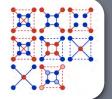
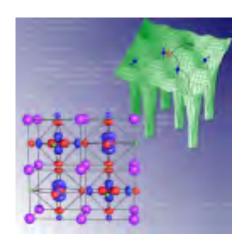


Autumn School on Correlated Electrons: DMFT - From Infinite Dimensions to Real Materials



(Sep. 17-21, 2018, FZ Jülich)



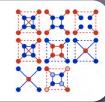
Cluster Extensions of Dynamical Mean-Field Theory

Michael Potthoff

I. Institute of Theoretical Physics, Hamburg University

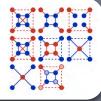
outline:

- motivation
- geometry
- Green's functions
- cluster-perturbation theory
- periodization schemes
- self-consistent cluster embedding approaches
- applications



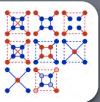
MOTIVATION

timeline



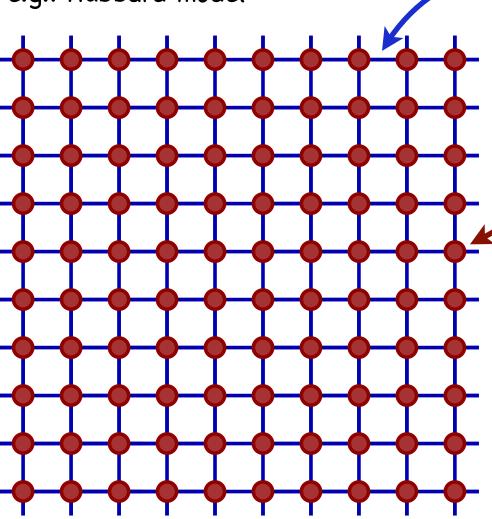
```
1966: Hubbard-I approximation
1993: cluster-perturbation theory (CPT)
1989 - 1992: dynamical mean-field theory (DMFT)
1998: dynamical cluster approximation (DCA)
2000 - 2001: cellular dynamical mean-field theory (C-DMFT)
2003: variational cluster approach (VCA)
2004: periodized cellular dynamical mean-field theory (PC-DMFT)
2006: periodic cluster-perturbation theory
```


lattice models



$$H = H_0 + H_1$$

e.g.: Hubbard model



kinetic and potential energy

$$H_0 = \sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} = H_0(\boldsymbol{t})$$

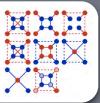
interaction energy

$$H_1 = \frac{U}{2} \sum_{i\sigma} n_{i\sigma} n_{i-\sigma}$$

Why consider the Hubbard model?

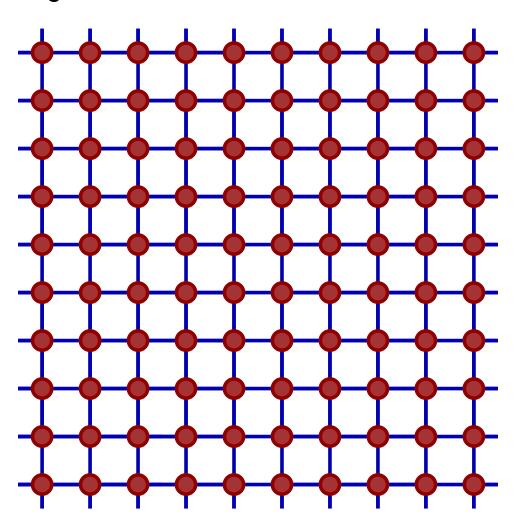
- generic many-body problem
- most simple setup for the "correlation problem"

Hilbert space

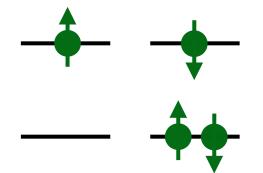


$$H = H_0 + H_1$$

e.g.: Hubbard model



single site: dimension 4



L sites: dimension $4^{L} = e^{\ln 4 \cdot L}$

using symmetries:

 N_{\uparrow} and N_{\downarrow} are conserved

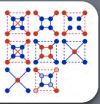
dimension
$$\left(\begin{array}{c} L \\ N_{\uparrow} \end{array} \right) \left(\begin{array}{c} L \\ N_{\downarrow} \end{array} \right)$$

for L=10: 63504 (half-filling)

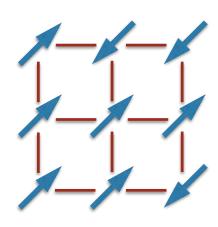
for L=12: 853776

accessible by Krylov-space methods

quantum statistics



S=1/2 Heisenberg model



$$H = \sum_{i,j} J_{ij} \mathbf{S}_i \mathbf{S}_j - B \sum_i S_{iz}$$
$$|m_i\rangle = |\uparrow\rangle, |\downarrow\rangle$$

compute the ground state?

$$|\Psi_0\rangle = \sum_{m_1, m_2, \dots, m_L} c_{m_1, \dots, m_L} |m_1\rangle \otimes \dots \otimes |m_L\rangle$$

coefficients cannot be stored for large L!

quantum statistics: compute the partition function / free energy

$$Z(T,x) = \operatorname{tr} \exp(-\beta H(x))$$

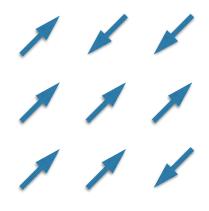
$$F(T, x) = -T \ln Z(T, x)$$

gives access to thermodynamics!

DMFT: provides the thermodynamics (and excitations)

correlated lattice models

Heisenberg model, J=0



$$H = -B\sum_{i} S_{iz}$$

$$Z = \operatorname{tr} \exp\left(\beta B \sum_{i} S_{iz}\right) = \sum_{m_1, \dots, m_L} \exp\left(\beta B \sum_{i} m_i\right)$$
$$= \sum_{m_1, \dots, m_L} \prod_{i} \exp\left(\beta B m_i\right) = \prod_{i} \sum_{m_i} \exp\left(\beta B m_i\right)$$
$$= \left(\exp(\beta B/2) + \exp(-\beta B/2)\right)^L = Z_1 \cdots Z_L = Z_1^L$$

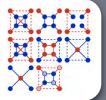
noninteracting system can be treated easily no correlations magnetic phase diagram??

DMFT: aims at strongly correlated lattice fermion models

phenomena:

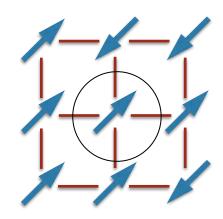
Kondo effect, Mott transition, collective order of spin, charge, orbital degrees of freedom, superconductivity, heavy-fermion behavior, etc.

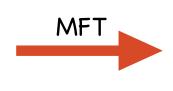
mean-field approach

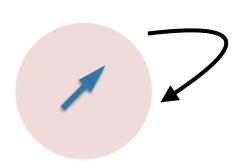


$$H = \sum_{i,j} J_{ij} \mathbf{S}_i \mathbf{S}_j - B \sum_i S_{iz}$$

$$H_{\mathsf{MF}} = -B\sum_{i} S_{iz} - B_{\mathsf{MF}} \sum_{i} S_{iz}$$





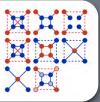


fluctuating local field

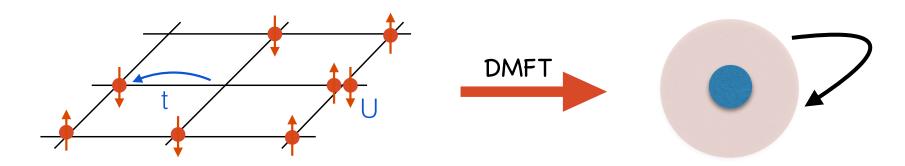
constant mean field

- mean field represents the environment
- should be determined (at best) from the solution of the lattice model
- pragmatically from the solution of H_{MF} , i.e.: $B_{MF} = -2qJ < S_{iz} >$
- requires selfconsistent solution

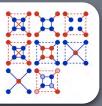
dynamical mean-field theory

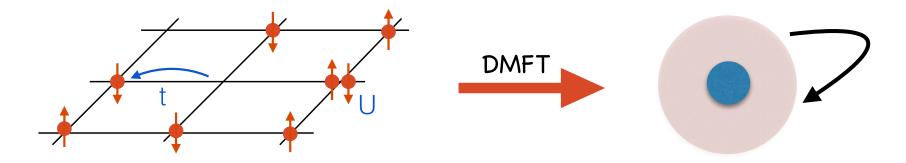


- much more complicated as compared to Weiss MFT self-consistency equation formulated in terms of Green's functions
- optimal mean-field theory for lattice-fermion models (e.g. Hubbard model) point of orientation in the landscape of various MFT's
- no internal inconsistencies, not restricted to a certain parameter range (weak / strong interaction etc.), nonperturbative theory
- exact theory in the (carefully defined) limit of infinite dimensions but usually applied for D $< \infty$ as an approximation
- is able to describe spontaneous symmetry breaking (magnetism, SC, ...)
- can be derived in various way
- and highly successful, including applications to real materials (LDA+DMFT)



but ...

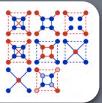




- short-range correlations are treated insufficiently
- no feedback of nonlocal two-particle (e.g. magnetic) correlation on the Green's function
- consequence: e.g. qualitatively wrong phase diagram in two dimensions
- no symmetry-broken phases with nonlocal order parameters including unconventional (d-wave) superconductivity
- incorrect critical behavior close to second-order phase transitions
- violation of exact identities and sum rules, violation of the Mermin-Wagner theorem, etc.
- DMFT (if applied to finite-D models) is approximate

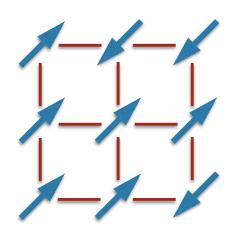
WANTED: systematic route from DMFT to the exact solution

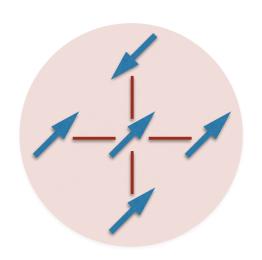
cluster mean-field approach



lattice model

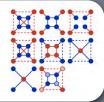
single-site mean-field theory cluster mean-field theory





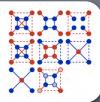
self-consistent embedding of a cluster with Lc sites in a bath

systematic, exact for infinite L_{c} computational effort expected to increase strongly with L_{c}



GEOMETRY

lattice and reciprocal lattice



$$m{R} = \sum_{lpha=1}^D i_{lpha} m{a}_{lpha} \qquad m{G} = \sum_{eta=1}^D j_{eta} m{b}_{eta} \qquad \exp(im{G}m{R}) = 1 \qquad m{a}_{lpha} m{b}_{eta} = 2\pi \delta_{lphaeta} \qquad V_{\mathcal{C}} V_{\mathcal{R}\mathcal{C}} = (2\pi)^D$$

