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• Series representation of quantum stat mech
•   Stochastic series expansion (SSE) QMC

    - Example: 2D S=1/2 Heisenberg antiferromagnets
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   - inelastic neutron scattering; compare with experiments
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hAi = Tr{Ae��H}
Tr{e��H} !
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From operators to numbers

- Continuous time;  take Δτ→0 limit before programming

   (Beard, Wiese, -96, Prokof’ev et al. -96,…)

- Taylor expansion; stochastic series expansion (SSE)

  (Handscomb -61,… Sandvik, Kurkijärvi -91,…)

- From local updates to loops, worms, directed loops.... 
  (Evertz et al. -93, Beard, Wiese, -96, Prokof’ev et al. -96,

  Sandvik -99, Sandvik, Syljuåsen -02) 

- Trotter slicing; discrete imaginary time; 

   world line methods (Suzuki 1971,...)
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FIGURE 54. A 1D world line configuration based on the checkerboard decomposition with the Suzuki-
Trotter approximation. Kinetic jumps of the bosons (or flips of a pair of ↑ and ↓ spins) are allowed only
across the shaded squares (plaquettes). A time slice of width Δτ consists of two consecutive rows of pla-
quettes. The six isolated plaquettes shown to the right correspond to the non-zero matrix elements, which
in the case of a spin model with Heisenberg interactions (for world lines and empty sites corresponding
to ↑ and ↓ spins, respectively) are given by Eq. (244).

(kinetic jumps) are allowed only on the shaded plaquettes in Fig. 54. More complicated
“loop” and “directed loop” updates, in which large segments of several world lines can
be moved simultaneously, are used in modern algorithms [31, 191, 33] (which we will
discuss in detail below in the context of the stochastic series expansion method).

Application to the Heisenberg model. It is useful to consider a particular example
of the path weights in the Suzuki-Trotter approach. Let us compute the plaquette matrix
elements for the antiferromagnetic Heisenberg interaction;Hi,i+1 = Si ·Si+1. In this case
the boson occupation numbers in (243) are replaced by spin states ↑ and ↓. We can
consider the world lines forming between the ↑ spins (and note that we could also draw
world lines for the ↓ spins in pictures such as Fig. 54; they occupy all sites not covered
by ↑ world lines and cross those lines at each diagonal segment). The calculation just
involves straight-forward algebra and we just list the results for the six allowed (non-
zero) matrix elements;

⟨↑i↑ j |e−ΔτHi j | ↑i↑ j⟩= ⟨↓i↓ j |e−ΔτHi j | ↓i↓ j⟩= +e−Δτ/4

⟨↑i↓ j |e−ΔτHi j | ↑i↓ j⟩= ⟨↓i↑ j |e−ΔτHi j | ↓i↑ j⟩= +eΔτ/4 cosh(Δτ/2) (244)
⟨↓i↑ j |e−ΔτHi j | ↑i↓ j⟩= ⟨↑i↓ j |e−ΔτHi j | ↓i↑ j⟩=−eΔτ/4 sinh(Δτ/2)

The weight of a world line configuration is a product of these matrix elements, all of
which are pictorially represented in the right part of Fig. 54. Note the minus sign in
front of the off-diagonal matrix elements. For an allowed world line configuration, all
the signs cancel out due to the periodicity constraint on the world lines. This is true
also for world line methods applied to bipartite lattices in higher dimensions, but for
frustrated systems there is a “sign problem” because of the presence of both negative and
positiveweights (as we will discuss further in Sec. 5.1.3). In practice, world line methods
and similar QMC approaches are therefore useful primarily for studies of bipartite spin
systems and bosons models. For a fermion system, permutation of world lines also
lead to sign problems, except in one dimension where only global cyclical permutations
(winding) are possible (with associated signs that can be avoided by choosing periodic
or anti-periodic boundary conditions [176, 187]).
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FIGURE 61. A linked-vertex SSE configuration with one loop traced out and shown in both of its
“orientations”, along with the corresponding operator-index sequences. All spins covered by the loop are
flipped, and operators are changed, diagonal↔ off-diagonal, each time the loop passes by (with no net
change of an operator visited twice). Every vertex leg (spin) belongs uniquely to one loop, and spins not
acted upon by any operator (here the one at i= 1) can also be regarded as forming their own loops.

accomplishes all these things automatically. This class of updates was initially intro-
duced as a generalization of a cluster algorithm for the Ising model to a model where the
flipped clusters take the form of loops; the classical six-vertex model [191]. The effec-
tive world line system for the S = 1/2 Heisenberg model constructed using the discrete
Suzuki-Trotter decomposition is exactly equivalent to an anisotropic six-vertex model,
and the loop update for it was therefore at the same time a generalization of the clas-
sical cluster update to a quantum mechanical system. These ideas were subsequently
applied also to continuous-time world lines [179] as well as to the off-diagonal updates
in the SSE method [190]. The improvements in performance relative to local updates
are enormous (as in the classical case, leading to a much reduced dynamic exponent)
and brought simulations of quantum spin systems to an entirely new level. Like classical
cluster algorithms, the loop updates are in practice limited to certain classes of models,
of which the isotropic Heisenberg systems is one. Generalizations of the loop concept to
worms [32] and directed loops [33] (both of which can be regarded as loops that are al-
lowed to self-intersect during their construction, unlike the original loop updates where
no self-intersection is allowed) are applicable to a wider range of systems.
For the S = 1/2 model considered here, there is no reason to even discuss local off-

diagonal updates in any greater detail, and we will just focus on how to implement the
much more powerful loop updates. In the case of the SSE method, the operator string is
again the main focus, and the loop update corresponds to constructing a loop of operators
(vertices) connected by the links in the linked-list representation.

Operator-loop updates. An example of an operator-loop and how it is flipped is
shown in Fig. 61. Here “flipping” refers to the spins along the loop (explicitly those on
the vertex legs and implicitly in all propagated states covered by the loop) as well as
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QMC algorithms for quantum spins (and bosons)

Related: ground-state projection
| �i ⇠ e��H | 0i | �i ! |0i when � ! 1

“sign problem” if Wc not positive-definite
- consider sign-free models

- Differs only in time boundary condition (open vs periodic)



Series expansion representation of quantum stat mech
Start from the Taylor expansion (no approximation)

Z = Tr{e��H} =
1X

n=0

(��)n

n!

X

↵0

h↵0|Hn|↵0i

We should have (always possible):

- no branching during propagation with operator string 

- some strings not allowed (illegal operations)

Hi|↵ji / |↵ki

Break up Hn into strings:

Z =
1X

n=0

(��)n

n!

X

↵0

X

Sn

h↵0|Han · · ·Ha2Ha1 |↵0i

Index sequence (string) referring to terms of H

Sn = (a1, a2, . . . , an), ai 2 {1, . . . ,m}H =
mX

i=1

Hi
Sn = (a1, a2, . . . , an), ai 2 {1, . . . ,m}

0.14 Anders W. Sandvik

(a) σ1 σ2 σ3 σ4

0

1

2

3

4

5

6

7

8

b1=[2,1]

b2=[2,3]

b3=[0,0]

b4=[1,2]

b5=[0,0]

b6=[2,3]

b7=[2,1]

b8=[1,3]

(b) σ1 σ2 σ3 σ4

0

1

2

3

4

5

6

7

8

b1=[3,0]

b2=[2,3]

b3=[0,0]

b4=[2,2]

b5=[3,0]

b6=[1,2]

b7=[0,0]

b8=[3,4]

Fig. 1: Graphical representations of SSE configurations for (a) the Heisenberg model and (b)
the Ising model, in both cases for a system of four spins and with the SSE cutoff M = 8. Up and
down spins correspond to solid and open circles. All the propagated states |↵(0)i, . . . , |↵(M)i,
with |↵(M)i = |↵(0)i, are shown along with the operators Hbp . The number of Hamiltonian
terms for both systems is n = 6, and the two cases of empty slots between propagated states
correspond to fill-in unit operators H0,0 at these locations. In (a) the solid and open bars
represent, respectively, off-diagonal and diagonal parts of the Heisenberg exchange operators.
In (b) the ferromagnetic Ising interactions are likewise represented by open bars, and the off-
diagonal single-spin flip operators are represented by short solid bars. The short open bars
correspond to the constant site-indexed operators.

conditions. Here a constant 1/4 has been included in the diagonal operators, and they can
therefore act with a non-zero outcome only on two antiparallel spins. There is then a useful (as
we will see) similarity with the off-diagonal terms, which also can only act on antiparallel spins.
The non-zero matrix elements of the Hamiltonian terms H1,b and H2,b are all 1/2. The weight
of an allowed SSE configuration in Eq. (18) is therefore W (SM) = (�/2)n(M � n)!, where
the unimportant overall factor 1/M ! has been omitted and there are never any minus signs (for
bipartite interactions) because the number of off-diagonal operators in the string has to be even.

