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MOTIVATION




timeline

1966: Hubbard-I approximation

19|93: cluster-perturbation theory (CPT)

19|89 - 1992: dynamical mean-field theory (DMFT)

19I98: dynamical cluster approximation (DCA)

2(|)OO - 2001: cellular dynamical mean-field theory (C-DMFT)

2(|)O3: variational cluster approach (VCA)

2(|)O4: periodized cellular dynamical mean-field theory (PC-DMFT)
|

2006: periodic cluster-perturbation theory




lattice models

H = Hy+ H;
kinetic and potential energy
e.g.: Hubbard model
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@~ Why consider the Hubbard model ?
e generic many-body problem

® . most simple setup for the

Q- “correlation problem”
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Hilbert space

H = Hy+ H;
single site: dimension 4
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L sites: dimension 4. = e

e.g.: Hubbard model
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In4-L

using symmeftries:
N4+ and N, are conserved

dimension L L
N, N,

for L=10: 63504 (half-filling)
for L=12: 853776
accessible by Krylov-space methods
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quantum statistics

S=1/2 Heisenberg model compute the ground state?

coefficients cannot be stored for large L!

quantum statistics:
compute the partition function / free energy

Z(T,x) =tr exp(—FH(x))

F(T,z)=-ThZ(T,x)
gives access to thermodynamics!

DMFT: provides the thermodynamics (and excitations)




correlated lattice models

Heisenberg model, J=0

v ey
Vv

/ / / noninteracting system can be treated easily
no correlations

H=-B) S magnetic phase diagram??

DMFT: aims at strongly correlated lattice fermion models

phenomena:
Kondo effect, Mott transition, collective order of spin, charge,

orbital degrees of freedom, superconductivity, heavy-fermion
behavior, etc.




mean-field approach

fluctuating local field constant mean field

mean field represents the environment

should be determined (at best) from the solution of the lattice model
pragmatically from the solution of Hwr, i.e.: Bmr = -2qJ<Siz>

requires selfconsistent solution

MFT: impurity model selfconsistently embedded in a bath




dynamical mean-field theory

much more complicated as compared to Weiss MFT

self-consistency equation formulated in terms of Greens functions
optimal mean-field theory for lattice-fermion models (e.g. Hubbard model)
point of orientation in the landscape of various MFT's

no internal inconsistencies, not restricted fo a certain parameter range
(weak / strong interaction etc.), nonperturbative theory

exact theory in the (carefully defined) limit of infinite dimensions

but usually applied for D < co as an approximation

is able to describe spontaneous symmetry breaking (magnetism, SC, ...)
can be derived in various way

and highly successful, including applications to real materials (LDA+DMFT)
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short-range correlations are treated insufficiently
no feedback of nonlocal two-particle (e.g. magnetic) correlation on the

Greens function
consequence: e.g. qualitatively wrong phase diagram in two dimensions
no symmetry-broken phases with nonlocal order parameters
including unconventional (d-wave) superconductivity
incorrect critical behavior close to second-order phase transitions
violation of exact identities and sum rules, violation of the Mermin-Wagner
theorem, etc.
o DMFT (if applied to finite-D models) is approximate

WANTED: systematic route from DMFT to the exact solution




cluster mean-field approach

single-site cluster
mean-field theory = mean-field theory

A—r—¥ s
= / =

lattice model

= i

self-consistent embedding of a cluster with L. sites in a bath

systematic, exact for infinite L.
computational effort expected to increase strongly with L.




GEOMETRY




lattice and reciprocal lattice

D D
R=) i.a, G=) jsbg exp(iGR)=1 acbg =2méap  VeVre = (2m)”
a=1 B=1

reciprocal space
RC

real space




discrete Fourier series

reciprocal space
RC




periodic boundaries

V APE = (2m)P
L= Vge/APk

reciprocal space




superlattice and reciprocal superlattice

D
G = Zjﬁbﬁ exp(iéﬁ) =1 6a55 = 27T5a5 VSCVRSC = (27T)D
B=1

reciprocal space

real space




cluster and reciprocal cluster vectors




Fourier transformations

reciprocal space

lattice FT. (L x L)

1
¢ U = —exp(tkR
R,k \/f P( )

real space
P o

as

superlattice FT. (L/Lc x L/Lc)

1 -
= exp(ikR)

