduced through the exact
Hubbard-Stratonovich transformation, Eq. (22), allows to establish exact identities between
dual and lattice Greens function [3, 15].
The relations between the n-particle cumulants of dual and lattice fermions can be established
using the cumulant (linked cluster) technique. To this end one may consider two different,
equivalent representations of the following generating functional
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Integrating-out the lattice fermions from this functional similar to (26) (this can be done with
the sources J and J⇤ set to zero) yields
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with Z̃d = Z/Z̃ . The dual Green function and the two-particle correlator related with non-local
susceptibilities are obtained from (52) by suitable functional derivatives, e.g.,
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where G ⌦ G is the antisymmetrized direct product of Green functions, so that the angular
bracket is the connected part of the dual two-particle Green function. Conversely, integrating
out the dual fermions from Eq. (51) using the HS-transformation, one obtains an alternative
representation, which more clearly reveals the connection of the functional derivatives with
respect to the sources J , J⇤, and L, L⇤. The result is
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Fig. 8: Feynman diagram for the 2nd-order dual fermion perturbation for the self-energy e⌃.

What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃�1

k⌫ = G̃�1
0k⌫ � e⌃k⌫ , and exact the relation of Appendix B, Eq. (55), we can directly

write an expression for the lattice Green function including only the reference impurity Green
function and the dual self-energy [2]

Gk⌫ =
⇣�

g⌫ + e⌃k⌫

��1 � e�k⌫

⌘�1

. (39)

This formula is perfectly suitable for the CT-QMC calculations for realistic multi-orbital corre-
lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature �=5 and the Padé analytical
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In analogy to (53), the cumulants in terms of lattice fermions are obviously obtained by func-
tional derivative with respect to the sources J and J⇤ with L and L⇤ set to zero. Applying the
derivatives with respect to L, L⇤ to (54) with J = J⇤ = 0 and comparing to (53), e.g., yields
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Solving for G provides the rule how to transform the dual Green function to the physical quan-
tity in terms of lattice fermions.
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Fig. 6: Feynman diagram for the 1st-order dual fermion perturbation for the self-energy e⌃:

a line represents the non-local eG43 and a box is the local �1234.

formalism. Transformation to the original DF-normalization where both dual Gd and real Green
function have the same dimension unit reads

Gd = g eGg = GDMFT � g GDMFT =
�
g⌫+�⌫�tk

��1
. (34)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]

���
0

1234(⌧1, ⌧2, ⌧3, ⌧4) = �hc1�c⇤2�c3�0c⇤4�0i
�
+ g�12g

�
0

34 � g�14g
�

32���0 .

Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (⌫, ⌫ 0), and one bosonic, (!), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels

�d/m

1234(⌫, ⌫
0,!) = �""

1234(⌫, ⌫
0,!)± �"#

1234(⌫, ⌫
0,!).

Now we can write the first-order, local in site (i), DF-correction to the dual self-energy (Fig. 6)

e⌃(1)i
12 (⌫) =

X

⌫0,3,4

�d

1234(⌫, ⌫
0, 0) eGii

43(⌫
0) (35)
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Fig. 8: Feynman diagram for the 2nd-order dual fermion perturbation for the self-energy e⌃.

What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃�1

k⌫ = G̃�1
0k⌫ � e⌃k⌫ , and exact the relation of Appendix B, Eq. (55), we can directly

write an expression for the lattice Green function including only the reference impurity Green
function and the dual self-energy [2]

Gk⌫ =
⇣�

g⌫ + e⌃k⌫

��1 � e�k⌫

⌘�1

. (39)

This formula is perfectly suitable for the CT-QMC calculations for realistic multi-orbital corre-
lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature �=5 and the Padé analytical
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Fig. 7: Schematic representation of the DMFT reference system for correlated lattice models.

We now can use the freedom to chose the hybridization function �⌫ in order to eliminate the
main first-oder dual fermion correction Eq. (35). Since the vertex function �1234 is purely local,
it is enough to ensure that the local part of dual Green function vanishes eGloc=0. This is exactly
equivalent to the DMFT self-consistency condition for the hybridization function �⌫ (Fig. 7)

X

k

�
g�1
⌫

+�⌫ � tk
��1

= g⌫ . (36)

The effective impurity model, Eq. (20), which is fully determined by the local hybridization
function �⌫ on the fermionic Matsubara frequencies i⌫n is solved using the numerically exact
CT-QMC scheme [1] from which the exact local Green function g⌫ is obtained. The self-
consistency DMFT condition for the hybridization function equates the local part of the lattice
Green function and with that of the impurity, which shows that DMFT minimizes, in local
sense, the distance |tk��⌫ |. It is worthwhile to point here that the “free” or non-interacting dual
fermions are equivalent to the full solution of the DMFT problem. This is why dual fermions
are only “weakly interacting” so that this perturbation scheme can be very efficient, provided a
good reference system.
The second order Feynman diagram for DF-perturbation (Fig. 8) in real space (Rij) has density-
and spin-channel contributions with corresponding constants (cd = �1/4 and cm = �3/4)
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Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃
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We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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We now can use the freedom to chose the hybridization function �⌫ in order to eliminate the
main first-oder dual fermion correction Eq. (35). Since the vertex function �1234 is purely local,
it is enough to ensure that the local part of dual Green function vanishes eGloc=0. This is exactly
equivalent to the DMFT self-consistency condition for the hybridization function �⌫ (Fig. 7)
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We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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equivalent to the DMFT self-consistency condition for the hybridization function �⌫ (Fig. 7)
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we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
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We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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main first-oder dual fermion correction Eq. (35). Since the vertex function �1234 is purely local,
it is enough to ensure that the local part of dual Green function vanishes eGloc=0. This is exactly
equivalent to the DMFT self-consistency condition for the hybridization function �⌫ (Fig. 7)
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Green function and with that of the impurity, which shows that DMFT minimizes, in local
sense, the distance |tk��⌫ |. It is worthwhile to point here that the “free” or non-interacting dual
fermions are equivalent to the full solution of the DMFT problem. This is why dual fermions
are only “weakly interacting” so that this perturbation scheme can be very efficient, provided a
good reference system.
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Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃
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We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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Fig. 8: Feynman diagram for the 2nd-order dual fermion perturbation for the self-energy e⌃.

What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃�1

k⌫ = G̃�1
0k⌫ � e⌃k⌫ , and exact the relation of Appendix B, Eq. (55), we can directly

write an expression for the lattice Green function including only the reference impurity Green
function and the dual self-energy [2]

Gk⌫ =
⇣�

g⌫ + e⌃k⌫

��1 � e�k⌫

⌘�1

. (39)

This formula is perfectly suitable for the CT-QMC calculations for realistic multi-orbital corre-
lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature �=5 and the Padé analytical
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continuation to the real axes [5]. Results of the first-order DF superperturbation are shown
in Fig. 10 together with reference and target DOS. We can conclude that even the first-oder
DF-correction gives the Green function in very good agreement with the exact one.
The real test for correlated fermions corresponds to a half-filled two-dimensional Hubbard
model on the square lattice with a 2⇥2 plaquette as the reference system (Fig. 11). We used the
2⇥2 supercell scheme with 4 atoms in the unit cell in oder to describe the lattice on the left-hand
side of Fig. 11 with the following 4⇥4 hopping matrix with the nearest neighbor hopping t and
next nearest neighbor hopping p

tk =
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Fig. 10: Density of states for the dual-fermion first-order scheme together with the reference

and target Green function for the two-site model.
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What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃�1
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lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
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What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃�1

k⌫ = G̃�1
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This formula is perfectly suitable for the CT-QMC calculations for realistic multi-orbital corre-
lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature �=5 and the Padé analytical
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What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃�1

k⌫ = G̃�1
0k⌫ � e⌃k⌫ , and exact the relation of Appendix B, Eq. (55), we can directly
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This formula is perfectly suitable for the CT-QMC calculations for realistic multi-orbital corre-
lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature �=5 and the Padé analytical
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Fig. 6: Feynman diagram for the 1st-order dual fermion perturbation for the self-energy e⌃:

a line represents the non-local eG43 and a box is the local �1234.

formalism. Transformation to the original DF-normalization where both dual Gd and real Green
function have the same dimension unit reads

Gd = g eGg = GDMFT � g GDMFT =
�
g⌫+�⌫�tk

��1
. (34)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]

���
0

1234(⌧1, ⌧2, ⌧3, ⌧4) = �hc1�c⇤2�c3�0c⇤4�0i
�
+ g�12g

�
0

34 � g�14g
�

32���0 .

Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (⌫, ⌫ 0), and one bosonic, (!), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels

�d/m

1234(⌫, ⌫
0,!) = �""

1234(⌫, ⌫
0,!)± �"#

1234(⌫, ⌫
0,!).

Now we can write the first-order, local in site (i), DF-correction to the dual self-energy (Fig. 6)

e⌃(1)i
12 (⌫) =

X

⌫0,3,4

�d

1234(⌫, ⌫
0, 0) eGii

43(⌫
0) (35)
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Fig. 9: Schematic representation of dual-fermion superperturbation test for a two-site model.

continuation to the real axes [5]. Results of the first-order DF superperturbation are shown
in Fig. 10 together with reference and target DOS. We can conclude that even the first-oder
DF-correction gives the Green function in very good agreement with the exact one.
The real test for correlated fermions corresponds to a half-filled two-dimensional Hubbard
model on the square lattice with a 2⇥2 plaquette as the reference system (Fig. 11). We used the
2⇥2 supercell scheme with 4 atoms in the unit cell in oder to describe the lattice on the left-hand
side of Fig. 11 with the following 4⇥4 hopping matrix with the nearest neighbor hopping t and
next nearest neighbor hopping p

tk =

0

BBB@

" tK0+ pL�+ tK�0

tK0� " tK�0 pL��

pL+� tK+0 " tK0�

tK+0 pL++ tK0+ "

1

CCCA

where the functions Kmn

k and Lmn

k with [m(n)] = �(1), 0,+(1) are defined as

Kmn

k = 1 + ei(mkx+nky)

Lmn

k = 1 + ei(mkx+nky) + eimkx + einky
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Fig. 10: Density of states for the dual-fermion first-order scheme together with the reference

and target Green function for the two-site model.
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continuation to the real axes [5]. Results of the first-order DF superperturbation are shown
in Fig. 10 together with reference and target DOS. We can conclude that even the first-oder
DF-correction gives the Green function in very good agreement with the exact one.
The real test for correlated fermions corresponds to a half-filled two-dimensional Hubbard
model on the square lattice with a 2⇥2 plaquette as the reference system (Fig. 11). We used the
2⇥2 supercell scheme with 4 atoms in the unit cell in oder to describe the lattice on the left-hand
side of Fig. 11 with the following 4⇥4 hopping matrix with the nearest neighbor hopping t and
next nearest neighbor hopping p

tk =

0

BBB@

" tK0+ pL�+ tK�0

tK0� " tK�0 pL��

pL+� tK+0 " tK0�
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where the functions Kmn

k and Lmn

k with [m(n)] = �(1), 0,+(1) are defined as

Kmn

k = 1 + ei(mkx+nky)

Lmn

k = 1 + ei(mkx+nky) + eimkx + einky
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Fig. 10: Density of states for the dual-fermion first-order scheme together with the reference

and target Green function for the two-site model.
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ij

Fig. 11: Schematic representation of a plaquette cluster-reference system for the square lattice.

The standard reference system (Fig. 11) corresponds to the Green function, averaged over the
supercell Brillouin zone, which is equivalent to the self-consistent cluster-DMFT scheme [21].
Another possibility for the reference system is related with the k = 0 Green function, which
corresponds to the decoupled lattice of plaquettes with periodic boundary condition

�0 = tk=0 =

0

BBB@

" 2t 4p 2t

2t " 2t 4p

4p 2t " 2t

2t 4p 2t "

1

CCCA
. (40)

Note that the spectrum of this hopping Hamiltonian Eq. (40) is equal to the original cubic tight-
binding model

"k = 2t
�
cos kx + cos ky

�
+ 4p cos kx cos ky

in the 4 k-points: �=(0, 0), X=(⇡, 0), Y=(0, ⇡) and M=(⇡, ⇡) which corresponds to the 2⇥2

grid in the original Brillouin zone. In this sense, we can view the dual fermion perturbation
from the plaquette reference system [21] as a DF-multigrid interpolation from the 2⇥2 k-mesh
in the original cubic lattice to, e.g., 64⇥64 k-points (for this case one needs to use the 32⇥32

mesh in our supercell). This is exactly the task for the present numerical test.
In order to calculate the bare dual Green function we use a slightly modified version of Eq. (33)
(since �k = �0�tk = 0, for some k-points, e.g. for k = 0)

eG0
k,⌫ = �k

�
1� g⌫�k

��1
.

With this choice of reference system, one can again stay only with the exact diagonalization
scheme to calculate the dual Green function and the plaquette vertex function. We choose the
strong-coupling parameters with U=W=8, t=� 1, p=0 and the temperature T=1/3 for which
there is a diagrammatic QMC results [18]. In the Fig. 12 we plot the density of states (DOS)
for three different Green functions: ED for the reference plaquette, cluster perturbation (CP)
which corresponds to Eq. (39) with e⌃k⌫=0, and the results for the second-order plaquette dual-
fermion. We use Padé-analytical continuation from the Matsubara to the real energy axis [5].
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Condition for D and relation with DMFT

To determine D, we require 
that Hartree correction in dual variables vanishes.
If no higher diagrams are taken into account, one obtains DMFT:

Higher-order diagrams give corrections 
to the DMFT self-energy,  and already 
the leading-order correction is nonlocal.
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Fig. 6: Feynman diagram for the 1st-order dual fermion perturbation for the self-energy e⌃:

a line represents the non-local eG43 and a box is the local �1234.

formalism. Transformation to the original DF-normalization where both dual Gd and real Green
function have the same dimension unit reads

Gd = g eGg = GDMFT � g GDMFT =
�
g⌫+�⌫�tk

��1
. (34)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]

���
0

1234(⌧1, ⌧2, ⌧3, ⌧4) = �hc1�c⇤2�c3�0c⇤4�0i
�
+ g�12g

�
0

34 � g�14g
�

32���0 .

Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (⌫, ⌫ 0), and one bosonic, (!), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels

�d/m

1234(⌫, ⌫
0,!) = �""

1234(⌫, ⌫
0,!)± �"#

1234(⌫, ⌫
0,!).

Now we can write the first-order, local in site (i), DF-correction to the dual self-energy (Fig. 6)

e⌃(1)i
12 (⌫) =

X

⌫0,3,4

�d

1234(⌫, ⌫
0, 0) eGii

43(⌫
0) (35)
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Fig. 7: Schematic representation of the DMFT reference system for correlated lattice models.

We now can use the freedom to chose the hybridization function �⌫ in order to eliminate the
main first-oder dual fermion correction Eq. (35). Since the vertex function �1234 is purely local,
it is enough to ensure that the local part of dual Green function vanishes eGloc=0. This is exactly
equivalent to the DMFT self-consistency condition for the hybridization function �⌫ (Fig. 7)

X

k

�
g�1
⌫

+�⌫ � tk
��1

= g⌫ . (36)

The effective impurity model, Eq. (20), which is fully determined by the local hybridization
function �⌫ on the fermionic Matsubara frequencies i⌫n is solved using the numerically exact
CT-QMC scheme [1] from which the exact local Green function g⌫ is obtained. The self-
consistency DMFT condition for the hybridization function equates the local part of the lattice
Green function and with that of the impurity, which shows that DMFT minimizes, in local
sense, the distance |tk��⌫ |. It is worthwhile to point here that the “free” or non-interacting dual
fermions are equivalent to the full solution of the DMFT problem. This is why dual fermions
are only “weakly interacting” so that this perturbation scheme can be very efficient, provided a
good reference system.
The second order Feynman diagram for DF-perturbation (Fig. 8) in real space (Rij) has density-
and spin-channel contributions with corresponding constants (cd = �1/4 and cm = �3/4)

e⌃(2)ij
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X

3-8
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c↵�
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0,!) eGij

36(⌫ + !) eGji

74(⌫
0 + !) eGij

58(⌫
0) �↵,j

8762(⌫
0, ⌫,!).

Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃

⌃k⌫ = ⌃0
⌫
+⌃ 0

k⌫ (37)

⌃ 0
k⌫ = g�1

⌫
�
�
g⌫ + e⌃k⌫

��1
. (38)

We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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Green function and with that of the impurity, which shows that DMFT minimizes, in local
sense, the distance |tk��⌫ |. It is worthwhile to point here that the “free” or non-interacting dual
fermions are equivalent to the full solution of the DMFT problem. This is why dual fermions
are only “weakly interacting” so that this perturbation scheme can be very efficient, provided a
good reference system.
The second order Feynman diagram for DF-perturbation (Fig. 8) in real space (Rij) has density-
and spin-channel contributions with corresponding constants (cd = �1/4 and cm = �3/4)
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Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃
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We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].