Note that there is no explicit dependence of the weight on the state |↵i in Eq. (18), but the state
imposes constraints on the operator string as only operations on antiparallel spins are allowed.
An example of a very small Heisenberg SSE configuration is shown in Fig. 1(a). Note again
that the mean number of operators is / �N , and in large-scale simulations the number can be
up to many millions.

In the diagonal update, if an encountered index pair at the current location p is bp = [0, 0], a
bond index b is generated at random among all the choices. If the spins at the sites i(b), j(b)

connected by bond b are antiparallel in the currently stored state |↵(p)i, i.e., �i 6= �j , then
the operator H1,b is allowed and the index pair is set to bp = [1, b] with probability given by
(19a), where the matrix element equals 1/2. If the two spins are parallel nothing is changed and
the process moves to the next position, p ! p + 1. Each time an off-diagonal operator [2, b] is
encountered, in which case no diagonal update can be carried out, the stored state is propagated;
�i ! ��i and �j ! ��j .

For the Ising model (16), where the Ising interactions Jij are of arbitrary range, we define the
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Easy to calculate

- use as MC 

sampling weight
Path weight: W (Sn,↵0) =

(��)n

n!

nY

p=1

h↵p|Hap |↵p�1i



Relabel terms of n-sum: replace n+1 by n

hHi = � 1

Z

1X

n=1

(��)n

n!

n

�

X

↵0

h↵0|Hn|↵0i
we can extend the sum 
to include n=0, because 
that term vanishes

Therefore the energy is: E = �hni/�

C = hn2i � hni2 � hniCan also derive specific heat: 

Follows: hni / �N, �n /
p
�N

hHi = 1

Z

1X

n=0

(��)n

n!

X

↵0

h↵0|HnH|↵0iEnergy:

Expectation values

hAi = 1

Z

1X

n=0

(��)n

n!

X

↵0

h↵0|HnA|↵0i, Z =
1X

n=0

X

↵0

W (Sn,↵0)

A(↵0) !
1

n

n�1X

p=0

A(↵p)

Simplest case: Operator A diagonal in the chosen basis:

hAi =
1X

n=0

X

↵0

X

Sn

W (Sn,↵0)A(↵0)



Fixed string-length scheme 
• n fluctuating → varying size of the sampled configurations

• the expansion can be truncated at some nmax=L 

   (exponentially small error if large enough)

• cutt-off at n=L, fill in operator string with unit operators H0=I

Here n is the number of Hi, i>0  instances in the sequence of L ops

- the summation over n is now implicit

�
L

n

⇥�1

=
n!(L� n)!

L!
- conisider all possible locations in the sequence

- overcounting of original strings, correct by

Z =
X

↵0

X

SL

(��)n(L� n)!

L!
h↵0|Ham · · ·Ha2Ha1 |↵0i

L can be chosen automatically by the simulation (shown later)

=�

L=14



Relation to the expansion in interaction representation
Sandvik, Singh, Campbell (PRB 1997)For H=D+V, diagonal D, off-diagonal V

In order to ensure a sufficiently high truncation L , the
power n is monitored during the equilibration part of the
simulation. If n exceeds some threshold value L2DL , the
sequence is augmented with, e.g., 2DL randomly positioned
unit operators, corresponding to L!L12DL . With
DL'L/10, this procedure typically converges rapidly to a
proper L . During a subsequent simulation ~of practical dura-
tion!, n never reaches L . The truncation is therefore no ap-
proximation in practice.
The details of the Monte Carlo sampling procedures of

course depend on the model under consideration. Here only
some general principles will be discussed. The operators Ĥa
can be divided into two classes; diagonal and off-diagonal.
There are no a priori constraints on the number of diagonal
operators that can appear in SL . The probability of a diago-
nal operator Ĥdia at a position p is only determined by the
state ua(p21)

&

on which it operates. The general strategy
for inserting and removing diagonal operators is to attempt
substitutions with the unit operator Ĥ0 introduced in the
fixed-length scheme ~note again that Ĥ0 is not part of the
Hamiltonian!:

Ĥ0$Ĥdia . ~19!

This update can be attempted consecutively at all positions in
SL . The weight change needed for calculating the Metropo-
lis or heat-bath acceptance probability involves only the ma-
trix element

^

a(p21)uĤdiaua(p21)
&

and the prefactor
(2b)n(L2n)!, with n changing by 61. With ua~0!& stored
initially, the subsequent states can be generated one-by-one
as needed during the updating process.
Suitable constants have to be added to the diagonal opera-

tors in order to make all the eigenvalues of 2bĤdia positive.
According to Eq. ~18!, the presence or absence of a sign
problem then depends only on the off-diagonal operators
Ĥoff . They are associated with various constraints, and can-
not be inserted or removed at a single position only. They
can always be inserted and removed pairwise. One way to do
this is in substitutions with diagonal operators, according to

Ĥdia ,Ĥdia$Ĥoff ,Ĥoff
† . ~20!

In some one-dimensional models, the above types of updates
are sufficient for achieving ergodicity. In other cases, more
complicated updates are also required ~e.g., involving off-
diagonal operators forming loops around plaquettes in 2D!.
The constraints and weight changes associated with local up-
dates involve only operators present in SL which act on a
small number of lattice sites surrounding those directly af-
fected by the update. Typically, this allows for a sampling
scheme for which the computation time scales as Nb .17

III. RELATION TO THE PERTURBATION EXPANSION

In this section we discuss the general principles of carry-
ing out importance sampling of the standard perturbation ex-
pansion in the interaction representation. This starting point
for a QMC scheme was recently suggested by Prokof’ev
et al.18 We here show that the configuration space of this
method is closely related to that of the SSE method. We also
derive expressions for several types of observables.

The partition function for a Hamiltonian

Ĥ5D̂1V̂ , ~21!

with a diagonal ~unperturbed! part D̂ and an off-diagonal
~perturbing! part V̂ is given by the standard time-ordered
perturbation expansion in V̂ ,

Z5
(

n50

`

~

21
!

nE
0

b

dt1E
0

t1
dt2•••E

0

tn21
dtn

3Tr
$

e2bD̂V̂
~

t1!V~

t2!•••V~

tn!%, ~22!

where the time dependence in the interaction representation
is V̂(t)5etD̂Ve2tD̂. In the same way as was done for Ĥ in
the SSE scheme, V̂ can be decomposed into operators that
satisfy requirement ~4!, now in the basis $ua&% where D̂ is
diagonal:

V̂5
(

b51

MV

Ĥb . ~23!

For a given model, the operators in the above sum are of
course a subset of those in the SSE Hamiltonian ~3!, where
we now define the indexing such that all Ĥb with b.MV are
diagonal. An index sequence defining a product of n of the
operators Ĥb is defined as before. In order to distinguish the
SSE sequence Sn , which contains off-diagonal as well as
diagonal operators, from the perturbation expansion se-
quence containing only off-diagonal operators, we denote the
latter by Tn :

Tn5~

b1 ,. . . ,bn!, bpP$

1,.. . ,MV%

. ~24!

Expanding the trace in Eq. ~22! over diagonal matrix el-
ements gives

Z5
(

a

(

n50

`

(

Tn
E
0

b

dt1E
0

t1
dt2•••E

0

tn21
dtnW~

a ,Tn ,$t%

!

,

~25!

where $t % is a short-hand for the set of times
$

t1 ,. . . ,tn%.
The weight is

W
~

a ,Tn ,$t%

!

5
~

21
!

nS e2bE0
)

p51

n

e2tp~

Ep2Ep21!D
3K aU

)

p51

n

ĤbpUaL , ~26!

where Ep5^

a(p)uD̂ua(p)
&

.
Now, consider an SSE index sequence Sn5(b1 ,. . . ,bn),

containing m indices bp<MV , corresponding to m off-
diagonal and n2m diagonal operators. Removing all the in-
dices bp.MV results in a valid perturbation expansion se-
quence Tm . We use the notation @

Sn# for this ‘‘projection’’
of Sn onto the corresponding Tm ; @

Sn#5Tm . Since there are
no convergence issues for a finite lattice model at finite b,
neither for SSE nor for the perturbation expansion, the
weights of the two formulations must be related according to
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dices bp.MV results in a valid perturbation expansion se-
quence Tm . We use the notation @

Sn# for this ‘‘projection’’
of Sn onto the corresponding Tm ; @

Sn#5Tm . Since there are
no convergence issues for a finite lattice model at finite b,
neither for SSE nor for the perturbation expansion, the
weights of the two formulations must be related according to
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In order to ensure a sufficiently high truncation L , the
power n is monitored during the equilibration part of the
simulation. If n exceeds some threshold value L2DL , the
sequence is augmented with, e.g., 2DL randomly positioned
unit operators, corresponding to L!L12DL . With
DL'L/10, this procedure typically converges rapidly to a
proper L . During a subsequent simulation ~of practical dura-
tion!, n never reaches L . The truncation is therefore no ap-
proximation in practice.
The details of the Monte Carlo sampling procedures of

course depend on the model under consideration. Here only
some general principles will be discussed. The operators Ĥa
can be divided into two classes; diagonal and off-diagonal.
There are no a priori constraints on the number of diagonal
operators that can appear in SL . The probability of a diago-
nal operator Ĥdia at a position p is only determined by the
state ua(p21)

&

on which it operates. The general strategy
for inserting and removing diagonal operators is to attempt
substitutions with the unit operator Ĥ0 introduced in the
fixed-length scheme ~note again that Ĥ0 is not part of the
Hamiltonian!:

Ĥ0$Ĥdia . ~19!