§
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cluster FT. (Lc X L¢)
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overview

object, quantity

symbol, definition

properties, relations

basis spanning the lattice
volume of a primitive cell
lattice vectors

Aq
Ve = det({an})
R = Rz = Ea iaaa

a=1,...D

to € 24,1 <y < L,

basis vectors of reciprocal lattice
volume of a reciprocal unit cell
reciprocal lattice vectors

bs
VRC = det({b]})
G=G;= 25 Jpbpg

aabg = 27’(’(5@5
Vre = (2m)P /Ve
Jjg € 4, GR c 217

basis spanning the superlattice
volume of a superlattice cell

superlattice vectors

a,
~V5c = det({aa})
R=R, = Ea to Qo

604 - Lc,aa'a
Vse = L:Ve
lo € Z’ 1 <14 < L/Lc,a

basis of reciprocal superlattice
volume of a rec. superlattice cell
reciprocal superlattice vectors

bg
Viese = det({5,)
G = Gj — 25 jﬁbﬁ

&agﬁ = 27T5a5

VRSCN:N (QW)D/VSC
GR € 217

vectors spanning the system
system volume

Aa
V =det({A;})

A, = Loay, = (L/L..)Gn
V=LV

discrete wave vectors
volume element in k-space

k
AP

kA, € 277
APk = (2m)P /v




GREEN’S FUNCTION




single-electron Green’s function

single-electron Greens function (at temperature T=0)

1 1

Grr(w) = (0|ch, -10) + (O|cr. 10
R,R(w) < |CR,aw_EO_|_HCR, | >+< |CR, W+E0—HCR’J‘ >

H invariant under lattice translations:

i i
CR,0c —> CR+Ro,0 CR,c " CR+Roy,0

implies:
GRriRy,R+R, (W) = Grr (W)
hence: G can be diagonalized using U

(UTG(UJ)U)]‘,;@/ = G(kﬁ, w)ék,k/

spectral density: (the central observable, related to PES, IPE)

1
Alk,w) = ——ImG(k,w + i07)
m




noninteracting spectral density

_ T
Hy = E {RR'CR,CRo
RR'o

Alk,w) = 6(w — e(k))

e(k) = —2t(cos k, + cosk,)

M r
k

half-filling, else: H — H — uN
occupied states - PES
unoccupied states - IPE

Fermi surface

What happens when adding an interaction? (e.g. single-band Hubbard model)

U
Hl — 5 RZ NRNMR—o




interacting spectral density

2D Hubbard model, n=1, low T=0.1
U=W=8

L=8x8 sites, PBC

QMC results

Grober et al. (2000)




interacting spectral density

2D Hubbard model, n=1, low T=0.1
U=W=8

L=8x8 sites, PBC

QMC results

Grober et al. (2000)

technical problems:

* K resolution

e thermal broadening

e thermally induced decay of correlations

* MaxEnt must be used to get real-frequency data: broadening




many-body effects

2D Hubbard model, n=1, low T=0.1
U=W=8

L=8x8 sites, PBC

QMC results

Grober et al. (2000)

many-body effects:

* gapped single-particle excitations -> interaction-driven (Mott) insulator
 finite lifetime of excitations

* incoherent background: complicated high-order decay processes




Hubbard bands

2D Hubbard model, n=1, low T=0.1
U=W=8

L=8x8 sites, PBC

QMC results

Grober et al. (2000) PES
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many-body effects: /

e Hubbard bands: correlation-induced satellites
e LHB: PES w=Ey—E,—p~-—pu=-U/2

e LOCAL CORRELATIONS \

Arr(w) = (0lck ,6(w — Eg + H)cp|0) + (0|cro0(w + Ey — H)ch, ,|0)




Hubbard bands

2D Hubbard model, n=1, low T=0.1
U=W=8

L=8x8 sites, PBC

QMC results

Grober et al. (2000)

many-body effects:
e Hubbard bands: correlation-induced satellites
e UHB: IPE w=FE,—Fy—pu~U-pup=U/2

e LOCAL CORRELATIONS \

Arr(w) = (0lck ,6(w — Eg + H)cp|0) + (0|cro0(w + Ey — H)ch, ,|0)




low-energy excitations

2D Hubbard model, n=1, low T=0.1
U=W=8

L=8x8 sites, PBC

QMC results

Grober et al. (2000)