Self-consistent condition:

DMFT minimize “distance”:
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Green function and with that of the impurity, which shows that DMFT minimizes, in local
sense, the distance |tk��⌫ |. It is worthwhile to point here that the “free” or non-interacting dual
fermions are equivalent to the full solution of the DMFT problem. This is why dual fermions
are only “weakly interacting” so that this perturbation scheme can be very efficient, provided a
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Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃
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We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,
which defines the local self-energy matrix for our 2× 2 super-site:

ΣI,J (iω) =




Σ0 Σx Σxy Σy

Σx Σ0 Σy Σxy

Σxy Σy Σ0 Σx

Σy Σxy Σx Σ0




For a general N ×N super-site impurity model (simp) the partition function can be written as a
functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗

and c :
Z =

∫
D[c∗, c]e−Ssimp , (6)

where

Ssimp = −
N∑

I,J=0

∫ β

0

dτ

∫ β

0

dτ ′ c∗Iσ(τ)
[
G−1
σ (τ − τ ′)

]
IJ

cJσ(τ
′)

+
N∑

I=1

∫ β

0

dτUnI,↑(τ)nI,↓(τ),

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.
The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to
obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space
GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular
DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following
prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the
standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.
Next we can write the matrix equation for the bath Green function matrix G, which describes the
effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,
which allowed us to account for double-counting corrections for the local self-energy matrix:
the bath Green function is not supposed to have any local self-energy contribution, since it
comes later from the solution of the effective super-impurity problem (7). Therefore one needs
to subtract the local self-energy contribution, which is equivalent to a solution of the following
impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the
”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).
We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity

What is a best scheme?
Quantum Monte Carlo !



Imputity solver: miracle of CT-QMC 

Interaction expansion CT-INT:  A. Rubtsov et al, JETP Lett (2004)

Hybridization expansion CT-HYB: P. Werner et al, PRL (2006) 

E. Gull, et al, RMP 83, 349 (2011)

Efficient Krylov scheme:  A. Läuchli and P. Werner, PRB (2009)
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Figure 8: (Color online) Momentum dependence of the eigen-
functions φω0,k of Eq. (30) for U = 8, δ = 0.14 and T = 0.1,
where ω0 = πT . Either the even-frequency part φeven

ω0,k
or the

odd-frequency part φodd
ω0,k

is plotted depending on which is
allowed by the Pauli principle.

10 types of pairings (2 spin symmetries × 5 spatial sym-
metries), which have the largest eigenvalue in each sym-
metry class. The phase of the eigenfunction is arbitrary
in the linear equation. We determined the phase factor so
that the component which has the largest absolute value
becomes a real number. Then, all components of φk be-
come real. Finally, we define even- and odd-frequency
parts, φeven

ωk = φωk + φ−ωk and φodd
ωk = φωk − φ−ωk, to

see the frequency dependence. We have confirmed that
either φeven or φodd vanishes to fulfill the Pauli principle,
e.g., φodd = 0 for the spin-singlet with symmetry A1g.

We first show eigenfunctions φωk obtained in the way
described above. Figure 8 shows the momentum de-
pendence of φωk with the lowest Matsubara frequency,
ω0 = πT . The main feature is that some functions have
only minimal nodes required from the symmetry and the
rest have additional nodes. In the A1g symmetry, for ex-
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Figure 9: (Color online) Temperature dependence of the
eigenvalues λSC of Eq. (30) for U = 8 and δ = 0.14.

ample, there is no node for the triplet, while a line node
exists on the Fermi level for the singlet (i.e., extended
s-wave symmetry, cos kx + cos ky).
Which type of superconductivity actually occurs is ex-

amined from the temperature dependence of λSC. It can
be seen from Fig. 9 that λSC for the spin-singlet B1g

(dx2−y2) symmetry crosses 1 as expected. The transition
temperature Tc is estimated to be Tc # 0.030 for these
parameters. The doping dependence of Tc is plotted in
the phase diagram in Fig. 2.

VI. PHASE SEPARATION

Our next interest lies in the paramagnetic state above
Tc and near the Mott insulator. In this regime, we found
an instability of the uniform charge fluctuations. Fig-
ure 10 shows the temperature dependence of the chem-
ical potential µ for several values of doping δ = 1 − n
for U = 8. The decrease of µ below T # 1 is due to the
development of a Mott gap. At around T = 0.1, some
lines for different doping levels intersect. It means that
µ is a non-monotonic function of δ at low temperatures
as shown in the inset of Fig. 10. This behavior indicates
a phase separation as explained below.
At T = 0.1 in the inset of Fig. 10, there exists two

solutions with different doping, say δ1 and δ2. Actually,
the Mott insulator with δ = 0 is also a solution in this
case. Hence, there are three solutions (δ0 = 0 < δ1 < δ2),
two of which (δ0 and δ2) are thermodynamically stable
and one (δ1) is unstable. In order to make the average
doping δ̄ at 0 < δ̄ < δ2, the system becomes spatially
inhomogeneous between the Mott insulator with δ = 0
and the metallic state with δ = δ2.
We define the temperature TPS for the phase separa-

tion by the point where two lines intersect in Fig. 10.
It corresponds to the so-called spinodal point where the
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an instability of the uniform charge fluctuations. Fig-
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ical potential µ for several values of doping δ = 1 − n
for U = 8. The decrease of µ below T # 1 is due to the
development of a Mott gap. At around T = 0.1, some
lines for different doping levels intersect. It means that
µ is a non-monotonic function of δ at low temperatures
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and one (δ1) is unstable. In order to make the average
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Figure 1: (Color online) A phase diagram at half filling, δ = 0.

with ladder-type diagrams provides a combined descrip-
tion of strong local correlations and long-range correla-
tions.
Although first results of the ladder approximation have

been presented in 2009 [45, 48], its exemplary results for
doped Mott insulators have been limited because of some
technical difficulties arising from strong AFM fluctua-
tions. In this paper, we overcome these limitations and
present systematic results for the doped regime of the
two-dimensional Hubbard model. We address possible
phase transitions of the d-DW and the phase separation
in the doped Mott insulator as well as the d-SC. Our re-
sults reveal further characteristics of the ladder approxi-
mation.
The rest of this paper is organized as follows. In

the next section, we first present phase diagrams ob-
tained in this investigation to give an overview of our
results. Afterwards, the dual-fermion formalism and the
self-energy equation are presented in Section III. Suc-
ceeding Sections IV–VII present detailed numerical re-
sults and related formulas for the AFM susceptibility,
superconductivity, phase separation, and unconventional
density waves. The paper is closed with discussions in
Section VIII.

II. OVERVIEW

Prior to presenting formalism and detailed numerical
results, we first give an overview of our results obtained in
this paper. We investigate the two-dimensional Hubbard
model:

H =
∑

kσ

εkc
†
kσckσ + U

∑

r

nr↑nr↓, (1)

with εk = −2t(cos kx + cos ky). The number operator

nrσ is defined by nrσ = N−1
∑

kq c
†
kσck+qσeiq·r, where
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Figure 2: (Color online) Phase diagrams under doping δ =
1− n for U = 8.

N denotes the number of lattice sites. We take t = 1 as
the unit of energy.
In two-dimensional systems, the AFM transition is for-

bidden at T > 0 by the Mermin-Wagner theorem [49].
This leads to the critical behavior χ ∼ ecβ of the suscep-
tibility at low temperatures [50, 51]. Our approximation
indeed shows no AFM transition within calculated tem-
peratures. To quantify the AFM fluctuations, we define
a “phase boundary” by the points where the fluctuations
exceed a certain criterion (see Section IV for details). We
may regard this line as a phase boundary in quasi-two di-
mensions. The phase diagram at half filling obtained in
this way is shown in Fig. 1. We plot three phase bound-
aries corresponding to different criteria. In DMFT, there
exists a real phase transition, which is plotted for com-
parison.
According to a cluster DMFT calculation with a para-

magnetic bath [52], the Mott transition takes place at
U # 6 and below T # 0.1 [53]. We could not reach this
regime due to the critical AFM fluctuations, which ren-
ders the self-energy calculation unstable. We note, how-
ever, that cluster DMFT does not take into account crit-
ical fluctuations characteristic of two dimensions, mean-
ing that the AFM transition takes place at a higher tem-
perature than the Mott transition. Hence the latter is
actually hidden by the AFM phase in cluster DMFT.
Figure 2 shows the phase diagram of temperature

against doping δ = 1 − n for U = 8. The d-SC is ob-
tained in the region T ! 0.05 and δ ! 0.18. The su-
perconducting transition temperature Tc monotonically
increases approaching half filling (δ = 0). This behav-
ior is reminiscent of the FLEX [43, 44] and differs from
that in cluster DMFT, where the d-SC phase exhibits a
maximum at finite doping [29, 31]. We consider that the
monotonic behavior of Tc in our results is due to insuf-
ficient treatment of short-range spin fluctuations, which
will be discussed in Sec. VIII.
In the low-doping regime above Tc, we found a phase

