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Introduction

Why?

To get chemistry right at room temperature, we need total
energies to better than

Chemical Accuracy

1 kcal/mole = 43 meV/particle

@ At room temperature, kg T ~ 25 meV.

@ Energy differences between competing structures can be
<10 meV.

@ Energy differences between different magnetic structures
and different correlated states can be much smaller again.
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Our Grand Unified Theory

The Many-Electron Schrodinger Hamiltonian

Zle e? Z/ZJe
__Z Zzlf—d/|+§|’i—’1| Z|d,—dJ|

I>J

The many-electron Schrédinger equation is NP hard, so the best
we can realistically hope for are approximate results.
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Energy and Length Scales

Energy scales

Total electronic > 10%eV
Chemical bond few eV
Chemical reaction 107 lev

Correlations and magnetism < 10~2eV

Length scale for accuracy of 0.1 eV
E/EF =102
AAr ~ 10
A~ 20A
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Density Functional Theory

can sometimes achieve chemical accuracy — if you
choose the right functional. But how can you tell in
advance?
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Perturbation Theory

works well for weakly-correlated materials. But what
about strong correlations and non-Fermi-liquid ground

states?
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Guessing the Wavefunction

was the method responsible for most of our few
successes in understanding strongly-correlated
non-Fermi-liquid systems:

@ BCS

FQHE

Bethe Ansatz
RVB

Kitaev Model
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Parameterized wavefunction guessing

@ Hartree-Fock
@ Configuration interation
Slater-Jastrow

°
@ Coupled cluster
o Pfaffian/geminal
°

DMRG, matrix product states, tensor product
states

RPA
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Variational Monte Carlo

@ Guess WT(Xl,XQ, - ,XN), where X = (r,-, O',‘).
@ Use Monte Carlo integration to evaluate

ET[\UT] :/\U’-;—(Xh...,XN)l:IWT(X1,...,XN)dX1...dXN

:/(I—NJT(XI”XN)> ‘\UT(X1,...,XN)|2dX1...dXN

\UT(Xl, N ,XN)

where [dx=Y"_ [d®r.
@ Adjust W to minimise Er [V 7].
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Non-Interacting Systems

If the Hamiltonian is a sum of terms, one for each electron,

H= Z(—v2+v ) EN:B

the Schrodinger equation
I:I\U(Xl,xz, cooxn) = EV(xg, x2, ..o, xN)
has separable solutions:

V(x1, %2,y xn) = d1(xa)d2(x2) - - - dn(xn)-



Determinants

Check

o Substituting \U(Xl, X2, 7X/\/) = (/Z?l(Xll)\(bQ(Xz) . '?N(XN) into the
Schrodinger equation with H = hy + hy + ... + hy gives

(hid1)pa...on + dr(hadn) ... on
+ oot G102 (hnon) = Ed1n. .. d

@ Dividing by ¢1¢5 ... ¢y gives

hgi(x)  haga(x) L hnén (xn)
$1(x1) da(x2) T dn(xw)

=E

@ The first term depends only on x;, the second only on x,, and so
on, but the sum must be the constant E. This is only possible if
every term is constant:

by = e1p1, hado = e, ..., hnon = endn

With E =¢; + e + ...+ epn.
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One-Electron Orbitals

Functions such as ¢;(x), obtained by solving a non-interacting or
mean-field Schroédinger equation, are called one-electron orbitals.

Hydrogenic orbitals FesN



Determinants

@ The product state W(xy, xz,...,xn) = ¢1(x1)d2(x2) . .. dn(xn) is
not antisymmetric, but we can build an antisymmetric linear
combination of degenerate solutions with the N electrons
distributed among the N one-electron orbitals in different ways:

W(xa, X, - -, XN) = \/% S (= 1) dpa(x1)dpa(0) - - Sonxw)
P
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This may look more familiar written as a

Slater Determinant

p1(a) o1lx) - - o d1(xw)

1 | 920a) d20x) - - - d2(xw)
\Il(xl,xz,...,x,\,):ﬁ . . . .

on(xa) on(x) - - - dn(xw)

@ If two of ¢y, ¢, ..., ¢y are the same, two rows are the same and
W = 0. This is the Pauli exclusion principle.

@ If two electrons of the same spin approach the same point in
space, two columns become the same and ¥ — 0. The
antisymmetry helps keep spin-parallel electrons apart.