This update can be attempted consecutively at all positions in
SL . The weight change needed for calculating the Metropo-
lis or heat-bath acceptance probability involves only the ma-
trix element

^

a(p21)uĤdiaua(p21)
&

and the prefactor
(2b)n(L2n)!, with n changing by 61. With ua~0!& stored
initially, the subsequent states can be generated one-by-one
as needed during the updating process.
Suitable constants have to be added to the diagonal opera-

tors in order to make all the eigenvalues of 2bĤdia positive.
According to Eq. ~18!, the presence or absence of a sign
problem then depends only on the off-diagonal operators
Ĥoff . They are associated with various constraints, and can-
not be inserted or removed at a single position only. They
can always be inserted and removed pairwise. One way to do
this is in substitutions with diagonal operators, according to

Ĥdia ,Ĥdia$Ĥoff ,Ĥoff
† . ~20!

In some one-dimensional models, the above types of updates
are sufficient for achieving ergodicity. In other cases, more
complicated updates are also required ~e.g., involving off-
diagonal operators forming loops around plaquettes in 2D!.
The constraints and weight changes associated with local up-
dates involve only operators present in SL which act on a
small number of lattice sites surrounding those directly af-
fected by the update. Typically, this allows for a sampling
scheme for which the computation time scales as Nb .17

III. RELATION TO THE PERTURBATION EXPANSION

In this section we discuss the general principles of carry-
ing out importance sampling of the standard perturbation ex-
pansion in the interaction representation. This starting point
for a QMC scheme was recently suggested by Prokof’ev
et al.18 We here show that the configuration space of this
method is closely related to that of the SSE method. We also
derive expressions for several types of observables.

The partition function for a Hamiltonian

Ĥ5D̂1V̂ , ~21!

with a diagonal ~unperturbed! part D̂ and an off-diagonal
~perturbing! part V̂ is given by the standard time-ordered
perturbation expansion in V̂ ,
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!
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0
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dt1E
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t1
dt2•••E

0

tn21
dtn

3Tr
$

e2bD̂V̂
~

t1!V~

t2!•••V~

tn!%, ~22!

where the time dependence in the interaction representation
is V̂(t)5etD̂Ve2tD̂. In the same way as was done for Ĥ in
the SSE scheme, V̂ can be decomposed into operators that
satisfy requirement ~4!, now in the basis $ua&% where D̂ is
diagonal:

V̂5
(

b51

MV

Ĥb . ~23!

For a given model, the operators in the above sum are of
course a subset of those in the SSE Hamiltonian ~3!, where
we now define the indexing such that all Ĥb with b.MV are
diagonal. An index sequence defining a product of n of the
operators Ĥb is defined as before. In order to distinguish the
SSE sequence Sn , which contains off-diagonal as well as
diagonal operators, from the perturbation expansion se-
quence containing only off-diagonal operators, we denote the
latter by Tn :

Tn5~

b1 ,. . . ,bn!, bpP$

1,.. . ,MV%

. ~24!

Expanding the trace in Eq. ~22! over diagonal matrix el-
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where $t % is a short-hand for the set of times
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.
Now, consider an SSE index sequence Sn5(b1 ,. . . ,bn),

containing m indices bp<MV , corresponding to m off-
diagonal and n2m diagonal operators. Removing all the in-
dices bp.MV results in a valid perturbation expansion se-
quence Tm . We use the notation @

Sn# for this ‘‘projection’’
of Sn onto the corresponding Tm ; @

Sn#5Tm . Since there are
no convergence issues for a finite lattice model at finite b,
neither for SSE nor for the perturbation expansion, the
weights of the two formulations must be related according to
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Proceed as in SSE, only off-diagonal operators in diagrams

What is better, SSE or interaction rep?

- depends on balance of diagonal 

and off-diagonal energy

- Interaction rep better if diagonal energy dominates

- SSE better if that is not the case
Extreme case: Only off-diagonal operators

- for example, XY model in z basis

Time integrals in interaction rep give βn/n! 

- configurations identical to SSE

- SSE avoids time integrals

0.14 Anders W. Sandvik

(a) σ1 σ2 σ3 σ4
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(b) σ1 σ2 σ3 σ4
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b3=[0,0]

b4=[2,2]

b5=[3,0]

b6=[1,2]

b7=[0,0]

b8=[3,4]

Fig. 1: Graphical representations of SSE configurations for (a) the Heisenberg model and (b)
the Ising model, in both cases for a system of four spins and with the SSE cutoff M = 8. Up and
down spins correspond to solid and open circles. All the propagated states |↵(0)i, . . . , |↵(M)i,
with |↵(M)i = |↵(0)i, are shown along with the operators Hbp . The number of Hamiltonian
terms for both systems is n = 6, and the two cases of empty slots between propagated states
correspond to fill-in unit operators H0,0 at these locations. In (a) the solid and open bars
represent, respectively, off-diagonal and diagonal parts of the Heisenberg exchange operators.
In (b) the ferromagnetic Ising interactions are likewise represented by open bars, and the off-
diagonal single-spin flip operators are represented by short solid bars. The short open bars
correspond to the constant site-indexed operators.

conditions. Here a constant 1/4 has been included in the diagonal operators, and they can
therefore act with a non-zero outcome only on two antiparallel spins. There is then a useful (as
we will see) similarity with the off-diagonal terms, which also can only act on antiparallel spins.
The non-zero matrix elements of the Hamiltonian terms H1,b and H2,b are all 1/2. The weight
of an allowed SSE configuration in Eq. (18) is therefore W (SM) = (�/2)n(M � n)!, where
the unimportant overall factor 1/M ! has been omitted and there are never any minus signs (for
bipartite interactions) because the number of off-diagonal operators in the string has to be even.

Note that there is no explicit dependence of the weight on the state |↵i in Eq. (18), but the state
imposes constraints on the operator string as only operations on antiparallel spins are allowed.
An example of a very small Heisenberg SSE configuration is shown in Fig. 1(a). Note again
that the mean number of operators is / �N , and in large-scale simulations the number can be
up to many millions.

In the diagonal update, if an encountered index pair at the current location p is bp = [0, 0], a
bond index b is generated at random among all the choices. If the spins at the sites i(b), j(b)

connected by bond b are antiparallel in the currently stored state |↵(p)i, i.e., �i 6= �j , then
the operator H1,b is allowed and the index pair is set to bp = [1, b] with probability given by
(19a), where the matrix element equals 1/2. If the two spins are parallel nothing is changed and
the process moves to the next position, p ! p + 1. Each time an off-diagonal operator [2, b] is
encountered, in which case no diagonal update can be carried out, the stored state is propagated;
�i ! ��i and �j ! ��j .

For the Ising model (16), where the Ising interactions Jij are of arbitrary range, we define the



Stochastic Series expansion (SSE): S=1/2 Heisenberg model
Write H as a bond sum for arbitrary lattice

H = J
Nb�

b=1

Si(b) · Sj(b),

H1,b = 1
4 � Sz

i(b)S
z
j(b),

H2,b = 1
2 (S+

i(b)S
�
j(b) + S�i(b)S

+
j(b)).

Diagonal (1) and off-diagonal (2) bond operators

H = �J
Nb�

b=1

(H1,b �H2,b) +
JNb

4

⇤�i(b)⇥j(b) |H1,b| �i(b)⇥j(b)⌅ = 1
2 ⇤⇥i(b)�j(b) |H2,b| �i(b)⇥j(b)⌅ = 1

2

⇤⇥i(b)�j(b) |H1,b| ⇥i(b)�j(b)⌅ = 1
2 ⇤�i(b)⇥j(b) |H2,b| ⇥i(b)�j(b)⌅ = 1

2

Four non-zero matrix elements

2D square lattice

bond and site labels

Z =
⌅

�

⇥⌅

n=0

(�1)n2
⇥n

n!