U=8
δ=0.15
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V. SUPERCONDUCTIVITY

A. Formulas for pairing susceptibilities

In this section, we discuss the superconductivity in the
doped regime. We first derive a formula for the pairing
susceptibility of the dual fermions. The susceptibilities
of the dual fermions can be transformed to those of the
original electrons [46, 60, 61]. Actually, numerical trans-
formations cannot be performed in the case of unconven-
tional (momentum-dependent) order parameters because
the susceptibility matrix is too large to store in memory
[see Eq. (22)]. However, since the diverging point is com-
mon to both susceptibilities, we can determine the tran-
sition temperature from the dual-fermion susceptibility
without transforming to the electron susceptibility.
We consider Cooper pairs with opposite spin directions

of the constituent electrons. With a form factor φk which
depends on both k and ω, the order parameter Φ is ex-
pressed as Φ =

∑

k φk〈fk↑f−k↓〉S̃ . The static susceptibil-
ity for this pairing is defined by

∑

kk′ φkP̃kk′φ∗
k′ where

P̃kk′ = 〈fk↑f−k↓f
∗
−k′↓f

∗
k′↑〉S̃ . (21)

The Bethe-Salpeter equation for this Green’s function is
written as

P̃kk′ = P̃ 0
k δkk′ −

T

N

∑

k′′

P̃ 0
kΓ

pp
kk′′ P̃k′′k′ , (22)

where

P̃ 0
k = G̃kG̃−k. (23)

For the irreducible vertex part Γpp, we take account of
effective interactions mediated by the spin and charge
fluctuations. Hence, Γpp is given in terms of the renor-
malized vertex in Eq. (13) as [46, 48]

Γpp
kk′ =− Γ↑↓↓↑

ω,−ω′;ω′−ω,k′−k + Γ↑↓↑↓
ω,ω′;−ω−ω′,−k−k′

+ γ↑↓↓↑
ω,−ω′;ω′−ω. (24)

The first term in Eq. (24) incorporates the charge and
longitudinal spin fluctuations, and the second term the
transverse spin fluctuations. The third term subtracts
their double counting. A diagrammatic representation
for Γpp is shown in Fig. 7.
Without magnetic field, the pairing susceptibility is

classified according to the total spin of the pair. For this
purpose, we replace the pair operator by its symmetrized
or anti-symmetrized form:

fk↑f−k↓ →
1√
2
(fk↑f−k↓ ∓ fk↓f−k↑). (25)

Here, − corresponds to the spin singlet and + to the
spin triplet. The corresponding pairing susceptibility is
expressed as

P̃±
k,k′ = P̃k,k′ ± P̃k,−k′ . (26)

+ −=

Figure 7: The pairing interaction (the irreducible vertex for
the pairing susceptibility) Γpp in the ladder approximation.
The box with stripes stands for the renormalized vertex Γ in
Fig 3(c).

Hence, the inversion of the fermionic frequency and mo-
mentum, k = (ω,k) → −k = (−ω,−k), transforms P̃±

kk′

as P±
k,k′ = ±P±

k,−k′ = ±P±
−k,k′ = P±

−k,−k′ . From Eq. (22),

we obtain the equation for P̃±
kk′ ,

P̃±
kk′ = P̃ 0

k (δk,k′ ± δk,−k′ )−
T

N

∑

k′′

P̃ 0
kΓ

pp±
kk′′ P̃±

k′′k′ , (27)

where the (anti-)symmetrized vertex Γpp±
kk′ is defined by

Γpp±
kk′ = (Γpp

k,k′ ± Γpp
k,−k′)/2. Their explicit expressions

read

Γpp+
kk′ =

1

4

[

(3Γsp − Γch)ω,−ω′;ω′−ω,k′−k − 2γsp
ω,−ω′;ω′−ω

]

+ (ω′ → −ω′), (28)

Γpp−
kk′ =

1

4

[

−(Γsp + Γch)ω,−ω′;ω′−ω,k′−k + 2γsp
ω,−ω′;ω′−ω

]

− (ω′ → −ω′), (29)

where (ω′ → −ω′) is symbolic for the terms appearing
before it with ω′ replaced by −ω′.
The dimension of the matrices is too large to solve

Eq. (27) numerically. We instead deal with an eigen-
value problem to determine the transition temperature
and to extract the dominant pairing fluctuations. Near
the transition temperature, we may neglect the first term
in Eq. (27) to obtain the linear equation

K̂±φ = λSCφ, (K̂±)kk′ = −
T

N
P̃ 0
kΓ

pp±
kk′ . (30)

We can demonstrate from the explicit form of Γpp±
kk′ that

the eigenvalues λSC are purely real. The condition for the
divergence of the susceptibility is λSC

max = 1 with λSC
max

being the largest eigenvalue. The corresponding eigen-
function φk gives the form factor of the order parameter.

B. Numerical results

We evaluated the largest eigenvalues λSC
max of Eq. (30)

by a kind of power method. In this calculation, we en-
forced a particular spatial symmetry to pick up an eigen-
function belonging to a certain irreducible representation
(see Appendix B for details). In this way, we computed
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• Other approaches: in this category we show re-
sults from the two-particle self-consistent approach
(TPSC, TPSC+, [34–36]), the functional renormal-
ization group (fRG [37], here considered up to one
loop with Katanin substitution) and the parquet
approximation (PA [38, 39]).

This list covers the vast majority of currently available
computational methods able to address finite tempera-
ture properties. One notable exception is the minimally
entangled typical thermal state method (METTS) and
related approaches, which combine together tensor net-
work representations and stochastic sampling [40–42]. A
systematic exploration of this method as applied to the
Hubbard model is currently being actively pursued by
several groups and comparisons with the present meth-
ods will have to be performed in future work.

The basic principles of each of these methods, useful
references for further reading and results from slightly
di↵ering implementations of the respective methods and
algorithms are summarized in App. D. Throughout the
paper we consider the interaction value of U = 2t. Let us
stress from the outset that, despite this rather moderate
interaction value, each of these methods encounters limi-
tations in their regime of applicability. These limitations
stem either from (i) the approximation performed or (ii)
algorithmic obstacles.

We find that the lowest reachable temperature for the
DiagMC algorithm is T

DiagMC
min ⇡ 0.06t. In this case,

reaching lower temperatures is hindered by the di�culty
in summing the perturbative series. Interestingly, we find
that the limitation of the DQMC algorithm is similar,
T

DQMC
min ⇡ 0.06t. In that case, the limitations originate

from the exponentially growing correlation length which
would require the simulation of prohibitively large sys-
tems at lower T . DMFT, in contrast, can be converged to
very low temperatures and also at T = 0. Self-consistent
methods (e.g. TRILEX) su↵er from convergence prob-
lems at low-T , whereas calculations involving a ‘single-
shot’ correction beyond DMFT without self-consistency
such as D�A, DB or DF can be performed as long as the
correlation length can be accurately resolved (D�A, DB)
or, for DF, as long as the starting point - paramagnet-
ically restricted DMFT - remains reasonably accurate.
The finite momentum grid also limits the application of
fRG and PA, and, to a lesser degree, TPSC and TPSC+.
An intrinsic limitation of TPSC occurs in the renormal-
ized classical regime (see App. D 11) leading to a rather
severe overestimate of the onset temperature of the pseu-
dogap. TPSC+ has been proposed to remedy this: in the
present paper, the first application of TPSC+ is actually
presented, but its applicability has yet to be explored
more widely. An obvious limitation of quantum cluster
theories are the cluster sizes which they can reach, which
have to be compared to the correlation length - a very
demanding criterion in the present case, as will be shown
later.

� � 0 �
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a) b) DOS
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FIG. 1. (Color online.) a) Momentum distribution of the
(non-interacting) dispersion relation of the simple square lat-
tice, Eq. (2), for t = 1 throughout the first Brillouin zone.
The Fermi surface of the half-filled system (µ=0) is diamond-
shaped (bold black), the black arrows indicate the nesting vec-
tors, mutually connecting Fermi surface points. b) The cor-
responding (particle-hole symmetric) density of states (DOS)
as a function of energy ⇢0("). "=0 corresponds to half-filling.
c) The value of the dispersion relation along a high-symmetry
path exhibits a plateau around (⇡, 0), leading to a vanishing
Fermi velocity vF.