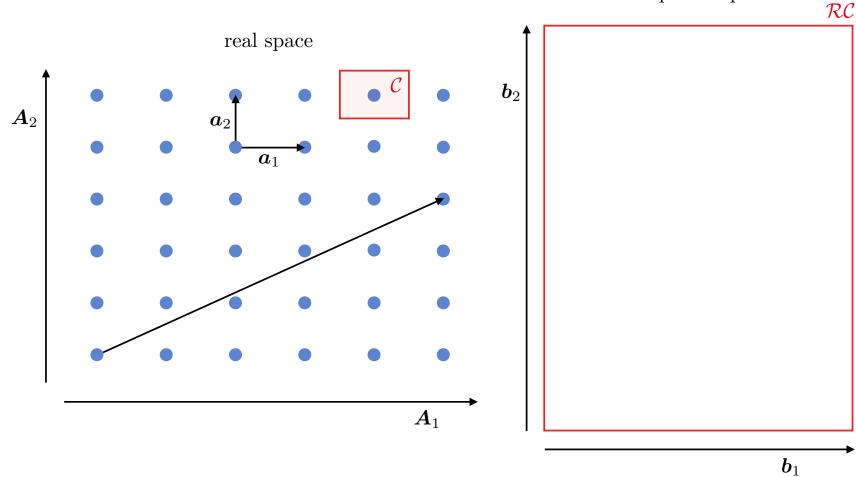
$$m{G} = \sum_{eta=1}^D j_eta m{b}_eta$$

$$\exp(i\mathbf{G}\mathbf{R}) = 1$$

$$\boldsymbol{a}_{\alpha}\boldsymbol{b}_{\beta}=2\pi\delta_{\alpha\beta}$$

$$V_{\mathcal{C}}V_{\mathcal{R}\mathcal{C}} = (2\pi)^{D}$$

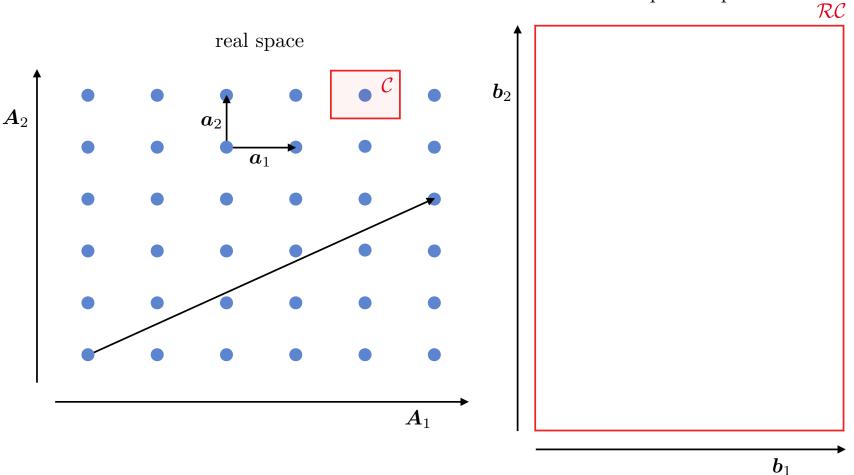
reciprocal space



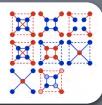
discrete Fourier series

$$f(\boldsymbol{x}) = f(\boldsymbol{x} + \boldsymbol{R}) \Rightarrow f(\boldsymbol{x}) = \sum_{\boldsymbol{G}} f_{\boldsymbol{G}} e^{i\boldsymbol{G}\boldsymbol{x}}, \quad f_{\boldsymbol{G}} = \frac{1}{V_{\mathcal{C}}} \int_{\mathcal{C}} d^D x f(\boldsymbol{x}) e^{-i\boldsymbol{G}\boldsymbol{x}}$$

reciprocal space



periodic boundaries



$$L = L_1 \times \cdots \times L_D$$

$$V = \det(\boldsymbol{A}_1, ..., \boldsymbol{A}_D)$$

$$\boldsymbol{A}_{\alpha} = L_{\alpha} \boldsymbol{a}_{\alpha}$$

$$oldsymbol{x} \equiv oldsymbol{x} + oldsymbol{A}_{lpha}$$

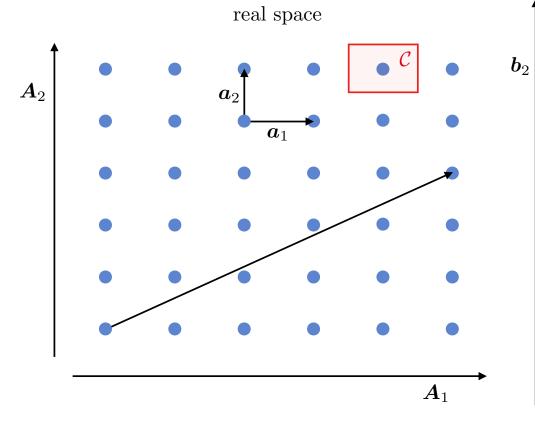
$$f(\boldsymbol{x}) = \sum_{\boldsymbol{k}} e^{i\boldsymbol{k}\boldsymbol{x}} f_{\boldsymbol{k}}$$

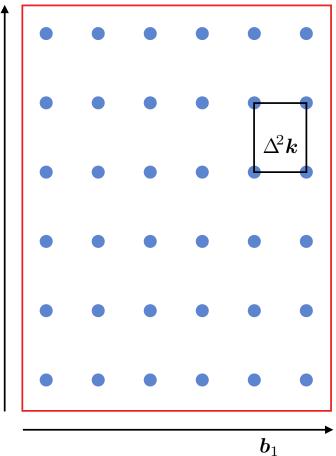
$$e^{i\mathbf{k}\mathbf{A}_{\alpha}}=1$$

$$e^{i\mathbf{k}\mathbf{A}_{\alpha}} = 1$$
 $V \Delta^D k = (2\pi)^D$

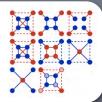
$$L = V_{\mathcal{RC}}/\Delta^D k$$

 \mathcal{RC}





superlattice and reciprocal superlattice



$$\widetilde{\boldsymbol{R}} = \sum_{\alpha=1}^{D} i_{\alpha} \widetilde{\boldsymbol{a}}_{\alpha} \qquad \widetilde{\boldsymbol{G}} = \sum_{\beta=1}^{D} j_{\beta} \widetilde{\boldsymbol{b}}_{\beta} \qquad \exp(i\widetilde{\boldsymbol{G}}\widetilde{\boldsymbol{R}}) = 1 \qquad \widetilde{\boldsymbol{a}}_{\alpha} \widetilde{\boldsymbol{b}}_{\beta} = 2\pi \delta_{\alpha\beta} \qquad V_{\mathcal{SC}} V_{\mathcal{RSC}} = (2\pi)^{D}$$

$$\widetilde{m{G}} = \sum_{eta=1}^D j_eta \widetilde{m{b}}_eta$$

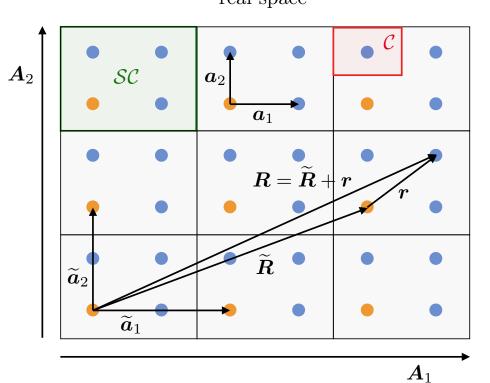
$$\exp(i\widetilde{\boldsymbol{G}}\widetilde{\boldsymbol{R}}) = 1$$

$$\widetilde{\boldsymbol{a}}_{lpha}\widetilde{\boldsymbol{b}}_{eta}=2\pi\delta_{lphaeta}$$

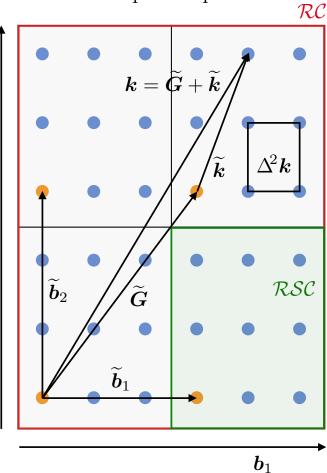
reciprocal space

$$V_{\mathcal{SC}}V_{\mathcal{RSC}} = (2\pi)^D$$

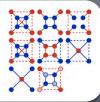
real space



 \boldsymbol{b}_2

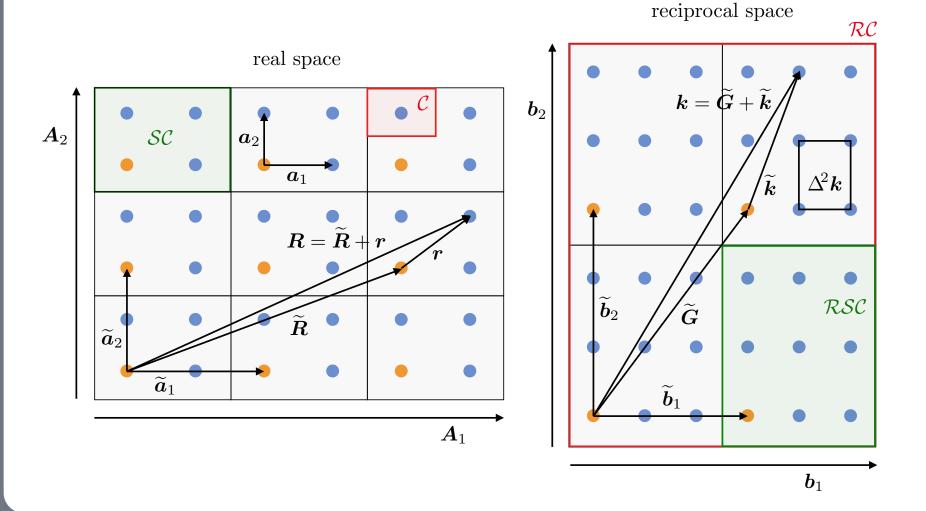


cluster and reciprocal cluster vectors

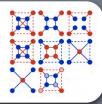


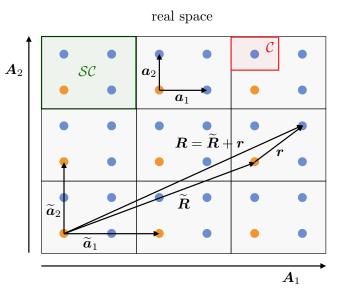
$$R = \widetilde{R} + r$$

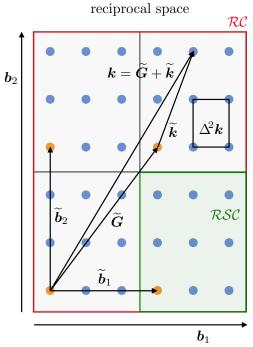
$$k = \widetilde{k} + \widetilde{G}$$



Fourier transformations







$$R = \widetilde{R} + r$$

$$oldsymbol{k} = \widetilde{oldsymbol{k}} + \widetilde{oldsymbol{G}}$$

lattice F.T. $(L \times L)$

$$U_{\boldsymbol{R},\boldsymbol{k}} = \frac{1}{\sqrt{L}} \exp(i\boldsymbol{k}\boldsymbol{R})$$

superlattice F.T. $(L/L_c \times L/L_c)$

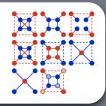
$$V_{\widetilde{\boldsymbol{R}},\widetilde{\boldsymbol{k}}} = \frac{1}{\sqrt{L/L_c}} \exp(i\widetilde{\boldsymbol{k}}\widetilde{\boldsymbol{R}})$$

cluster F.T. $(L_c \times L_c)$

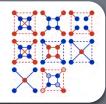
$$W_{m{r},\widetilde{m{G}}} = rac{1}{\sqrt{L_c}} \exp(i\widetilde{m{G}}m{r})$$

note: $U \neq VW = WV$

overview

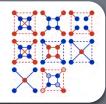


object, quantity	symbol, definition	properties, relations
basis spanning the lattice	$oldsymbol{a}_{lpha}$	$\alpha = 1,, D$
volume of a primitive cell	$V_{\mathcal{C}} = \det(\{\boldsymbol{a}_{\alpha}\})$	
lattice vectors	$ig oldsymbol{R} = oldsymbol{R}_i = \sum_lpha i_lpha oldsymbol{a}_lpha$	$i_{\alpha} \in \mathbb{Z}, 1 \leq i_{\alpha} \leq L_{\alpha}$
basis vectors of reciprocal lattice	$oldsymbol{b}_eta$	$\boldsymbol{a}_{\alpha}\boldsymbol{b}_{\beta}=2\pi\delta_{\alpha\beta}$
volume of a reciprocal unit cell	$V_{\mathcal{RC}} = \det(\{\boldsymbol{b}_j\})$	$V_{\mathcal{RC}} = (2\pi)^D/V_{\mathcal{C}}$
reciprocal lattice vectors	$oldsymbol{G} = oldsymbol{G}_j = \sum_eta j_eta oldsymbol{b}_eta$	$j_{\beta} \in \mathbb{Z}, \mathbf{GR} \in 2\pi\mathbb{Z}$
basis spanning the superlattice	$\widetilde{m{a}}_{lpha}$	$\widetilde{m{a}}_lpha = L_{c,lpha} m{a}_lpha$
volume of a superlattice cell	$V_{\mathcal{SC}} = \det(\{\widetilde{\boldsymbol{a}}_{\alpha}\})$	$V_{\mathcal{SC}} = L_c V_{\mathcal{C}}$
superlattice vectors	$oxed{\widetilde{R}} = \widetilde{R}_i = \sum_lpha i_lpha \widetilde{oldsymbol{a}}_lpha$	$i_{\alpha} \in \mathbb{Z}, 1 \leq i_{\alpha} \leq L/L_{c,\alpha}$
basis of reciprocal superlattice	$oldsymbol{\widetilde{b}}_eta$	$\widetilde{\boldsymbol{a}}_{lpha}\widetilde{\boldsymbol{b}}_{eta}=2\pi\delta_{lphaeta}$
volume of a rec. superlattice cell	$V_{\mathcal{RSC}} = \det(\{\widetilde{\boldsymbol{b}}_j\})$	$V_{\mathcal{RSC}} = (2\pi)^D / V_{\mathcal{SC}}$
reciprocal superlattice vectors	$oxed{\widetilde{G}} = \widetilde{G}_j = \sum_{eta} j_{eta} \widetilde{oldsymbol{b}}_{eta}$	$\widetilde{\boldsymbol{G}}\widetilde{\boldsymbol{R}}\in 2\pi\mathbb{Z}$
vectors spanning the system	$oldsymbol{A}_lpha$	$\boldsymbol{A}_{\alpha} = L_{\alpha} \boldsymbol{a}_{\alpha} = (L/L_{c,\alpha}) \widetilde{\boldsymbol{a}}_{\alpha}$
system volume	$V = \det(\{\boldsymbol{A}_i\})$	$V = LV_{\mathcal{C}}$
	•	•
discrete wave vectors	$m{k}$	${m k}{m A}_{lpha}\in 2\pi{\mathbb Z}$
volume element in k -space	$\Delta^D k$	$\Delta^D k = (2\pi)^D / V$
•	•	•