⌅

Sn

⇥
�

�����

n�1⇧

p=0

Ha(p),b(p)

����� �

⇤Partition function

Sn = [a(0), b(0)], [a(1), b(1)], . . . , [a(n� 1), b(n� 1)]Index sequence:

n2 = number of a(i)=2

(off-diagonal operators)

in the sequence



Propagated states: |�(p)⇥ �
p�1�

i=0

Ha(i),b(i) |�⇥

For fixed-length scheme

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

In a program:


s(p) = operator-index string

• s(p) = 2*b(p) + a(p)-1 
• diagonal; s(p) = even

• off-diagonal; s(p) = off


σ(i) = spin state, i=1,...,N

• only one has to be stored

W>0 (n2 even) for bipartite lattice 

Frustration leads to sign problem

SSE effectively provides a discrete representation of the time continuum! 

• computational advantage; only integer operations in sampling

Z =
⌅

�

⌅

SL

(�1)n2
⇥n(L� n)!

L!

⇥
�

�����

L�1⇧

p=0

Ha(p),b(p)

����� �

⇤



Monte Carlo sampling scheme

Change the configuration; (�, SL)� (��, S�
L)

Attempt at p=0,...,L-1. Need to know |α(p)>

• generate by flipping spins when off-diagonal operator

Diagonal update: [0, 0]p � [1, b]p

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

Paccept([0, 0]⇥ [1, b]) = min
�

�Nb

2(L� n)
, 1

⇥

Paccept([1, b]⇥ [0, 0]) = min
�
2(L� n + 1)

�Nb
, 1

⇥

Acceptance probabilities

W (a = 0)
W (a = 1)

=
L� n + 1

�/2
W (a = 1)
W (a = 0)

=
�/2

L� n

n is the current power

• n → n+1 (a=0 → a=1)

• n → n-1  (a=1 → a=0)

Pselect(a = 0� a = 1) = 1/Nb, (b ⇥ {1, . . . , Nb})
Pselect(a = 1� a = 0) = 1

Paccept = min
�
W (��, SL)
W (�, SL)

Pselect(��, S�
L � �, SL)

Pselect(�, SL � ��, S�
L)

, 1
⇥



do p = 0 to L � 1
if (s(p) = 0) then

b = random[1, . . . , Nb]
if �(i(b)) = �(j(b)) cycle

if (random[0 � 1] < P
insert

(n)) then s(p) = 2b; n = n + 1 endif

elseif (mod[s(p), 2] = 0) then

if (random[0 � 1] < P
remove

(n)) then s(p) = 0; n = n � 1 endif

else

b = s(p)/2; �(i(b)) = ��(i(b)); �(j(b)) = ��(j(b))
endif

enddo

Pseudocode: Sweep of diagonal updates

Code explanation: 
• To insert operator, bond b generated at random among 1,...,Nb

   - can be done only if connected spins i(b),j(b) are anti-parallel

   - if so, do it with probability Pinsert(n)

• Existing diagonal operator can always be removed

   - do it with probability Premove(n)

• If off-diagonal operator, advance the state

   - extract bond b, flip spins at i(b),j(b)



Off-diagonal updates

Operator-loop  
update
• Many spins  

and operators 
can be 
changed 
simultaneously


• can change 
winding 
numbers

Local update
Change the type

of two operators

• constraints

• inefficient

• cannot change 

winding 
numbers



Linked vertex storage

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

The “legs” of a  vertex represents 

the spin states before (below) and 

after (above) an operator has acted

X( ) = vertex list

• operator at p→X(v)

   v=4p+l, l=0,1,2,3

• links to next and

   previous leg

Spin states between operations are redundant; represented by links

• network of linked vertices will be used for loop updates of vertices/operators



do v0 = 0 to 4L� 1 step 2
if (X(v0) < 0) cycle
v = v0
if (random[0� 1] < 1

2 ) then
traverse the loop; for all v in loop, set X(v) = �1

else
traverse the loop; for all v in loop, set X(v) = �2
flip the operators in the loop

endif
enddo

 constructing all loops, flip probability 1/2

 construct and flip a loop

v = v0
do

X(v) = �2
p = v/4; s(p) = flipbit(s(p), 0)
v� = flipbit(v, 0)
v = X(v�); X(v�) = �2
if (v = v0) exit

enddo

Pseudocode: Sweep of loop updates

• by flipping bit 0 of s(p), the operator 
changes from diagonal to off-
diagonal, or vice versa

• moving on the vertex to the adjacent 
spin is also done with a bit flip  

• visited vertices 
are no longer 
needed and 
we set them to 
a negative 
value -1 or -2, 
to indicate that 
the loop has 
been visited 
(-1) or visited 
and flipped (-2)

• p is the location of the operator in 
the original length-L list of 
operatotors 



We also have to modify the stored spin state after the loop update 
• we can use the information in Vfirst() and X() to determine spins to be flipped

• spins with no operators, Vfirst(i)=−1, flipped with probability 1/2

do i = 1 to N
v = Vfirst(i)
if (v = �1) then

if (random[0-1]< 1/2) �(i) = ��(i)
else

if (X(v) = �2) �(i) = ��(i)
endif

enddo

v=Vfirst(i) is the location of the first vertex leg on site i

• flip the spin if X(v)=−2

• (do not flip it if X(v)=−1)

• no operation on i if vfirst(i)=−1; then it is flipped with probability 1/2



Vfirst(:) = �1; Vlast(:) = �1
do p = 0 to L� 1

if (s(p) = 0) cycle
v0 = 4p; b = s(p)/2; s1 = i(b); s2 = j(b)
v1 = Vlast(s1); v2 = Vlast(s2)
if (v1 ⇥= �1) then X(v1) = v0; X(v0) = v1 else Vfirst(s1) = v0 endif
if (v2 ⇥= �1) then X(v2) = v0; X(v0) = v2 else Vfirst(s2) = v0 + 1 endif
Vlast(s1) = v0 + 2; Vlast(s2) = v0 + 3

enddo

Constructing the linked vertex list

creating the last links across the “time” boundary
do i = 1 to N

f = Vfirst(i)
if (f ⇥= �1) then l = Vlast(i); X(f) = l; X(l) = f endif

enddo

Use arrays to keep track of the first and 

last (previous) vertex leg on a given spin

• Vfirst(i) = location v of first leg on site i

• Vlast(i) = location v of last (currently) leg

• these are used to create the links

• initialize all elements to −1

Traverse operator list s(p), p=0,...,L−1

• vertex legs v=4p,4p+1,4p+2,4p+3



Determination of the cut-off L 
• adjust during equilibration

• start with arbitrary (small) n

Keep track of number of operators n

• increase L if n is close to current L

• e.g., L=n+n/3

Example 

• 16×16 system, β=16 ⇒

•  evolution of L

•  n distribution after 
equilibration


•  truncation is no 
approximation



Does it work? 
Compare with exact results 
• 4×4 exact diagonalization

• Bethe Ansatz; long chains

⇐ Energy for long 1D chains

• SSE results for 106 sweeps

• Bethe Ansatz ground state E/N

• SSE can achieve the ground

   state limit (T→0) 

Susceptibility of the 4×4 lattice ⇒

• SSE results from 1010 sweeps

• improved estimator gives smaller

   error bars at high T (where the

   number of loops is larger)



L⨉L lattices up to 256⨉256, T→0

AWS & HG Evertz 2010
ms = 0.30743(1)

H = J
�

�i,j⇥

Si · Sj

Long-range order: <ms2> > 0 for N→∞

 Quantum Monte Carlo 
- finite-size calculations
- no approximations
- extrapolation to infinite size

Reger & Young (world-line) 1988
ms = 0.30(2)
� 60 % of classical value

Results for 2D Heisenberg model

Sublattice magnetization

~m
s

=
1

N

NX

i=1

�
i

~S
i

, �
i

= (�1)xi+yi



SSE calculations of imaginary-time correlations
A(⌧) = e⌧HAe�⌧HTime evolved operator:

Generalization of Handscomb's quonium MC scheme 3611 

The heat capacity is obtained taking the derivative with respect to the temperature 
of the above expression. The result is 

c = (7&/ - (7l)'W - ( 7 q W  . (3.9) 

For a product of m operators kk, ,  . . . , I I ,_  we get 

N ( k 1 , .  . . , k , ) )  (3.10) 
i= l  W 

where N ( k , ,  . . . , k,,,) denotes the number of ordered subsequences k,, . . . , k, in 
S,. The form of (3.10) indicates that it will be dillicult to obtain good estimates of 
products of a large numbcr of operators. 

