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1 Introduction

The electronic structure problem, and the quantum many-body problem in general, is an expo-
nentially hard problem. A full accounting of the quantum mechanical behavior of N electrons
would take truly astronomical resources once N is greater than about 30 electrons. This is
far fewer than in most chemical or solid state systems! Electronic structure is also a contin-
uum problem, so to apply most computational methods one must discretize the Hamiltonian.
The approximations needed to handle the exponentially large many-body wavefunction and the
multi-scale details of continuum discretization involve subtle tradeoffs.
By now there are many computational approaches for simulating systems of interacting elec-
trons, but each has major limitations. In quantum chemistry, many computational approaches
start from a non-interacting picture, where the electronic wavefunction is a Slater determinant—
the fermionic analogue of a product state. Interactions are treated by summing multiple Slater
determinants. Such approaches break down when the system becomes strongly correlated,
meaning that exponentially many Slater determinants are necessary to express the wavefunc-
tion accurately. Other approaches like quantum Monte Carlo are limited by the complicated
sign structure of the wavefunction. Thus a demand remains for complementary approaches to
electronic structure, so that a computational technique exists to treat every type of system.
The computational method which is the focus of this chapter is the density matrix renormaliza-
tion group (DMRG) algorithm. DMRG is interesting for a number of reasons. It can handle
strong correlation very naturally, often working better when the system is strongly correlated
versus weakly correlated. DMRG is a controlled method with an arbitrary accuracy level deter-
mined by the user, though it may come at a high cost depending on the specific system. Finally,
DMRG is just one of a number of methods for optimizing tensor network wavefunctions, in
particular matrix product states (MPS), which we define and discuss in more detail below. The
tensor network / MPS perspective has become instrumental in adding new capabilities to DMRG
and pushing its range of applications, and has opened up an entire field of study into tensor net-
work methods. We will see later how a tensor network representation of the electronic structure
Hamiltonian enables very favorable scaling of DMRG calculations for chemistry.
In what follows, we first introduce and review the basics of DMRG, what it accomplishes and
how it works. Then we review the essentials of quantum chemistry, defining the electronic struc-
ture problem and discussing various ways of discretizing it for computational approaches. We
finally turn to recently developed techniques for transforming the electronic structure problem
into a form especially suitable for DMRG, built around spatially local choices of basis.

2 DMRG and matrix product states

The density matrix renormalization group (DMRG) algorithm is a method for optimizing a
particular class of wavefunctions, primarily with the goal of finding ground states of many-body
quantum systems [1–4]. The class of wavefunctions DMRG optimizes are known as matrix
product states (MPS) [5, 4]; these form a very powerful class that can represent wavefunctions
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of widely different systems and notably do not suffer from issues related to strong correlation.
Though DMRG works best for studying one-dimensional lattice model systems, it can be suc-
cessfully applied to narrow two-dimensional lattice models [6] and to ab initio Hamiltonians
such as in quantum chemistry [7, 8]. DMRG also has extensions which can treat excited states,
time evolution, finite-temperature systems, and open systems. Much can be said about tech-
nical aspects of DMRG and properties of MPS, such as the number of variational parameters
needed for an MPS to represent ground states of various systems accurately. The extensive re-
view Ref. [4] provides a detailed review of MPS techniques in the DMRG context, and Ref. [9]
discusses mathematical aspects of the class of MPS wavefunctions and how their complexity
scales with properties such as the entanglement entropy of the wavefunction they represent.

2.1 Matrix product state form of the wavefunction

Before introducing the DMRG algorithm itself, let us first define and discuss matrix product
states (MPS). Because the focus of this chapter is quantum chemistry, let us focus the discus-
sion to wavefunctions of electrons, which are just fermions that have a spin. Thus the many-
body Hilbert space will be a product of single-site (or single-orbital) spaces which are four
dimensional, corresponding to the states {|0〉, |↑〉, |↓〉, |↑↓〉}. Indices sj = 1, 2, 3, 4 will refer
to these four states on site j of a discrete lattice system (which could be a discretized form of a
continuum quantum chemistry system as we will see later in Section 3).
The most general form of a many-body wavefunction on an N site system is

|Ψ〉 =
∑

{s}

Ψ s1s2s3···sN |s1s2s3 · · · sN〉 . (1)

All of the parameters of this wavefunction are stored in the amplitudes Ψ s1s2s3···sN which have
the form of an N -index tensor. The fact that this tensor has 4N distinct components is one
manifestation of the exponential many-body problem. For readers not used to the second quan-
tization formalism for describing fermions, note that any choice of amplitudes in Eq. (1) yields a
properly antisymmetrized fermionic wavefunction, even if the amplitude tensor has no particu-
lar symmetry properties itself. This is because all operators acting on this wavefunction and the
basis states |s1s2s3 · · · sN〉 are defined in terms of fundamental raising and lowering operators
ĉ†jσ and ĉjσ (where σ =↑, ↓) which anti-commute with each other.

2.1.1 Matrix product states

The challenge in dealing with the wavefunction Eq. (1) is finding a manageable representation
of the amplitude tensor Ψ s1s2s3···sN . Fortunately, for any N -index tensor there is a powerful
factorization known as the matrix product state, having the following form:

Ψ s1s2s3s4s5s6 =
∑

{α}

As1α1
As2α1α2

As3α2α3
As4α3α4

As5α4α5
As6α5

(2)

where the above equation shows the example of an MPS for a N = 6 index tensor. Note how
each of the factor tensors Asjαj−1αj carries exactly one of the original physical indices sj . Note
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also how each factor tensor carries two bond indices αi, except for the first and last tensor which
carry only one bond index.1

The range, m, of the bond indices αi = 1, 2, . . . ,m is called the bond dimension of the MPS.
Although this dimension can vary for each bond index, for simplicity we will sometimes refer
to a single overall bond dimension by which we mean the maximum or typical one. The bond
dimension of an MPS controls both the expressivity the MPS, meaning its ability to accurately
represent complicated wavefunctions, and the cost of computations with the MPS, such as steps
of the DMRG algorithm which scale as m3. For a large enough bond dimension, an MPS
can represent any wavefunction, but in the worst case this requires the bond dimension to be
exponentially large. What makes MPS so useful is that in practice they can accurately capture
ground states and low-lying excited states of one-dimensional (1D) or quasi-one-dimensional
systems for modest bond dimensions, usually in just the many hundreds or few thousands. And
in many interesting cases, such as 1D Hamiltonians with finite-range interactions, the accuracy
corresponding to a given bond dimension is essentially independent of system size.2

The name matrix product state comes from the fact that any single amplitude of the quantum
state the MPS represents can be computed as a product of matrices. Say we want to know the
amplitude for the state |0 0 ↑ 0 ↓ 0〉 in other words the tensor component Ψ 0 0↑0↓0. We can
obtain this by fixing the physical indices in Eq. (2):

Ψ 0 0↑0↓0 =
∑

{α}

A0
α1
A0
α1α2

A↑α2α3
A0
α3α4

A↓α4α5
A0
α5
. (3)

Note that after the physical indices are set to fixed values, the factor tensors have at most two free
indices. So the above expression can be computed by just treating A0

α1
as a vector, multiplying

it with matrix A0
α1α2

, and so on until all of the bond indices and contracted, resulting in the
amplitude as a scalar with a computational effort scaling as m2.
If a certain wavefunction, such as a ground state, can be successfully approximated by an MPS
with a modest bond dimension independent of system size, then one has obtained a hugely
compressed representation. Observe that an MPS of typical bond dimension m has a number of
parameters which scales as 4Nm2 versus 4N for an arbitrary uncompressed wavefunction. So
if m does not depend on N , or depends only very weakly on N , then the number of parameters
grows only linearly with system size which is very manageable. In many interesting cases
the number of parameters and thus the cost of calculation can be reduced even more using
symmetries such as spin symmetry or particle number conservation.

2.1.2 Tensor diagrams

Expressions in traditional tensor notation such as Eq. (2) are tedious to write and difficult to read
for computations involving MPS. Fortunately there is a fully rigorous graphical notation for
expressing tensor computations known as diagram notation [10]. In diagram notation, tensors

1Another more common name for an MPS or tensor network bond index is virtual index.
2There is a logarithmic dependence of bond dimension with system size for critical 1D systems, for which MPS

still work very well in practice.
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are represented as shapes and indices as lines. Connecting two lines implies those indices are
summed over or contracted.
As an example, consider two tensors Aij and Bjkl. The tensor Cilk resulting from contracting
A and B over the index j can be notated diagrammatically as

i
j

k

l

A B ∑
j

AijBjkl=i k

l

C
=

Common matrix operations can be expressed as tensor diagrams as:

X

j

Mijvj
ji

AijBjk = AB

AijBji = Tr[AB]

=<latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8=">AAACt3icdVHBThsxEHWWUkIKLdBjLxarSj1F6wip5YCExIVjkBoSKbuKZp3ZxIrt3dpeULTkC7jCnd/ib+osOQAJI1l6evOe39iTFlJYF0XPjWDr0/bnneZu68ve/tdvB4dH1zYvDccez2VuBilYlEJjzwkncVAYBJVK7Kezi2W/f4PGilz/dfMCEwUTLTLBwXnq6mx0EEbtqC66DtgKhGRV3dFh4yke57xUqB2XYO2QRYVLKjBOcImLVlxaLIDPYIJDDzUotElVT7qgPz0zpllu/NGO1uxrRwXK2rlKvVKBm9r3vSW5qTcsXfYnqYQuSoeavwRlpaQup8tn07EwyJ2cewDcCD8r5VMwwJ3/nFas8ZbnSoEeV/EM3WLIkipGbUuDy6zqLmSxAT3xD1y8VacG1tSxrKUhu9ugrq/vbDRQ7wg79IMkuJl8lOSNr1x+p+z9BtfBdafNoja7OgnPL1bbbZIf5Jj8Ioz8JufkknRJj3CC5J48kMfgNBgFWTB9kQaNlec7eVPBv/8lH9uo</latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit>