Determinants

0.8

0.6~

pair-correlation function

— Pairs of electrons with the same spin
—— Pairs of electrons with different spins

8

4 6
Kelr,-r,|



Determinants

Interacting Electrons

@ The interacting Hamiltonian
Z/Z_/e

1 V Z €2 e?
22V X ) i S

is not separable and Slater determinants are not energy
eigenfunctions.

@ The Schrodinger equation cannot be solved exactly for
systems of more than a few electrons, even using the
world’s most powerful (classical) computers.




Determinants

Slater Determinants as Basis Functions
@ Given a complete set of one-electron orbitals,
{p1(x), p2(x), ...}, the set of all products of the form

¢i (x1)di(x2) - - - diy (xn)

is a complete basis for the N-particle Hilbert space.

@ Any antisymmetric wavefunction can be expanded as a
linear combination of anti-symmetrized products:

V(xi, %2, ow) = > GDi(xa, X2, xw)
i

where the sum is over all distinct determinants and
i = (i1, h,...,iy) identifies the orbitals ¢;,, ¢, ..., diy,
appearing in D;.



Determinants

Slater Determinants and Second Quantization
@ Whenever you use second-quantized notation, you are in
fact manipulating Slater determinants:
5,T,lDi1,i2,...,iN> = |Dp.irin,..in)
ol Dp,ivin.sin) = |Diy in,.ing)
@ The anti-commutation relations follow from the

antisymmetry of the determinants on which the creation
and annihilation operators act.



Determinants

Exchange and Correlation
@ Interacting electrons avoid each other:
S v g3 3.7 /A 3 ! 37
n(r,o;r', o' )Yd>rd>r' = n(r,o|r',0") d°r x n(r',o") d°r
N—_————

conditional probability

@ The exchange-correlation hole is defined by:

n(r,o|r',o’) = n(r,o) + ny(r,o|r', o)
—_— ——

change in density at r

@ Sum rule:

Z/nxc(r,a\r’,a’)d3r: -1

g






Determinants

The Hartree-Fock Approximation

@ Many-electron eigenfunctions can in principle be written as
linear combinations of (huge numbers of) determinants, but
the number required grows exponentially with the number
of electrons.

@ In the HF approximation, the variational principle is used to
find the single Slater determinant that best approximates
the ground state.

@ The overlap of the HF determinant with the ground state is
exponentially small in large systems.
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Configuration-Interaction Methods

V(x, %2, ow) = D GDi(xa, X2, -, xn)
i

@ Choose M (> N) one-electron basis functions.

@ Approximate V as a linear combination of the MCjy distinct
N-electron determinants.



Configuration Expansions

The vector C that minimizes

(VAN X GHD IA1D, )G

FO="ww T meGe
satisfies
> HiG=EG,
J
where
Hy = (Dy|H|D;)

is an MCpy x My matrix.



Configuration Expansions

Scaling with System Size

@ Suppose a He atom can be described using just four spin
orbitals:

o15(r)x+(0), d1s(r)xi (o), Pas(r)x+(o), das(r)x (o)
@ The FCl basis for N electrons (N/2 helium atoms) contains

determinants.

@ The Hamiltonian matrix for a collection of just 10 helium
atoms (N = 20) has more than 10!! rows and columns and
10?2 elements!



Configuration Expansions

Truncated Cl Methods

s T L It 1 [t
sl ] [t ] ]

Some of the determinants contributing to the ClI
singles and doubles wavefunction of 3 He atoms

@ Basis set size (~ N?(M — N)?) is more manageable.

@ No more than two of the N//2 He atoms can be found in excited
configurations at the same time. What if N/2 = 100?

@ Energy of N/2 well-separated He atoms is larger than N /2 times
the energy of one He atom. CISD is not extensive/size consistent.

@ Fraction of correlation energy recovered — 0 as N/2 — oc.



Configuration Expansions

Are C| Methods Useful?

@ Full- and truncated-Cl methods can produce remarkably
accurate results for small molecules.

@ Cl methods are not useful for solids.

@ The full Cl quantum Monte Carlo method can be used to
sample the components of the vector C statistically
without storing the whole thing.