Now consider an jmab'inaly-time-clependent product 

A , ( T ) A , ( O )  = e T f i / i 2 e - ' H A 1 .  (3.11) 

"dylor-expanding the cxponcntials, the ensemble average can be written 

Changing to a summation ovcr index sequences and a sum over all positions of A, 
in the operator product results in 

(3.13) 

Consider first the case or A,, A, diagonal. We then get, comparing with the weight 
function (2.2) and using (3.2), 

(3.14) 

The propagated states ( ~ ( p ) )  are periodic for all allowed configurations, so that with 
an index sequencc of length n,  la(ri + p ) )  = l a ( p ) ) .  For A,, A, not necessarily 
diagonal, consider the sirnplcst case A, = if, , ,  A2 = H k 2 .  We then get 

(3.15) 

By Taylor expansion:

Easy for diagonal (and some off-diagonal) operators 
Alternative way: SSE with time-slicing

e��H =
⇤Y

i=1

e��⌧H , �⌧ = �/⇤

Each exponential is formally expanded individually

- only changes acceptance probability in diagonal updates

- n(i) Hamiltonian operators in slice i, n(i) ≤ 𝑙 (𝑙 adjusted)
Time correlations easy to measure for 𝝉=i𝛥𝝉  (states at slice boundaries)

How is 𝝉 related to the SSE “propagation” dimension?

p

F(m) weighted correlations between states separated

by m operations with H; sharply peaked distribution

- dominated by m ~ (𝝉/β)n0, n0=n+m (expansion order)

F (m)



Spectral functions and Imaginary-time correlations

But we are faced with the difficult inverse problem:

- know G(𝝉) from QMC for some points 𝝉i, i=1,2,…,N𝝉

- statistical errors are always present 

Solution S(𝜔)  is not unique given incomplete QMC data

- the numerical analytic continuation problem

- difficult to resolve fine-structure of S(𝜔)

We want the spectral function of some operator

With QMC we can compute the imaginary-time correlator

t = �i⌧ ! G(⌧) = hO†(⌧)O(0)i = he⌧HO†e�⌧HOi ⌧ 2 [0,�], � = T�1

S(!) =
1

Z

X

m,n

e��En |hm|Ô|ni|2�[! � (Em � En)]

Example:
O = Sz

q =
1p
N

NX

j=1

eirj ·qSz
j

Relationship between G(𝝉) and S(𝜔):

G(⌧) =

Z 1

�1
d!S(!)e�⌧!



 QMC Data may look like this:

      𝝉                     G(𝝉)                  𝜎(𝜏) (error)

 0.100000000   0.785372902099492   0.000025785921025    
 0.200000000   0.617745252224320   0.000024110978744 
 0.300000000   0.486570613927804   0.000022858341732 
 0.400000000   0.383735739475007   0.000022201962003 
 0.600000000   0.239426314549321   0.000021230286782 
 0.900000000   0.118831597893045   0.000021304530787 
 1.200000000   0.059351045039398   0.000020983919497 
 1.600000000   0.023755763120921   0.000020963449347 
 2.000000000   0.009567293481952   0.000021147137686 
 2.500000000   0.003071962229791   0.000020315351879 
 3.000000000   0.001017989765629   0.000020635751833 
 3.600000000   0.000255665406091   0.000020493781188

From a given “guess” of the spectrum S(𝜔) we can compute

GS(⌧) =

Z 1

�1
e�⌧!S(!)d⌧

Typical 𝜎(𝜏) when G(0)=1;

as small as ~10-5 - 10-6 

in good QMC data 

We want to have a good fit to the QMC data, quantified by

�2 =
X

j

1

�2
j

[GS(⌧j)�G(⌧j)]
2

QMC statistical errors are correlated; use covariance matrix

�2 =
X

i

X

j

[GS(⌧i)�G(⌧i)]C
�1
ij [GS(⌧j)�G(⌧j)]



Manifestation of ill-posed analytic continuation problem:

- many spectra have almost same goodness-of-fit (close to best 𝜒2)

Represent the spectrum using 

some suitable generic parametrization 

- e.g., sum of many delta functions 

S(!) =
N!X

i=1

Ai�(! � !i)
!

S(!)

Need some way to regularize the spectrum, without loss of information

Parametrization and Regularization



Stochastic analytic continuation (SAC)
White 1991, Sandvik 1998; Beach 2004; Syljuåsen 2008; Sandvik 2016,…. 

In order to accurately determine Q

*, it is necessary to
carry out long simulations. If the annealing is performed too
quickly ~too few steps per Q value!, the calculated entropy
curve exhibits a broader maximum than what is seen in Fig.
1. The left side of the peak is quite stable with respect to the
annealing rate, but the location of the rapid drop is shifted
towards higher ln(1/Q). Apparently, the simulation easily
gets ‘‘trapped’’ at the local entropy maximum. Hence, in
cases where the maximum is broad and its exact position is
hard to determine, it may for practical purposes be better to
estimate Q

* as a point slightly to the left of the peak center
~which within error bars could be the actual maximum!. Fig-
ure 2 ~and more detailed studies of the dependence on Q)
also shows that the change in the spectrum before the en-
tropy peak is much less dramatic than right after, where
sharp peaks rapidly emerge. A strategy of slightly underesti-
mating ln(1/Q*) also conforms with the general notion that
too little structure is better than too much.
Next, results for both q5p/2 and q5p/4 are compared

with spectra obtained using the ‘‘classic’’ Max-Ent method1
~with a flat default!. The point Q

* used for the stochastic
method was determined as discussed above, as a point
slightly before the center of the last local entropy maximum,
where a clear increase with ln(1/Q) has ceased @e.g., for the
case q5p/2 discussed above, ln(1/Q)510.6 was used#. Fig-
ure 3 shows the results, along with histograms representing
the exact spectra. The new method clearly reproduces the
exact spectra better than the Max-Ent method, although the
Max-Ent results do also represent reasonable broadened av-
erages.
It should be stressed that although the entropy is used in

the method proposed here, the underlying philosophy differs
fundamentally from standard Max-Ent methods, where the
inclusion of the entropy in the optimization explicitly affects
the shape of the spectrum. In the stochastic method, a family
of spectra is obtained based only on the QMC data, and the
entropy is used only to single out one spectrum. Hence, any
structure in the spectrum obtained is due solely to the QMC
data.
The method has here been demonstrated only for a rela-

tively simple test case. Results obtained for other models and
dynamic quantities indicate that the behavior of the entropy
vs Q found here is typical for spectra with one broad con-
tinuous ~on some reasonable frequency scale! structure with
a single maximum. Good continued spectra are then obtained
using Q5Q

*, and for Q,Q

* two sharp peaks typically
start to emerge. In cases where the actual spectrum has two
peaks, there is also a sharp entropy drop as the global x

2

minimum is approached. However, the entropy maximum

associated with the appearance of the two peaks then occurs
at quite high x

2 values ~if the data is sufficiently good! and is
then clearly not the preferred point for sampling. For QMC
data of very high accuracy one would presumably have a
final entropy maximum before the sharp drop associated with
the emergence of additional peaks, and one could then again
use this to determine the optimum Q for sampling. In typical
cases the data may, however, be compatible with just two d

functions, and then it is difficult to determine a Q

*
~this is

then also an indication that the data are not of sufficient
accuracy for a reliable analytic continuation!. Clearly more
work is needed to clarify the general behavior of the entropy
before the method can be applied to more complicated spec-
tra than the single-maximum case considered here. A prob-
lem for practical use of the method is that the sampling
needed for an accurate determination of Q

* as well as the
averaging needed to obtain a final result are quite time con-
suming. The good agreement with the exact results obtained
here should motivate further work along these lines.
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Improved SAC scheme
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We study the spin-excitation spectrum (dynamic structure factor) of the spin-1=2 square-lattice
Heisenberg antiferromagnet and an extended model (the J-Q model) including four-spin interactions
Q in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic continuation
of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the
sharp (δ-function) contribution to the structure factor expected from spin-wave (magnon) excitations, in
addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in
excellent agreement with recent neutron-scattering experiments on CuðDCOOÞ2 · 4D2O, where a broad
spectral-weight continuum at wave vector q ¼ ðπ; 0Þ was interpreted as deconfined spinons, i.e., fractional
excitations carrying half of the spin of a magnon. Our results at ðπ; 0Þ show a similar reduction of the
magnon weight and a large continuum, while the continuum is much smaller at q ¼ ðπ=2; π=2Þ (as also
seen experimentally). We further investigate the reasons for the small magnon weight at ðπ; 0Þ and the
nature of the corresponding excitation by studying the evolution of the spectral functions in the J-Qmodel.
Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before
the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized
state. Based on these results, we reinterpret the picture of deconfined spinons at ðπ; 0Þ in the experiments as
nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture
of a fragile ðπ; 0Þ-magnon pole in the Heisenberg model and its depletion in the J-Q model, we introduce
an effective model of the excitations in which a magnon can split into two spinons that do not separate but
fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole
pair in the exciton-polariton problem). The model can reproduce the reduction of magnon weight and
lowered excitation energy at ðπ; 0Þ in the Heisenberg model, as well as the energy maximum and smaller
continuum at ðπ=2; π=2Þ. It can also account for the rapid loss of the ðπ; 0Þ magnon with increasing Q and
the remarkable persistence of a large magnon pole at q ¼ ðπ=2; π=2Þ even at the deconfined critical point.
The fragility of the magnons close to ðπ; 0Þ in the Heisenberg model suggests that various interactions that
likely are important in many materials—e.g., longer-range pair exchange, ring exchange, and spin-phonon
interactions—may also destroy these magnons and lead to even stronger spinon signatures than in
CuðDCOOÞ2 · 4D2O.