superexchange

/7{1\
/ AL
many-body effects:

well-defined low-energy structure

infinite U: fully localized electrons - 2--fold degenerate ground state
finite U: delocalization via second-order hopping processes

mapping onto AF Heisenberg model with J=412/U

low-energy excitations: nonlocal spin excitations, band width 2J




low-energy excitations

2D Hubbard model, n=1, low T=0.1
U=W=8

L=8x8 sites, PBC

QMC results

Grober et al. (2000)

superexchange

many-body effects:
* low-energy excitations: nonlocal spin excitations, band width 2J
* spin excitations couple to single-particle excitations:
moving hole (PES) or doublon (IPE) dressed, emit/absorb spin excitations
e renormalization of the Hubbard bands AND new satellites

* NONLOCAL CORRELATIONS




local and nonlocal correlations

LOCAL CORRELATIONS NONLOCAL CORRELATIONS

high-energy spectral features ¢ low-energy spectral features

high spectral weight * lower spectral weight

Hubbard bands * hole/doublon after emission/
absorption of a spin excitation

accessible within mean-field requires feedback of two-particle
theories with a proper (e.g. AF magnetic) correlations to
treatment of the local the single-particle excitations
excitations and their beyond mean-field theory
delocalization in the lattice cluster extensions of DMFT

DMFT




CLUSTER-PERTURBATION THEORY




strong finite-size artefacts
all excitations gapped

no phase transitions

no phase diagrams




phase diagram of high-T¢ materials




the main idea of a cluster approach

‘- * solve the cluster problem exactly

o ° use the solution to reconstruct

the solution for the full problem

@ (thisis approximate !)

@~ ° find a clever way how to do this
step (“embedding problem”)

¢ . “divide and conquer strategy”
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cluster-perturbation theory (CPT)

original system reference system
(L sites) (L/Lc clusters with L. sites each)

6 06666666 &
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hopping matrix t hopping matrix t’ inter-cluster hopping V

t=t'"+V treat this term
perturbatively !




“free” system and Green's functions

e free system: e reference system:

_ . - ;i
Hy = E  tRyR2CR,oCRy0 Hy = tRyRyCR, 0 CR20
R1R20' RlRQO'

e free Greens function e Greens function of the ref. system:
1 , 1
Go(w) Go(w) =

:w+u—t Cwtpu—t

1 1 1 1
Vv

we have: G = =
0() w+u—t’—V w_|_lu_t’+w—|—,u—t’ w+,u—t’

or: Go(w) = Gh(w) + Gy(w) VG (w) + -+

sum all orders: Go(w) = Gh(w) + G{)(w)VG@ the “free” CPT equation !

1
C Gh(w) -V

solve: Go(w)




CPT for interacting systems

e “free” CPT equation:
Go(w) = Gy(w) + Gy(w)V Gy(w) (exact)
e CPT equation:
Gw) =G W)+ G wVGWw) (approximate)

Gros, Valenti (1993), Senechal et al. (2000)

CPT:

 provides interacting G for (almost) arbitrarily large systems (large L)
o (in principle) controlled by 1/L¢ (with Lc: number of cluster sites)

e with L¢=1, this is the "Hubbard-I approximation”

Hubbard (1963)




CPT: alternative derivation

e Dyson equation of the reference systems

G'(w) = Gy(w) + Go(w)E (w)G' (w)

e Dyson equation of the original system:

G(W) = GO(CU) + Go(W)Z(w)G(CU)

e assume that

¥Y(w) =X(w) (approximate)

e this yields
Go(w) ™ =G (W) =Go(w) T = G(w)!




CPT in practice

e compute Greens function of the reference system, e.g., by exact diag.:
(H' = pN)[n') = Ey|n")

|ty lm)

e partition function

7' = Ze_BE?In
m

e CPT equation:

Gw) =G W)+ GwVGWw) with t=t'+V

e solve by matrix inversion for any frequency:

1
CGl(w)l -V

G(w)




QMC vs. CPT

2D Hubbard model, n=1, U=8

L=8x8 sites, T=0.1, QMC L=0(10%) sites, L.=10, T=0, CPT
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strange cluster?
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PERIODIZATION




translation symmetries

CPT Greens function

GR:R/ (Cd) - Gﬁﬁ,’,rr’ (Cd)

invariant under superlattice translations only:

Garr (W) = GRinR B AR, (W)