Configuration Expansions

Coupled-Cluster Methods

@ In second-quantized notation, the Hamiltonian of two
well-separated He atoms is

N A R
H = E & hy€; + c c Vi€ €
isj

ikl

where

= [ 4700 (—1v2 Vil = d) + Vel — di) ) 6,0

Vi = [ [ 0767 ) 7 0u0)6, () e

@ If |[da — d| is large enough, all matrix elements involving orbitals
on different atoms can be neglected:

/:/%/:/A—l-lﬁlg



Configuration Expansions

@ Let |Wy) = ®L|O> and |Vg) = @E\O) be the atomic ground states:
AAW}10) = Extom W} 0)
Fs¥}|0) = Exom¥W}|0)
\TIL and \TIE are linear combinations of products of pairs of
creation operators. They commute with each other because they

create one-electron orbitals on different atoms.

@ Then



Configuration Expansions

Ground state of two well-separated atoms is \TJL\TJE|O>

@ Antisymmetrized product of atomic ground states.

@ Because of the product form, the number of excitations on
atom A does not affect or limit the number of excitations on
atom B. Results are size consistent.
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Excitation Operators

@ Any determinant in the FCI basis can be created from the
HF determinant Dy by making a number of electron-hole
excitations of the form X7 = élé,-.

» L L] L] [ [ty
st [ ] [ ]

e ¢ annihilates an orbital ¢; appearing in Dy

¢l creates an orbital ¢, that did not appear in Dy

@ Creation and annihilation operators for the same orbital
never appear, so the X operators commute.

Coupled-Cluster Wavefunction
W)= |TT(1+ %) | | TT (1+g°%)] .- 100)

a,i b>a,j>i
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Coupled-Cluster Wavefunction

W) = H(1+rﬁ)%,.a) I1 (1+t,.j.b>%;b) ...|1Do)

a,i b>a,j>i

@ Terminology:
o Keep only t7: CC singles.
o Keep only t? and t,-j-": CC singles and doubles
@ For two well-separated atoms, all amplitudes involving
orbitals on both atoms are zero. After moving all terms
involving atom A to the front of the product, we regain the
separable form \TIZ\\TIHO). The results are extensive at all
truncation levels.
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W) = H(Htﬁf(ﬁ) I1 (1+t,§-b>?,-j'b) ...|1Do)

a,i b>a,j>i

@ The product of an excitation operator with itself is always
Zero, so

1
1+tX—1+tX+2(tX) L=etX

@ This allows us to write the CC wavefunction as an
exponential:

Exponential Form

) = exp ZtaXa-l- Z ﬁb)A(,-j-’b-l-... | Do)

a>b,i>j



Configuration Expansions

Are CC Methods Useful?

@ CCis usually the best method available for medium to large
molecules.

@ Shows promise in solids, too, but scaling is steep (N® for
CCSD; N7 for CCSD(T)) and progress has been slow.

@ Struggles with “strongly correlated” problems such as bond
breaking.

Water Molecule — Errors relative to Cl

method R = Rees R = 2R.f
HF 0.217822 0.363954
CCsD 0.003744 0.022032
CCsDT 0.000493 —0.001405
CCSDTQ 0.000019 —0.000446
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Cusps

dln|V|
8!‘1

dln V|

= -2.0;
0 Ono

=05

r=0 ri2=0



Slater-Jastrow Wave Functions

Slater-Jastrow Wavefunctions

Slater-Jastrow wavefunctions offer an easy way to build in the
cusps. They also account for some other aspects of correlation.

Wr(x1,%2,...,XN) = exp (— Z u(x,-j)) D
via)  Pile) .o i(xw)

Ya(x1)  talx) .. P2(xw)
D= . . .

Yn(a) Unlx) oo Yn(xw)

They work surprisingly well in weakly-correlated solids. Systems
of thousands of electrons can be studied using VMC.
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Exchange-correlation hole in the sine-wave electron gas



Slater-Jastrow Wave Functions

Limitations

@ VMC with a SJ trial function is not normally capable of
chemical accuracy, even in weakly correlated systems.
(DMC is much better.)

@ How to extend the SJ form when it doesn’t work?

e Linear combinations of determinants are often used, but this
approach does not scale well.
@ No help when Fermi-liquid physics is very wrong.
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Observation 1

Artificial neural networks are flexible and efficient function
approximators.

Neural QMC

Perhaps we can represent W(xg, x2, ..., xy) as a deep
neural network?
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Observation 2

@ Nothing requires the orbitals in a Slater determinant

Pi(x)  Pile) .o ()
5 Ya(x1)  Y2(x) ... ta(xw)

Yn(xa)  Pn(x) ¢N(XN)

to be functions of the coordinates of a single electron.