DOI: 10.1103/PhysRevX.7.041072 Subject Areas: Condensed Matter Physics, Magnetism,
Strongly Correlated Materials

I. INTRODUCTION

The spin S ¼ 1=2 antiferromagnetic (AFM) Heisenberg
model is the natural starting point for describing the
magnetic properties of many electronic insulators with
localized spins [1]. The two-dimensional (2D) square-
lattice variant of the model became particularly prominent
because of its relevance to the undoped parent compounds
of the cuprate high-temperature superconductors [2,3], e.g.,
La2CuO4; more broadly, it has also remained a fruitful
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Example: L=16 Heisenberg chain, S(𝜋/2,𝜔), T/J=0.5
Determining the sampling temperature P (S) / exp(��2/2✓)
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Spectra with sharp features
Example: Delta-function and continuum, test with synthetic data 
- noise level 2*10-5 (20 𝜏 points, 𝛥𝜏=0.1)
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More challenging case:  
continuum touches 𝜹-fktn
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C. Tests on synthetic data
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III. SPECTRAL FUNCTIONS OF THE HAFM

A. Spectral Functions

For a quantum spin system, the spectral function
S(q,!) , namely the dynamic structure factor, measured
in inelastic neutron scattering experiment is directly re-
lated to the correlations of the operator S↵

q (↵ = x, y, z),
which is the Fourier transform of the spin operator S↵

r .
In this paper we focus on the isotropic case, so correla-
tions of the z-component are measured. With su�ciently
large inversed temperature � = 4L in the SSE sampling
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FIG. 4.

[41], our QMC measurement is taken from ⌧ = 0 to �/2
and the absolute error of the data is up to 10�4.

G(q, ⌧) =

Z 1

�1
S(q,!)e�⌧!d!, (13)

i.e., to solve the spectral functions S(q,!) numerically
from the imaginary-time dependent correlation functions
G(q, ⌧) computed with quantum Monte Carlo simula-
tions. We will briefly introduce the improved SAC
method in below and more details can be found in [40].

For the square-lattice Heisenberg antiferromagnet, the
spectral function contains a dominating �-function repre-
senting the lowest single-magnon excitation and a high-
energy continuum

S(q,!) = S
0

(q)�(! � !
0

(q)) + Sc(q,!), (14)

where !
0

(q) is the single-magnon dispersion and S
0

(q) is
the associated spectral weight. So in the parametrization
of S(q,!), we include an isolated �-function with variable
amplitude and location as the prominent spectral feature,
while the continuum is traded as a set, with the number
2000, of equal amplitude �-functions at higher frequen-
cies. In the sampling procedure, the spectral function is
normalized by setting G(⌧ = 0) = 1, and the relative
spectral weight of the single-magnon excitation, defined
as

A
0

(q) =
S
0

(q)R
d!S(q,!)

, (15)

is firstly decided by finding the lowest h�2i. The spectral
function is an accumulation in a histogram with bin size
0.001.

As a overview, we show the spectral functions for L =
48 system in a 2D color plot (FIG. 5), where the x axis

�rel = 10�5

�rel = 10�6

Synthetic spectrum, a0 = 0.4, 𝜔0 = 1

2D Heisenberg model 
Shao, Qin, Capponi, Chesi,  
Meng, Sandvik, PRX 2017 
- nearly deconfined spinons at q≈(𝜋,0)
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ω
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FIG. 5. The dynamic structure factor of the 2D Heisenberg
model computed on an L = 48 lattice along the path in the
BZ indicated on the x-axis. The y-axis is the energy transfer
! in units of the coupling J . The magnon peak (�-function) at
the lower edge of the spectrum is marked in white irrespective
of its weight, while the continuum is shown with color coding
on an arbitrary scale where the highest value is 1. The upper
white curve corresponds to the location where, for given q,
5% of the spectral weight remains above it.

sible for the continuum. We will argue later that the
particularly large continuum at (⇡, 0) is actually due to
nearly deconfined spinons.
It is not clear whether the small maximum to the right

of the �-function, which we see consistently through the
BZ, are real spectral features or whether they reflect the
statistical errors of the QMC data in a way similar to the
most common distortion resulting from noisy synthetic
data, as seen in the tests presented in Fig. 4. The error
level of the QMC data in all cases is a bit below 10�5,
i.e., similar to Fig. 4(a). The behavior does not suggest
any gap between the �-functions and the continuum.

B. Finite-size e↵ects

It is important to investigate the size dependence of
the spectral functions. For very small lattices at T = 0,
S(q,!) computed according to Eq. (1) for each q con-
tains only a rather small number of �-functions and it
is not possible to draw a curve approximating a smooth
continuum following a leading �-functions. Therefore,
the SAC procedure does not reproduce exact Lanczos
results very well—we obtain a single broad continuum
following the leading �-function, instead of several small
peaks. Because the continuum also has weight close to
the leading �-function, between it and the second peak
of the actual spectrum, the SAC method also slightly
underestimates the weight in the first �-function. If the
continuum emerging as the system size increases indeed
is, as expected, broad and does not exhibit any unresolv-
able fine-structure, the tests in Sec. II suggest that our
methods should be able to reproduce it.
For the 6 ⇥ 6 lattice at q = (⇡, 0), our SAC result

underestimates the weight in the magnon pole by about
5%, while the energy deviates by less than 1%. We ex-
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FIG. 6. Dynamic structure factor for L = 48 system at four
di↵erent momenta. The smallest momentum increment 2⇡/L
is denoted by k in (a) and (d). The relative amplitude of the
magnon pole is indicated in each panel.

pect these systematic errors to decrease with increasing
system size, for the reasons explained above. Fig. 7 shows
the size dependence of the single-magnon weight and en-
ergy at wavevectors q = (⇡, 0), (⇡/2,⇡/2), and (⇡,⇡).
At (⇡,⇡) we only have Lanczos results, but even with
the small systems accessible with this method it can be
seen that indeed the energy decays toward zero. The
magnon weight is large, converging rapidly toward about
97%, which is similar to the series-expansion result [20].
The energies at q = (⇡, 0) and (⇡/2,⇡/2) also converge
rapidly, with no detectable di↵erences between L = 32
and L = 48, and a smooth transition between the ED re-
sults for small systems and QMC results for larger sizes.
The magnon weight at these wavevectors show more sub-
stantial size dependence, though again the results for
the two largest sizes agree within error bars. Here the
connection between the ED and QMC results does not
appear completely smooth at (⇡, 0), due to the di�cul-
ties for the SAC method to deal with a spectrum with a
small number of �-functions. Nevertheless, even the ED
results indicate a drop in the amplitude for the larger
system sizes. The trends in 1/L for the QMC results
suggest that the weight converges to slightly below 40%
at q = (⇡, 0) and slightly below 70% at q = (⇡/2,⇡/2),
both in very good agreement with the series-expansion
results [20]. This agreement with a completely di↵erent
method provides strong support to the accuracy of the
QMC-SAC procedures. The energies also agree very well
with the previous QMC results where particular func-



spinons, and a variational RVB wave function was used to
support this interpretation. We discuss a different picture of
nearly deconfined spinons further in Sec. V. Here, we first
compare the ðπ; 0Þ and ðπ=2; π=2Þ results with the exper-
imental data without invoking any interpretation. The
experimental scattering cross section in Ref. [33] was
shown vs the frequency ω=J normalized by the estimated
value of the coupling constant (J ≈ 6.11 meV). Keeping
the same scale, we should only convolute our spectral
functions with an experimental Gaussian broadening. We
optimize this broadening to match the data and find that a
half-width σ ¼ 0.12J of the Gaussian works well for both
wave vectors—which is the same as the instrumental
broadening reported for the experiment [33]. Since the
neutron data are presented with an arbitrary scale for the
scattering intensity, we also have to multiply our Sðq;ωÞ
for each q by a common factor. The agreement with the
data at both ðπ; 0Þ and ðπ=2; π=2Þ is very good and can be
further improved by dividing ω=J in the experimental data
by 1.02, which corresponds to J ≈ 6.23 meV, which
should still be within the errors of the experimentally
estimated value. As shown in Fig. 8, the agreement with
the experiments is not perfect but probably as good as
could be expected, considering small effects of the weakly
q-dependent form factor [62] and some influence of
weak interactions beyond J (longer-range exchange, ring
exchange, spin-phonon couplings, disorder, etc.).
The single-magnon dispersion, the energy ωq in

Eq. (15), is compared with the corresponding experimental
peak position in Fig. 9. The linear spin-wave dispersion is
shown as a reference, using the best available value of the
renormalized velocity c ¼ 1.65847 [65]. Our results agree
very well with the spin-wave dispersion at low energies
and also with the experimental CFTD data [33] in the
high-energy regions where the spin-wave results are not

applicable. The only statistically significant deviation,
though rather small, is at q ≈ ðπ=2; π=2Þ, where the
experimental energy is lower (as seen also in the peak
location in Fig. 8). Still, overall, one must conclude that
CFTD is an excellent realization of the square-lattice
Heisenberg model at the level of current state-of-the-art
experiments. It would certainly be interesting to improve
the frequency resolution further and try to analyze higher-
order effects, which should become possible in future
neutron-scattering experiments.