=<latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8=">AAACt3icdVHBThsxEHWWUkIKLdBjLxarSj1F6wip5YCExIVjkBoSKbuKZp3ZxIrt3dpeULTkC7jCnd/ib+osOQAJI1l6evOe39iTFlJYF0XPjWDr0/bnneZu68ve/tdvB4dH1zYvDccez2VuBilYlEJjzwkncVAYBJVK7Kezi2W/f4PGilz/dfMCEwUTLTLBwXnq6mx0EEbtqC66DtgKhGRV3dFh4yke57xUqB2XYO2QRYVLKjBOcImLVlxaLIDPYIJDDzUotElVT7qgPz0zpllu/NGO1uxrRwXK2rlKvVKBm9r3vSW5qTcsXfYnqYQuSoeavwRlpaQup8tn07EwyJ2cewDcCD8r5VMwwJ3/nFas8ZbnSoEeV/EM3WLIkipGbUuDy6zqLmSxAT3xD1y8VacG1tSxrKUhu9ugrq/vbDRQ7wg79IMkuJl8lOSNr1x+p+z9BtfBdafNoja7OgnPL1bbbZIf5Jj8Ioz8JufkknRJj3CC5J48kMfgNBgFWTB9kQaNlec7eVPBv/8lH9uo</latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8=">AAACt3icdVHBThsxEHWWUkIKLdBjLxarSj1F6wip5YCExIVjkBoSKbuKZp3ZxIrt3dpeULTkC7jCnd/ib+osOQAJI1l6evOe39iTFlJYF0XPjWDr0/bnneZu68ve/tdvB4dH1zYvDccez2VuBilYlEJjzwkncVAYBJVK7Kezi2W/f4PGilz/dfMCEwUTLTLBwXnq6mx0EEbtqC66DtgKhGRV3dFh4yke57xUqB2XYO2QRYVLKjBOcImLVlxaLIDPYIJDDzUotElVT7qgPz0zpllu/NGO1uxrRwXK2rlKvVKBm9r3vSW5qTcsXfYnqYQuSoeavwRlpaQup8tn07EwyJ2cewDcCD8r5VMwwJ3/nFas8ZbnSoEeV/EM3WLIkipGbUuDy6zqLmSxAT3xD1y8VacG1tSxrKUhu9ugrq/vbDRQ7wg79IMkuJl8lOSNr1x+p+z9BtfBdafNoja7OgnPL1bbbZIf5Jj8Ioz8JufkknRJj3CC5J48kMfgNBgFWTB9kQaNlec7eVPBv/8lH9uo</latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit>

=<latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8=">AAACt3icdVHBThsxEHWWUkIKLdBjLxarSj1F6wip5YCExIVjkBoSKbuKZp3ZxIrt3dpeULTkC7jCnd/ib+osOQAJI1l6evOe39iTFlJYF0XPjWDr0/bnneZu68ve/tdvB4dH1zYvDccez2VuBilYlEJjzwkncVAYBJVK7Kezi2W/f4PGilz/dfMCEwUTLTLBwXnq6mx0EEbtqC66DtgKhGRV3dFh4yke57xUqB2XYO2QRYVLKjBOcImLVlxaLIDPYIJDDzUotElVT7qgPz0zpllu/NGO1uxrRwXK2rlKvVKBm9r3vSW5qTcsXfYnqYQuSoeavwRlpaQup8tn07EwyJ2cewDcCD8r5VMwwJ3/nFas8ZbnSoEeV/EM3WLIkipGbUuDy6zqLmSxAT3xD1y8VacG1tSxrKUhu9ugrq/vbDRQ7wg79IMkuJl8lOSNr1x+p+z9BtfBdafNoja7OgnPL1bbbZIf5Jj8Ioz8JufkknRJj3CC5J48kMfgNBgFWTB9kQaNlec7eVPBv/8lH9uo</latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit>

Tensor diagram notation has many advantages, such as removing the need to name every index
in tensor expressions. Diagrams also make it easy to see how many indices the result of a
computation will have. For example, if all of the index lines in a complicated diagram are
contracted with another line, then the result must be a scalar, as in the Tr[AB] example above.
The advantage of tensor diagrams becomes most apparent for complicated networks of con-
tracted tensors. For example, the diagram for the MPS of Eq. (2) is just

 s1s2s3s4s5s6 =<latexit sha1_base64="sHp5bWkoggdGWwC02z7mA51Mb68="></latexit>

s1 s2 s3 s4 s5 s6
<latexit sha1_base64="rckQPTfXLS2BQujMflzuuFUiXa4="></latexit>

(4)

which is much simpler than the expression in Eq. (2). Note that not only the αi bond indices
but even the physical sj indices can be suppressed when using diagrams, but we have shown the
physical indices above to make comparison to Eq. (2) easier.

2.2 Overview of the DMRG algorithm

The goal of the DMRG algorithm is to find the ground state of a given Hamiltonian in MPS
form. For DMRG to be efficient, not only must the wavefunction be represented efficiently as
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an MPS, but the Hamiltonian has to be represented efficiently too. As we will discuss later,
finding a compact representation of the Hamiltonian is one of the central challenges in applying
DMRG to problems in quantum chemistry. But for the purpose of this section, let us just assume
the Hamiltonian is a sum of strictly local terms, such as the Hubbard model in one dimension.
Local Hamiltonians have the property that they can be represented as a tensor network known
as a matrix product operator (MPO).3 This means the Hamiltonian H , viewed as a tensor with
2N indices, can be written as a contracted product of factor tensors as follows

H
s0
1s0

2s0
3s0

4s0
5s0

6
s1s2s3s4s5s6 =

<latexit sha1_base64="76HI81Wy5PqT/7MWcHiNuWCYhp4="></latexit>

s1 s2 s3 s4 s5 s6
<latexit sha1_base64="rckQPTfXLS2BQujMflzuuFUiXa4="></latexit>

s01 s02 s03 s04 s05 s06
<latexit sha1_base64="rxFEvizqfnfBb2udoxX+Fdjj3XA="></latexit>

(5)

In Section 2.3 we briefly discuss some details of how to define the MPO tensors which represent
a given Hamiltonian, but for this section let us assume the Hamiltonian is given in MPO form
and focus on optimizing the MPS approximation to the ground state.
Finding an MPS approximation to the ground state of H means that the MPS obeys the eigen-
value equation

≃ E0
(6)

where E0 is the smallest extremal eigenvalue of H .
A very efficient way to find extremal eigenvalues of Hermitian matrices is by using iterative
eigensolver algorithms such as the Lanczos or Davidson algorithms. Without going into a
detailed description of these algorithms, the main operation needed to perform them is the
multiplication of the current approximate ground state wavefunction by H . The key idea of
DMRG is to use an iterative eigensolver algorithm to improve the approximate ground state in
MPS form, but only one or two tensors at a time—here for pedagogical reasons we will discuss
the case of just improving one MPS tensor at a time.
When only improving one tensor of an MPS, the other temporarily frozen MPS tensors can be
interpreted as defining a sub-basis of the full Hilbert space in which the unfrozen MPS tensor is
defined. For a correct implementation of DMRG, transformations of the MPS tensors need to
be carried out to ensure this sub-basis is an orthonormal basis, but here we will omit these steps
and refer the interested reader to Ref. [4] for further discussion of this important point.
Let us say that we are currently improving the third tensor of an MPS defined on six sites. Then
the step of multiplying H by this tensor in order to use an iterative algorithm such as Lanczos

3Hamiltonians which are not strictly local, such as in systems with long-range Coulomb interactions, can still
be approximated well by MPOs using appropriate compression techniques.
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to improve it is equivalent to performing the following tensor contractions

=
(7)

Note that the resulting tensor on the right-hand side above has the same index structure as the
third MPS tensor, so that it is possible for the MPS tensor being optimized to obey an eigenvalue
equation, when interpreting all of the other tensors—both the frozen MPS tensors and the MPO
tensors—as a square “matrix” multiplying the unfrozen third MPS tensor. The reason the frozen
MPS tensors appear on both the top and bottom of the left-hand side of the above expression is
that they are acting on the Hamiltonian MPO as a transformation which changes the basis of H
from the full Hilbert space to just the subspace of the indices of the third MPS tensor.
For the contractions in Eq. (7) to be efficient, it is important in practice to perform them in a
certain order. To begin with, the projection of the Hamiltonian MPO tensors into the frozen
MPS tensors is performed efficiently by iterating the following pattern of contractions, showing
just the case of tensors to the right of the site being optimized:

= = =

=
(8)

A similar pattern is carried involving frozen MPS tensors to the left of the site to be optimized.
The resulting “Hamiltonian projection” tensors are saved in memory for reuse in the iterative
optimization loop and in later steps of DMRG when the optimization returns to the current site.
Then, within the iterative eigensolver algorithm, an efficient pattern of contractions for carrying
out one step of multiplication by H as in Eq. (7) is given by

(9)
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where in the first transformation above the saved Hamiltonian projection tensors were recalled
from memory.
Having performed just a few iterations of the eigensolver algorithm for the third MPS tensor
(the iterative eigensolver should not be fully converged, since the other MPS tensors are not
fully optimized), the DMRG algorithm continues by freezing the improved third tensor and
next optimizing the fourth MPS tensor, then the fifth tensor, etc. until reaching the end of the
system. Then the tensors are optimized one at a time in reverse order, until returning to the first
site, completing what is called one sweep of DMRG. In cases where DMRG is very well suited
for the problem, very accurate results can often be obtained in fewer than ten sweeps. But for
challenging systems many more sweeps may be needed.
One other note about the convergence of DMRG is that the single-site algorithm outlined above
may get stuck in a local minimum unless extra steps are included in the algorithm, such as
using a noise term [11] or a subspace expansion step [12]. Both of these approaches usually
lead to very robust convergence for a wide variety of systems. Another important and frequently
used variant of DMRG involves optimizing two neighboring MPS tensors at a time. In addition
to helping with convergence, optimizing two tensors together allows one to easily adapt the
dimension of the bond between them, letting it grow or shrink as necessary to reach a desired
accuracy goal while using a few parameters as possible.
Finally, it is important to consider the scaling of the DMRG algorithm when applying it to a
given system. DMRG scales as p1m3k + p2m

2k2 where m is the wavefunction MPS bond di-
mension, k is the Hamiltonian MPO bond dimension, and p1, p2 are constant prefactors which
depend on further implementation details. So although the leading cost is driven by the com-
plexity of the wavefunction MPS, a very important driver of cost can also be the complexity of
the Hamiltonian and how efficiently it can be represented as an MPO.