GREEN'S FUNCTION

single-electron Green's function



single-electron Green's function (at temperature T=0)

$$G_{\mathbf{R},\mathbf{R}'}(\omega) = \langle 0|c_{\mathbf{R}',\sigma}^{\dagger} \frac{1}{\omega - E_0 + H} c_{\mathbf{R},\sigma}|0\rangle + \langle 0|c_{\mathbf{R},\sigma} \frac{1}{\omega + E_0 - H} c_{\mathbf{R}',\sigma}^{\dagger}|0\rangle$$

H invariant under lattice translations:

$$c_{\mathbf{R},\sigma} \to c_{\mathbf{R}+\mathbf{R}_0,\sigma} \qquad c_{\mathbf{R},\sigma}^{\dagger} \to c_{\mathbf{R}+\mathbf{R}_0,\sigma}^{\dagger}$$

implies:

$$G_{\mathbf{R}+\mathbf{R}_0,\mathbf{R}'+\mathbf{R}_0}(\omega) = G_{\mathbf{R},\mathbf{R}'}(\omega)$$

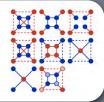
hence: G can be diagonalized using U

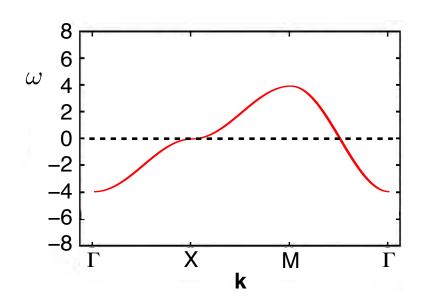
$$(\boldsymbol{U}^{\dagger}\boldsymbol{G}(\omega)\boldsymbol{U})_{\boldsymbol{k}\boldsymbol{k}'} = G(\boldsymbol{k},\omega)\delta_{\boldsymbol{k},\boldsymbol{k}'}$$

spectral density: (the central observable, related to PES, IPE)

$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \operatorname{Im} G(\mathbf{k}, \omega + i0^{+})$$

noninteracting spectral density





$$H_0 = \sum_{\boldsymbol{R}\boldsymbol{R'}\sigma} t_{\boldsymbol{R}\boldsymbol{R'}} c_{\boldsymbol{R}\sigma}^{\dagger} c_{\boldsymbol{R'}\sigma}$$

$$A(\mathbf{k}, \omega) = \delta(\omega - \epsilon(\mathbf{k}))$$

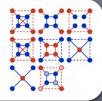
$$\varepsilon(\mathbf{k}) = -2t(\cos k_x + \cos k_y)$$

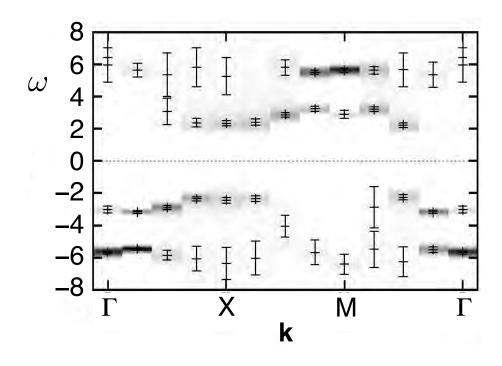
- half-filling, else: $H o H \mu N$
- occupied states PES
- unoccupied states IPE
- Fermi surface

What happens when adding an interaction? (e.g. single-band Hubbard model)

$$H_1 = \frac{U}{2} \sum_{\mathbf{R}\sigma} n_{\mathbf{R}\sigma} n_{\mathbf{R}-\sigma}$$

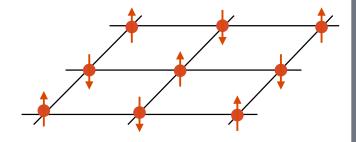
interacting spectral density



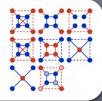


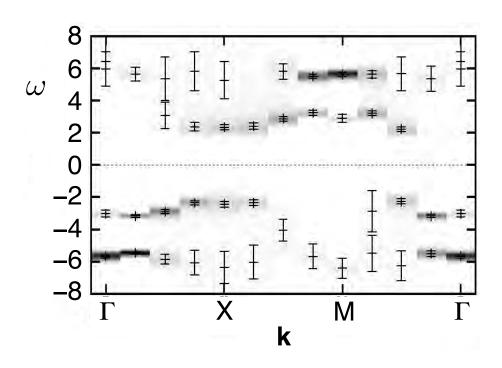
- 2D Hubbard model, n=1, low T=0.1
- U=W=8
- L=8x8 sites, PBC
- QMC results

Gröber et al. (2000)



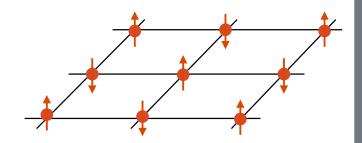
interacting spectral density





- 2D Hubbard model, n=1, low T=0.1
- U=W=8
- L=8x8 sites, PBC
- QMC results

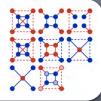
Gröber et al. (2000)

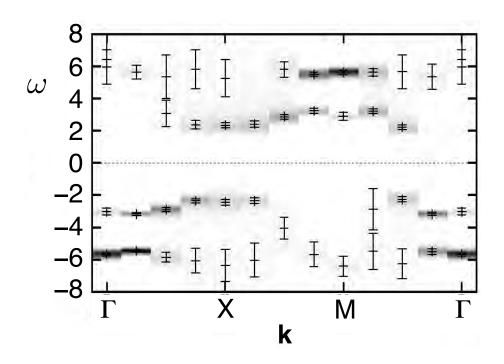


technical problems:

- k resolution
- thermal broadening
- thermally induced decay of correlations
- MaxEnt must be used to get real-frequency data: broadening

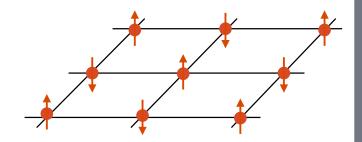
many-body effects





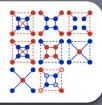
- 2D Hubbard model, n=1, low T=0.1
- U=W=8
- L=8x8 sites, PBC
- QMC results

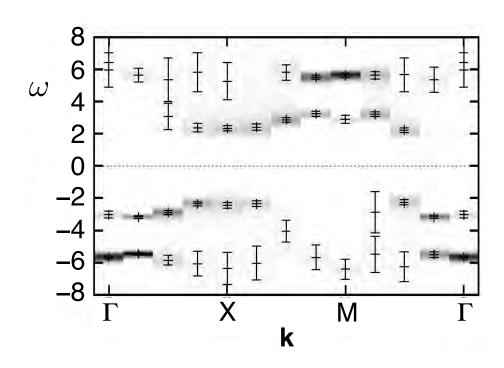
Gröber et al. (2000)



- gapped single-particle excitations -> interaction-driven (Mott) insulator
- finite lifetime of excitations
- incoherent background: complicated high-order decay processes

Hubbard bands

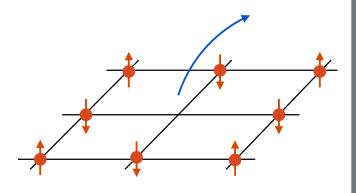




- 2D Hubbard model, n=1, low T=0.1
- U=W=8
- L=8x8 sites, PBC
- QMC results

Gröber et al. (2000)

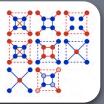
PES

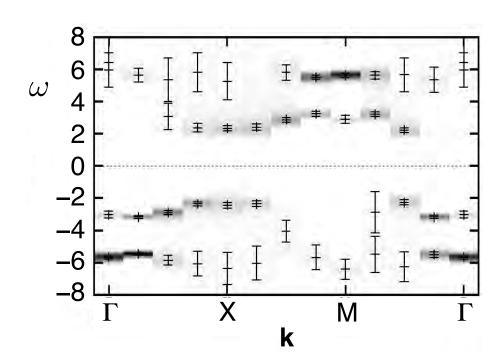


- Hubbard bands: correlation-induced satellites
- LHB: PES $\omega=E_0-E_n-\mupprox-\mu=-U/2$
- LOCAL CORRELATIONS

$$A_{\mathbf{R},\mathbf{R}'}(\omega) = \langle 0|c_{\mathbf{R}',\sigma}^{\dagger}\delta(\omega - E_0 + H)c_{\mathbf{R},\sigma}|0\rangle + \langle 0|c_{\mathbf{R},\sigma}\delta(\omega + E_0 - H)c_{\mathbf{R}',\sigma}^{\dagger}|0\rangle$$

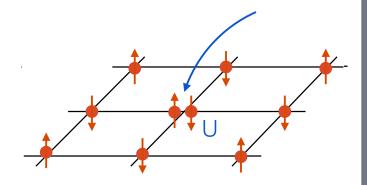
Hubbard bands



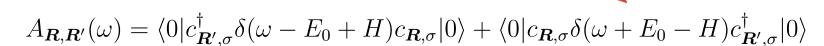


- 2D Hubbard model, n=1, low T=0.1
- U=W=8
- L=8x8 sites, PBC
- QMC results

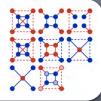
Gröber et al. (2000) IPE

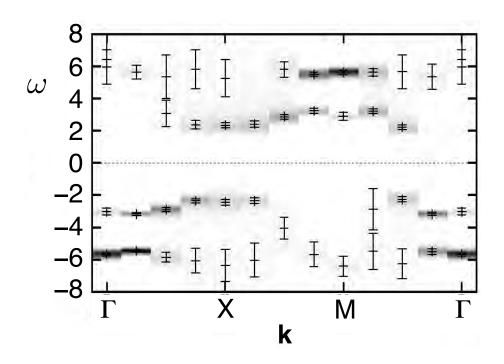


- Hubbard bands: correlation-induced satellites
- UHB: IPE $\omega = E_n E_0 \mu \approx U \mu = U/2$
- LOCAL CORRELATIONS



low-energy excitations

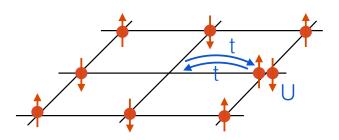




- 2D Hubbard model, n=1, low T=0.1
- U=W=8
- L=8x8 sites, PBC
- QMC results

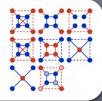
Gröber et al. (2000)

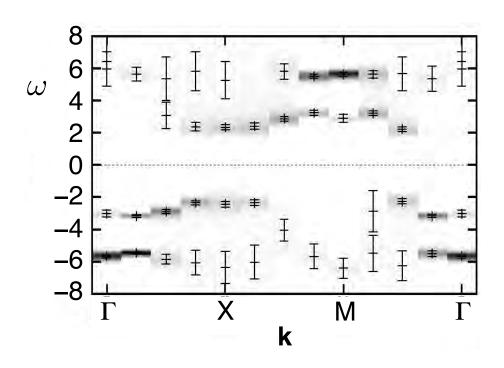
superexchange



- well-defined low-energy structure
- infinite U: fully localized electrons 2^L-fold degenerate ground state
- finite U: delocalization via second-order hopping processes mapping onto AF Heisenberg model with $J=4t^2/U$
- low-energy excitations: nonlocal spin excitations, band width 2J

low-energy excitations

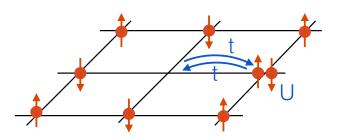




- 2D Hubbard model, n=1, low T=0.1
- U=W=8
- L=8x8 sites, PBC
- QMC results

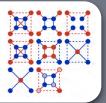
Gröber et al. (2000)

superexchange



- low-energy excitations: nonlocal spin excitations, band width 2J
- spin excitations couple to single-particle excitations:
 moving hole (PES) or doublon (IPE) dressed, emit/absorb spin excitations
- renormalization of the Hubbard bands AND new satellites
- NONLOCAL CORRELATIONS

local and nonlocal correlations



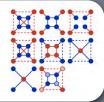
LOCAL CORRELATIONS

- high-energy spectral features
- high spectral weight
- Hubbard bands

- accessible within mean-field theories with a proper treatment of the local excitations and their delocalization in the lattice
- DMFT