D. Wave-vector dependence of the
single-magnon amplitude

We next look at the variation of the relative magnon
weight a0ðqÞ along the representative path of the BZ for
L ¼ 48, shown in Fig. 10. For q → ð0; 0Þ and ðπ; πÞ, the
weight a0 increases and appears to tend close to 1. From the
results exactly at ðπ; πÞ in Fig. 7, we know that, in this case,
the remaining weight in the continuum should be about 3%,

Linear SWT
0

1

2

ω q
/J

Experiment
SAC (L=48)

(0,0)

Experiment
Linear SWT

FIG. 9. Single-magnon dispersion ωq along a representative
path of the BZ. The CFTD experimental data from Ref. [33] are
shown as blue squares, and the QMC-SAC data (the location of
the magnon pole) are shown with red circles. We also show the
linear SWT dispersion (black curve) adjusted by a common factor
corresponding to the exact spin-wave velocity c ¼ 1.65847 [65].
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FIG. 8. Comparison of the CFTD experimental data [33] (the full
scattering cross section corresponding to unpolarized neutrons) and
our QMC-SAC spectral functions at wave vectors q ¼ ðπ; 0Þ and
q ¼ ðπ=2; π=2Þ. To account for experimental resolution, we have
convoluted the QMC-SAC spectral functions in Figs. 6(b) and 6(c)
with a common Gaussian broadening (half-width σ ¼ 0.12J). We
have renormalized the exchange constant by a factor 1.02 relative
to the original value in Ref. [33], and to match the arbitrary factor
in the experimental data, we have further multiplied both of our
spectra by a factor of approximately 50.
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FIG. 10. Relative spectral weight of the single-magnon pole
along the representative path in the BZ for the L ¼ 48Heisenberg
system. Error bars were estimated by bootstrapping.

NEARLY DECONFINED SPINON EXCITATIONS IN THE … PHYS. REV. X 7, 041072 (2017)

041072-11

NATURE PHYSICS DOI: 10.1038/NPHYS3172 ARTICLES

8

10−1

10−3

10−5

0r y

rx

−8

−8 0 8

15

En
er

gy
 (m

eV
)

10

5

0

r

( , 0)

 ρrρρrρ

rx

−8 0 8
Scattering intensity (a.u.)

3

2

1

0

3

2

1

0
( /2, /2) (0, 0)

(0, 0)

10−1

10−3

10−5

b c d e

a
/J

ω

π ( /2, /2)π π

( , 0)π ( , 0)π

( , 0)π

( ,  )π π

( ,  )π π

( /2, /2)π π

( /2, 
/2)

π
π

( /2, /2)π π

Figure 1 | Overview of the magnetic excitation spectrum of CFTD and its interpretation in terms of spin waves or spatially extended fractional
excitations. a, Momentum and energy dependence of the (total) dynamic structure factor S(q,!) measured by time-of-flight inelastic neutron scattering.
Square boxes (black dashed) highlight the (⇡ ,0) and (⇡/2,⇡/2) wavevectors. a.u., arbitrary units. b,d, Corresponding distributions of real-space fractional
quasiparticle-pair separations, as calculated in the |SFi variational state (equation (3)), evidencing, respectively, the unbound and bound nature of the pair
excitations. c,e, Pictorial representation of a quasiparticle-pair excitation and a spin-wave excitation (magnon), respectively.

using bosonic21 or fermionic22,23 fractional quasiparticles have
long been proposed, and it has been shown that the presence
of conventional classical long-range order does not hinder the
possibility of fractional excitations24,25. By analogy with the 1D case,
these are referred to as spinons.

The magnetic excitation spectrum of various realizations of the
QSLHAF have been investigated using neutron spectroscopy,
including the parent compounds of the high-Tc cuprate
superconductors Sr2CuO2Cl2 (refs 26,27) and La2CuO4 (refs 28,29),
Sr2Cu3O4Cl2 (ref. 30) and the metal-organic compounds
Cu(pz)2(ClO4)2 (refs 31,32) and Cu(DCOO)2·4D2O (CFTD;
refs 33,34) considered here. These experiments have established
that, although SWT gives an excellent account of the low-
energy spectrum, a glaring anomaly is present at high energy
for wavevectors q in the vicinity of (⇡ , 0), where q= (qx , qy) is
expressed in the square-lattice Brillouin zone of unit length 2⇡ .
The anomaly is evident as a complete wipe out of intensity (Fig. 1a)
of the otherwise sharp excitations27,29,32,34 and as a 7% downward
dispersion along the magnetic zone boundary connecting the
(⇡/2, ⇡/2) and (⇡ , 0) wavevectors for Sr2Cu3O4Cl2 (refs 30,33)
and CFTD. Unambiguously identifying the origin of this e�ect
is complicated by the presence, in some of these materials, of
further small exchange terms such as electronic ring-exchange27,29,
further neighbour exchange31,32 or interpenetrating sublattices30. In
contrast, the deviations observed in CFTD agree with numerical
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We study the spin-excitation spectrum (dynamic structure factor) of the spin-1=2 square-lattice
Heisenberg antiferromagnet and an extended model (the J-Q model) including four-spin interactions
Q in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic continuation
of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the
sharp (δ-function) contribution to the structure factor expected from spin-wave (magnon) excitations, in
addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in
excellent agreement with recent neutron-scattering experiments on CuðDCOOÞ2 · 4D2O, where a broad
spectral-weight continuum at wave vector q ¼ ðπ; 0Þ was interpreted as deconfined spinons, i.e., fractional
excitations carrying half of the spin of a magnon. Our results at ðπ; 0Þ show a similar reduction of the
magnon weight and a large continuum, while the continuum is much smaller at q ¼ ðπ=2; π=2Þ (as also
seen experimentally). We further investigate the reasons for the small magnon weight at ðπ; 0Þ and the
nature of the corresponding excitation by studying the evolution of the spectral functions in the J-Qmodel.
Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before
the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized
state. Based on these results, we reinterpret the picture of deconfined spinons at ðπ; 0Þ in the experiments as
nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture
of a fragile ðπ; 0Þ-magnon pole in the Heisenberg model and its depletion in the J-Q model, we introduce
an effective model of the excitations in which a magnon can split into two spinons that do not separate but
fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole
pair in the exciton-polariton problem). The model can reproduce the reduction of magnon weight and
lowered excitation energy at ðπ; 0Þ in the Heisenberg model, as well as the energy maximum and smaller
continuum at ðπ=2; π=2Þ. It can also account for the rapid loss of the ðπ; 0Þ magnon with increasing Q and
the remarkable persistence of a large magnon pole at q ¼ ðπ=2; π=2Þ even at the deconfined critical point.
The fragility of the magnons close to ðπ; 0Þ in the Heisenberg model suggests that various interactions that
likely are important in many materials—e.g., longer-range pair exchange, ring exchange, and spin-phonon
interactions—may also destroy these magnons and lead to even stronger spinon signatures than in
CuðDCOOÞ2 · 4D2O.
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I. INTRODUCTION

The spin S ¼ 1=2 antiferromagnetic (AFM) Heisenberg
model is the natural starting point for describing the
magnetic properties of many electronic insulators with
localized spins [1]. The two-dimensional (2D) square-
lattice variant of the model became particularly prominent
because of its relevance to the undoped parent compounds
of the cuprate high-temperature superconductors [2,3], e.g.,
La2CuO4; more broadly, it has also remained a fruitful
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Fractional excitations in the square-lattice
quantum antiferromagnet
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Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real
materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of
interacting spin-1/2 particles is far from complete. The quantum square-lattice Heisenberg antiferromagnet, for example,
exhibits a striking anomaly of hitherto unknown origin in itsmagnetic excitation spectrum. This quantum e�ectmanifests itself
for excitations propagating with the specific wavevector (⇡ ,0). We use polarized neutron spectroscopy to fully characterize
the magnetic fluctuations in the metal-organic compound Cu(DCOO)2·4D2O, a known realization of the quantum square-
lattice Heisenberg antiferromagnet model. Our experiments reveal an isotropic excitation continuum at the anomaly, which
we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the
existence of spatially extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous
wavevector, these fractional excitations are bound and form conventional magnons. Our results establish the existence
of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence
of frustration.