2.3 MPO forms of Hamiltonians

Though it is not necessary or always advantageous to represent the Hamiltonian in MPO form
in order to carry out DMRG optimization, it can be very convenient to do so. For applications
such as quantum chemistry, MPO techniques can also offer huge efficiency gains when used
to compress the long-range Coulomb interaction terms, as discussed further in Section 4.3.2.
While full discussion of how to construct MPO Hamiltonian representations is beyond the scope
of this chapter, let us discuss one illustrative case to motivate MPO constructions.
Consider the one-dimensional Hubbard model, which shares some similarities with the Hamil-
tonians one encounters in quantum chemistry calculations, such as a Hilbert space of mobile
electrons, as well as orbital-hopping and Coulomb interaction terms, though admittedly very
local versions of such terms. Recall that the Hamiltonian of this model is

Ĥ = −t
∑

jσ

(
ĉ†jσ ĉj+1σ + ĉ†j+1σ ĉjσ

)
+ U

∑

j

n̂j↑n̂j↓ . (10)

An exact MPO representation of the above Hamiltonian can be obtained by choosing the MPO
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tensor on site j to have the form

Ŵrj−1cj =




Îj
ĉj↑
ĉ†j↑
ĉj↓
ĉ†j↓

Un̂j↑n̂j↓ −tĉ†j↑ tĉj↑ −tĉ†j↓ tĉj↓ Îj




(11)

where matrix elements which are not shown are equal to zero. By saying an MPO tensor is
equal to an operator-valued matrix as in the expression above, what is meant is that fixing the
bond entries to a given pair of values (r, c) makes the resulting tensor, now carrying only two
physical indices, equal to the operator listed in the operator-valued matrix. A few examples of
fixing the bond indices on the MPO tensor defined by Eq. (11) above are

sj

s′�j

1 1 = ̂Is′�j
sj

sj

s′�j

2 1 = ̂cs′�j
↑sj

sj

s′�j

6 2 = − t ̂c†s′�j
↑sj

(12)

To apply the particular MPO above to a finite system with open boundary conditions, the open
bond index on the left of the first MPO tensor is contracted with the standard basis vector e6 and
the open index on the right of the last MPO tensor is contracted with the standard basis vector e1.
The motivated reader can verify by constructing and fully contracting the MPO described above
on small systems that it indeed reproduces the Hubbard model Hamiltonian.
Note that the size of the MPO tensor Eq. (11) is tied very closely to the number of distinct terms
making up the Hamiltonian, such as up-spin hopping versus down-spin hopping terms. Terms
with distinct coefficients that act on sites different distances apart also count as distinct terms
for the purposes of determining the minimum size of an MPO representation. Since we will
see below that discretized quantum chemistry Hamiltonians involve many such distinct terms
with different ranges and coefficients, the size of MPO needed to represent them can grow very
quickly with system size unless additional techniques or approximations are used.
For many more details about MPOs, their construction, and their use in quantum chemistry see
Ref. [13].

3 Quantum chemistry:
brief overview and discretization methods

There is a wide range methods in chemistry for studying atoms and molecules computationally,
with large variations in the degree of approximation made. In the setting of quantum chemistry,
one attempts a fully quantum treatment of either all the electrons, or at least those electrons
most important for chemical processes.
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It is common to work within the Born-Oppenheimer approximation, which we will do here.
This approximation treats each atomic nucleus as a classical point object with positive charge Z,
which is the atomic number. For each set of nuclear positions {Ra}, with a indexing each atom,
one solves the Schrödinger equation Ĥ|Ψ0〉 = E0|Ψ0〉 to find the instantaneous ground state |Ψ0〉
of the electrons. Here Ĥ , |Ψ0〉, and E0 are all functions of the nuclear coordinates, with Ĥ given
by

Ĥ =
∑

σ

∫

r

ψ̂†rσ

(
−1

2
∇2 + v(r)

)
ψ̂rσ +

1

2

∑

σσ′

∫

rr′
ψ̂†rσψ̂

†
r′σ′ u(r, r

′) ψ̂r′σ′ψ̂rσ . (13)

with the summation over σ =↑, ↓ taken over up and down spin states, and with all integrations
taken over the entire 3D space, unless stated otherwise.
The nuclear positions Ra and atomic numbers Za enter through the one-body potential v(r)

v(r) =
∑

a

−Za
|r−Ra|

, (14)

parameterizing the Coulomb attraction of the electrons to the protons of each atom a. The
function u(r, r′) parameterizes the Coulomb repulsion between electrons

u(r, r′) =
1

|r− r′| . (15)

This Hamiltonian is known as the electronic structure Hamiltonian, and solving for its ground
state or other properties known as the electronic structure problem.
In general, the electronic structure problem is very difficult. One reason is that it involves many
strongly interacting fermions. It is also a three dimensional problem in the continuum, raising
the challenging issue of how best to discretize it for methods which operate in a discrete Hilbert
space, with DMRG being one such method.
A wide variety of methods have been devised to study electronic structure. Density functional
theory is one common approach, especially when the electronic structure problem must be
solved at a relatively low cost within other algorithms such as molecular dynamics simulations.
Another method is coupled cluster, which often serves as the standard for high-accuracy studies
of small molecules. Other important methods include variants of configuration-interaction [14,
15] and quantum Monte Carlo within a fixed-node approximation [16,17]. And of course there
is DMRG which is the focus of this chapter [7, 8].
One common approach in electronic structure is to divide valence electrons from core electrons—
those whose orbitals are occupied with probability essentially equal to one—then remove the
core electrons and appropriately modify the one-electron potential v(r) by adding a so-called
pseudopotential. But in what follows, we will only consider an all-electron approach for sim-
plicity, meaning we will give every electron a fully quantum mechanical treatment.

3.1 Basis set discretization

A very common way to discretize the electronic structure problem is to project the single-
particle basis onto a finite set of functions. The set of functions used is called the basis set. If
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the initial set of functions are not normalized and orthogonal to each other (under the 2-norm),
which is often the case for standard basis sets, then one typically expresses the discretized
Hamiltonian in a set of orthonormal functions obtained by an transformation of the original
functions. Here by basis set, we will usually mean the final set of orthonormal functions ob-
tained after the transformation.
Consider a basis set given by N orthonormal functions {φi(r)} where i = 1, . . . , N . Then this
basis set can be used to discretize the electronic structure Hamiltonian by defining the integrals
tij and Vijkl, where

tij =

∫

rr′
φi(r)

(
−1

2
∇2 + v(r)

)
φj(r

′) (16)

Vijkl =

∫

rr′

φi(r)φj(r
′)φk(r

′)φl(r)

|r− r′| . (17)

One also defines orbital annihilation operators

ĉi =

∫

r

φi(r)ψ̂r (18)

and conjugate orbital creation operators ĉ†i .
With these definitions, the electronic structure Hamiltonian projected into the basis set is

Ĥ =
1

2

∑

ijσ

tij ĉ
†
iσ ĉjσ +

1

2

∑

ijklσσ′

Vijkl ĉ
†
iσ ĉ
†
jσ′ ĉkσ′ ĉlσ . (19)

In this form, the Hamiltonian is in principle straightforwardly treatable by lattice methods such
as DMRG, though it is crucial to make sure that the very large number of terms involving
the Vijkl interaction integrals are treated efficiently. To apply DMRG to a complicated lattice
Hamiltonian such as the one above, one must choose some one-dimensional ordering of the
basis. Within this ordering, the system can be viewed as a one-dimensional chain with non-
local interactions. Which ordering to choose is not obvious, but different heuristics can be used
to determine very good orderings, such as an analysis of the entanglement of the Hartree-Fock
approximation to the ground state.
Regarding scaling, observe there are N4 interaction integrals Vijkl for a basis set of size N .
Thus quantum chemistry calculations using basis sets have a cost that grows at least as N4, and
often much more rapidly, with the total number of basis functions N . However we will see in
Section 4 that one can obtain much better scaling using local bases within DMRG for certain
classes of systems.

3.1.1 Gaussian basis sets

Because integrals involving Gaussian functions admit exact closed-form expressions, even when
the integrand involves Gaussians, derivatives of Gaussians, and additional polynomial factors,
basis sets built from three-dimensional Gaussians are a very common choice in quantum chem-
istry due to the efficiency they offer when performing integrals, Eqs. (16) and (17), to construct
the Hamiltonian. For computational scientists used to working with lattice models such as the
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Hubbard model, it can be surprising to learn that just constructing the Hamiltonian for a quan-
tum chemistry calculation can take significant time, but note that for N = 100 basis functions,
there are a hundred million Vijkl terms, each defined by a six-dimensional integral!
Despite their name, the basis functions in a Gaussian basis set are not necessarily themselves
Gaussians, but are made by summing (or “contracting”) a small number of Gaussian functions
together, then possibly multiplying them by integer powers of x, y, and z for those functions
designated as capturing P or D orbitals. The purely Gaussian functions which get summed
together are called primitive Gaussians.
Standard and popular Gaussian basis sets are designated by acronyms such as STO-3G or
cc-pVDZ (standing for “Slater-type orbitals fit to three Gaussians” or “correlation-consistent,
polarized valence double-zeta”). These standard basis sets differ not only in the specific Gaus-
sian functions they contain, but also how these functions were chosen and for what purpose.
For example, the correlation consistent (cc-) basis sets were constructed for the purpose of ex-
trapolating energies smoothly to the continuum limit, which in chemistry parlance is called the
complete basis set limit.
The typical procedure for using a Gaussian basis set, which generally consists of groups of
non-orthogonal functions centered on each atom, is to compute a set of orthogonal functions
φj(r) from each of the functions bi(r) in the initial non-orthogonal basis. For example, one can
diagonalize the overlap matrix Oij =

∫
r
bi(r)bj(r) and use the resulting orthogonal matrix of

eigenvectors to define the φj(r) basis. Then the same transformation can be used to transform
the integrals tij and Vijkl to the orthonormal basis. It is important to note that although the
original bi(r) are somewhat local and are centered on one of the atoms, the orthonormal φj(r)
functions typically end up being much less localized. Though various strategies can be used to
ensure the φj are as local as possible, in general they will have significant overlap with many
other basis functions φk, which has negative consequences when used as a starting point for
methods based on locality such as DMRG.

3.1.2 Quantum chemistry DMRG with Gaussian basis sets

The use of DMRG for quantum chemistry originates from the proposal of White and Martin [7]
to use DMRG in combination with standard Gaussian basis sets, as well as an earlier study [18].
Since then, DMRG has become a powerful technique for certain quantum chemistry problems,
in large part due to its ability to handle strongly correlated systems, as it does not rely on an
expansion of the wavefunction in Slater determinants unlike many other quantum chemistry
methods. Some notable examples of applying DMRG within Gaussian basis are an accurate
study of the strongly-correlated Mn4CaO5 cluster in the photosystem II protein complex [19],
and calculations of the challenging Cr2 dimer [20].
Many technical improvements to the DMRG algorithm have been developed in the setting of
chemistry with Gaussians or adapted to this setting. These include using the “complemen-
tary operator” technique to handle very large Hamiltonians with non-local interactions [21, 7],
exploiting SU(2) symmetries [22], and using matrix product operators (MPO) to compress
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Hamiltonians and simplify calculations [13]. Another important step often used in conjunc-
tion with DMRG is the selection of an active space of orbitals, which are a subset of the full
basis set most important for estimating chemical properties [19]. Advanced DMRG and MPS
techniques for going beyond ground-state calculations have also been developed and refined in
the quantum chemistry setting, such as tangent-space linear response methods [23]. For review
articles about using DMRG in quantum chemistry with Gaussian basis sets, see Refs. [24], [8],
and [25].