@ The only requirement is that exchanging any two input variables, x; and
xj, exchanges two columns.
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@ This allow us to replace the single-electron orbitals ;(x;) by
multi-electron functions

Pi(X5; X1, X1, X1, - - XN) = Yi(x55 {x/5})

@ D remains antisymmetric as long as vi(x;; {x/;}) is invariant under any
change in the order of the arguments after x;:

ilxa, {xn})  i0e, {x2}) .. Uil {x/n})

5 Ya(xa, {x/1}) 20, {x2}) ... alxw, {x/n})

Inlx D) onGo, Dx02d) o oG, )

The construction of these permutation-equivariant functions with a neural
network is the main innovation of FermiNet.

D. Pfau, J.S. Spencer, A.G.D.G. Matthews, and W.M.C. Foulkes, Phys. Rev. Research 2, 033249 (2020)
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A Simple Neural Network

XZ+1 _ A(WZXZ +b£)

Learn network
parameters using
automatic
differentiation and
back propagation.
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A Simple Neural Network

X[+1 — A(W[xl + bZ)

Learn network
parameters using
automatic
differentiation and
back propagation.



Beyond Slater Determinants

Neural QMC

@ Sample points X = (x1, x2, x3, x4) from current |W(X)|? using the
Metropolis algorithm.

@ Use values of W+ and its derivatives at the sampled points to
estimate

Av
ET[\UT] :/<T(X17’X4)> |\UT(X1,...,X4)‘2 Xm...dX4

\UT(Xl, . 7X4)
and its first derivatives.

@ Adjust network parameters to lower E7 [V r].



Beyond Slater Determinants

FermiNet
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FermiNet Layers




Beyond Slater Determinants

@ h? is a vector with elements r; — d; and |r; — d,| (for all ions /).

@ The elements of h? depend on r; only.
@ Including |r; — d;| helps the network learn the electron-nuclear
cusps.

@ As data propagates through the network

h? = h! — ... — ht
information about the positions of other electrons is mixed in
such that

hi = hi(ri, {r);})
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@ A final linear transformation gives

Gi(ri, {rsi}) = wj - hi(ri, {r)i}) + g
after which the determinant is evaluated.

@ We often use linear combinations of these (non-orthogonal)
generalised determinants, all optimised together.
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FermiNet Layer Inputs

Output of layer ¢

Input to layer ¢ + 1

ul J
W [l
ne u




Ethene
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FermiNet versus Slater-Jastrow

Single Determinant
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FermiNet versus Slater-Jastrow

Single Determinant
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Adding Determinants

@ Fermi Net converges quite rapidly with the number of determinants.

@ Substantially easier to optimise than Slater-Jastrow and
Slater-Jastrow-Backflow networks.
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Atoms

Total Energies

@ 16 Fermi Net determinants. (SJB VMC & DMC used 50-100 SJB CSFs.)
@ Fermi Net consistently captures 99.7% of correlation energy.

VMC, DMC: P. Seth, P.L. Rios and R.J. Needs, J. Chem. Phys. 134, 084105 (2011).
Exact: Chakravorty et al., Phys. Rev. B 47, 3649 (1993).
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lonization Potentials and Electron Affinities

Experimental data corrected for relativistic effects from Klopper et al., Phys. Rev. A 81,022503 (2010)



Exchange-Correlation Hole
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Learning the Cusps

dln|V|
8!‘1

dln ||

= —1.9979(4), 5
r2

rn=0

= 0.4934(1).

rip=0
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Cusp Ablation

Error (mEj,) without feature inputs

without ry with rj;
without [ry | 89.7 28.4
with [ry] 12 0.8
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Molecules

Total Energies

@ Fermi Net outperforms CCSD(T) in QZ, 5Z basis sets.
@ Accuracy degrades smoothly as number of electrons increases.
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Hio
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Beyond Slater Determinants

Positives

@ FermiNet is way better than any other form of VMC
applicable to real molecules with more than a couple of
atoms.

@ Rivals coupled cluster for equilibrium geometries and
outperforms it for molecules with a strong
multi-determinant nature.

@ Can serve as a trial function for DMC and other projector
methods.

@ We have only just begun. Coupled cluster and SJ VMC have
a fifty-year start.
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Questions

How general is the FermiNet wavefunction?

Can we really get away with only a few determinants?
Limits to accuracy?

Solids?

Size extensivity? (SJ VMC is extensive)

Locality of correlations?

Scaling? (SJ VMC scales very well)
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