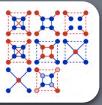
NONLOCAL CORRELATIONS

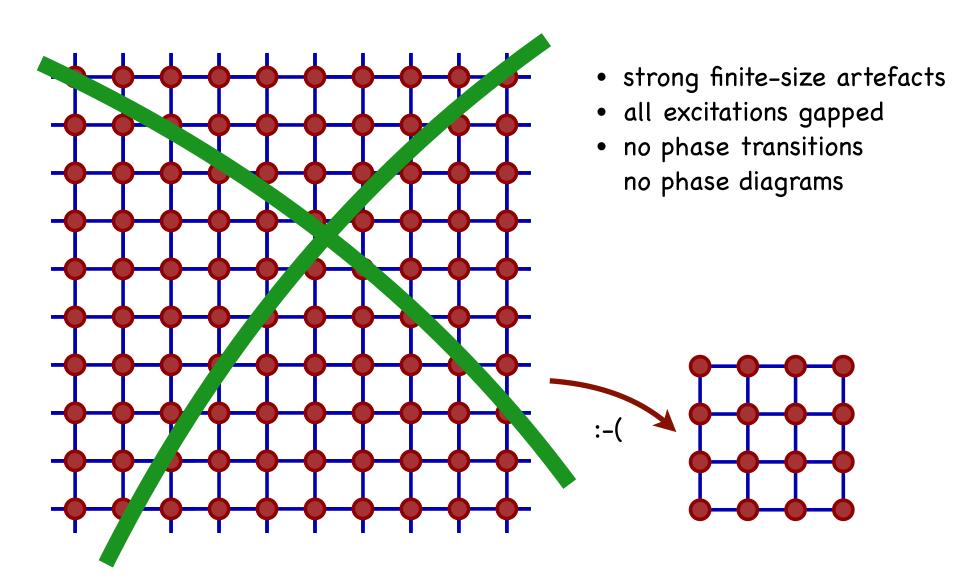
- low-energy spectral features
- lower spectral weight
- hole/doublon after emission/ absorption of a spin excitation
- requires feedback of two-particle (e.g. AF magnetic) correlations to the single-particle excitations
- beyond mean-field theory
- cluster extensions of DMFT



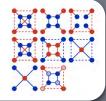
CLUSTER-PERTURBATION THEORY

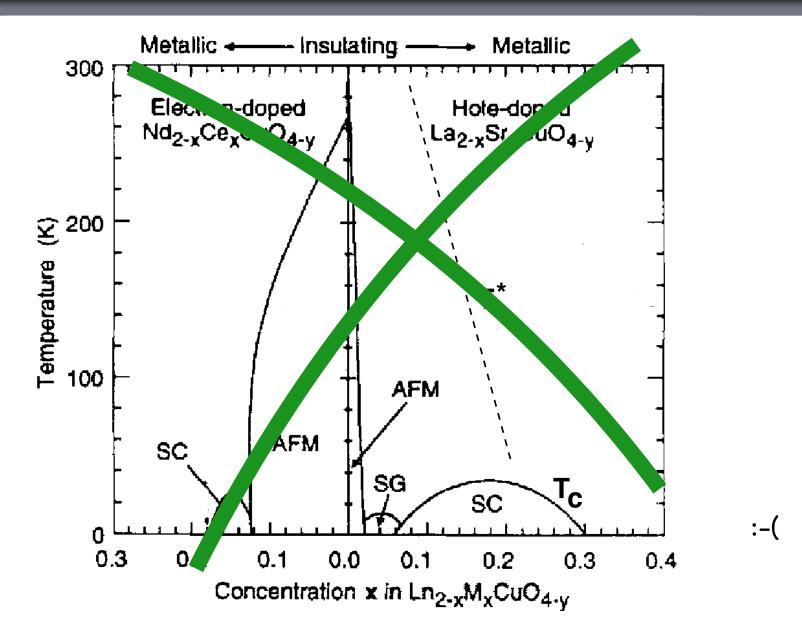
bad news



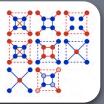


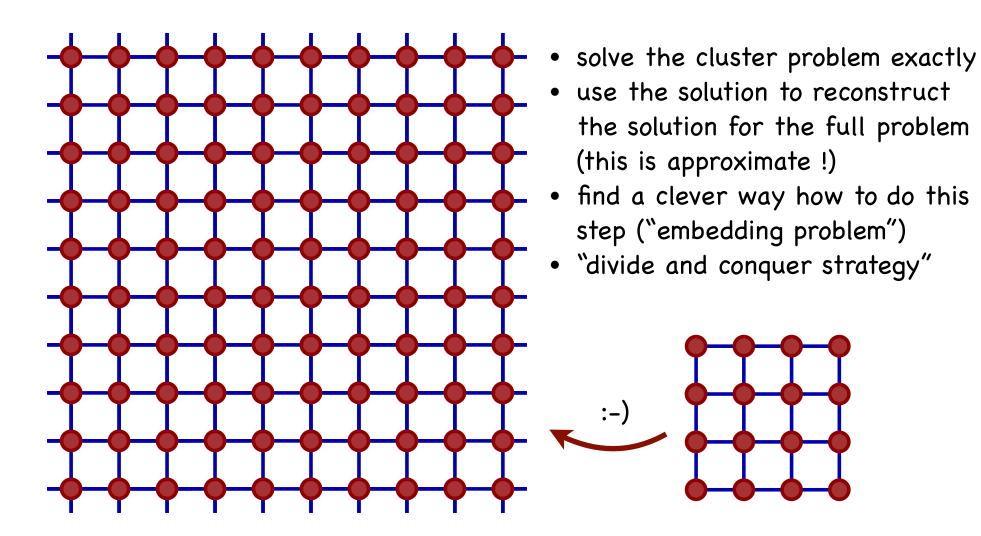
phase diagram of high-T_c materials



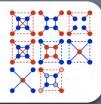


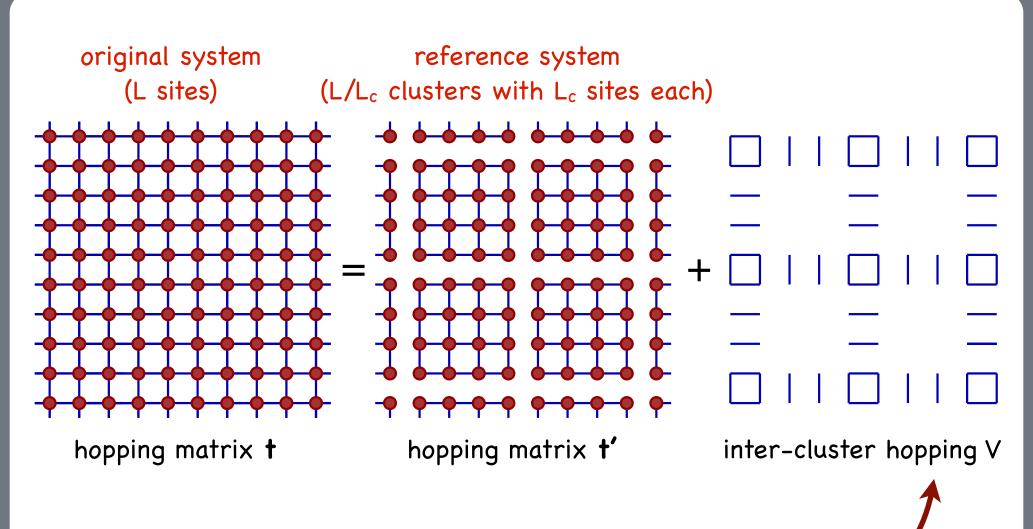
the main idea of a cluster approach





cluster-perturbation theory (CPT)

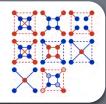




 $\mathbf{t} = \mathbf{t}' + \mathbf{V}$

treat this term perturbatively!

"free" system and Green's functions



free system:

$$H_0 = \sum_{\boldsymbol{R}_1 \boldsymbol{R}_2 \sigma} t_{\boldsymbol{R}_1 \boldsymbol{R}_2} c_{\boldsymbol{R}_1 \sigma}^{\dagger} c_{\boldsymbol{R}_2 \sigma}$$

free Green's function

$$\boldsymbol{G}_0(\omega) = \frac{1}{\omega + \mu - \boldsymbol{t}}$$

$$H_0' = \sum_{\boldsymbol{R}_1 \boldsymbol{R}_2 \sigma} t'_{\boldsymbol{R}_1 \boldsymbol{R}_2} c^{\dagger}_{\boldsymbol{R}_1 \sigma} c_{\boldsymbol{R}_2 \sigma}$$

Green's function of the ref. system:

$$\boldsymbol{G}_0'(\omega) = \frac{1}{\omega + \mu - \boldsymbol{t}'}$$

we have:
$$\mathbf{G}_0(\omega) = \frac{1}{\omega + \mu - \mathbf{t'} - \mathbf{V}} = \frac{1}{\omega + \mu - \mathbf{t'}} + \frac{1}{\omega + \mu - \mathbf{t'}} \mathbf{V} \frac{\mathbf{1}}{\omega + \mu - \mathbf{t'}} + \cdots$$

or:
$$G_0(\omega) = G_0'(\omega) + G_0'(\omega)VG_0'(\omega) + \cdots$$

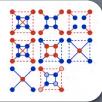
sum all orders:
$$oldsymbol{G}_0(\omega) = oldsymbol{G}_0'(\omega) + oldsymbol{G}_0'(\omega) oldsymbol{V} oldsymbol{G}_0(\omega)$$

 $oldsymbol{t} = t' + V$

the "free" CPT equation!

solve:
$$oldsymbol{G}_0(\omega) = rac{1}{oldsymbol{G}_0'(\omega)^{-1} - oldsymbol{V}}$$

CPT for interacting systems



• "free" CPT equation:

$$G_0(\omega) = G_0'(\omega) + G_0'(\omega)VG_0(\omega)$$
 (exact)

• CPT equation:

$$G(\omega) = G'(\omega) + G'(\omega)VG(\omega)$$
 (approximate)

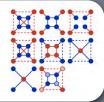
Gros, Valenti (1993), Senechal et al. (2000)

CPT:

- provides interacting G for (almost) arbitrarily large systems (large L)
- (in principle) controlled by $1/L_C$ (with L_C : number of cluster sites)
- with $L_C=1$, this is the "Hubbard-I approximation"

Hubbard (1963)

CPT: alternative derivation



Dyson equation of the reference systems

$$G'(\omega) = G'_0(\omega) + G'_0(\omega)\Sigma'(\omega)G'(\omega)$$

Dyson equation of the original system:

$$G(\omega) = G_0(\omega) + G_0(\omega)\Sigma(\omega)G(\omega)$$

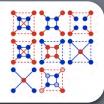
assume that

$$\Sigma'(\omega) = \Sigma(\omega)$$
 (approximate)

this yields

$$egin{aligned} &G_0'(\omega)^{-1}-G'(\omega)^{-1}=G_0(\omega)^{-1}-G(\omega)^{-1}\ &G(\omega)^{-1}=G'(\omega)^{-1}-G_0'(\omega)^{-1}+G_0(\omega)^{-1}=G'(\omega)^{-1}-(\omega-t')+(\omega-t)\ &G(\omega)^{-1}=G'(\omega)^{-1}-V\ &G(\omega)=G'(\omega)+G'(\omega)VG(\omega) \end{aligned}$$
 (CPT equation)

CPT in practice



compute Green's function of the reference system, e.g., by exact diag.:

$$(H' - \mu N)|n'\rangle = E'_n|n'\rangle$$

$$G'_{ij\sigma}(\omega) = \frac{1}{Z'} \sum_{mn} \frac{(e^{-\beta E'_m} + e^{-\beta E'_n}) \langle m'|c_{i\sigma}|n'\rangle \langle n'|c_{j\sigma}^{\dagger}|m'\rangle}{\omega - (E'_n - E'_m)}$$

partition function

$$Z' = \sum_{m} e^{-\beta E'_{m}} \qquad \beta = 1/T$$

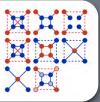
• CPT equation:

$$m{G}(\omega) = m{G}'(\omega) + m{G}'(\omega) m{V} m{G}(\omega)$$
 with $m{t} = m{t}' + m{V}$

• solve by matrix inversion for any frequency:

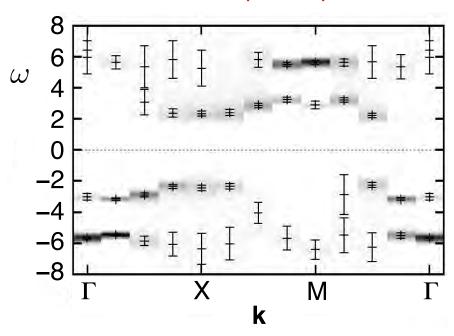
$$G(\omega) = \frac{1}{G'(\omega)^{-1} - V}$$

QMC vs. CPT

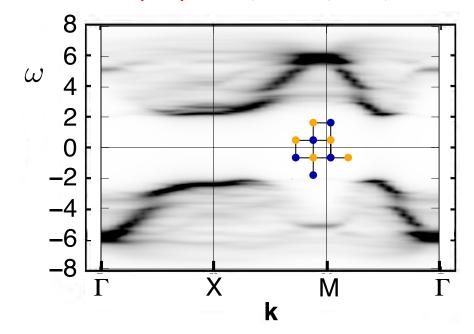


2D Hubbard model, n=1, U=8

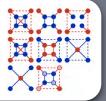
L=8x8 sites, T=0.1, QMC

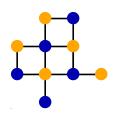


 $L=O(10^4)$ sites, $L_c=10$, T=0, CPT

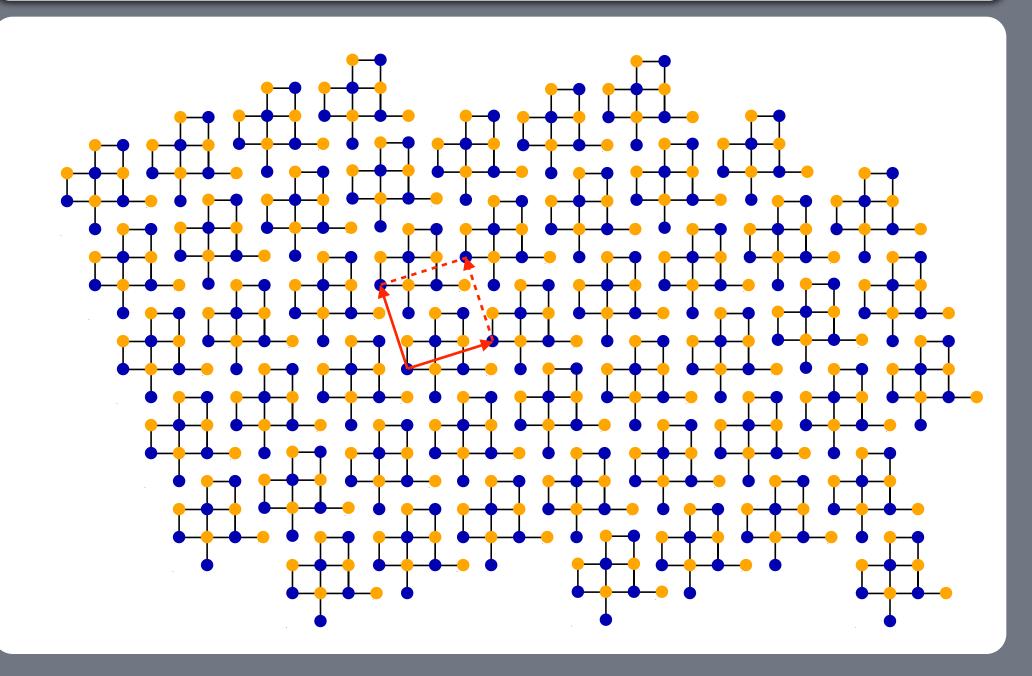


strange cluster?

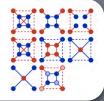


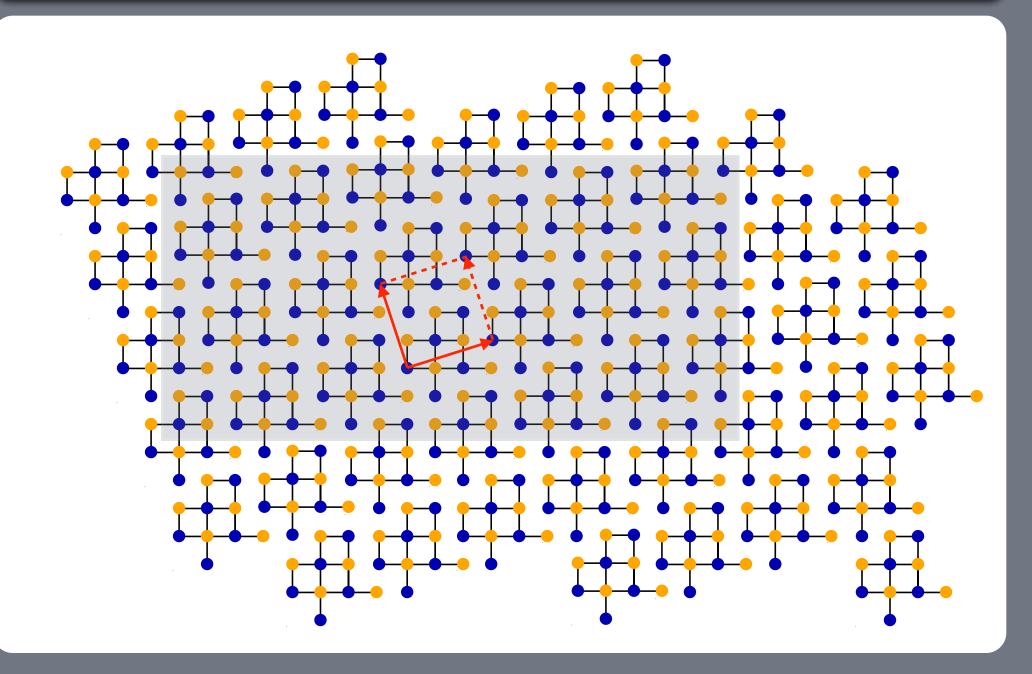


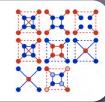
strange cluster? but it works!



strange cluster? but it works!

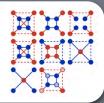






PERIODIZATION

translation symmetries



CPT Green's function

$$G_{\mathbf{R},\mathbf{R}'}(\omega) = G_{\widetilde{\mathbf{R}}\widetilde{\mathbf{R}}',\mathbf{r}\mathbf{r}'}(\omega)$$

invariant under superlattice translations only:

$$G_{\widetilde{R}\widetilde{R}',rr'}(\omega) = G_{\widetilde{R}+\Delta\widetilde{R},\widetilde{R}'+\Delta\widetilde{R},r,r'}(\omega)$$

(partial) diagonalization by superlattice Fourier transformation V

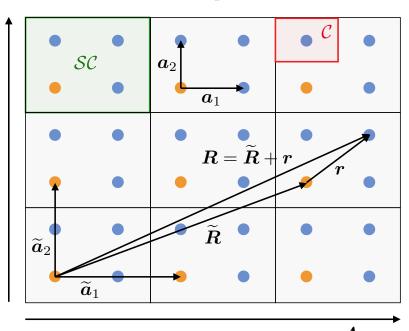
$$\frac{L_c}{L} \sum_{\widetilde{\boldsymbol{R}}\widetilde{\boldsymbol{R}'}} V_{\widetilde{\boldsymbol{k}},\widetilde{\boldsymbol{R}}}^{\dagger} G_{\widetilde{\boldsymbol{R}}\widetilde{\boldsymbol{R}'},\boldsymbol{rr'}}(\omega) V_{\widetilde{\boldsymbol{R}'},\widetilde{\boldsymbol{k}'}} = G_{\boldsymbol{rr'}}(\widetilde{\boldsymbol{k}},\omega) \delta_{\widetilde{\boldsymbol{k}}\widetilde{\boldsymbol{k}'}}$$

$$G_{rr'}(\widetilde{k}, \omega) = \left(\frac{1}{\omega + \mu - t(\widetilde{k}) - \Sigma(\omega)}\right)_{rr'}$$

cluster-local elements:

$$G_{rr'}^{(loc)}(\omega) = \frac{L_c}{L} \sum_{\widetilde{k} \in \mathcal{RSC}} \left(\frac{1}{\omega + \mu - t(\widetilde{k}) - \Sigma(\omega)} \right)_{rr'} \qquad A_{R}(\omega) = -\frac{1}{\pi} \text{Im} \, G_{rr}(\omega + i0^+) \neq A(\omega)$$

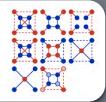
real space



local density of states:

$$A_{\mathbf{R}}(\omega) = -\frac{1}{\pi} \operatorname{Im} G_{rr}(\omega + i0^{+}) \neq A(\omega)$$

translation symmetries



CPT Green's function

$$G_{\mathbf{R},\mathbf{R}'}(\omega) = G_{\widetilde{\mathbf{R}}\widetilde{\mathbf{R}}',\mathbf{r}\mathbf{r}'}(\omega)$$

invariant under superlattice translations only:

$$G_{\widetilde{R}\widetilde{R}',rr'}(\omega) = G_{\widetilde{R}+\Delta\widetilde{R},\widetilde{R}'+\Delta\widetilde{R},r,r'}(\omega)$$

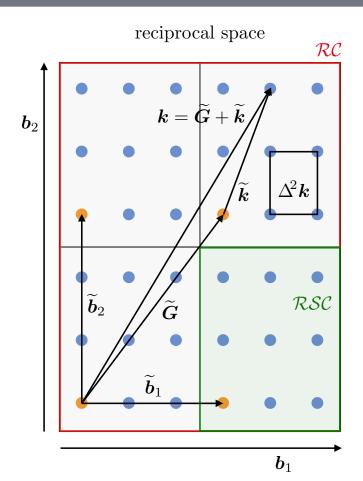
(partial) diagonalization by superlattice Fourier transformation V

$$\frac{L_c}{L} \sum_{\widetilde{\boldsymbol{R}}\widetilde{\boldsymbol{R}'}} V_{\widetilde{\boldsymbol{k}},\widetilde{\boldsymbol{R}}}^{\dagger} G_{\widetilde{\boldsymbol{R}}\widetilde{\boldsymbol{R}'},\boldsymbol{rr'}}(\omega) V_{\widetilde{\boldsymbol{R}'},\widetilde{\boldsymbol{k}'}} = G_{\boldsymbol{rr'}}(\widetilde{\boldsymbol{k}},\omega) \delta_{\widetilde{\boldsymbol{k}}\widetilde{\boldsymbol{k}'}}$$

$$G_{rr'}(\widetilde{k}, \omega) = \left(\frac{1}{\omega + \mu - t(\widetilde{k}) - \Sigma(\omega)}\right)_{rr'}$$

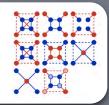
cluster-local elements:

$$G_{rr'}^{(loc)}(\omega) = \frac{L_c}{L} \sum_{\widetilde{k} \in \mathcal{RSC}} \left(\frac{1}{\omega + \mu - t(\widetilde{k}) - \Sigma(\omega)} \right)_{rr'} \qquad A_{R}(\omega) = -\frac{1}{\pi} \text{Im} \, G_{rr}(\omega + i0^+) \neq A(\omega)$$



local density of states:

$$A_{\mathbf{R}}(\omega) = -\frac{1}{\pi} \operatorname{Im} G_{rr}(\omega + i0^{+}) \neq A(\omega)$$



(1) use periodic boundary conditions on each cluster

Zacher et al. (2000)

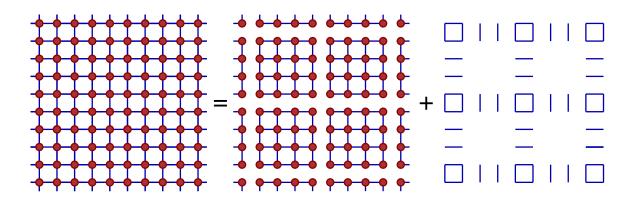
$$A_{\boldsymbol{R}}(\omega) = A(\omega) \qquad G_{\boldsymbol{R},\boldsymbol{R}}(\omega) = G(\omega) \qquad G_{\widetilde{\boldsymbol{R}},\widetilde{\boldsymbol{R}},\boldsymbol{r}+\Delta r,\boldsymbol{r}'+\Delta r}(\omega) = G_{\widetilde{\boldsymbol{R}},\widetilde{\boldsymbol{R}},\boldsymbol{r},\boldsymbol{r}'}(\omega)$$

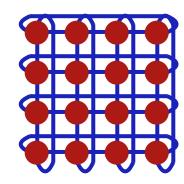
and: $G_{\widetilde{R}\widetilde{R}',rr'}(\omega)=G_{\widetilde{R}+\Delta\widetilde{R},\widetilde{R}'+\Delta\widetilde{R},r,r'}(\omega)$

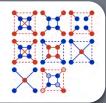
but: $G_{\mathbf{R}+\Delta\mathbf{R},\mathbf{R}'+\Delta\mathbf{R}}(\omega) \neq G_{\mathbf{R},\mathbf{R}'}(\omega)$

since: $U \neq VW$

in practice: results are worse compared to clusters with open b.c.