3.2 Grid discretization

An alternative to using a basis set to discretize the continuum Hamiltonian Eq. (13) is to use a
grid discretization. Within a grid approximation to the continuum, one introduces grid points rn
indexed by a set of integers n = (nx, ny, nz) where nx = 1, 2, . . . , Nx and similar for y and z.
Rather than associating individual functions to these grid points, one thinks of them as loca-
tions at which to sample from any smooth function. Operators in the continuum Hamiltonian
are replaced by operators defined only on grid points, such that for any sufficiently smooth
wavefunction, the expected values of the grid operators accurately approximate that of the con-
tinuum operators.
For terms not involving derivatives, the replacement of continuum operators ψ̂rσ with grid op-
erators ĉnσ is

ψ̂rσ →
∑

n

δ(r− rn) ĉnσ . (20)

Thus for terms such as the one-body potential energy, the transformation from continuum to
grid form is

1

2

∑

σ

∫

r

v(r)ψ̂†rσψ̂rσ →
1

2

∑

nn′σ

∫

r

v(r)δ(r− rn)δ(r− r′n)ĉ
†
nσ ĉn′σ =

1

2

∑

nσ

v(rn)ĉ
†
nσ ĉnσ (21)

from which we see that the basic replacement is just to evaluate the coefficient functions at grid
points and replace continuum with grid operators.
For the Coulomb interaction term, the transformation to the grid is

1

2

∑

σσ′

∫

rr′
u(r, r′) ψ̂†rσψ̂

†
r′σ′ψ̂r′σ′ψ̂rσ →

1

2

∑

n6=n′

u(rn, rn′) n̂nn̂n′ (22)

which gives a particularly simple and compact form for this computationally expensive term.
Crucially, unlike the basis set approach which results in N4

b discrete Coulomb terms for a basis
set consisting of Nb functions, the number of Coulomb terms in the grid approach is just N2

where N = NxNyNz is the number of grid points. So the scaling of the number of Coulomb
integrals is much more favorable in the grid approach than in the basis-set approach, though this
is not the entire story as we will see just below.
Finally, for the kinetic energy term of the Hamiltonian, in the grid approach one replaces deriva-
tives by finite-difference approximations over neighboring grid points. There are many finite-
difference approximations for the second derivative operator, which can be obtained by ap-
proaches such as fitting low-order polynomials or using wavelet techniques. For a regular grid
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with grid spacing a, the resulting transformation of the kinetic energy takes the form

− 1

2

∑

σ

∫

r

ψ̂†rσ∇2ψ̂rσ → −
1

2a2

∑

nn′σ

∆nn′ ĉ
†
nσ ĉn′σ (23)

where the ∆nn′ are finite-difference coefficients which fall exactly to zero once n and n′ are
more than a certain distance apart, depending on the order of the approximation.

3.3 Comparison of basis set and grid discretization

Having just reviewed two of the major approaches to discretizing continuum Hamiltonians—
Gaussian basis set discretization and grid discretization—let us contrast the key aspects of each
approach.
One important consideration is whether the resulting approximation is variational, meaning
whether the ground-state energy of the approximate Hamiltonian is always greater than or equal
to the continuum ground-state energy. A key advantage of the basis set approach is that it is
variational. Grid discretization is typically not variational.
The other key consideration is the overall computational cost, with the number of Coulomb
interaction terms being a major driver of cost. The number of Coulomb terms scales much
better within the grid approach: just N2

g Coulomb terms for Ng grid points, versus N4
b Coulomb

terms when using a basis set of Nb functions. However, Gaussian basis sets often need many
fewer functionsNb compared to the number of grid pointsNg needed to reach a similar accuracy.
For example, approximating a small molecule with about Nb = 100 Gaussian basis functions
requires a grid of linear size roughly Nx,y,z = 100 giving Ng = 106 grid points in total, making
the grid approach more costly overall, despite its better scaling.
Thus at least for the study of small molecules using high-accuracy quantum chemistry tech-
niques, Gaussian basis set discretization is typically the preferred approach due to its variational
nature and relatively low costs.
But as we will see in the next section, one can successfully combine the best features of the grid
and basis set approaches—low cost and good scaling—for use within methods such as DMRG.

4 Local bases for quantum chemistry DMRG

We turn now to a promising approach of using basis sets made from local functions for DMRG
and tensor network methods for quantum chemistry. These bases are distinct from standard
Gaussian basis sets, though the first one we will discuss uses Gaussian bases as an ingredient.
Although choosing a local basis often results in the basis being larger than the number of Gaus-
sians needed to resolve the continuum to the same accuracy, we will see that the tradeoff is
worthwhile because tensor networks very naturally exploit real-space locality.
The motivation for developing alternative bases for DMRG calculations is that calculations us-
ing Gaussian basis sets scale poorly compared to DMRG calculations of lattice systems, such
as of the 1D Hubbard model, which have local Hamiltonian terms only. For example, quantum
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chemistry DMRG calculations of one-dimensional chains of 3D hydrogen atoms can only han-
dle about a hundred atoms using Gaussian basis sets, whereas 1D Hubbard DMRG calculations
can scale to thousands of sites. Yet both quantum chemistry calculations and Hubbard model
calculations use the same local single-site or single-orbital basis: {|0〉, |↑〉, |↓〉, |↑↓〉}. Thus it
follows that scaling is not about whether the degrees of freedom are electrons, but instead must
originate from either the range or complexity of the Hamiltonian.
To be more precise, there are three significant factors which determine the cost of DMRG
calculations for quantum chemistry:

1. the size of the Hamiltonian within the particular basis and format used within DMRG

2. the bond dimension of the MPS needed to accurately represent the ground state wave-
function in the basis used

3. the number of sweeps, or passes, over the system necessary to reach convergence

Crucially, factors number (1) and (2) are both tied very strongly to the size and locality of
the basis one uses. For example, if one uses a basis set which is local in the sense that any
function φi only overlaps with a small, finite number of other functions φj , then the number
of non-zero interaction integrals Vijkl scales only as N2, not as N4. This better scaling has
immediate implications for the costs (1) coming from the size of the Hamiltonian. Regarding
the costs (2) associated with the MPS bond dimension, a ground state in a spatially local basis
can be accurately captured by an MPS of a bond dimension growing only logarithmically with
the largest direction of a system extended along one dimension. In contrast, a basis that is not
spatially local can result in MPS bond dimensions which are orders of magnitude larger, with
the most extreme example being that of an interacting system in a non-local plane-wave basis,
for which an accurate MPS representation must have a bond dimension growing exponentially
with system size!
Yet one does not immediately gain from just choosing a basis set of local functions because
such local bases can require many more functions N to capture the continuum than a non-local
basis. But with a smart choice of local functions (Sections 4.1 and 4.2), and technology for
representing the electronic structure in a compressed form (Section 4.3.2), local basis sets can
be a very beneficial choice.

4.1 Approach 1: hybrid grid and basis set, or “sliced basis” approach

One idea to develop a local basis for DMRG is to combine grid discretization with Gaussian
basis set discretization, with the goal of obtaining the best aspects of each. A successful way
to combine a grid and basis set is to use a grid only along one spatial direction, such as the z
direction, then a Gaussian basis set along the other two directions x and y. This idea, called
sliced-basis, was recently developed for use with DMRG in Ref. [26] and successfully applied
to DMRG calculations of one-dimensional, strongly correlated chains of hydrogen atoms in
Refs. [26, 27].
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Fig. 1: Visualization of a sliced-basis representation of the continuum, where the z direction is
discretized using a grid spacing a and the (x, y) directions are captured using a set of functions
which can be derived from a 3D Gaussian basis.

To carry out the grid discretization along just the z direction, define a regular grid spacing a and
grid points zn = n · a. Each value of n defines an infinite two-dimensional plane (x, y, zn) we
will call a slice of three-dimensional space. Next, within each continuum slice, discretize using
a basis set of functions {ϕnj(x, y)} with j = 1, 2, ..., No. The number of functions No used on
each slice could differ from slice to slice in principle, but here we consider just the case where
No the same for every slice. Fig. 1 shows schematically how a sliced basis might represent
a three-dimensional continuum function such as an electron orbital as linear combinations of
two-dimensional functions arranged on planes separated by a small spacing a in the z direction.
Although such a discretization does not strictly speaking correspond to using a basis set, it is
still pedagogically useful to think of it as involving a basis set given by

φnj(r) = ϕnj(x, y) δ
1/2(z − a · n) (24)

such that these “sliced basis functions” are ultra-local along the z-direction. The 1/2 power on
the delta function simply indicates that the φ are square normalized. The reason the sliced-basis
approach is not technically a basis set approach is that it uses a finite-difference approximation
for the z-direction kinetic energy as we will discuss below. Thus it lacks the guarantee of a
variational energy. But it can still be useful to picture it in terms of the functions Eq. (24).
After introducing the grid and basis set approximations, the discrete electronic structure Hamil-
tonian takes the form

Ĥ =
1

2

∑

nn′ijσ

tnn
′

ij ĉ†niσ ĉn′jσ +
1

2

∑

nn′ijklσσ′

V nn′

ijkl ĉ
†
niσ ĉ

†
jσ′ ĉkσ′ ĉlσ . (25)

where the slice or grid indices run over n, n′ = 1, 2, ..., Nz and the orbital indices over i, j, k, l =
1, 2, ..., No. Note the resemblance to Eq. (19), except that the one-body integrals tnn′ij and two-
body interaction integrals V nn′

ijkl carry extra indices n, n′ labeling pairs of slices along the z
direction. The one-body integrals are defined as

tnn
′

ij = δnn′

∫

ρ

ϕni(ρ)

(
−1

2
∇2
ρ + v(ρ, zn)

)
ϕn′j(ρ)− δij

1

2a2
∆nn′ , (26)

where ρ = (x, y) is a convenient shorthand, and ∆nn′ are second-derivative finite-difference
coefficients. The two-body interaction integrals are defined as

V nn′

ijkl =

∫

ρ,ρ′

ϕni(ρ)ϕn′j(ρ
′)ϕn′k(ρ

′)ϕnl(ρ)√
|ρ− ρ′|2 + (zn − zn′)2

. (27)
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4.1.1 Scaling of the sliced-basis approach

Despite the resemblance to the basis-set form of the electronic structure Hamiltonian Eq. (19),
a key distinctive of the sliced-basis approach is that the number of interaction integrals V nn′

ijkl

scales as N2
zN

4
o , with Nz the number of slices and No the number of orbitals on each slice.

When treating quasi-1D, chainlike molecules it is only the number of slices Nz that grows with
the number of atoms, not No. Therefore the overall scaling of the method as a function of the
number of atoms is quadratic, which is a huge improvement over the quartic scaling with the
number of atoms incurred by the basis set approach. We discuss in Section 4.3.2 how the z-
locality of the sliced-basis approach allows its quadratic scaling to be improved to just linear
scaling when taking advantage MPO compression techniques. Thus the sliced-basis approach
realizes some of the best aspects of a grid while avoiding the pitfall of the huge number of grid
points arising from a fully 3D grid. By using a grid only along one direction, the overall number
of interaction integrals that must be treated remains tractable.