(partial) diagonalization by superlattice
Fourier transformation V

(w)VR',,%, = Grr/ (k, w)dﬁ;,

w+pu—tk)— Xw)/
cluster-local elements:

Gg:ﬂ(w):% > L _EM)W

keRSC W+ p—t(k)

G (R, w) =

real space

Ay

local density of states:

—%Im G +i0%) # A(w)




translation symmetries

CPT Greens function

GR:R/ (Cd) - Gﬁﬁ,’,rr’ (Cd)

invariant under superlattice translations only:

Garr (W) = GRinR B AR, (W)

(partial) diagonalization by superlattice
Fourier transformation V

(w)VR',,%, = Grr/ (k, w)dﬁ;,

w+pu—tk)— Xw)/
cluster-local elements:

Gg:ﬂ(w):% > L _EM)W

keRSC W+ p—t(k)

G (R, w) =

reciprocal space

k

local density of states:

—%Im G +i0%) # A(w)




how to restore the translation
symmetry?

(1) use periodic boundary conditions on each cluster Zacher et al. (2000)

Grr(W) =GW) GRRirrriar (W)=
and:  Ggp (W) = Griakisakem (@)
but:  Griarr+arRW) # Gr,r (W)
since:. U#A#VW

in practice: results are worse compared to clusters with open b.c.




how to restore the translation
symmetry?

"physical spectral density”  “CPT spectral density”

(3) periodization

in k-Space: UR,k: = etk R Gkk/(w) —> Gkk(w)ék,kz = f[G]kk/(W)

1
VL

AN

in real space: T[G|r S r-rr-rGrogn T : periodization operator

1

R —

L
R'R

we have:




how to restore the translation
symmetry?

(4) periodization of the self-energy

G-periodization:

standard procedure, see CPT result

3-periodization:

also ad hoc, but more artificial
as performed at an earlier stage

both can be generalized to restore

the correct rotational (point-group)
symmetries as well!




how to restore the translation
symmetry?

(5) periodic CPT Tran Minh-Tien (2006)

, , o Biroli et al. (2004)
t': disconnected clusters with periodic b.c.

modify the parameters of H rather than H":

t—t

such that the symmetries of

H and H' are the same
superlattice translations: v’
cluster translations: X

add the necessary hopping
parameters

irrelevant for L. — oo!
explicitly: T = (VW)UtU(VW)T




how to restore the translation
symmetry?

(5) periodic CPT

t": disconnected clusters with periodic b.c.
modify the parameters of H rather than H":

t—t

such that the symmetries of

H and H' are the same
superlattice translations: v’
cluster translations: X

add the necessary hopping
parameters

irrelevant for L. — oo!
explicitly: T = (VW)UtU(VW)T

— 1 .~ / LC ’I:~ D D/ -~ g
trr =t pmp =7 D 000 7 ) ek + G)
e k




how to restore the translation
symmetry?

(5) periodic CPT, contd.

t": disconnected clusters with periodic b.c.
modify the parameters of H rather than H":

t—t
e apply CPT to H using ref.sys. H’
1
w+p—t+ X(w)
* this is diagonalized by VW:

1
G(k,G,w)= - _
(k. G, ) w+p—elk+G)+ X(G,w)

G(w) =

e implicit periodization, identifying

G(k,G,w) = G(k,w)

e self-energy is discontinuous:
Sk 4+ G,w) =3(k,w)




how to restore the translation
symmetry?

(5) periodic CPT, contd.

t": disconnected clusters with periodic b.c.
modify the parameters of H rather than H":

t—t

 apply CPT to H using ref.sys. H’ o o
k =

reciprocal space

A

b2
G(w) = !

w+p—t+ X(w)
* this is diagonalized by VW:

Gk, G w) !
y bry W) = ~ ~ ~
wt+p—ck+G)+ X(G,w)

e implicit periodization, identifying

G(k,G,w) = G(k,w)

e self-energy is discontinuous:
S(k+ G,w) = 3(G,w)




SELF-CONSISTENT CLUSTER EMBEDDING




cluster extensions of DMFT

impurity / cluster approach with self-consistent embedding

Hubbard-I approximation DMFT
CPT cellular DMFT
periodic CPT DCA

single-site cluster

lattice model mean-field theory  mean-field theory
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recall DMFT