C. Definition of the model, the role of the van
Hove singularity and nesting

We consider the single-band Hubbard model defined
by the following Hamiltonian:

H=�t

X

hiji,�

c
†
i�
cj� + U

X

i

ni"ni#, (1)

where t is the (nearest-neighbor) hopping amplitude, hiji
denotes summation over nearest-neighbor lattice sites,
� 2 {", #} the electron’s spin, U the strength of the
(purely local) Coulomb interaction and ni� = c

†
i�
ci� the

spin resolved number operator. Throughout the paper
all energies are given in units of t = 1. Furthermore
we set h̄ = 1 and kB = 1. We consider the case of
U=2 (usually regarded as “weak coupling”) at half-filling
n= hn" + n#i=1, corresponding to a chemical potential
of µ=U/2=1 and the simple square lattice, resulting in
the following dispersion relation for the electrons (lattice
constant a = 1):

"k = �2 [cos (kx) + cos (ky)] . (2)

The particular form of the dispersion and the case of
half-filling leads to a very peculiar diamond-shaped Fermi
surface, already resulting in an interesting behavior with-
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The basic principles of each of these methods, useful
references for further reading and results from slightly
di↵ering implementations of the respective methods and
algorithms are summarized in App. D. Throughout the
paper we consider the interaction value of U = 2t. Let us
stress from the outset that, despite this rather moderate
interaction value, each of these methods encounters limi-
tations in their regime of applicability. These limitations
stem either from (i) the approximation performed or (ii)
algorithmic obstacles.

We find that the lowest reachable temperature for the
DiagMC algorithm is T

DiagMC
min ⇡ 0.06t. In this case,

reaching lower temperatures is hindered by the di�culty
in summing the perturbative series. Interestingly, we find
that the limitation of the DQMC algorithm is similar,
T

DQMC
min ⇡ 0.06t. In that case, the limitations originate

from the exponentially growing correlation length which
would require the simulation of prohibitively large sys-
tems at lower T . DMFT, in contrast, can be converged to
very low temperatures and also at T = 0. Self-consistent
methods (e.g. TRILEX) su↵er from convergence prob-
lems at low-T , whereas calculations involving a ‘single-
shot’ correction beyond DMFT without self-consistency
such as D�A, DB or DF can be performed as long as the
correlation length can be accurately resolved (D�A, DB)
or, for DF, as long as the starting point - paramagnet-
ically restricted DMFT - remains reasonably accurate.
The finite momentum grid also limits the application of
fRG and PA, and, to a lesser degree, TPSC and TPSC+.
An intrinsic limitation of TPSC occurs in the renormal-
ized classical regime (see App. D 11) leading to a rather
severe overestimate of the onset temperature of the pseu-
dogap. TPSC+ has been proposed to remedy this: in the
present paper, the first application of TPSC+ is actually
presented, but its applicability has yet to be explored
more widely. An obvious limitation of quantum cluster
theories are the cluster sizes which they can reach, which
have to be compared to the correlation length - a very
demanding criterion in the present case, as will be shown
later.
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FIG. 1. (Color online.) a) Momentum distribution of the
(non-interacting) dispersion relation of the simple square lat-
tice, Eq. (2), for t = 1 throughout the first Brillouin zone.
The Fermi surface of the half-filled system (µ=0) is diamond-
shaped (bold black), the black arrows indicate the nesting vec-
tors, mutually connecting Fermi surface points. b) The cor-
responding (particle-hole symmetric) density of states (DOS)
as a function of energy ⇢0("). "=0 corresponds to half-filling.
c) The value of the dispersion relation along a high-symmetry
path exhibits a plateau around (⇡, 0), leading to a vanishing
Fermi velocity vF.

C. Definition of the model, the role of the van
Hove singularity and nesting

We consider the single-band Hubbard model defined
by the following Hamiltonian:

H=�t

X

hiji,�

c
†
i�
cj� + U

X

i

ni"ni#, (1)

where t is the (nearest-neighbor) hopping amplitude, hiji
denotes summation over nearest-neighbor lattice sites,
� 2 {", #} the electron’s spin, U the strength of the
(purely local) Coulomb interaction and ni� = c

†
i�
ci� the

spin resolved number operator. Throughout the paper
all energies are given in units of t = 1. Furthermore
we set h̄ = 1 and kB = 1. We consider the case of
U=2 (usually regarded as “weak coupling”) at half-filling
n= hn" + n#i=1, corresponding to a chemical potential
of µ=U/2=1 and the simple square lattice, resulting in
the following dispersion relation for the electrons (lattice
constant a = 1):

"k = �2 [cos (kx) + cos (ky)] . (2)

The particular form of the dispersion and the case of
half-filling leads to a very peculiar diamond-shaped Fermi
surface, already resulting in an interesting behavior with-
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FIG. 10. (Color online.) Imaginary parts of the self energies at the antinode as a function of Matsubara frequencies calculated
by various many body methods. Please note that the lowest temperatures shown sometimes di↵er for the respective methods
in order to show as many of the respective temperature regimes as possible. Also note that the vertical axis is di↵erent for the
last row of three figures.

the benchmarks within the numerical accuracy.
Larger deviations, both on a qualitative and quanti-

tative level become visible, however, when lowering the
temperature into the insulating pseudogap regime associ-
ated with growing magnetic correlations. Let us remind
the reader that this crossover is signalled by a second
change of slope in the self-energies - first at the antinode
(region 4�) and then at the node (region 5�) - correspond-
ing to a scattering rate that grows upon cooling.

Whereas D�A and DF correctly reproduce these
crossovers into the pseudogap regime, TRILEX does not
exhibit these changes of slope, down to the lowest tem-
peratures where we could converge the method. The DF
method also succeeds rather quantitatively, both at the
node and antinode, while the DB method appears to per-
form better at the antinode than at the node (but does
not open the gap at the accessible temperatures). From a
more quantitative point of view, DF and DB slightly un-
derestimate the scattering rate at the node with respect
to DiagMC whereas D�A seems to slightly overestimate
the scattering rate at the antinode and simultaneously
exhibits a slightly lower TN

⇤ than the benchmark.
Summarizing, we conclude that among the diagram-

matic extensions of DMFT presented here, the D�A and
the DF method appear to be best at capturing the dif-

ferent crossover regimes for the self-energy. In terms of
the practical ability of performing calculations in this pa-
rameter regime, we must point out that all methods suf-
fer from convergence problems when going down to lower
and lower temperatures. The reason for these problems
varies from method to method. For the benchmark meth-
ods: in DiagMC the series cannot be summed at low-T
and the DQMC su↵ers from the exponentially growing
correlation length for T < Tmin ⇡ 0.063. In the case
of the D�A (Tmin ⇡ 0.05), lower temperatures can be
reached if one is able to converge in the internal momen-
tum grids. The same is true for TRILEX (Tmin ⇡ 0.05),
DF (Tmin ⇡ 0.05) and DB (Tmin ⇡ 0.063). Please also
note that within DiagMC the lowest reachable tempera-
ture is di↵erent for node and antinode (1/TAN

min = 18 vs.
1/TN

min=16).

C. Other approaches: TPSC, TPSC+, fRG, PA

Figs. 10 and 11 also show results for three other ap-
proaches: TPSC/TPSC+, fRG and the parquet ap-
proximation (PA). Like the diagrammatic extensions of
DMFT, all of them are able to reproduce the two dis-
tinct quasiparticle coherence scales T

N,AN
QP at the node
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FIG. 11. (Color online.) Imaginary parts of the self energies at the node as a function of Matsubara frequencies calculated by
various many body methods. Please note that the lowest temperatures shown sometimes di↵er for the respective methods in
order to show as many of the respective temperature regimes as possible.

and antinode. However, there are significant deviations
from the benchmark regarding the onset of the insulating
pseudogap behavior.

TPSC is one of the first methods in which a de-
tailed understanding of the mechanism responsible for
the weak-coupling pseudogap was achieved early on (see
Refs. [34, 89, 90] and Sec. VII). As seen from Figs. 10 and
11, the change of slope in the self energies associated with
the pseudogap opening is indeed qualitatively captured
by TPSC, but the onset temperatures TAN,N

⇤ are severely
overestimated. As discussed in Sec. VI, this is due to an
overestimation of spin fluctuations in this method. A re-
cent improvement of the method, TPSC+ [36], leads to a
definite improvement in this respect as shown on the fig-
ures. TPSC+ partially feeds back the self-energy into the
fluctuation propagators, mimicking frequency-dependent
vertex corrections.

The PA appears to eventually capture insulating be-
havior at the antinode, although at lower temperatures
T < 0.05 in comparison to DiagMC, but doesn’t open a
pseudogap at the node at this temperature.