4.1.2 Deriving the transverse basis functions

A crucial step in setting up a sliced basis for a chemistry calculation is selecting or deriving the
transverse functions {ϕnj(x, y)} which define the basis of each slice. While many approaches
could be conceived to do this, the approach taken in Ref. [26] derives the transverse functions
from a standard, atom-centered Gaussian basis set.

In the simplest setting, all of the atoms are of the same type (such as hydrogen atoms) and
the “parent” Gaussian basis set consists purely of Gaussians (that is, the basis functions are
“uncontracted”). This can be made to be true by just using the primitive Gaussians from a set
without contracting them. Because we assumed the atoms are the same, the entire basis consists
of the same set of Gaussian functions centered on each atom. Then for a given basis function
bi(x, y, z) the associated transverse function intersecting a slice is just ϕ̃ni(x, y) = bi(x, y, zn).
Because in this case bi(r) is a Gaussian bi(r) ∝ exp(−ζi|r− ri|2), its restriction to slice n will
also be a Gaussian with the same length scale ζi. Thus although every basis function for every
atom intersects with a given slice, there will only be as many unique Gaussian functions as in
the basis set of just a single atom. The final transverse basis of each slice is formed by just
creating an orthonormal linear combination of the ϕ̃ni.

More generally, though, the atoms will be of different types and some of the basis functions will
be contracted, so their restrictions to slice will result in large set of functions, much larger than
was needed to represent any one atom in the original Gaussian basis. Using all of these functions
would be costly and would not give enough extra accuracy relative to the other approximations
being made to be worthwhile. So for this more general case one must truncate the functions
on a slice in some sensible way. A very reasonable and effective approach is to use principal
component analysis (PCA). Here this just means the following: say that we obtain a set of
functions b̃ni(x, y) = bi(x, y, zn) by restricting each function bi from a Gaussian basis set to the



8.18 E. Miles Stoudenmire

nth slice. Compute the overlap matrix

Oij =
∫

x,y

b̃ni(x, y)b̃nj(x, y) . (28)

Now diagonalize this matrix and sort its eigenvalues from largest to smallest. Keep the eigen-
vectors vjk corresponding to the largest k = 1, 2, . . . , No eigenvalues, where for the case of
molecules consisting of only one atom type, No can be chosen to be the number of functions in
the basis set of a single atom. The resulting eigenfunctions take the form

ϕ̃nk(x, y) =
∑

j

vjkb̃nj(x, y) . (29)

The final transverse basis {ϕni(x, y)}No
i=1 of slice n is then found by normalizing the ϕ̃.

4.1.3 The sliced-basis approach in practice

To test the sliced-basis approach outlined above, Refs. [26, 27] applied sliced bases to finding
the ground state of one-dimensional chains of hydrogen atoms with their nuclei evenly spaced
by a distance R. Although hydrogen atoms lack core orbitals, solving hydrogen chains still
involves reckoning with most of the issues that make quantum chemistry challenging. These
issues include scaling to large numbers of atoms, converging to the continuum or complete basis
set limit, and dealing with strongly correlated wavefunctions.
One goal of studying hydrogen molecules was to compare to results obtained with standard
Gaussian basis sets such as those in Ref. [27]. For this purpose, it is sufficient to study finite
hydrogen chains of ten atoms or H10—see the results in Fig. 2. The energy obtained using a
sliced basis derived from a given Gaussian basis is similar to the energy obtained just using
that Gaussian basis without slicing. This is encouraging to see, since it demonstrates that the
sliced-basis maintains favorable aspects of the parent Gaussian basis like the ability to smoothly
extrapolate to the continuum or complete basis set limit. On the other hand, a sliced basis is
much more scalable to long hydrogen chains as we will see below. Another observation about
the results in Fig. 2 is that the sliced-basis energies are generally slightly lower than the energy
of the corresponding Gaussian basis, at least for larger basis sets such as cc-pVDZ (double ζ)
and cc-pVTZ (triple ζ). This can be readily understood as a consequence of finer resolution of
a sliced basis along the z direction, allowing electrons more freedom to avoid costly Coulomb
interactions.
Another goal of studying hydrogen chains with the sliced-basis approach was to test that it can
scale to very long systems extended along the z direction, with a cost that is only linear in
system length. Here a crucial technical step for achieving good scaling is the compression of
the Coulomb interaction using matrix product operator techniques, which we describe later in
Section 4.3.2 below. Taking a fixed inter-atomic spacing R = 3.6 and working with a sliced
basis derived from the STO-6G basis set, Fig. 3 shows results for the timing and energy of
calculations up to 1000 hydrogen atoms. From the inset of the figure, one can see very close to
linear scaling of the method with number of atoms, while getting consistently accurate energies
across all system sizes.
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Fig. 2: Ground-state energies of H10 chains as a function of inter-atomic spacing R calculated
using DMRG within standard Gaussian basis sets (dashed curves) and sliced basis sets (solid
curves and points) using a uniform grid spacing of a = 0.1 atomic units [26].
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Fig. 3: Scaling with number of atoms of sliced-basis calculations up to 1000 hydrogen atoms.
The inter-atomic spacing is fixed to R = 3.6 and a sliced basis derived from the STO-6G
Gaussian basis was used. The outer plot shows the ground state energy from DMRG using the
standard STO-6G basis and the sliced version (SB-STO-6G). The inset shows the average time
per DMRG sweep, taking a bond dimension of m = 100.

4.2 Approach 2: multi-sliced gausslet basis

The sliced basis approach to discretizing the electronic structure Hamiltonian demonstrates a
successful marriage of the grid and basis set approaches to quantum chemistry. Counterintu-
itively, it demonstrates that using more functions to represent the Hamiltonian can result in a
more affordable calculation overall, by choosing the functions to be local (at least along one
direction), so that the DMRG algorithm and MPO methods for compressing the Hamiltonian
(Section 4.3.2) can perform to their full potential.
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There are some drawbacks to the sliced-basis approach though. It is very oriented toward one-
dimensional systems, and only scales well along the z direction: the direction discretized with
a grid. The cost of including more transverse functions within each (x, y) slice is high. The
sliced-basis also requires a small grid spacing a to get good accuracy. Finally, because sliced-
basis transverse functions are derived from standard Gaussian bases, they sometimes inherit
their weaknesses when dealing with certain molecules for which they were not designed. This
can include molecules where the nuclei are extremely close together or for which electrons
occupy very spatially extended orbitals.
Because these issues mostly stem from the use of Gaussian bases in making the transverse
functions, a better approach would be to start from a completely different set of basis func-
tions. Ideally such functions would behave like grid points in terms of the simplicity of the
Hamiltonian formed from them, yet a relatively small number of them would be able to cap-
ture continuum details. Fortunately such functions have been recently developed for quantum
chemistry applications and are called gausslets [28]. Gausslet basis sets have been extended to
real 3D chemistry calculations based on DMRG through an approach called multi-slicing [29].
We will discuss both gausslets and multi-slicing below, with examples of the improvements
they give over the sliced-basis approach. A key reason for these improvements is not only
that multi-sliced gausslets capture the continuum with relatively few functions, but that their
properties enable diagonal approximations for the costly Coulomb interaction terms.

4.2.1 Gausslet functions and their properties

In the one-dimensional case, a gausslet is a function G(x) which is symmetric about x = 0 and
which is orthonormal

∫
x,x′

G(x)G(x′) = δ(x − x′). Gausslets are also smooth, in the precise
sense of being orthogonal to a certain hierarchy of oscillatory functions; they are local in the
sense of falling rapidly to zero past a certain length scale; they have excellent completeness
properties, meaning that linear combinations of neighboring gausslets can represent any poly-
nomial up to a certain very high order (such as order 10); and finally gausslets have an important
property of integrating like a delta function when integrated with sufficiently smooth functions.
What this means is that for any polynomial p(x) that is not too high-order

∫ ∞

−∞
dxG(x− x′)p(x) = p(x′) . (30)

Thus integration against a gausslet “plugs in” the coordinate where the gausslet is centered.
All of these desirable properties of gausslets resemble those of wavelets (technically wavelet
scaling functions), yet underneath a gausslet is defined as a weighted sum of Gaussian functions,
hence the name gausslet. Defining gausslets in terms of underlying Gaussians makes them very
convenient and efficient for the integrations necessary to perform when constructing quantum
chemistry Hamiltonians.
Figure 4 shows an array of one-dimensional gausslet functions with a length scale of 1.0, such
that their centers are arranged on a grid with a 1.0 spacing. Gausslets can be constructed in var-
ious ways involving trade-offs in their favorable properties listed above. For more information



Quantum chemistry DMRG 8.21

-4 -2 0 2 4
x

0

0.5

1

G
i(x
)

-10 0 10
x

-4

-2

0

2

4

u(
x)

-10 0 10

0

0.5

1

1.5

y  ➞

x 
 ➞

Nucleus

G
j(x)

G̃
j(x)

x

(a) (b)

(d )(c)Fig. 4: One-dimensional array of gausslet functions with a length scale of 1.0. The gausslet
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about the details of constructing them, see Ref. [28] which proposes and constructs gausslets,
building upon the development in Ref. [30] of compact and symmetric families of orthogonal
wavelets.
Importantly, after constructing a grid of gausslets like in Fig. 4 and using them to discretize
quantum chemistry Hamiltonians, one can obtain very accurate continuum results using a gaus-
slet spacing of about 1.0, in contrast to grid discretization which requires about an order of
magnitude smaller spacing to obtain similar accuracy [28]. Better yet, we will see next that by
adapting the grid on which the gausslets are centered, one can even better resolve the continuum
using small numbers of gausslet functions.

4.2.2 Adapted grid of gausslets

Using an even-spaced grid of gausslet functions, as in Fig. 4 to discretize quantum chemistry
Hamiltonians is more efficient that using a simple grid, yet still requires more functions than
are actually needed. The reason is that while high resolution is required to capture details of the
electronic wavefunction near atomic nuclei, much less resolution is needed away from nuclei. A
straightforward way to reduce the number of functions needed while preserving high resolution
near nuclei is to perform a coordinate mapping on the gausslet functions so that they form an
adapted grid, with a finer spacing near nuclei and a coarser spacing otherwise.
Such a coordinate mapping may be defined via a function x(u) which maps from a fictitious
space u where the gausslets are defined to have a regular grid spacing into the actual space x
used for the quantum chemistry calculation. Let u(x) be defined as the inverse of the mapping
x(u). For the case of a single atom, a sensible coordinate mapping is

u(x) =
1

s
sinh−1(x/a) (31)

defined by a scale parameter s and a core cutoff parameter a. Figure 5(a) shows how this
mapping takes an evenly spaced grid along the y direction of the plot into a variable spaced grid
along the x direction.
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Fig. 5: Illustration of (a) a coordinate mapping Eq. (31) which maps a regularly spaced grid
in the u coordinates to an adapted grid in the x coordinates. The resulting adapted gausslets
shown in (b) remain orthonormal, but achieve a higher resolution near the origin. One gausslet
is shown with a bold line to highlight details.