/—/—/
el N 2
Ay

local self-energy generated by
U
= Z 5impc;ca -+ B} Z Nimp,oMimp,—o + Z 5;@&};0@;{;0 + Z(chzaka + H.c.)
o o ko ko

local Greens function on the impurity site:
1
W+ 1 — Eimp — A(w) — X' (w)

(;/(imp) (w) =
hybridization function:

S
- W+ pu— e

use SIAM as reference system:
2(w) = 2"(w)

derive self-consistency condition to fix the parameters of H' !




recall DMFT

—

local self-energy generated by

U
I — Z gimpc;ca + B} Z Nimp,oMimp,—o + Z 5;@&};0@;{;0 + Z(chzaka + H.c.)
o o ko ko

local Greens function on the impurity site:

, 1
(imp) _
W) W+ 1 — Eimp — A(w) — X' (w)

hybridization function:

S
- W+ pu— e

use SIAM as reference system:
2(w) = 2"(w)

derive self-consistency condition to fix the parameters of H' !




recall DMFT

— (o

local self-energy generated by

U
I — Z gimpc;ca + B} Z Nimp,oMimp,—o + Z 5;@&};0@;{;0 + Z(chzaka + H.c.)
o o ko ko

local Greens function on the impurity site:

, 1
(imp) _
W) W+ 1 — Eimp — A(w) — X' (w)

hybridization function:

S
- W+ pu— e

use SIAM as reference system:
2(w) = 2"(w)

derive self-consistency condition to fix the parameters of H' !




self-consistency condition

skeleton-diagram expansion:

T
functional relation for the Hubbard model (infinite D)
% = 2[G"Y]
functional relation for the impurity Anderson model
> 2{g(imp)]
with ¥ =X’ this implies:

GUP) () = GO (w) where GUP(w) =

W+ 1 — Eimp — A(w) — X' (w)

solving for the hybridization function:

o
(G (loc) (CU)

=W+ §— Eimp — 1(w)

DMFT self-consistency condition




DMFT self-consistency cycle

SOIV Z(w) \us;e Dyson equation
G(w)

Anderson

impurity l pick local element
model

G(loc) (w)
deﬁne‘& /use DMFT s.c. condition
Aw)




cellular DMFT

Lichtenstein, 2@ use Dyson equation
Katsnelson SOI\V \
(2000) G (w)

Anderson

Kotliar et al. :
cluster l pick local element
2001

( ) model

G(loc) (w)
deﬁne‘\ /use DMFT s.c. condition
A(w)

Z Ly c »Cric + — Z Ny Np—o ZngarkaarkU + Z kc »arke + H.C.)

rko




cellular DMFT

%(w) _ use Dyson equation
sol\V \
G(w)

Anderson
cluster l pick elements of G on the cluster

model

G ()
deﬁne‘\ /use DMFT s.c. condition
A(w)




cellular DMFT

501\7' X(w) \uie Dyson equation
G(w)

Anderson
cluster l pick elements of G on the cluster

model

G (w)
deﬁne‘x /use C-DMFT s.c. condition
A(w)

G(cluster)( ) _ G(loc) (CU)

rr’

rr’




cellular DMFT

%(w) _ use Dyson equation
sol\V \
G(w)

Anderson
cluster l pick elements of G on the cluster

model

G (w)
deﬁne‘x /use C-DMFT s.c. condition
A(w)




periodized cellular DMFT

Biroli et al. S (w .
(2004) 501\7 ( )\uie Dyson equation
G(w)

Anderson
cluster l pick elements of G on the cluster

model

G (w)
deﬁne‘x /use C-DMFT s.c. condition
A(w)

G(cluster)( ) _

rr’




dynamical cluster approximation

Hettler et al. 3(w) use Dyson equation
(1998) solve/ N
G(w)

Anderson
cluster l pick elements of G on the cluster

model with p.b.c.

G (w)
deﬁne‘x /use C-DMFT s.c. condition
A(w)




dynamical cluster approximation

Hettler et al.

(1998) 501\7' \fe Dyson equation with t ¢

G(w)
Anderson
cluster l pick elements of G on the cluster

model with p.b.c.

G (w)
deﬁne‘x /use C-DMFT s.c. condition
A(w)




dynamical cluster approximation

Hettler et al.

(1998) 501\7' \fe Dyson equation with t ¢

G(w)
Anderson
cluster l pick elements of G on the cluster

model with p.b.c.