(2) take the average

$$A(\omega) \equiv \underbrace{\frac{1}{L_c} \sum_{\boldsymbol{r}} A_{(\widetilde{\boldsymbol{R}}, \boldsymbol{r})}(\omega)}_{\boldsymbol{r}} = \frac{1}{L} \sum_{\boldsymbol{R}} A_{\boldsymbol{R}}(\omega)$$

"physical spectral density" "CPT spectral density"

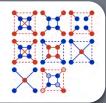
(3) periodization

in k-space:
$$U_{R,k} = \frac{1}{\sqrt{L}} e^{ikR}$$
 $G_{kk'}(\omega) \mapsto G_{kk}(\omega) \delta_{k,k'} \equiv \widehat{T}[G]_{kk'}(\omega)$

in real space:
$$\widehat{T}[G]_{RR'} = \frac{1}{L} \sum_{R''R'''} \delta_{R-R',R''-R'''} G_{R''R'''}$$
 \widehat{T} : periodization operator

we have:

$$\widehat{T}[\boldsymbol{G}]_{\boldsymbol{R}\boldsymbol{R}}(\omega) = \frac{1}{L} \sum_{\boldsymbol{R}''\boldsymbol{R}'''} \delta_{\boldsymbol{R}''\boldsymbol{R}'''} G_{\boldsymbol{R}''\boldsymbol{R}'''}(\omega) = \frac{1}{L} \sum_{\boldsymbol{R}} G_{\boldsymbol{R}\boldsymbol{R}}(\omega) = \frac{1}{L_c} \sum_{\boldsymbol{r}} G_{\boldsymbol{r}\boldsymbol{r}}(\omega)$$



(4) periodization of the self-energy

$$\Sigma(\omega) \mapsto \widehat{T}[\Sigma](\omega) \qquad \widehat{T}[\Sigma]_{(\widetilde{R},r),(\widetilde{R}',r')}(\omega) = \frac{1}{L_c} \sum_{r'',r'''} \delta_{\widetilde{R}+r-\widetilde{R}'-r',r''-r'''} \Sigma_{r'',r'''}(\omega)$$

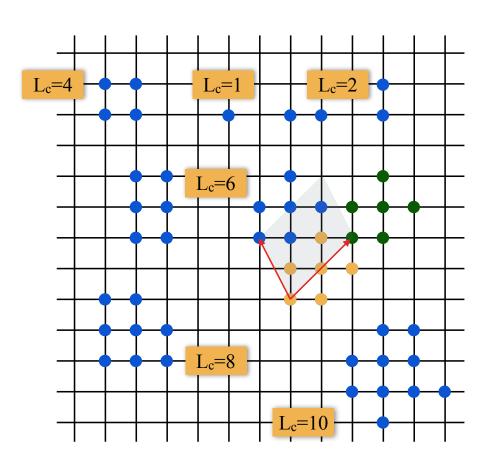
G-periodization:

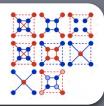
standard procedure, see CPT result

Σ -periodization:

also ad hoc, but more artificial as performed at an earlier stage

both can be generalized to restore the correct **rotational** (point-group) symmetries as well!



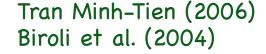


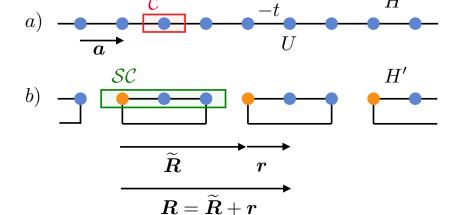
(5) periodic CPT

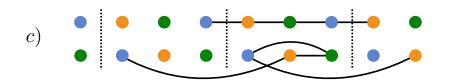
t': disconnected clusters with periodic b.c. modify the parameters of H rather than H':

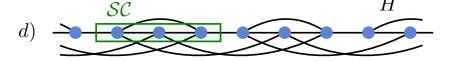
$$t\mapsto \overline{t}$$

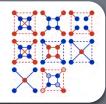
- such that the symmetries of H and H' are the same
- superlattice translations: √
- cluster translations: X
- add the necessary hopping parameters
- irrelevant for $L_c \to \infty$!
- ullet explicitly: $ar{t} = (VW)U^\dagger t\, U(VW)^\dagger$









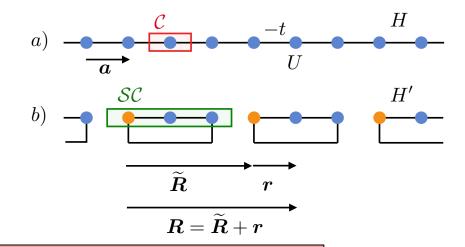


(5) periodic CPT

t': disconnected clusters with periodic b.c. modify the parameters of H rather than H':

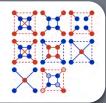
$$t\mapsto ar{t}$$

- such that the symmetries of H and H' are the same
- superlattice translations: √
- cluster translations: X
- add the necessary hopping parameters
- irrelevant for $L_c \to \infty$!
- ullet explicitly: $ar{t} = (oldsymbol{V}oldsymbol{W})oldsymbol{U}^\dagger oldsymbol{t} \, oldsymbol{U}(oldsymbol{V}oldsymbol{W})^\dagger$



$$\varepsilon(\mathbf{k}) = \frac{1}{L} \sum_{\mathbf{R}\mathbf{R}'} e^{-i\mathbf{k}(\mathbf{R} - \mathbf{R}')} t_{\mathbf{R}\mathbf{R}'}$$

$$\bar{t}_{RR'} = t_{\widetilde{R}, r; \widetilde{R}', r'} = \frac{1}{L_c} \sum_{\widetilde{G}} e^{i\widetilde{G}(r - r')} \frac{L_c}{L} \sum_{\widetilde{k}} e^{i\widetilde{k}(\widetilde{R} - \widetilde{R}')} \varepsilon(\widetilde{k} + \widetilde{G})$$



(5) periodic CPT, contd.

t': disconnected clusters with periodic b.c. modify the parameters of H rather than H':

$$t\mapsto \overline{t}$$

ullet apply CPT to \overline{H} using ref.sys. H'

$$\boldsymbol{G}(\omega) = \frac{1}{\omega + \mu - \overline{\boldsymbol{t}} + \boldsymbol{\Sigma}(\omega)}$$

this is diagonalized by VW:

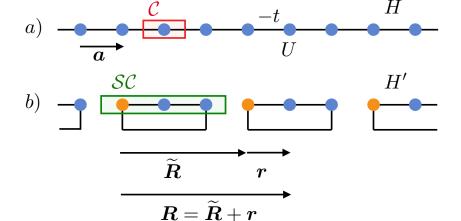
$$G(\widetilde{\boldsymbol{k}}, \widetilde{\boldsymbol{G}}, \omega) = \frac{1}{\omega + \mu - \varepsilon(\widetilde{\boldsymbol{k}} + \widetilde{\boldsymbol{G}}) + \Sigma(\widetilde{\boldsymbol{G}}, \omega)}$$

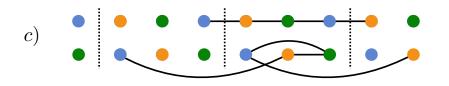
• implicit periodization, identifying

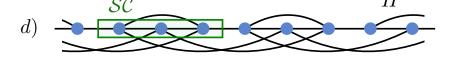
$$G(\widetilde{\boldsymbol{k}}, \widetilde{\boldsymbol{G}}, \omega) \equiv G(\boldsymbol{k}, \omega)$$

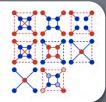
self-energy is discontinuous:

$$\Sigma(\widetilde{\boldsymbol{k}} + \widetilde{\boldsymbol{G}}, \omega) = \Sigma(\widetilde{\boldsymbol{k}}, \omega)$$









(5) periodic CPT, contd.

t': disconnected clusters with periodic b.c. modify the parameters of H rather than H':

$$oldsymbol{t} \mapsto ar{oldsymbol{t}}$$

ullet apply CPT to \overline{H} using ref.sys. H'

$$G(\omega) = \frac{1}{\omega + \mu - \overline{t} + \Sigma(\omega)}$$

this is diagonalized by VW:

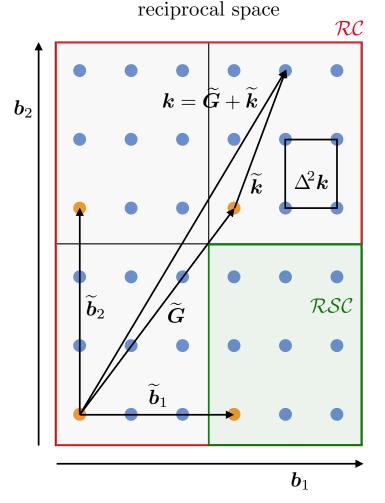
$$G(\widetilde{\boldsymbol{k}}, \widetilde{\boldsymbol{G}}, \omega) = \frac{1}{\omega + \mu - \varepsilon(\widetilde{\boldsymbol{k}} + \widetilde{\boldsymbol{G}}) + \Sigma(\widetilde{\boldsymbol{G}}, \omega)}$$

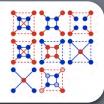
implicit periodization, identifying

$$G(\widetilde{\boldsymbol{k}}, \widetilde{\boldsymbol{G}}, \omega) \equiv G(\boldsymbol{k}, \omega)$$

self-energy is discontinuous:

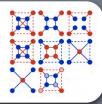
$$\Sigma(\widetilde{\boldsymbol{k}} + \widetilde{\boldsymbol{G}}, \omega) = \Sigma(\widetilde{\boldsymbol{G}}, \omega)$$





SELF-CONSISTENT CLUSTER EMBEDDING

cluster extensions of DMFT



impurity / cluster approach

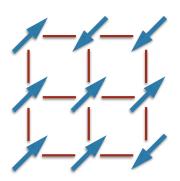
Hubbard-I approximation
CPT
periodic CPT

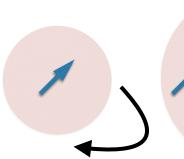
with self-consistent embedding

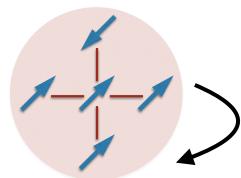
DMFT cellular DMFT DCA

lattice model

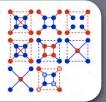
single-site mean-field theory cluster mean-field theory







recall DMFT



local self-energy generated by

$$H' = \sum_{\sigma} \varepsilon_{\rm imp} c_{\sigma}^{\dagger} c_{\sigma} + \frac{U}{2} \sum_{\sigma} n_{\rm imp,\sigma} n_{\rm imp,-\sigma} + \sum_{k\sigma} \varepsilon_{k} a_{k\sigma}^{\dagger} a_{k\sigma} + \sum_{k\sigma} (V_{k} c_{\sigma}^{\dagger} a_{k\sigma} + \text{H.c.})$$

local Green's function on the impurity site:

$$G^{(\mathrm{imp})}(\omega) = \frac{1}{\omega + \mu - \varepsilon_{\mathrm{imp}} - \Delta(\omega) - \Sigma'(\omega)}$$

hybridization function:

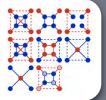
$$\Delta(\omega) = \sum_{k} \frac{V_k^2}{\omega + \mu - \varepsilon_k}$$

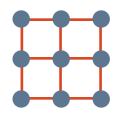
use SIAM as reference system:

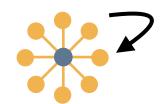
$$\Sigma(\omega) = \Sigma'(\omega)$$

derive self-consistency condition to fix the parameters of H'!

recall DMFT







local self-energy generated by

$$H' = \sum_{\sigma} \varepsilon_{\rm imp} c_{\sigma}^{\dagger} c_{\sigma} + \frac{U}{2} \sum_{\sigma} n_{\rm imp,\sigma} n_{\rm imp,-\sigma} + \sum_{k\sigma} \varepsilon_{k} a_{k\sigma}^{\dagger} a_{k\sigma} + \sum_{k\sigma} (V_{k} c_{\sigma}^{\dagger} a_{k\sigma} + \text{H.c.})$$

local Green's function on the impurity site:

$$G^{(\mathrm{imp})}(\omega) = \frac{1}{\omega + \mu - \varepsilon_{\mathrm{imp}} - \Delta(\omega) - \Sigma'(\omega)}$$

hybridization function:

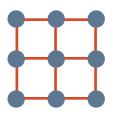
$$\Delta(\omega) = \sum_{k} \frac{V_k^2}{\omega + \mu - \varepsilon_k}$$

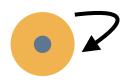
use SIAM as reference system:

$$\Sigma(\omega) = \Sigma'(\omega)$$

derive self-consistency condition to fix the parameters of H'!

recall DMFT





local self-energy generated by

$$H' = \sum_{\sigma} \varepsilon_{\rm imp} c_{\sigma}^{\dagger} c_{\sigma} + \frac{U}{2} \sum_{\sigma} n_{\rm imp,\sigma} n_{\rm imp,-\sigma} + \sum_{k\sigma} \varepsilon_{k} a_{k\sigma}^{\dagger} a_{k\sigma} + \sum_{k\sigma} (V_{k} c_{\sigma}^{\dagger} a_{k\sigma} + \text{H.c.})$$

local Green's function on the impurity site:

$$G^{(\mathrm{imp})}(\omega) = \frac{1}{\omega + \mu - \varepsilon_{\mathrm{imp}} - \Delta(\omega) - \Sigma'(\omega)}$$

hybridization function:

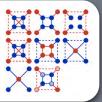
$$\Delta(\omega) = \sum_{k} \frac{V_k^2}{\omega + \mu - \varepsilon_k}$$

use SIAM as reference system:

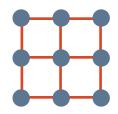
$$\Sigma(\omega) = \Sigma'(\omega)$$

derive self-consistency condition to fix the parameters of H'!

self-consistency condition



skeleton-diagram expansion:



functional relation for the Hubbard model (infinite D)

$$oldsymbol{\Sigma} = oldsymbol{\Sigma} [oldsymbol{G}^{ ext{(loc)}}]$$

functional relation for the impurity Anderson model

$$oldsymbol{\Sigma}' = oldsymbol{\Sigma}[oldsymbol{G}^{ ext{(imp)}}]$$

with $\Sigma = \Sigma'$ this implies:

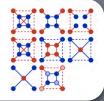
$$G^{(\mathrm{imp})}(\omega) = G^{(\mathrm{loc})}(\omega)$$

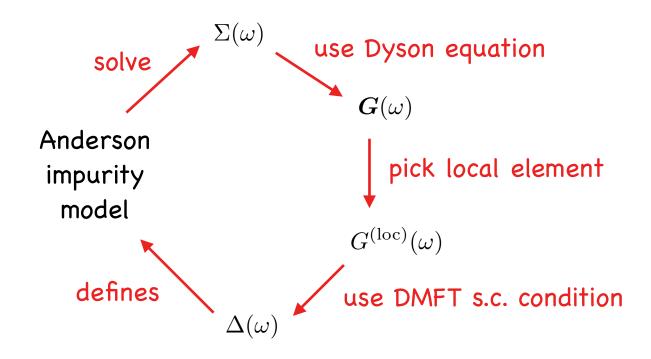
$$G^{(\mathrm{imp})}(\omega) = G^{(\mathrm{loc})}(\omega)$$
 where $G^{(\mathrm{imp})}(\omega) = \frac{1}{\omega + \mu - \varepsilon_{\mathrm{imp}} - \Delta(\omega) - \Sigma'(\omega)}$

solving for the hybridization function:

$$\Delta(\omega) = \sum_{k} \frac{V_k^2}{\omega + \mu - \varepsilon_k} = \omega + \mu - \varepsilon_{\rm imp} - \Sigma(\omega) - \frac{1}{G^{(\rm loc)}(\omega)}$$

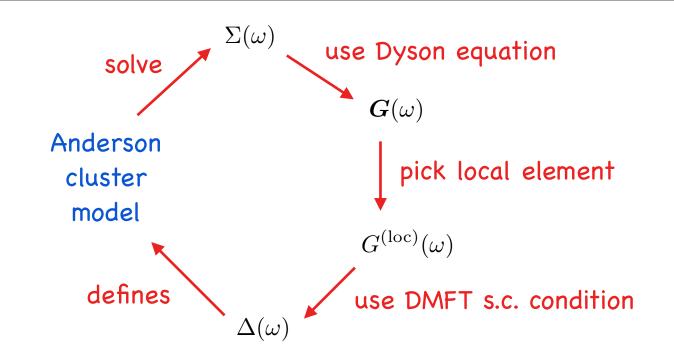
DMFT self-consistency cycle



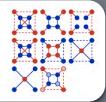


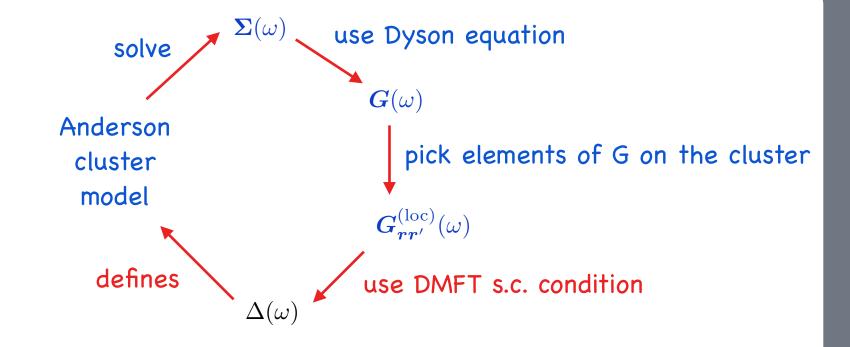
Lichtenstein, Katsnelson (2000)

Kotliar et al. (2001)



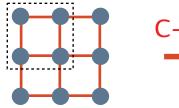
$$H' = \sum_{\boldsymbol{rr'}\sigma} t_{\boldsymbol{rr'}} c_{\boldsymbol{r}\sigma}^{\dagger} c_{\boldsymbol{r'}\sigma} + \frac{U}{2} \sum_{\boldsymbol{r}\sigma} n_{\boldsymbol{r}\sigma} n_{\boldsymbol{r}-\sigma} + \sum_{k\sigma} \varepsilon_{\boldsymbol{r}k} a_{\boldsymbol{r}k\sigma}^{\dagger} a_{\boldsymbol{r}k\sigma} + \sum_{\boldsymbol{r}k\sigma} (V_{\boldsymbol{r}k} c_{\boldsymbol{r}\sigma}^{\dagger} a_{\boldsymbol{r}k\sigma} + \text{H.c.})$$

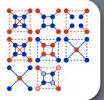


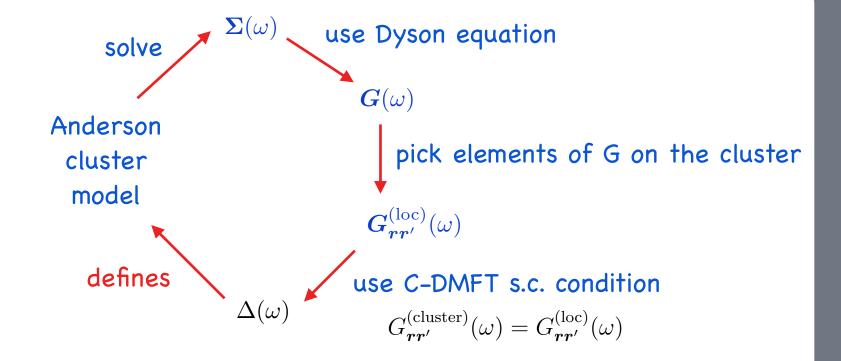


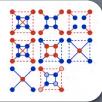
$$\Sigma_{\widetilde{R}\widetilde{R},rr'}(\omega) = \Sigma'_{rr'}(\omega)$$

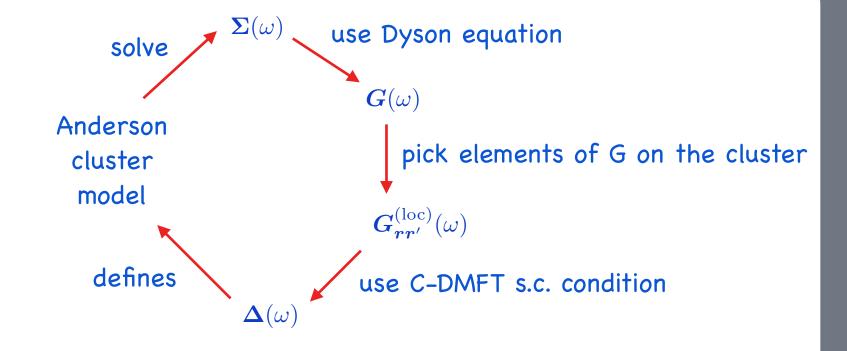
$$G_{rr'}^{(loc)}(\omega) = \frac{L_c}{L} \sum_{\widetilde{k} \in \mathcal{RSC}} \left(\frac{1}{\omega + \mu - t(\widetilde{k}) - \Sigma(\omega)} \right)_{rr'}$$







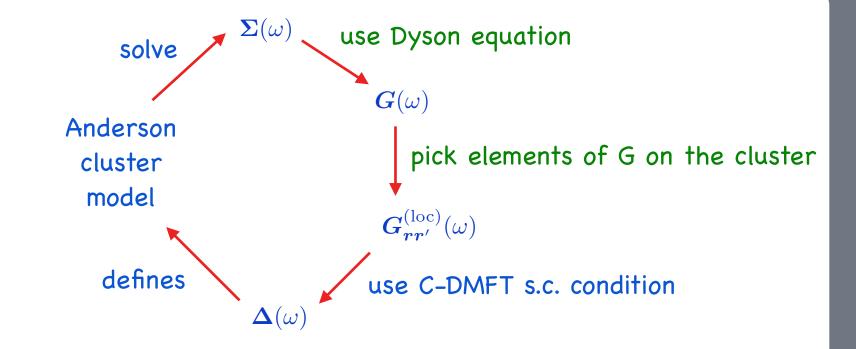




$$\Delta_{\mathbf{r}}(\omega) = \sum_{k\sigma} \frac{V_{\mathbf{r}k}^2}{\omega + \mu - \varepsilon_{\mathbf{r}k}} = \omega + \mu - t_{\mathbf{r}\mathbf{r}} - \Sigma_{\mathbf{r}\mathbf{r}}(\omega) - (\mathbf{G}^{\text{(cluster)}})_{\mathbf{r}\mathbf{r}}^{-1}(\omega)$$

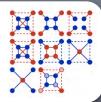
periodized cellular DMFT

Biroli et al. (2004)

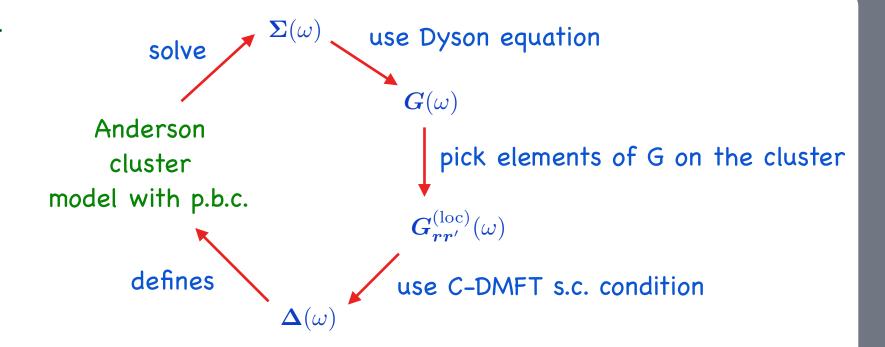


$$G_{\boldsymbol{rr'}}^{(\text{cluster})}(\omega) = G_{\boldsymbol{rr'}}^{(\text{loc})}(\omega) = \frac{1}{L} \sum_{\boldsymbol{k}} \frac{e^{i\boldsymbol{k}(\boldsymbol{r}-\boldsymbol{r'})}}{\omega + \mu - \varepsilon(\boldsymbol{k}) - \widehat{T}[\boldsymbol{\Sigma}](\boldsymbol{k}, \omega)}$$