Having chosen a coordinate mapping, the transformation of the gausslets which moves their
centers onto the adapted, variable-spacing grid while preserving their orthogonality and other
good properties is

G̃j(x) = Gj(u(x))
√
u′(x) (32)

where Gj(u) is the gausslet centered at the integer grid point j in the u space. Figure 5(b)
shows the adapted gausslets G̃j(x) resulting from using the coordinate mapping u(x) defined
in Eq. (31) above. One of the adapted gausslets is highlighted with a bolder line, and you
can observe that it takes a distorted shape compared to the unadapted gausslets in Fig. 4. The
placement of more and finer-sized gausslets near the origin gives better resolution there.
Note that when adapting gausslets for systems of multiple atoms, there are modifications of the
transformation Eq. (31) which make it better suited for treating molecules. The supplemental
information of Ref. [29] discusses such multi-atom coordinate transformations.

4.2.3 Multi-sliced grid

To apply the above ideas of gausslet basis sets to 3D systems, the most straightforward approach
is to define basis functions as products Gi(x)Gj(y)Gj(z) of 1D gausslets. But how to maintain
this product form while also adapting the gausslet spacing near atomic nuclei is less obvious; for
example, performing the coordinate transformations in a radially symmetric way destroys the
product form of the 3D functions, resulting in integrals which are too costly when constructing
the discrete Hamiltonian.
Fortunately, there is a simple way around this problem that only incurs a modest overhead in the
total number of functions needed. This workaround is called multi-slicing and is just the idea
of performing the coordinate transformation sequentially: first in the z direction (the direction
along the greatest extent of the system), then in the y direction, and finally the in x direction.
In more detail, one starts by first defining a coordinate transformation uz(z) to determine an
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FIG. 1. (a) Array of gausslets, with the gausslet centered at
the origin emphasized to show detail. (b) Coordinate trans-
formation function u(x) for a single atom, with a = s = 0.7
in Eq. (2), to give gausslets variable resolution. (c) Distorted
gausslet basis based on the transformation of (b), which is or-
thonormal and allows a diagonal approximation. One of the
functions is emphasized. (d) Schematic representation of mul-
tislicing in 2D. The vertical lines represent slices, with three
shown in detail. Each dot is the center of a basis function, and
the shaded rectangles illustrate the principle support region of
some of the functions, although they have smooth tails well
beyond the rectangles. The multicolored shaded rectangles
represent long, thin basis functions which one would want to
contract at a later stage.

its inverse u(x) define a 1D smooth one-to-one coordinate
mapping, which will be used to make the grid narrow and
closely spaced near nuclei, and wide and sparse far away.
First consider a 1D arrangement, with just one atom at
x = 0. Define the gausslets on a uniform grid in the
u space and then map to x-space, inserting a Jacobian
factor to preserve orthonormality. If Gj(u) is a gausslet
centered at integer j, define

G̃j(x) = Gj(u(x))
p

u0(x) . (1)

The G̃j are orthonormal if the Gj are.
The coordinate mapping we choose for a single atom

is given by

u(x) = sinh�1(x/a)/s (2)

where the parameter s, the scale, sets or adjusts the over-
all gausslet spacing, and a, the core cuto↵ sets the range
in x over which we stop decreasing the gausslet spacing.
The smallest gausslet spacing at the nucleus is about
a · s. This transformation is shown in Fig. 1(b), with
the resulting 1D functions shown in Fig. 1(c). In the
Supplemental Material, we discuss the motivation for the
above form of the transformation u(x), as well as a modi-
fied form of the transformation better suited for multiple
atoms.
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FIG. 2. (a)Energies of a hydrogen atom in an MSG basis as
a function of a and s, in Hartrees, using the full Hamiltonian
(“exact H”) and using the integral diagonal approximation.
The exact energy is �1/2. (b) Energy of a hydrogen molecule
with separation R = 2 in standard Gaussian and MSG bases.

For 3D basis functions, a coordinate-product form
G(x, y, z) = f(x)g(y)h(z) greatly simplifies evaluation of
integrals defining the Hamiltonian. To keep this form,
we apply coordinate transformations to each coordinate
separately, in a method we call “multislicing”. The co-
ordinate directions are sliced up sequentially, z (which
runs along the chain), then y, then x. A first coordi-
nate transformation uz(z) determines a set of z-values
zk (k = 1, 2, . . .), with uz(zk) = k, at which are centered

distorted 1D gausslets G̃k(z). The plane z = zk and func-

tion G̃k(z) together define a z-slice. Next we slice up each
z-slice in the y direction, with a coordinate transforma-
tion unique to k, uy

k(y), which defines a set of y-values
ykj . A y “slice” (or “subslice” of a “parent” z-slice) is
the line z = zk, y = ykj , with associated 2D function

G̃k(z)G̃kj(y). Finally, for each y-slice, define a unique
coordinate transformation ux

kj(x), determining a set of x

values xkji, and 3D basis functions G̃k(z)G̃kj(y)G̃kji(x).
The key point in using this successive procedure is to

use of the knowledge of where a slice is, relative to the
nuclei, to make subsequent transformations with the low-
est density of functions. This is illustrated schematically
in 2D in Fig. 1(d). Preserving the product form via mul-
tislicing means that some basis functions are long and
thin; however, at a later stage on can devise methods
to contract such functions with their neighbors, reducing
unnecessary degrees of freedom. The details of the co-
ordinate transformations in the multisliced case are dis-
cussed in the Supplementary Material.

Each basis function has a well defined center
(xkji, ykj , zk), and we can make a simple rule for which
functions to keep: if the basis function is within a dis-
tance b of an atom, we keep it. Here b = 9 a.u. proved
very accurate (< 0.1 mH errors compared to larger b)
except for R = 1 for H10, where we used b = 13.

Figure 2(a) shows energies for a single hydrogen atom
for various a and s, using both the standard Hamilto-
nian and one where a diagonal approximation is made for
the single particle potential [1]. Since there are only N2

single particle terms, using this diagonal approximation

Fig. 6: Illustration of a fixed-z cut through a multi-sliced grid, showing the primary non-zero
support of selected gausslet functions as colored rectangles. The vertical lines are selected
x-slices and points are centers of adapted gausslets. The position of a nucleus is shown, illus-
trating how the multi-sliced grid bunches more gausslets of a smaller size nearby.

adapted grid of discrete z values zk, k = 1, 2, . . . , Nz which are more closely spaced when-
ever planes z = zk pass nearby atomic nuclei. This transformation defines planes z = zk with
adapted functions G̃k(z) centered on them, forming what is called a z-slice. Now within each
z-slice, a coordinate transformation is applied to the y coordinates, defining an adapted grid
through a function uy(y) which yields discrete y values ykj with j = 1, 2, . . . , Ny. The trans-
formation uy(y) is also chosen to make the ykj values more closely bunched whenever lines
of fixed (ykj, zk) pass nearby an atomic nucleus. This second step defines y-slices as lines of
fixed (ykj, zk) with functions G̃kj(y) G̃j(z) centered on them. Finally discrete x points xkji
with i = 1, 2, . . . , Nx are defined through a transformation ux(x) such that points (xkji, ykj, zk)
are more densely spaced the closer they are to nuclei. All these transformations taken together
define 3D functions G̃kji(x) G̃kj(y) G̃j(z) centered on points (xkji, ykj, zk). To make the basis
finite, only functions whose centers lie within a certain distance of at least one of the atoms
are kept in the basis. By construction these final basis functions maintain a product form and
orthonormality, while being adapted for higher resolution near nuclei. For more technical dis-
cussion on how to make a good choice for the uz, uy, and uz coordinate transformations, see
the supplemental information section of Ref. [29]. Essentially these coordinate transformation
functions are chosen to have a form like that of Eq. (31), but with the s and a parameters varying
according to the 3D distance of a particular z or y slice from the nearest atomic nucleus.
Figure 6 shows a 2D cut through a multi-sliced grid, with boxes illustrating the non-zero support
of selected gausslet functions. From the figure, one can observe that a downside of multi-slicing
is that it results in many long and thin functions far away from any nucleus which provide
more resolution than is actually needed. But by using an approximate wavefunction as a guide,
such as a wavefunction from a Hartree-Fock calculation, one can take the additional step of
combining such redundant functions together into single functions to reduce the basis size.
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4.2.4 Diagonal approximations

A final and very important step when using multi-sliced gausslet bases is to make a diagonal
approximation to the Coulomb repulsion term when discretizing the Hamiltonian. Being able
to use a diagonal form for this very expensive term is a crucial way to reduce calculation costs.
A diagonal approximation to the Coulomb term means a discretization of the form

1

2

∑

σσ′

∫

rr′
u(r, r′) ψ̂†rσψ̂

†
r′σ′ψ̂r′σ′ψ̂rσ →

1

2

∑

m6=m′

Vm,m′ n̂m n̂m′ (33)

where m = (i, j, k) are the grid points on which the gausslets are centered and the n̂m = ĉ†mĉm
operators measure the occupation of the gausslet basis functions G̃kji(x)G̃ji(y)G̃k(z) at position
rm = rijk. Such a form is called diagonal because it only involves N2 terms, with N being the
total number of 3D gausslet functions, rather than N4 terms as in the most general form of the
discrete Coulomb interaction Eq. (19).
The justification for using a diagonal approximation with multi-sliced gausslets is that gausslets
have the ability to represent a wide variety of smooth functions while also integrating like a
delta function, meaning: ∫

x

G̃i(x)f(x) = wif(xi) (34)

for any smooth function f where xi is the center of the adapted gausslet G̃i(x) andwi =
∫
x
G̃i(x).