G (w)
deﬁne‘x /use C-DMFT s.c. condition
A(w)

. . ~ L. 1
DCA self-consistency equation:  G™)(G,w) = =) _ _
L —wtp—elk+G) - 2(Gw)

..7




DCA: k-space perspective

completely neglect the momentum dependence
of the self-energy

reciprocal space

DMFT selF—consis’rencylequa’rion:

G (w) = G (w) = % )3 e 6(1’<5) — 2(w)
k

DCA self-consistency equation:
L. 1

G(cluster) é,w _ ¢ _ _ _
( ) L;OJ—I—,LL—&‘(’{:—I—G)—Z(G,W)

/ AN

discard information on the keep overall, rough
fine structure of the information on the

momentum dependence momentum dependence
of the self-energy




APPLICATIONS




Mott transition - DMFT

single site

|}

A}
%

Bad Bad

metal °. insulator
.

Paramagnetic
insulator

DMFT phase diagram
(paramagnetic)

Mott insulator at T=0:
macroscopic entropy L log2
superexchange does not lift
the ground-state degeneracy
missing feedback of nonlocal
(magnetic) correlations
consequence: at T>0O the high
entropy stabilizes the insulator
F=E-TS




Mott transition: cellular DMFT

Park et al. (2008)

single site plaquette

Bad
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DMFT correct at high temperatures: nonlocal correlations attenuated
the transition line U.(T) bends back at low T
Uc lower by roughly a factor two
nonlocal (short-range) correlations allow for nonlocal singlet formation
unique ground state of the Mott insulator




nonlocal correlations: DCA
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* Mott gap or Slater gap ?

e k = (pi,0), (0.pi): Mott (pole of self-energy)

k =(0,0), (pi,pi): Slater-type transition

e k-selective transition

Gull et al. (2008)

paramagnetic insulator
plaquette, L.=4

note: o.b.c. = p.b.c.

still C-DMFT # DCA

QMC solver, MaxEnt
four-peak structure

cf. lattice-QMC results !
low-energy peaks:

nonlocal correlations
consistent with AF
Hartree-Fock calculations
HF: LRO -> doubling of unit
cell, gap opening at the
boundary of the reduced BZ




diagrammatic extension of DMFT

e is this the final answer?
e diagrammatic approaches:
there is no control parameter (like L)

Schafer et al. (2015)

dynamical vertex approx.
(and lattice QMC)

gapped spectra for all U
(due to scattering from
extended AF fluctuations)
no metal-insulator transition
crossover from Slater to
Heisenberg physics

(but no symmetry breaking,
consistent with MW 66)




unconventional superconductivity

Senechal et al. (2005)

T=0, L.=6,8,10, VCA
(“simplified C-DMFT")
e U=8, t=1, t'=-0.3, t"=0.2
T spontaneous symmetry

' ' breaking with nonlocal
order parameter
(not accessible to DMFT)
! SC coexists with AF
pure SC at higher hole

| doping levels

095 1 105 11 LS artificial finite-size and
electron density n clus’rer-geome’rry effects

dSC order parameter
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e are cluster approaches efficient to solve the high-T. problem ?




DMFT

useful
beautiful
requires extensions

cluster
extensions

systematic
limited in practice
artificial symmetry breaking and restoration

diagrammatic
extensions

not systematic
respect symmeitries
can be motivated physically




cluster
extensions

systematic
limited in practice
artificial symmetry breaking and restoration

not unique
C-DMFT DCA

real-space perspective k-space perspective

convergence with L. = L

for local observables: exponential

. 2
for extended observables: 1/L; for extended observables: 1/L;

breaks translational symmetries respects translational symmetries
SSB: “automatic” SSB: must be anticipated




cluster
extensions

which type of physics is dominated
by local and short-range correlations?

Mott transition

there is a DMFT scenario
cluster approaches: this is incorrect in D=2
cluster approaches themselves not reliable in D=2 ?

high-T. superconductivity

cannot be explained within DMFT
cluster approaches: short-range correlations are essential
likely: longer-range correlations important as well




cluster
extensions

systematic
limited in practice
artificial symmetry breaking and restoration

more issues

efficient cluster solver: QMC only (?)
systems with nonlocal or even long-range interactions
there is no straightforward real-space cluster DMFT !




THE END.