The fRG calculations are possible only down to a
“pseudocritical” temperature scale T ' 0.07 at which
the running coupling constants diverge (see also the dis-
cussion in Ref. [50]). Down to this temperature, however,
fRG is in qualitative agreement with the benchmark and

shows a non-metallic behavior at the antinode (regime
4�).

V. DOUBLE OCCUPANCY AND
POMERANCHUK EFFECT

In view of its physical significance discussed below, we
present in this section the temperature-dependence of the
double occupancy:

D = hn"n#i . (3)

It is displayed as a function of temperature in Fig. 12,
as obtained from di↵erent methods. We see (left panel,
DQMC and DiagMC benchmarks) that three regimes are
found: at high T (down to about T ' 1) D(T ) de-
creases upon cooling and then reaches a minimum, at
intermediate temperatures D(T ) actually increases upon
cooling and, finally, D(T ) sharply drops when entering
the gapped regime. The high T regime is expected and
easy to understand: as T is raised, an increasing number
of high-energy doubly occupied configurations are ther-
mally populated. This is apparent from the simple ex-
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FIG. 1. (a) Low-energy interacting DFT+DMFT spectral func-
tion of LiVS2 slightly above the transition temperature with
comparison to the DFT bands (full lines) shown along the path
through the Brillouin zone noted in the left inset. The represented
spectral weight differentiates between the three correlated-subspace
contributions using an subtractive color scheme based on the color
coding for the Wannier functions, which is shown in the right inset.
(b) Low-energy degenerate t2g-like Wannier functions (with specific
color coding: magenta, yellow, cyan).

dominant high-spin S = 1 multiplet for the V ion in the
metallic phase [22,26]. Second, a trimer state with low-spin
S = 0 for each V ion, i.e., violating Hund’s rule [28]. Note
that the latter proposition is different from a weak-coupling
band-insulating state with unpolarized bonding orbitals.

In order to have a full account of the realistic quantum
many-body problem, we go beyond the model perspective
as well as static strong-correlation investigations. We show
that by lowering T for LiVS2 the optimal compromise be-
tween multiorbital correlations driven by Hubbard U and
Hund’s JH as well as the given hopping processes on the
effective triangular lattice is provided by an even more chal-
lenging ordering beyond these suggestions. Namely, by means
of advanced first-principles many-body theory a spin-orbital
hexagonal ordering is identified to originate from the metallic
high-symmetry phase. Therewith for multiorbital frustrated
lattice systems a conclusive connection is drawn between a
local high-spin phase at elevated T and a global low-spin
phase at low T .

Details of the density functional and dynamical mean-
field theory (DFT+DMFT) [30–32] calculations are given in
Appendix B. Figure 1 displays band-narrowing transfer of
spectral weight as well as lifetime effects in the one-particle
spectral function A(k,ω) due to the rotational-invariant multi-
orbital Coulomb interactions on each V site. Especially along
"K and the corresponding AH direction at kz = π in the
Brillouin zone (BZ) the renormalization leads to intricate
many-body states close to εF. Notably the electron pocket at "

and the hole pocket at K get shifted towards the Fermi level.
The Wannier-function character contribution varies strongly
in the in-plane k directions and bandlike coherency is quickly
lost away from the Fermi level, specifically in the unoccupied
higher-energy region.

III. RESULTS

DFT+DMFT describes a strongly correlated metal at ele-
vated temperatures. A large local magnetic moment on the V
ions associated with 〈S2

loc〉 ∼ 1.96 is retrieved. As outlined, by
lowering T an intriguing MIT scenario sets in that involves
nearly all available system degrees of freedom. It remains
the challenge to shed light on the LiVS2 ordering. We will
see that this relies on the combination of nonlocal physics,
i.e., real-space order parametrization that involves correlations
among different lattice sites, with manifest multiorbital de-
grees of freedom. To tackle this we advance the DFT+DMFT
approach by appending a two-particle-susceptibility formal-
ism that includes generic multiorbital vertex contributions.
This enables us to study quantum fluctuations leading to
nonlocal ordering tendencies in the correlated metallic high-
temperature regime above TMIT. In principle, this is achieved
without breaking translational symmetry in real or recipro-
cal space. Hence instead of addressing the broken-symmetry
phase directly, we remain in the metallic state and examine
multiorbital two-particle response functions upon lowering
the temperature. That approach is indeed adequate in the
present context, since diffuse scattering hinting towards pre-
cursive manifestations of the ordered state has been noticed in
the electron-diffraction pattern of metallic LiVS2 [4].

In general, phase transitions are indicated by a divergence
of the static susceptibility associated with the underlying
order parameter and with a wave vector corresponding to
the real-space pattern of the ordered phase. Beyond former
single-band studies [33,34], our approach allows access to
the complete three-orbital particle-hole susceptibility tensor
χσσ ′

mm′m′′m′′′ (q,ω) at finite temperature, with full generality con-
cerning its frequency-dependent structure [35]. It allows an
evaluation of all experimentally measurable susceptibilities
and even explicit determination of the order parameter [36].

In the case of models with a single correlated orbital per
site, the longitudinal particle-hole channel allows for two
susceptibilities, namely the (q-dependent) spin and charge
response [35]. For a three-orbital t2g shell however, there are
18 such independent possible susceptibilities and not much
problem-tailored physical insight may be gained by monitor-
ing all of those. A much more promising route to examine
susceptibilities in multiorbital materials is to focus in a first
step on the eigenvalues/modes of the susceptibility tensor
χαβ in the product basis α = {σmm′} and β = {σ ′m′′′m′′} with
m, m′m′′, m′′′ = \, /,− and σ, σ ′ =↑,↓. From such an analysis

χ (l )(q,ω=0) =
〈

Tτ

∑

α

v̂(l )
α (q)

∑

β

v̂*(l )
β (q)

〉

= 〈TτV̂ (l )(q)V̂ *(l )(q)〉 (1)

is the lth eigenvalue and V̂ (l ) =
∑

σmm′ v
(l )
σmm′c†σ

mcσ
m′ is the

corresponding eigenmode (v(l )
α is the lth eigenvector of the

susceptibility tensor χαβ). This makes V̂ max the dominant
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FIG. 1. (Color online) (a) Schematic T -x phase diagram for the
CoO2 planes in sodium cobaltate. The green bar at x = 0.5 marks
the insulating charge-ordered state and the dashed arrow indicates
the possibility for superconductivity close to x = 0.67 [14]. (b) LDA
band structure for x = 0.67. The lower panel shows a magnification
of the region around εF with the a1g-like Wannier band (blue). (c)
Corresponding real-space Wannier orbital in the CoO2 plane (Co,
light blue; O, red).

electron hopping up to at least the third-NNs in subsequent
many-body treatments of NaxCoO2 is crucial. The long-range
hopping is essential to describe the band flattening close to the
" point, resulting in an extended Van Hove singularity at the
upper band edge for the cobaltate (t < 0) case. Since we do not
expect any qualitative changes, the full Wannier Hamiltonian
for x = 0.67 is used for the kinetic part in the many-body
calculations at all investigated doping levels.

With the derived Wannier dispersion ε(k), the complete
interacting problem is cast into an effective one-band Hubbard
model on the triangular CoO2 lattice described by the grand-
canonical Hamiltonian

H =
∑

kσ

ε(k)c†kσ ckσ +
∑

i

Uni↑ni↓ − µ
∑

i

ni . (1)

Here k denotes quasimomenta and the index i labels the
lattice sites. The operators c(†)

σ denote annihilators (creators)
for the Wannier electrons with spin projection σ = ↑,↓ and we
write nσ = c†σ cσ , n = n↑ + n↓. We choose an on-site Coulomb
interaction of U = 5 eV [25]. The data discussed in the
following are obtained at temperature T = 387 K. At various
doping levels x, we apply the dual-fermion (DF) approach [17]
using ladder summation [26] to solve this realistic many-body
problem tailored to the key NaxCoO2 physics.

III. DUAL-FERMION METHOD

We address the many-body problem (1) by means of the
DF approach [17]. Using a diagrammatic extension of DMFT
makes it possible to describe the nonlocal correlation physics
that we expect. The collective two-particle excitations in this

approach are described by the Bethe-Salpeter equation (BSE)
for the lattice vertex function ", which reads

[
"̃s/c

ν

]−1
ωω′(q) =

[
γ s/c

ν

]−1
ωω′ − χ̃ω

ν (q)δωω′ . (2)

Here ωn = (2n + 1)π/β and νm = 2mπ/β denote the
fermionic and bosonic Matsubara frequencies and the equation
is valid for the spin (s) and charge (c) channels. We use the
tilde to indicate that the quantities are defined in terms of DFs.
Here γ plays the role of the irreducible vertex and is given
by the fully connected vertex function of the DMFT impurity
model. It is local, but frequency dependent. The frequency
dependence is important for the description of the collective
excitations when correlations are strong. The BSE generates
the sum of ladder diagrams at all orders and describes repeated
particle-hole scattering which gives rise to long-wavelength
two-particle collective excitations [27].