Note that this delta-function relation differs from Eq. (30) by the inclusion of the weightwi. This
is because, although adapted gausslets remain square-normalized, they generally no longer in-
tegrate to 1.0.
To see how the representability and delta function properties of gausslets lead to a diagonal
approximation, consider just the single-particle potential term v(x) for a 1D Hamiltonian in the
first-quantization formalism. The action of this Hamiltonian term on a single-particle wave-
function ψ(x) is v(x)ψ(x). Define the resulting function to be φ(x) = v(x)ψ(x). Now if we
assume that both ψ(x) and φ(x) are smooth enough that they can be approximated by gausslets,
that means there exist coefficients ψi and φi such that

ψ(x) =
∑

i

ψi G̃i(x) (35)

φ(x) =
∑

i

φi G̃i(x) , (36)

where in fact

ψi =

∫

x

G̃i(x)ψ(x) = wi ψ(xi) (37)

φi =

∫

x

G̃i(x)φ(x) = wi φ(xi) (38)

because of the delta-function integration property Eq. (30) of gausslets. The discrete form of
the Hamiltonian we seek are the coefficients vij which are defined as mapping

φi =
∑

j

vij ψj . (39)
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Now observe that

φi =

∫

x

G̃i(x)φ(x) =

∫

x

G̃i(x)
(
v(x)ψ(x)

)
= wiv(xi)ψ(xi) = v(xi)ψi , (40)

where we used the delta-function property of the gausslets and Eq. (37) above to obtain the
last expression. By inspection of the above equation and from the definition of vij in Eq. (39),
we finally see that vij = δij v(xi) which is the diagonal approximation we seek (in a first-
quantized form). Note that the most general expression for vij in a gausslet basis would be vij =∫
x
G̃i(x) v(x) G̃j(x) = wi v(xi) G̃j(xi) which is non-zero for i 6= j and thus non-diagonal. So

for the diagonal approximation to be justified, one is making additional smoothness assumptions
about the functions being transformed by the Hamiltonian and not just invoking properties of
the Hamiltonian itself. By similar arguments one can make a diagonal approximation to the
two-body Coulomb interaction of the form Vijkl = δil δjku(xi, xj) when using gausslet basis
functions.
The form of diagonal approximation we just outlined is called the point-wise approximation.
Another type of diagonal approximation that can be derived is the integral approximation:

Vijkl =
δil δjk
wiwj

∫

x,x′
G̃i(x)u(x, x

′) G̃j(x
′) , (41)

which is much more accurate than the point-wise approximation. There is also a summed
diagonal approximation which is discussed in Ref. [28]. A straightforward generalization of
one of these diagonal approximations to the case of 3D gausslet bases leads to the expression
Eq. (33) at the beginning of this section.

4.2.5 The multi-sliced gausslet approach in practice

To test multi-sliced gausslet bases for quantum chemistry, Ref. [29] considered systems of hy-
drogen atoms, much like in the Ref. [26] studies of sliced-bases. But whereas Ref. [26] primar-
ily emphasizes scalability to very long systems, Ref. [29] emphasizes the ability of multi-sliced
gausslets to reach the complete basis set limit (or continuum limit). Yet multi-sliced gausslets
are also scalable to very long systems when used in DMRG.
To study the effect of the scale parameter s controlling the typical spacing between neighbor-
ing gausslets, Fig. 7 shows Hartree-Fock calculations of 10-atom hydrogen chains with inter-
atomic spacing R = 1 in standard Gaussian basis sets (horizontal lines) such as quadruple-zeta
(cc-pVQZ) and 5-zeta (cc-pV5Z), as well as continuum extrapolations of Gaussian bases. In
contrast, the more jagged set of points shows results of converged multi-sliced gausslet (MSG)
calculations as a function of the scale or gausslet spacing (x axis of plot). For a scale below
s = 0.6 in atomic units, the MSG results converge smoothly and systematically until reaching
close agreement with the best Gaussian basis extrapolation to the complete basis set limit.
To test the multi-sliced gausslet approach within high-accuracy DMRG calculations, Fig. 8
shows DMRG calculations of 10-atom hydrogen chains as a function of the inter-atomic spac-
ing R, including strongly correlated stretched or larger-R chains. The figure shows results
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3

barely improves computational e�ciency, but one would
expect this approximation to mimic the performance of
the more important two-particle diagonal approximation.
The diagonal approximation is sensitive to the singular-
ity in the potential at the nucleus, but increasing the
basis function density near the nucleus by decreasing a,
for fixed s, nearly eliminates the diagonal approximation
error. A simple procedure to systematically converge to
the ground state for this system would be to fix a/s to
be a constant, say 0.5-0.6, and then decrease s.

Figure 2(b) shows the energy for a hydrogen molecule,
compared to standard basis sets cc-pVxZ, where x=D,
T, and Q, and also compared to the exact energy from a
treatment in special coordinates [9]. A diagonal approx-
imation for the two particle interaction is used here and
in all subsequent MSG bases, since calculations would
not be practical with the standard Vijkl form. All re-
sults shown are exact (full CI) given the approximate
Hamiltonian. The MSG bases systematically converge
to the exact results, and the diagonal approximation for
the single particle potential closely approximates the full
Hamiltonian, particularly for smaller s.

Also shown in Fig. 2(b) is a basis with a special delta-
function correction for the nuclear cusp. Increasing the
resolution near nuclei by using a small a is ine�cient,
leading to many basis functions. For example, for the
hydrogen atom of Fig. 2(a), taking a = 0.3, s = 0.6
produced 1179 functions, which resulted in an error of
0.13 mH. Our correction consists of adding a single-
particle potential at each atom ↵ of the form v↵�(~r�~r↵).
The parameter v↵ is set by “turning o↵” all nuclear elec-
tron potentials for atoms other than ↵ (yet keeping the
same set of functions to be used for the entire system),
and adjusting v↵ so that the one-electron ground state
energy is the exact hydrogen atom energy �1/2. The
errors associated with choosing a too large are localized
near the nuclei; the delta function potential alters the
terms in the Hamiltonian only for the basis functions
overlapping with a nucleus. Most importantly, v↵ ! 0
as a ! 0 or s ! 0, so this correction does not change
what the basis converges to, only how fast it converges,
accelerating the convergence. In Fig. 2 and for the rest
of the results, we set a = s and use the delta correction.

We now turn to a more challenging system, a linear
chain of hydrogen atoms spaced R apart. Hydrogen chain
systems were the subject of a recent benchmark study
which compared more than a dozen methods in their
ability to reach the combined limit of exact correlation,
complete basis set, and infinite number of atoms [4]. We
first consider unrestricted Hartree Fock (UHF) on H10,
shown in Fig. 3. The plot shows HF energy di↵erences
relative to those of a large Gaussian basis, cc-pV5Z. The
convergence of the MSG basis is irregular because the
centers of the gausslets are not aligned with the nuclei;
but it is easy to get very accurate results and judge the
accuracy. At small R, the Gaussian basis sets have trou-
ble due to linear dependence [4], leading to a small but
noticeable discrepancy between the 5Z and MSG results.
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FIG. 3. Hartree Fock energies per atom of H10 versus R,
relative to the Gaussian basis set cc-pV5Z (5Z)[4]. The con-
nected symbols are MSG-HF results at constant s = a, as
labeled. For small R, they converge to a small but notice-
ably di↵erent result from cc-pV5Z. The inset shows MSG-HF
data versus s = a, at R = 1. Horizontal lines show Gaussian
results, along with two exponential extrapolations, based on
(TZ,QZ,5Z) (labeled T-5), and on (DZ,TZ,QZ,5Z) (labeled
D-5). The MSG-HF agrees for small s with the T-5 extrapo-
lation, although the D-5 extrapolation was used in Ref. [4].

As shown in the inset, at R = 1 the Gaussians converge
slowly, and di↵erent extrapolations give di↵erent results.
As a rough comparison of the calculational e↵ort for these
very high accuracy calculations: for R = 1, a = s = 0.5,
the MSG basis has just over 13, 000 basis functions; the
number of two-electron integrals is the square of this, or
1.7⇥108. The 5Z basis has 550 functions, but the number
of integrals (N4, ignoring symmetry) is 9.2 ⇥ 1010. The
calculation time of our UHF algorithm, which takes ad-
vantage of the diagonal nature of the Hamiltonian, scales
as N2Ne, where Ne is the number of electrons, with the
dominant part coming from a Davidson diagonalization,
for Ne eigenvectors, of the Fock matrix.

For correlated calculations, to decrease the number of
basis functions, one can use the HF occupied orbitals to
contract the MSG basis to smaller size. This can be done
in a way that maintains the diagonal form of the interac-
tions. One can also extrapolate in a cuto↵ that controls
this contraction, to obtain results for the uncontracted
basis. The largest systems needed for a extrapolation
are still about a factor of 2 or 3 smaller than the uncon-
tracted basis, and the results below follow this procedure,
which is described in the Supplementary Material.

We now turn to MSG-DMRG calculations for H10. Our
DMRG implementation uses the matrix product opera-
tor compression of our earlier sliced basis DMRG (SB-
DMRG) approach [3]. This compression makes the cal-
culation time for fixed accuracy per atom scale linearly
in the number of atoms in a hydrogen chain both in SB-
DMRG and MSG-DMRG. We are currently limited to

Fig. 7: Hartree-Fock energies (in units of Hartree) of 10-atom hydrogen chains with inter-
atomic spacing R = 1. The points are results from multi-sliced gausslet (MSG) bases with
varying scale parameter controlling the spacing between gausslets. The lines labeled QZ and
5Z are energies obtained with the cc-pVQZ and cc-pv5Z Gaussian basis sets, while the lines
labeled Extrap are extrapolations to the complete basis set limit using either double-zeta or
triple-zeta up through 5-zeta. 4
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FIG. 4. Complete basis set energies per atom of H10 versus R,
relative to a di↵usion Monte Carlo method, for MSG-DMRG
(labeled by s) versus various approaches from Ref. 4.

about 3000-4000 basis functions. (In contrast, standard
DMRG in a Gaussian basis—with no diagonal approxi-
mation and no compression—is limited to about 100-200
active basis functions.) We find that the DMRG performs
very well. For the very high accuracy results shown be-
low, we generally only needed to keep about 200 states
for larger R, and up to 400-500 for R = 1 (due to its
more metallic character). This excellent performance is
due to the high locality of the basis, which DMRG and
other tensor network methods [10–12] strongly prefer.

We find that the correlation energy converges faster
with s than the HF energy. This is not surprising: the
representation of the nuclear cusp is poor with a coarse
gausslet basis, which is is primarily a single particle e↵ect.
Therefore, to get total energies we use the HF energy
with very small s, and add to it the correlation energy
obtained with a larger s, where the correlation energy is
defined by subtracting the unrestricted HF energy from
the total energy for the same basis set.

In Fig. 4, we show a comparison of total energies
for several methods [4] and our MSG-DMRG for var-
ious s = a. All methods attempt to reach the CBS
limit; for all but the MSG-DMRG and DMC methods,
this involved an extrapolation in the basis set. The en-
ergy di↵erences here are generally well below chemical
accuracy. Often such high accuracy is unnecessary, but
studying the high accuracy limit is an excellent way to
demonstrate the usefulness of MSG-DMRG. The ener-
gies are measured relative to one of the di↵usion Monte
Carlo methods, LR-DMC-AGP (or DMC). In Ref. [4], at
this level of accuracy, none of the best available methods
agreed, so it was not known which was best, and refer-

ence plots were made relative to MRCI+Q for smaller
systems and AFQMC for larger ones. DMRG based on
standard Gaussian basis sets could not be done beyond
the TZ level, so no CBS results were available. Here, we
find systematic convergence of MSG-DMRG to energies
agreeing with the LR-DMC-AGP method. Agreement
was poorer at small R with a DMC method based on an
LDA trial function. There are systematic errors in DMC
stemming from the fixed node approximation, which are
unusually small in this 1D system, but hard to quantify.
Since the nature of errors in DMC and MSG-DMRG are
completely di↵erent, and since the MSG-DMRG energies
converge systematically with a control parameter, we can
be rather sure that MSG-DMRG and DMC are both get-
ting the most accurate energies.