A fascinating manifestation of quantum mechanics is the
emergence of elementary excitations carrying fractional
quantum numbers. Fractional excitations were a central

ingredient to understand the fractional quantum Hall e�ect1,
and have been investigated in a range of systems, including
conducting polymers2, bilayer graphene3, cold atomic gases4 and
low-dimensional quantum magnets5,6. Among the latter class of
systems, the spin-1/2 Heisenberg antiferromagnet chain (HAFC)
is perhaps the simplest model for which the ground state and the
excitations are known exactly7–9. Excitations of the spin-1/2 HAFC
created by an elementary1S=1 process are radically di�erent from
spin waves, the coherent propagation of a flipped spin, and are
pairs of unbound fractional quasiparticles known as spinons, each
carrying a S=1/2 quantum number. The existence of spinons in the
spin-1/2 HAFC has been confirmed experimentally in a number of
quasi-1D materials10,11, but observing their 2D and 3D analogues is
an ongoing challenge6. So far, the main candidate systems comprise
geometrically frustrated magnets on the triangular12 or kagome13–15
lattices. In this work, we take a frustration-free route and focus on
the quantum (spin-1/2) square-lattice Heisenberg antiferromagnet
(QSLHAF), one of the most fundamental models in magnetism. It
is defined by the Hamiltonian

H= J
X

hi,ji
Si ·Sj (1)

where J is the antiferromagnetic exchange interaction between
nearest-neighbour spins described by spin S = 1/2 operators Si
and Sj. We provide experimental and theoretical evidence that

even in this simplest of 2D models deconfined fractional S=1/2
quasiparticles can be identified at high energies, where they
modify the short-wavelength spin dynamics and are responsible
for a significant quantum anomaly that cannot be captured by
conventional spin-wave theory.

It may seem surprising that the QSLHAF is a candidate for
hosting fractional excitations, as at a superficial level its long-
range magnetic order resembles that of a classical system. The
elementary excitations of this ‘Néel state’, when calculated using
semi-classical spin-wave theory (SWT), are bosonic quasiparticles,
known as magnons: the one-magnon spectrum is gapless, with two-
magnon excitations occupying a continuum at higher energy. The
interaction between magnons is relatively weak and leads to an
upward renormalization of the magnon energy and to scattering
between two-magnon states16,17. One- and two-magnon excitations,
respectively, correspond to fluctuations perpendicular (transverse)
and parallel (longitudinal) to the direction of the ordered moments.

Although none of the above properties suggest the existence of
quasiparticle fractionalization, quantum e�ects are nevertheless far
fromnegligible in theQSLHAF. This is evidenced by the observation
that quantum zero-point fluctuations reduce the staggered moment
to only 62% of its fully ordered value S = 1/2 (refs 18,19).
This suggests that the QSLHAF may in fact be close to a state
preserving spin-rotation symmetry, such as the resonating-valence-
bond (RVB) state proposed byAnderson20 for the cuprate realization
of this model. In particular, fractional spin excitations present
in the RVB state may be relevant for the spin dynamics in the
Néel state, especially at high energies. Indeed, analytical theories
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the magnetic fluctuations in the metal-organic compound Cu(DCOO)2·4D2O, a known realization of the quantum square-
lattice Heisenberg antiferromagnet model. Our experiments reveal an isotropic excitation continuum at the anomaly, which
we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the
existence of spatially extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous
wavevector, these fractional excitations are bound and form conventional magnons. Our results establish the existence
of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence
of frustration.

A fascinating manifestation of quantum mechanics is the
emergence of elementary excitations carrying fractional
quantum numbers. Fractional excitations were a central

ingredient to understand the fractional quantum Hall e�ect1,
and have been investigated in a range of systems, including
conducting polymers2, bilayer graphene3, cold atomic gases4 and
low-dimensional quantum magnets5,6. Among the latter class of
systems, the spin-1/2 Heisenberg antiferromagnet chain (HAFC)
is perhaps the simplest model for which the ground state and the
excitations are known exactly7–9. Excitations of the spin-1/2 HAFC
created by an elementary1S=1 process are radically di�erent from
spin waves, the coherent propagation of a flipped spin, and are
pairs of unbound fractional quasiparticles known as spinons, each
carrying a S=1/2 quantum number. The existence of spinons in the
spin-1/2 HAFC has been confirmed experimentally in a number of
quasi-1D materials10,11, but observing their 2D and 3D analogues is
an ongoing challenge6. So far, the main candidate systems comprise
geometrically frustrated magnets on the triangular12 or kagome13–15
lattices. In this work, we take a frustration-free route and focus on
the quantum (spin-1/2) square-lattice Heisenberg antiferromagnet
(QSLHAF), one of the most fundamental models in magnetism. It
is defined by the Hamiltonian

H= J
X

hi,ji
Si ·Sj (1)

where J is the antiferromagnetic exchange interaction between
nearest-neighbour spins described by spin S = 1/2 operators Si
and Sj. We provide experimental and theoretical evidence that

even in this simplest of 2D models deconfined fractional S=1/2
quasiparticles can be identified at high energies, where they
modify the short-wavelength spin dynamics and are responsible
for a significant quantum anomaly that cannot be captured by
conventional spin-wave theory.

It may seem surprising that the QSLHAF is a candidate for
hosting fractional excitations, as at a superficial level its long-
range magnetic order resembles that of a classical system. The
elementary excitations of this ‘Néel state’, when calculated using
semi-classical spin-wave theory (SWT), are bosonic quasiparticles,
known as magnons: the one-magnon spectrum is gapless, with two-
magnon excitations occupying a continuum at higher energy. The
interaction between magnons is relatively weak and leads to an
upward renormalization of the magnon energy and to scattering
between two-magnon states16,17. One- and two-magnon excitations,
respectively, correspond to fluctuations perpendicular (transverse)
and parallel (longitudinal) to the direction of the ordered moments.

Although none of the above properties suggest the existence of
quasiparticle fractionalization, quantum e�ects are nevertheless far
fromnegligible in theQSLHAF. This is evidenced by the observation
that quantum zero-point fluctuations reduce the staggered moment
to only 62% of its fully ordered value S = 1/2 (refs 18,19).
This suggests that the QSLHAF may in fact be close to a state
preserving spin-rotation symmetry, such as the resonating-valence-
bond (RVB) state proposed byAnderson20 for the cuprate realization
of this model. In particular, fractional spin excitations present
in the RVB state may be relevant for the spin dynamics in the
Néel state, especially at high energies. Indeed, analytical theories
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We study the spin-excitation spectrum (dynamic structure factor) of the spin-1=2 square-lattice
Heisenberg antiferromagnet and an extended model (the J-Q model) including four-spin interactions
Q in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic continuation
of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the
sharp (δ-function) contribution to the structure factor expected from spin-wave (magnon) excitations, in
addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in
excellent agreement with recent neutron-scattering experiments on CuðDCOOÞ2 · 4D2O, where a broad
spectral-weight continuum at wave vector q ¼ ðπ; 0Þ was interpreted as deconfined spinons, i.e., fractional
excitations carrying half of the spin of a magnon. Our results at ðπ; 0Þ show a similar reduction of the
magnon weight and a large continuum, while the continuum is much smaller at q ¼ ðπ=2; π=2Þ (as also
seen experimentally). We further investigate the reasons for the small magnon weight at ðπ; 0Þ and the
nature of the corresponding excitation by studying the evolution of the spectral functions in the J-Qmodel.
Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before
the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized
state. Based on these results, we reinterpret the picture of deconfined spinons at ðπ; 0Þ in the experiments as
nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture
of a fragile ðπ; 0Þ-magnon pole in the Heisenberg model and its depletion in the J-Q model, we introduce
an effective model of the excitations in which a magnon can split into two spinons that do not separate but
fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole
pair in the exciton-polariton problem). The model can reproduce the reduction of magnon weight and
lowered excitation energy at ðπ; 0Þ in the Heisenberg model, as well as the energy maximum and smaller
continuum at ðπ=2; π=2Þ. It can also account for the rapid loss of the ðπ; 0Þ magnon with increasing Q and
the remarkable persistence of a large magnon pole at q ¼ ðπ=2; π=2Þ even at the deconfined critical point.
The fragility of the magnons close to ðπ; 0Þ in the Heisenberg model suggests that various interactions that
likely are important in many materials—e.g., longer-range pair exchange, ring exchange, and spin-phonon
interactions—may also destroy these magnons and lead to even stronger spinon signatures than in
CuðDCOOÞ2 · 4D2O.
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I. INTRODUCTION

The spin S ¼ 1=2 antiferromagnetic (AFM) Heisenberg
model is the natural starting point for describing the
magnetic properties of many electronic insulators with
localized spins [1]. The two-dimensional (2D) square-
lattice variant of the model became particularly prominent
because of its relevance to the undoped parent compounds
of the cuprate high-temperature superconductors [2,3], e.g.,
La2CuO4; more broadly, it has also remained a fruitful
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Results agree well with experiments
- J-Q model demonstrates mechanism of deconfinement