In DF, we can describe the scattering of single particles with
collective excitations through a momentum-dependent (dual)
electronic self-energy +̃ω(k),

+̃ω(k) =
∑

ανω′q

aαγ α
νωω′G̃ω+ν(k + q)χ̃ω′

ν (q)"̂α
νω′ω(q). (3)

Here we have introduced the shorthand notation "̂s/c
νωω′(q) =

"̃s/c
νωω′(q) − 1

2γ s/c
νωω′ , where subtracting the local contribution

avoids double counting of the second-order contribution.
The sum over α runs over the charge and spin channels
with ac = 1/2, as = 3/2. The frequency (momentum) sums
are understood to be normalized by the inverse temperature
β = 1/T and number of k points, respectively. The lattice
Green’s function, which can be related to observables, is
expressed in the following form [18]:

Gω(k) =
{
g−1

ω [1 + gω+̃ω(k)]−1 + -ω − ε(k)
}−1

. (4)

In the above equation, χ̃ω
ν (q) = −

∑
k G̃ω(k)G̃ω+ν(k + q)

denotes the dual particle-hole bubble. The bare dual Green’s
function is given by G̃0

ω(k) = GDMFT
ω (k) − gω. Subtracting

the local self-consistent impurity Green’s function gω from
the DMFT lattice Green’s function GDMFT

ω (k) = [g−1
ω + -ω −

εk]−1 efficiently avoids double counting of local contributions.
In our calculations, we start from a converged DMFT

solution at given parameters corresponding to the self-
consistency condition

∑
k G̃0

ω(k) = 0 [i.e., the diagrammatic
correction (3) is not taken into account]. We then compute
the local two-particle vertex function γ , which allows us
to evaluate the BSE and dual self-energy correction. The
dual Green’s functions are self-consistently renormalized. We
finally obtain spectral functions by analytical continuation of
(4). The impurity self-energy and the local one- and two-
particle Green’s functions are computed using an optimized
[28] continuous-time hybridization expansion quantum Monte
Carlo solver [29] with improved estimators [30] for the
self-energy and vertex function. For the Monte Carlo as
well as for the DF part for retrieving the interacting Green’s
functions, we employ a fully parallelized implementation. We
exploit the lattice symmetries and compute the diagrams on a
128 × 128 × 128 frequency-lattice grid using the fast-Fourier-
transform algorithm. For further details on the DF formalism
and dual perturbation theory, see Ref. [31].
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It is known that charge-ordering effects may influence
the triangular hopping paths [32]. However, nonlocal charge
correlations are included in the DF approach and two-particle
spin and charge susceptibilities are indeed very similar to
recent DMFT + vertex results [22]. The principal physics
discussed here is not altered by the presence of charge ordering.

IV. RESULTS

Figure 2 shows the DF and DMFT spectral functions
Aω(k) = −(1/π ) Im Gω+i0+ (k) in the unoccupied part of the

(a)

(b)

FIG. 2. (Color online) Interacting and momentum-resolved
NaxCoO2 spectral functions close to the # point in the direction
# → M and in units of 10−2 (2π/a). The results are for doping
levels x = 0.3 (a) and x = 0.67 (b). Results for DMFT, DF, and
DF restricted to charge fluctuations are shown. The Fermi level is
located at ω = 0.

spectrum ω > 0 in reciprocal space and close to the # point. At
low doping, x = 0.3, relatively close to half filling, both DMFT
and DF agree qualitatively rather well, displaying a broadened
quasiparticle (QP) peak and an upper Hubbard band located
at an energy of ω ∼ 1 eV. Within DF, the upper Hubbard
band is shifted to slightly lower energies and considerably
narrowed. Because of the diagrammatic construction of the
the dual self-energy (3), we can readily separate contributions
from collective spin and charge excitations. Restricting the
DF calculation to charge fluctuations results in a spectrum
that is much closer to DMFT. At this doping, the magnetic
susceptibility is peaked at the K point of the Brillouin
zone [22], which we confirm in our data. There is hence a
tendency to AFM ordering, but the system does not order
because of frustration. Instead, the presence of dynamical
AFM correlations decreases the fluctuations and leads to
an interplay of Slater and Mott physics that increases the
coherence of the single-particle excitations. A similar situation
occurs in the two-dimensional square lattice [31].

At x = 0.67, the difference between DMFT and DF
is more significant, giving rise to a qualitatively different
excitation spectrum above εF. In DMFT, the QP peak is
considerably larger and the QP weight Z is significantly
enhanced compared to the case of low doping. This is expected,
since Z ≈ 1 should hold far away from half filling and
towards the opposite (band-insulating) end point x = 1. We
further see that the upper Hubbard band has completely
dissolved in the DMFT perspective. In DF, on the contrary,
the QP peak close to # is strongly renormalized. The spectral
function additionally exhibits a broad sideband excitation
at ω ∼ 0.3–0.4 eV. By restricting the DF calculation to the
charge channel only, this sideband excitation disappears. This
is a strong indication that this excitation is of magnetic
origin.

A weak absorption feature already present at room temper-
ature has previously been reported from optics experiments of
nearly ferromagnetic Na0.7CoO2 for x = 0.7 by Wan et al.
[33]. The broad feature was observed in the mid-infrared
at an energy of ω ∼ 0.4 eV, which is in remarkably good
agreement with our result. The authors of that work speculated
about spin polarons as one of the possible mechanisms. This
interpretation is not unlikely due to an enhanced ferromagnetic
susceptibility and the presence of strong FM fluctuations
at this doping. We find that the leading eigenvalue of the
magnetic channel of the BSEs is largest for q = 0, i.e., for
ferromagnetic alignment of the spins. This is in line with the
paramagnons found in the vicinity of the # point in a previous
study [22].

In elementary theory for the spin-polaron, one considers an
electron in a ferromagnetic background and a single magnon
in the s-d [34–36] or t-J models [37]. In the latter, the
presence of bound states depends crucially on the lattice
dimensionality and anomalies in the electronic spectrum. In
three dimensions (3D) and small FM J > 0, there are no
spin-polaron bound states in an almost filled band in presence
of Nagaoka ferromagnetism [38]. This is similar to the classical
Slater-Koster impurity problem, where a weak potential in a
3D crystal does not lead to the formation of a bound state.
In 1D, however, a bound state forms at an arbitrarily small
ratio of J/t [37]. For the quasi-2D system the situation is
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FIG. 2. Temperature dependence of all particle-hole-based sus-
ceptibility eigenvalues at the K point. The inset shows the largest
eigenvalue throughout the Brillouin zone, emphasizing that rele-
vant susceptibilities reside at the K point. The vertical line marks
T = 260 K as the temperature used for the inset and for all other
calculations throughout the work, if not stated otherwise.

fluctuating excitation upon approaching the phase transition
and θ = 〈V̂ max〉 a natural order parameter for the transition.

Figure 2 shows the eigenvalue evolution of χαβ (K,ω=0)
with temperature. The prominent maximum is located at the
K point, as visible from the inset of Fig. 2. A single eigen-
value diverges, indicating a phase transition at roughly Tcrit ∼
150 K, undershooting the experimentally observed transition
temperature TMIT ∼ 310 K. However this is to be expected
[37], given the fact that our model neglects phonon contri-
butions and thus does not take into account lattice distortions
that accompany the transition [4].

The above approach assumes a spatial variation of a single-
site order parameter. But from experimental findings [4] or the
anisotropy of the three respective orbitals [compare Fig. 1(b)]
this cannot be taken for granted. Yet, it gives the right hint
towards a spinlike [V̂ (max)(K ) ∝ Ŝ(tot)

z ] K point (
√

3 ×
√

3 su-
perlattice) ordering instability. Having uncovered this pattern,
in a second step we expand the multiorbital particle-hole sus-
ceptibility investigation by deliberately breaking translational
symmetry of the lattice two-particle Green’s function in this
way. Accordingly, we solve the supercell (SC) Bethe-Salpeter
equation (BSE) [38] for the susceptibility tensor χ̃ , i.e.,

χ̃−1
SC (Q) = χ̃ (0)

SC
−1(Q) + γSC (2)

on the LiVS2 triangular lattice build from a minimal tri-
angle three-site basis with superlattice wave vector Q = '
[compare Fig. 3(b)]. All quantities in Eq. (2) carry the full
inner fermionic degrees of freedom, with a Legendre rep-
resentation replacing fermionic Matsubara frequencies [35].
This representation renders the calculation both accurate and
numerically feasible. The undistorted one-particle Green’s
function is used for the bare susceptibility χ̃ (0) to take into
account that our investigations still deal with temperatures
above the transition to the disordered phase. The constructed
irreducible supercell vertex function γSC remains site diago-
nal. We thus anticipate the translational-symmetry breaking
of the high-temperature susceptibility shown in Fig. 2.

