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 Density of states

2. Consequences for many-body theory

 Green function, Feynman diagrams

 Self-energy becomes local

3. Dynamical Mean-Field Theory

 Mapping onto single-site problem

 Solution of effective impurity model



1.
Fermions in high dimensions



Kinetic energy for lattice fermions

➤ Single-band Hubbard model

➤ Nearest-neighbor hopping:

➤

→  Lecture by D.Vollhardt

Nontrivial limit for ?



Scaling of hopping amplitudes

➤ An elegant shortcut:

 consider as independent uniform random variables

 define (mean 0, variance 1)

(mean 0, variance 1)

 central limit theorem for :            normal-distributed (Gaussian)

➤ Density of states = prob. distrib. of

with

Metzner & Vollhardt 1989



Scaling of hopping amplitudes

➤ Alternative: Fourier transformation

➤ Back transformation:

➤ Higher-order corrections, generalizations, representations, …

Müller-Hartmann 1989



Hypercubic lattice in d dimensions

➤ Density of states

Vollhardt 1993



Bethe lattice with Z nearest neighbors

➤ Bethe lattice is recursively defined; not a Bravais lattice

➤ d.o.s. with finite band-width

➤ also for additional NNN hopping

e.g. Mahan 2001
Eckstein et al. 2004



2. 
Consequences for many-body theory



Green functions

➤ Imaginary-time-ordered fermionic Green function

in terms of imaginary-time Heisenberg operators

➤ Matsubara Green function

with fermionic Matsubara frequencies

e.g. Negele & Orland



Spectral representations

➤ Spectral decomposition

➤ Local Green function and local spectral function

spectral function

retarded Green function

Lehmann representation

~  interacting d.o.s.



Free fermions

➤ Free Green function in absence of interactions:

➤ Free local Green function / spectral function

free density of states



Self-energy

➤ Self-energy characterizes effect of interactions

➤ Matrix notation:

➤ Feynman diagrams: 

Dyson equation



Quasiparticles

➤ Spectral function describes single-particle excitations

real part vanishes if

➤ For :

➤ Fermi liquid: coherent quasiparticles for sufficiently small

solutions

ARPES on LSCO

Zhou et al. 2006



Hubbard bands and Mott-Hubbard transition

➤ Atomic limit: 

➤ Local spectral function:

 Delta peaks become broad for : Hubbard bands

 Hubbard bands merge for large enough

 nonmagnetic Mott-Hubbard transition occurs at  

Mott 1946, Hubbard 1963



Green function diagrams

➤ Feynman diagrams for Green function:

=  non-interacting Green function line

=  interaction vertex

=  full (interacting) Green function line

➤ Perturbation expansion:

➤ Evaluate with diagram rules (trace over internal degrees of freedom, etc.)

e.g. Negele & Orland



Self-energy diagrams

➤ Proper self-energy diagrams:

 have amputated external vertex

 cannot be cut in two pieces (1-particle irreducible)

proper                proper not proper              proper

➤ Self-energy:



Skeleton expansion

➤ =   self-energy in terms of free Green functions

➤ Next step: omit self-energy insertions such as etc.

➤ =   skeleton expansion

 must avoid double counting

 bare and skeleton expansion contain the same (perturbative) diagrams

 convergence & uniqueness of skeleton expansion is not guaranteed



Many-body theory for infinite dimensions

➤ Power counting in         for

➤ Hopping amplitudes:

➤ Kinetic energy:

➤ Green function:

→ Simplifications for Feynman diagrams?



Diagrammatic simplifications

➤ Hugenholtz diagrams:

➤ Skeleton expansion: at least 3 independent paths between and

➤ Power counting in       : 

 Green function lines:

 Summation over :

 Skeleton diagram is

➤ All vertices in           have the same label in

➤ The self-energy becomes local!

Müller-Hartmann 1989



Local self-energy

➤ Simple momentum dependence:

➤ Local Green function:

Hilbert transform

Dyson equation



3.
Dynamical mean-field theory



Path integral representation

➤ Partition function for fermionic Hamiltonian

➤ Functional integral over Grassmann variables                      with action

➤ Imaginary-time-ordered Green function:

Negele & Orland



Mapping onto single-site models

➤ Consider an effective single-site action

➤ Weiss field :

➤ Green function:

Kotliar & Georges 1992
Jarrell 1992

local Hubbard interaction



Dynamical mean-field theory

➤ Quadratic action does not correspond to single-site Hamiltonian

 represents a dynamical mean field

 from single-site Hamiltonian only in atomic limit

➤ Define impurity self-energy :

➤ Skeleton expansion:

impurity Dyson equation

involves only one site!

same diagrams as for inf.-dim. Hubbard model! 



Dynamical mean-field equations

➤ Single-impurity problem:

➤ Impurity Dyson equation:

➤ Lattice Dyson equation:

(solve numerically)

→ three equations for three unknowns

(self-consistency)



Free and atomic limit

➤ Non-interacting case,           :

➤ Atomic limit,                                             : 



Hamiltonian representation as SIAM

➤ Representation by single-impurity Anderson impurity model:

➤ Integrate out host to obtain action with

➤ Hamiltonian representation of Weiss field through additional particles

hybridization function



Impurity solvers

➤ Perturbation theory / Iterated Perturbation Theory (IPT)
 inexpensive

 works on real frequency axis

➤ Quantum Monte Carlo (QMC)
 works directly with action (in continuous time, CT-QMC)

 requires analytical continuation from Matsubara frequencies

➤ Exact Diagonalization (ED)
 requires discretization

 works on real frequency axis

➤ Numerical Renormalization Group (NRG)
 logarithmic discretization, resolution best near Fermi surface

 works on real frequency axis

➤ Density-Matrix Renormalization Group  (DMRG) 

→  Lectures by H. G. Evertz

→  Lecture by E. Koch



Results for the Hubbard model

➤ Hubbard model, Bethe lattice, homogeneous phase, n=1, DMFT (NRG)

Bulla 1999



A solvable case: the Falicov Kimball model

➤ Falicov-Kimball model: hopping only for one spin species

➤ electrons move with background of electrons
configuration optimizes free energy

➤ DMFT action:

➤ Integrate out    electrons: (atomic limit)

Brandt & Mielsch 1989
van Dongen 1990

Si et al. 1992
Freericks & Zlatic 2003



DMFT solution

➤ Self-consistency equations:

➤ Skeleton self-energy:

→ determines for a given density of states



A solvable case: the Falicov Kimball model

➤ Falicov-Kimball model, Bethe lattice, homog. phase, DMFT,

➤ Non-Fermi liquid ,Mott metal-insulator transition at  

➤ Temperature-independent spectrum in homogeneous phase

Freericks & Zlatic 2003



Generalizations and Perspectives



Generalizations and Perspectives

➤ Here: one band, infinite dimensions, thermal equilibrium

➤ Realistic multiband systems:

 On-site interactions, Hund‘s rules, multiplets

 Connection with density-functional theory

 Multiband impurity solvers

➤ Finite dimensions:

 Cluster expansions

 Dual fermions

 Diagrammatic approaches

➤ Real-time dynamics in nonequilibrium

→  Lectures by
O. Andersen

F. Aryasetiawan
F. Lechermann

E. Pavarini
H. G. Evertz

→  Lectures by
M. Potthoff

H. Hafermann
K. Held

→  Lecture by
M. Eckstein