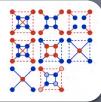
dynamical cluster approximation



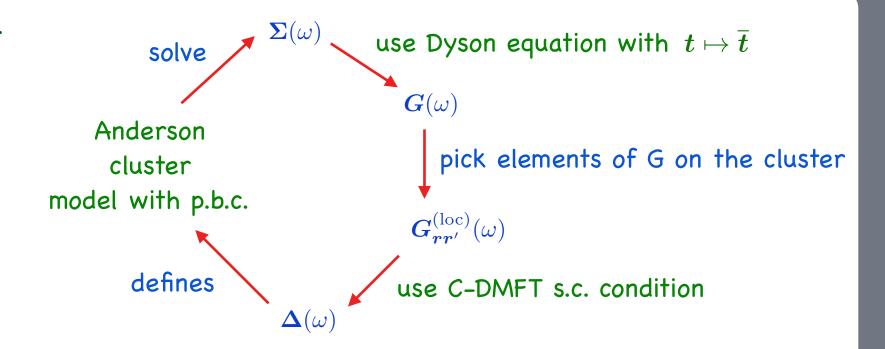
Hettler et al. (1998)



dynamical cluster approximation

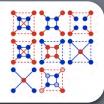


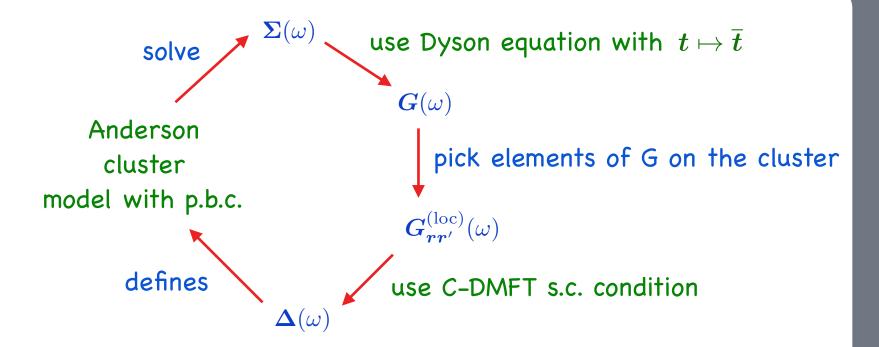
Hettler et al. (1998)



$$G_{\boldsymbol{rr'}}^{(\text{cluster})}(\omega) = G_{\boldsymbol{rr'}}^{(\text{loc})}(\omega) = \frac{L_c}{L} \sum_{\widetilde{\boldsymbol{k}} \in \mathcal{RSC}} \left(\frac{1}{\omega + \mu - \overline{\boldsymbol{t}}(\widetilde{\boldsymbol{k}}) - \boldsymbol{\Sigma}(\omega)} \right)_{\boldsymbol{rr'}}$$

dynamical cluster approximation

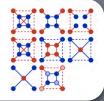


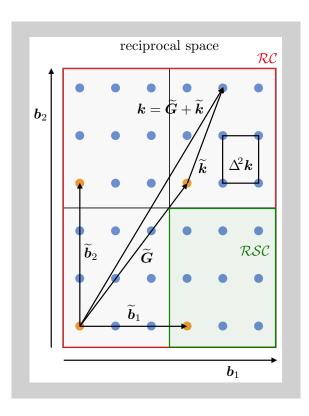


DCA self-consistency equation:

$$G^{(\text{cluster})}(\widetilde{\boldsymbol{G}}, \omega) = \frac{L_c}{L} \sum_{\widetilde{\boldsymbol{k}}} \frac{1}{\omega + \mu - \varepsilon(\widetilde{\boldsymbol{k}} + \widetilde{\boldsymbol{G}}) - \Sigma(\widetilde{\boldsymbol{G}}, \omega)}$$

DCA: k-space perspective





completely neglect the momentum dependence of the self-energy

DMFT self-consistency equation:

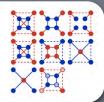
$$G^{(\mathrm{imp})}(\omega) = G^{(\mathrm{loc})}(\omega) = \frac{1}{L} \sum_{\mathbf{k}} \frac{1}{\omega + \mu - \varepsilon(\mathbf{k}) - \Sigma(\omega)}$$

DCA self-consistency equation:

$$G^{(\text{cluster})}(\widetilde{\boldsymbol{G}}, \omega) = \frac{L_c}{L} \sum_{\widetilde{\boldsymbol{k}}} \frac{1}{\omega + \mu - \varepsilon(\widetilde{\boldsymbol{k}} + \widetilde{\boldsymbol{G}}) - \Sigma(\widetilde{\boldsymbol{G}}, \omega)}$$

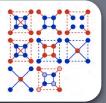
discard information on the fine structure of the momentum dependence of the self-energy

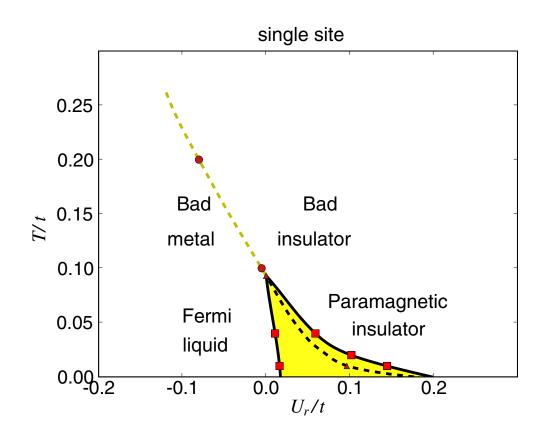
keep overall, rough information on the momentum dependence



APPLICATIONS

Mott transition - DMFT

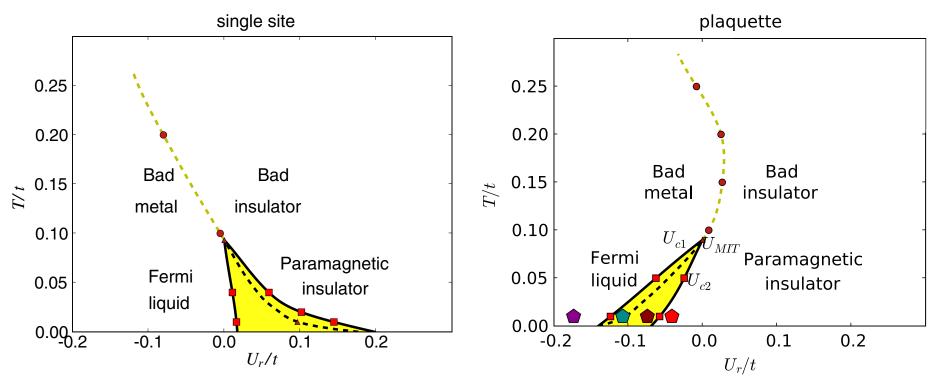




- DMFT phase diagram (paramagnetic)
- Mott insulator at T=0: macroscopic entropy L log2
- superexchange does not lift the ground-state degeneracy
- missing feedback of nonlocal (magnetic) correlations
- consequence: at T>0 the high entropy stabilizes the insulator
 F = E-TS

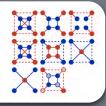
Mott transition: cellular DMFT

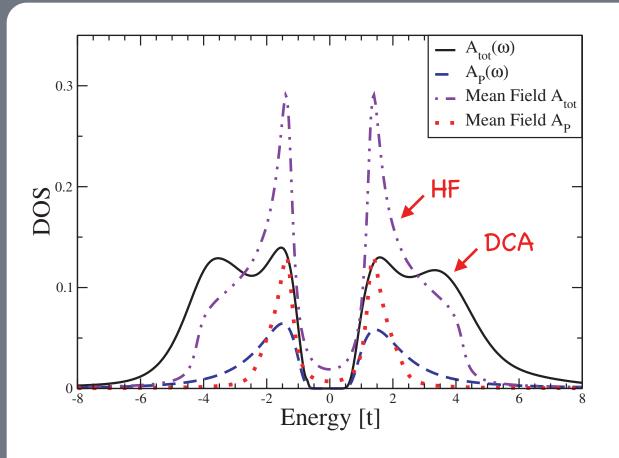
Park et al. (2008)



- DMFT correct at high temperatures: nonlocal correlations attenuated
- the transition line $U_c(T)$ bends back at low T
- U_c lower by roughly a factor two
- nonlocal (short-range) correlations allow for nonlocal singlet formation
- unique ground state of the Mott insulator

nonlocal correlations: DCA



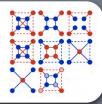


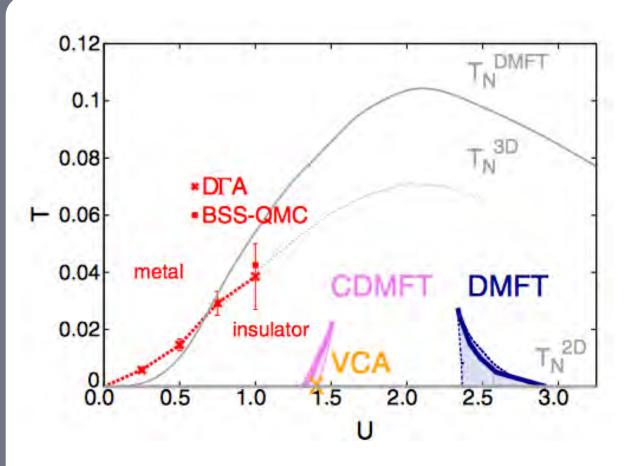
- Mott gap or Slater gap ?
- k = (pi,0), (0.pi): Mott (pole of self-energy)
 k = (0,0), (pi,pi): Slater-type transition
- k-selective transition

Gull et al. (2008)

- paramagnetic insulator
- plaquette, $L_c=4$ note: o.b.c. = p.b.c. still C-DMFT \neq DCA
- QMC solver, MaxEnt
- four-peak structure
 cf. lattice-QMC results!
- low-energy peaks:
 nonlocal correlations
- consistent with AF
 Hartree-Fock calculations
- HF: LRO -> doubling of unit cell, gap opening at the boundary of the reduced BZ

diagrammatic extension of DMFT



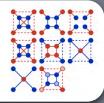


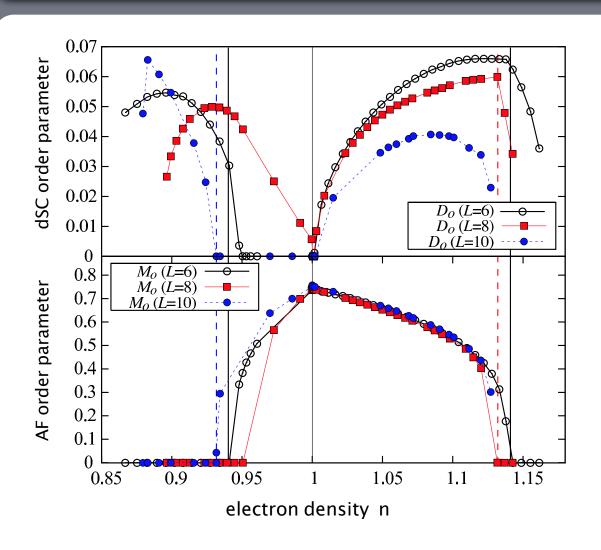
Schäfer et al. (2015)

- dynamical vertex approx.
 (and lattice QMC)
- gapped spectra for all U (due to scattering from extended AF fluctuations)
- no metal-insulator transition
- crossover from Slater to Heisenberg physics (but no symmetry breaking, consistent with MW66)

- is this the final answer?
- diagrammatic approaches: there is no control parameter (like L_c)

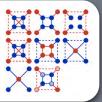
unconventional superconductivity





Senechal et al. (2005)

- T=0, L_c=6,8,10, VCA
 ("simplified C-DMFT")
 U=8, t=1, t'=-0.3, t"=0.2
- spontaneous symmetry breaking with nonlocal order parameter (not accessible to DMFT)
- SC coexists with AF
- pure SC at higher hole doping levels
- artificial finite-size and cluster-geometry effects
- are cluster approaches efficient to solve the high-T_c problem?



DMFT

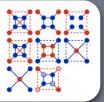
useful beautiful requires extensions

cluster extensions

systematic limited in practice artificial symmetry breaking and restoration

diagrammatic extensions

not systematic respect symmetries can be motivated physically



cluster extensions

systematic
limited in practice
artificial symmetry breaking and restoration
not unique

C-DMFT DCA

real-space perspective

k-space perspective

convergence with $L_c = L_1^D$:

for local observables: exponential

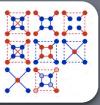
for extended observables: 1/L1

for extended observables: $1/L_1^2$

breaks translational symmetries SSB: "automatic"

respects translational symmetries

SSB: must be anticipated



cluster extensions

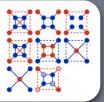
which type of physics is dominated by local and short-range correlations?

Mott transition

there is a DMFT scenario cluster approaches: this is incorrect in D=2 cluster approaches themselves not reliable in D=2?

high-T_c superconductivity

cannot be explained within DMFT cluster approaches: short-range correlations are essential likely: longer-range correlations important as well

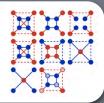


cluster

systematic limited in practice artificial symmetry breaking and restoration

more issues

efficient cluster solver: QMC only (?) systems with nonlocal or even long-range interactions there is no straightforward real-space cluster DMFT!



THE END.