Analysis of the 162 eigenmodes of the resulting supercell
susceptibility tensor (Nσmm′ = 2 · 9 · 9) reveals two degener-
ate dominant eigenvalues, being partners in a two-dimensional
irreducible representation of the triangular building block.

FIG. 3. (a) Site-orbital resolved maximum eigenmode contri-
butions. Only the σ =↑ part vmax

↑mm′ is shown with m and m′ the
adumbrated orbital indices on the supercell. (b) Original (red) and
superlattice (blue). The original lattice K point coincides with the
superlattices ' point. (c) The eigenbasis of the real (left) and imag-
inary (right) part of the dominant fluctuations; the length of the line
indicates the eigenvalue corresponding to the eigenvector, green for
a positive eigenvalue, red for a negative one. (d) Identified LiVS2

order at low temperature by visualizing the maximum spin-orbital
resolved eigenmode contribution vmax

σmm′ of (a). The inset shows the
color coding of the complex values used in (a) and (d). Lines high-
light the hexagonal phase relation between the major contributions
to the order parameter.

These eigenmodes are given in Fig. 3(a) for one spin pro-
jection σ =↑ and orbital basis of three degenerate t2g-like

Wannier functions {m, m′} = , , for three different
vanadium atoms in supercell. For convenience, the latter
are rotated into the tailored basis of the two-dimensional
eigenspace, diagonalizing the 120◦ rotation, which results in
a complex order parameter. Only one of the two partners
is shown; the other is its complex conjugate. Also, vmax

↓mm′ =
−vmax

↑mm′ as is typical for spinlike excitations. The interesting
feature is the intricate orbital degree of freedom. The large
diagonal parts with the ei 2

3 π (i.e., 120◦) phase shift between
lattice sites is reminiscent of a K-point excitation on a tri-
angular lattice. The same pattern can be observed in models
without orbital anisotropy. On the other hand, the appearance
of relevant intersite elements reflects an apparent triangu-
lar supercell molecular orbital on the periodic supercell as
sketched in Fig. 3(d). A key feature of this ordering mode is
the phase relation between the different onsite and intersite
spin-orbital parts on the elementary triangle. As seen from
Fig. 3(d), we need to use a hexagon complex plane mapping
(see Appendix E) to describe the resulting spin-orbital hexag-
onal order.

This traceless hidden-excitation mode does not imprint a
finite magnetic moment to the supercell. Also applying a
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FIG. 3. (Color online) Intensity plot of the interacting k-resolved
NaxCoO2 spectral function for Aω(k) (in arbitrary units) for doping
x = 0.67 along the high-symmetry lines through " = (0,0), M =
(1/2, − 1/2

√
3), and K = (2/3,0) (in units of 2π/a). The spin-

polaron states close to " are clearly visible. Dark crosses show the
solution for the spin-polaron band in a t-J model.

marginal and depends on the existence of the Van Hove
singularity in the band structure. In order to obtain a qualitative
description of spin polarons on the present triangular lattice,
we consider a numerical solution of the t-J model. The
problem becomes tractable by restricting it to a state of a single
magnon and an excess charge carrier in the ferromagnetic
state denoted |FM〉: c

†
iσ S−

j |FM〉 (S−
j lowers the spin at site

j by 1). This allows us to compute the dispersion E(k) of
the resulting bound state numerically (see the Appendix for
details).

In Fig. 3 we display the momentum-resolved DF spectral
function for x = 0.67 together with the model spin-polaron
dispersion E(k). We see an overall moderate bandwidth
renormalization in DF due to the high doping level. The
band structure is very similar to the one obtained within a
three-band DMFT description [24] within 0.1 eV of the Fermi
level. Above these scattering states near ", we recognize the
sideband of antibound states, which we interpret as spin-
polaron excitations. This band is not present in the three-band
DMFT study of Ref. [24]. As one moves away from ",
the spectral weight of the realistic calculation diminishes,
but clearly extends in the same direction as the model
dispersion. Despite the simplicity of the model, the qualitative
description of the spin-polaron excitations through the t-J
model calculation is quite remarkable. Given its rudimentary
nature, we did not attempt to fit the value of the effective
exchange J . Nevertheless, the value of J = 0.1|t | = 17.8 meV
we used here has the same order of magnitude and is quite
close to experimental results. Spin-model analyses of inelastic
neutron data for NaxCoO2 at high x yield J ∼ 5–6 meV for the
intralayer ferromagnetic spin coupling [39,40]. Note that the
effective J is not given by the (AFM) superexchange −4t2/U
valid in the spin- 1

2 Heisenberg limit of the Hubbard model
close to half filling.

In order to better understand these results, it is instructive to
scrutinize the mechanism by which the spin polarons emerge in
the DF calculation. We recall that the self-energy, Eq. (3), has
the form of a convolution: %̃ω(k) =

∑
νq G̃ω+ν(k + q)Sν(q),

where Sν(q) encodes information on the magnetic excitations
at momentum q. The dominant contribution to % near " (i.e.,
k ≈ 0), which is responsible for the antibound states, stems

from those terms in the sum over q for which the product of
G̃(k + q) and S(q) dominates. Due to the presence of the Van
Hove singularity, the density of states is large for k + q ≈ 0,
or |k| ≈ |q| ≈ 0. The self-energy is thus dominated by spin
excitations at q ≈ 0 and hence by the previously mentioned
collective spin excitations at this wave vector found in the
study of Ref. [22].

The antibound states in the many-body calculation hence
emerge from ferromagnetic paramagnons. This explains the
two most striking aspects of our results: In agreement with the
experiment, the sideband is rather broad [33]. The quick decay
of these excitations is a result of the fact that the lifetime of
both the magnon excitations and the QPs is finite. In the simple
model, the excitations have infinite lifetime due to the absence
of decay channels. Second, their intensity vanishes quickly
when moving away from ". According to the foregoing, this
is a direct consequence of the fact that at x = 0.67 and elevated
temperature, well-defined ferromagnetic paramagnons only
exist in close vicinity of the " point [22].

We hence identify the sideband excitation as a spin-
polaron excitation originating from scattering between QPs
and ferromagnetic magnons. The presence of the Van Hove
singularity at the top of the holelike band is crucial, because
it effectively reduces the dimensionality of the problem. It
provides a large density of charge carriers and brings the
system close to a Stoner instability, which therefore exhibits a
tendency towards ferromagnetism. Note that for cobaltate, we
have t < 0. For the opposite sign, the Van Hove singularity
occurs at the bottom of the band. Thus, the formation of a
spin-polaron state of the type described in Ref. [37] is once
more a consequence of the particular electronic structure of
sodium cobaltate [15,22,32].

V. CONCLUSIONS

To summarize, we have investigated the spectral properties
of the doped Mott material NaxCoO2 within a combined first-
principles many-body description. The low-doping regime is
rather well described within DMFT, although dynamical AFM
correlations lead to an interplay of Slater and Hubbard physics
and increased coherence of the high-energy excitations. For
higher doping we found sideband excitations at ω ∼ 0.35 eV
in close agreement with optics experiments. By separating spin
and charge contributions and taking into account the structure
of the self-energy correction to DMFT, we were able to
identify these as spin-polaron excitations. This interpretation
is supported by a much simpler calculation of the spin-polaron
dispersion based on the t-J model. In the material, the
excitations result from bound states of QPs with ferromagnetic
paramagnons. To our knowledge, this is the first theoretical
description of spin-polaron states emerging from dynamical
ferromagnetism. The physics described here goes well beyond
a simple RPA (random-phase approximation)-like approach,
which would merely give rise to an instability towards static
Stoner splitting of the bands. The presence of the extended
Van Hove singularity in the realistic tight-binding spectrum is
crucial for this effect. These excitations may be responsible for
non-Fermi liquid behavior observed in this compound at large
doping x ∼ 0.71 [41]. We note that the impact of magnetic
fluctuations onto charge transport in sodium cobaltate has
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Summary

� Path-Integral DF-perturbation based on DMFT as the 
reference system

� DMFT corresponds to the Zero-order DF-approximation or 
„free dual fermions“

� DF-theory is in a good agreement with QMC results 