The MSG-DMRG errors for fixed s = a are biggest
at small R. This is expected; at small R, it would be
more natural to scale s with R, keeping the number of
basis function more nearly constant. The smallest grid
spacings are about a ·s, or about 0.5 for s = 0.7. Small R
is challenging to the Gaussian basis set methods because
the basis functions become linearly dependent.

In summary, even in this first implementation of the
MSG-DMRG method, for the strongly-correlated H10

system we surpass the best Gaussian basis approaches
in the high-accuracy CBS regime. We believe larger Z
systems, not just in the linear geometry of H10, could be
treated straightforwardly using pseudopotentials. How-
ever, we believe our approach can also be improved so
that resorting to pseudopotentials is not necessary for
moderate Z. For example, one could add some Gaus-
sians from a standard basis to a gausslet basis, orthog-
onalizing the Gaussians to the gausslets, to better rep-
resent core orbitals. This is very simple to do in prin-
ciple, but we would also like to find diagonal approxi-
mations involving the Gaussians, or develop convenient
partially-diagonal approximations, where the number of
non-diagonal terms is not too big. The delta correction
would likely be eliminated in any of these approaches.
Another way to improve fitting core orbitals would in-
volve adapting the gausslets during the slicing to fit 1D
Gaussians taken from a standard basis. Regarding how
one uses MSG bases, in the hydrogen chains studied here,
the linear geometry makes DMRG especially powerful.
For less linear molecules or solids, one might couple mul-
tisliced gausslets with tensor network states [10–12] or
quantum Monte Carlo.

We acknowledge useful conversations with Ryan Bab-
bush, Jarrod McClean, Shiwei Zhang, Mario Motta, Gar-
net Chan, and Sandro Sorella. We acknowledge support
from the Simons Foundation through the Many-Electron
Collaboration, and from the U.S. Department of Energy,
O�ce of Science, Basic Energy Sciences under award
#DE-SC008696. The Flatiron Institute is a division of
the Simons Foundation.

Fig. 8: Energies of 10-atom hydrogen chains computed by various methods relative to those
obtained by diffusion Monte Carlo (EDMC). Energy differences are shown in milli-Hartree.
Results are from Ref. [27].

from competitive quantum chemistry methods including coupled cluster (UCCSD(T)), multi-
reference configuration interaction (MRCI+Q), auxiliary field quantum Monte Carlo (AFQMC),
DMRG using a sliced-basis (SBDMRG), and finally diffusion quantum Monte Carlo (DMC),
which is used as the reference energy for the figure. These results were first obtained and dis-
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cussed in much more detail in Ref. [27]. Multi-sliced gausslet DMRG (MSG-DMRG) results
are labeled by the scale factor s they used. The figure shows that for scale factors s = 0.8

and especially s = 0.7, the MSG-DMRG results have the closest agreement with the DMC
results on a scale of less than 0.1 milli-Hartree. Because the sources of error in DMC versus
MSG-DMRG have a very different origin, their close agreement strongly suggests they are both
resolving the continuum limit to the highest accuracy of the methods shown.
To obtain such accurate results, it should be noted for completeness that additional technical
steps are used in Ref. [29] which are beyond the scope of the discussion here. These include a
delta-function correction to the single-particle potential and combining the single-particle part
of the energy with Hartree-Fock energies on a finer scale to reduce finite-scale errors in the
MSG-DMRG calculations.

4.3 DMRG with sliced-basis or multi-sliced discretization

Having introduced two types of local bases which allow quantum chemistry DMRG to scale to
larger numbers of atoms and better resolve the continuum limit, let us now discuss some of the
technical steps involved in using these bases in actual DMRG calculations.

4.3.1 Splitting terms into multiple MPOs

One simple but very effective optimization of DMRG when treating discrete quantum chemistry
Hamiltonians of the form Eq. (19) is to split different types of Hamiltonian terms into separate
matrix product operators (MPOs). The reason for doing this is that even after making the
most efficient possible MPO representation of the entire Hamiltonian as a single MPO, one can
observe that this MPO consists of disjoint blocks of terms which do not mix with one another,
such that its bond dimension is the sum of the dimensions of each of the blocks.
To illustrate why splitting the terms associated with each block into separate MPOs is more
efficient, consider an example where there are four different blocks, each contributing a size k
to the bond dimension. Because DMRG scales as the sum of squares of the bond dimensions
of each MPO used, storing these blocked terms in separate MPOs will have a cost 4k2 within
DMRG whereas combining them into a single MPO will have a much higher cost of (4k)2 =

16k2 in DMRG.
An example of a possible splitting of terms into separate Hamiltonians which are summed to
make the total Hamiltonian could be

H = H↑ +H↓ +HV (42)

H↑ =
1

2

∑

ij

tij ĉ
†
i↑ĉj↑ (43)

H↓ =
1

2

∑

ij

tij ĉ
†
i↓ĉj↓ (44)

HV =
1

2

∑

ijklσσ′

Vijkl ĉ
†
iσ ĉ
†
jσ′ ĉkσ′ ĉlσ . (45)
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This is only one possible splitting because additional structure may be present in the Vijkl terms
resulting from different choices of local bases. This structure can suggest additional further
splittings, such as separating terms which connect orbitals entirely in one slice versus across
two different slices within the sliced-basis approach.

4.3.2 Compressing long-range interactions with MPOs

A crucial optimization that can be applied when using spatially local bases in DMRG is the
compression of the two-particle Coulomb terms in the electronic structure Hamiltonian using
MPO techniques. In the discussion of the sliced-basis and multi-sliced gausslet bases above, we
have alluded to this compression a few times since it is so important, but delayed discussing it to
this section since it is also very technical and requires a detailed familiarity with the construction
of MPOs. A very detailed discussion of the compression algorithm and MPO structure is given
in the appendix of Ref. [26].
Due to the limited technical scope of this chapter, let us first describe what this MPO com-
pression accomplishes, treating the method itself as just a “black box” algorithm. In the most
general case, given a set of Coulomb interaction integrals Vijkl running overN orbitals, meaning
i, j, k, l = 1, 2, . . . , N , the minimum size MPO which exactly represents the discrete Hamilto-
nian Eq. (19) has a bond dimension which scales as N2 [13]. Because the DMRG algorithm
scales quadratically in the bond dimension of the Hamiltonian MPO, using an uncompressed
MPO for quantum chemistry results in an N4 scaling which is typical for quantum chemistry
but nevertheless very costly. However, for systems extended primarily along one dimension
(taken to be the z direction) and represented using either a sliced-basis or multi-sliced gaus-
slet basis which have the important property of consisting of local functions, exploiting both
sparsity and an off-diagonal low-rank structure in the Coulomb integrals Vijkl allows one to
numerically construct an MPO approximation of the Coulomb interaction terms whose bond
dimension grows at most logarithmically with the number of atoms in the system. In practice a
compressed bond dimension of a few hundreds in size gives very good accuracy even for very
large systems consisting of hundreds or thousands of atoms.
To briefly describe how the MPO compression is accomplished, consider a purely diagonal form
of the Coulomb interaction 1

2

∑
ij Vijn̂in̂j which could result from the diagonal approximation

within a gausslet basis, for example. Empirically, one can observe that all of the blocks V (p)
ij

of the symmetric matrix V defined by restricting i ≤ p and j ≥ i are approximately low
rank, implying they can be approximated well by a truncated singular value decomposition
(SVD). This block-low-rank property can be understood as resulting from the smoothness of
the Coulomb interaction for electrons far apart from one another. Furthermore, the unitary
matrices computed in the SVD factorizations of each block V (p) can be related to each other
by auxiliary unitary maps of a fixed size, related to the number of singular values kept. By
defining MPO tensors which implement these maps, the MPO can reconstruct any of the matrix
elements Vij while having a bond dimension determined only by the number of singular values
kept in the factorization of V , which depends very weakly on the size of the system [26].
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5 Conclusions and future directions

In this chapter, we reviewed the DMRG algorithm for optimizing many-body wave functions
in matrix product state form and the application of DMRG to quantum chemistry calculations.
A key consideration in making DMRG efficient is choosing a basis that allows the Hamiltonian,
typically represented as a matrix product operator (MPO) tensor network within DMRG, to
have a manageable size. This issue becomes extremely important when applying DMRG to the
electronic structure Hamiltonian used in quantum chemistry.
Although the approach of discretizing the electronic structure Hamiltonian using Gaussian basis
sets has been very successful for applying DMRG to chemistry, here we reviewed two recent
alternative basis constructions which are much more spatially local than standard 3D Gaussian
basis sets. Though locality makes these bases much larger than Gaussian bases, these local
bases can nevertheless be very advantageous for DMRG calculations whose costs are tied much
more strongly to the spatial locality or smooth spatial decay of Hamiltonian terms than the
number of sites or total size of the Hilbert space used in the calculation.
Looking ahead, it would be extremely welcome if a basis such as multi-sliced gausslets could be
used for PEPS tensor network calculations, which are tensor networks that are scalable along
two dimensions in contrast to MPS which are only scalable in one dimension. One of the
key challenges is developing efficient Coulomb interaction representations suitable for PEPS,
though significant progress was recently made in Ref. [31]. Another interesting direction would
be to use the sliced-basis or multi-sliced gausslet bases in quantum chemistry methods very
different from DMRG, such as auxiliary field quantum Monte Carlo (AFQMC). Ideas similar
to the compression of the Coulomb terms (Section 4.3.2) would have to be adapted to AFQMC,
but then it could benefit from the high continuum resolution of gausslets, for example.
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[5] S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995)

[6] E. Stoudenmire and S.R. White, Ann. Rev. Condens. Matter Phys. 3, 111 (2012)

[7] S.R. White and R.L. Martin, J. Chem. Phys. 110, 4127 (1999)

[8] G.K.-L. Chan and S. Sharma, Ann. Rev. Phys. Chem. 62, 465 (2011)

[9] D. Perez-Garcia, F. Verstraete, M.M. Wolf, and J.I. Cirac,
Quantum Inf. Comput. 7, 401 (2007)

[10] R. Penrose, Combinatorial mathematics and its applications 1, 221 (1971)

[11] S.R. White, Phys. Rev. B 72, 180403 (2005)
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