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OUTLINE

Examples of correlated materials.
Typical electronic structure.

The Hubbard model and the role of U.
Herring’ s definition of U-> constrained LDA.
Screening and linear response theory.
Constrained RPA (cRPA) method.

Examples.




EXAMPLES OF CORRELATED MATERIALS

La2Cu0O4
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THE o—y PHASE TRANSITION IN CERIUM

(a) a-Ce fcc smaller volume
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(b) v-Ce fcc larger volume
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Sakuma et al, PRB 86, 245126 (2012)

The a—y transition in Ce is isostructural (fcc).
v phase has a larger volume than a phase.

Experimental spectra:
drastic reduction in the QP weight in going

from the a- to y-phase.

LDA or GW spectra: little change.




BEDT-TTF ORGANIC CONDUCTORS

S
BEDT-TTF=bis(ethylenedithio)tetrathiafulvaene

K — (BEDTTF), x — (BEDTTF),
Cu(NCS), Cu,(CN),
Exp: metal insulator

{3 Metallic in LDA!

Energy (eV)

LDA band structures

Nakamura et al, J. Phys. Soc. Jpn. 78, 083710 (2009)




CHARACTERISTICS OF CORRELATED MATERIALS

* Partially filled narrow band (3d or 41) crossing the Fermi level
* Failure of LDA or mean-field theory

* Slight change of parameters can induce large change in materials properties,




THE HUBBARD MODEL

A —r %  y.o The usual approach is
. to model the narrow band

o by a Hubbard Hamiltonian.

.1 - n UW=05
B o One-band Hubbard model:
7
5 ¢ -
é l.. Quasi-fl particles UW=12 H=l‘2c;cl +U2nl’|‘nl\|,
% . lower upper 77 5
aQ Hubbard band Hubbard band

UW=2
(A similar Hamiltonian was also
5, U E, T introduced independently
- ENERGY - around the same time by

Gutzwiller, and Kanamori)

Kotliar and Vollhardt, Physics Today 2004




CORRELATED ELECTRONS:
THE ROLE OF U
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Energetically unfavourable

Strongly correlated (U/t>>1):

If one electron is found on one site when U/t > 1
then the other electron is to be found
on the other site with high probability Weakly correlated: U/t<1
- The two electrons cannot be treated as independent: anti-bonding

LY 4

1P>=éq1‘\|,>—\|,’|‘>) I l bonding




First-Principles Methods:
Parameter-free but insufficient
for strongly correlated systems

Model Approaches:
Good for strongly correlated systems
but need parameters

*Local Density Approximation (LDA)

-GW method *Dynamical Mean-Field Theory (DMFT)

.U

Full one-partig
Hilbert spacg

correlated
subspace

Hubbard model

DMFT
))

LDA+U S=H,,  +U

LDA+DMFT X =H

LDA + ZDMFT .
What is U?
GWADMFT S=%_ +3




Electron correlations in narrow energy bands

By J. HuBBARD
Theoretical Physics Diwision, A.BE.R. K., Harwell, Didcot, Berks

(Communicated by B. H. Flowers, F.R.S.—Received 23 April 1963)
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The most obvious approximation has been the neglect of all the interaction terms
in (6) other than the (i¢| 1/r |i¢) term. For the sake of comparison one may note that
I has the order of magnitude 20 eV for 3d-electrons in transition metals. The largest
of the neglected terms are those of the type (ij| 1/r|¢j) where 7 and j are nearest
neighbours. From (9) these integrals can be estimated to have the order of magnitude
(2/R)Ry ~6eV (R = interatomic spacing in Bohr units). Actually this figure
should be reduced appreciably to allow for the screening of the interactions of

electrons on different atoms by the conduction electron gas. This screening effect
may be allowed for approximately by multiplying the above estimate by a factor
e “% where « is an appropriate screening constant. In the case of 3d transition
metals e~*® ~ % — 1, reducing the (ij| 1/ |¢j) term to the order of magnitude 2 to
3eV. For the case in which ¢ and j are now nearest neighbours
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HERRING’S DEFINITION OF U

H = tzc}’ci +U2n”nl.¢

<ij> z

U is the energy cost of moving an electron from one site to another.

Half filling — — () e

S
Cd




HERRING’S DEFINITION OF U

Example: 3d transition metal with configuration 3d” 4"

U=[EQ3d""'4s*)— EQ3d"4s)]+[E@Bd""4s°)— E(3d"4s")]

\ ]| /
f |

Ionisation energy Electron affinity

— E(3d"'4s*)—2E@d"4s") + E(3d"" 45°)




CONSTRAINED LDA (CLDA)
Dederichs, Blugel, Zeller, and Akai, PRL 53, 2512 (1984)

Super cell

Transition metal
or rare earth atonm

The occupation |
number 7, is
constrained by q
at the chosen site

Elq]= min{ELDA[,O(r)] +v,(n, — q)} Vv, = Lagrange multiplier

2
E

U = 9 £lal
oq

Cococcioni and de Gironcolo, PRB 71, 035105 (2005)
Hybertsen, Schluter, and Christensen, PRB 39, 9028 (1989)




KOHN-SHAM EQUATION IN CONSTRAINED LDA

Elqg]= min{ELDA[IO(r)] +v,(n, — Q)}

(_;V2 + I/ext + VH + ch +Vd])d )z/jkn = Sknwkn

s

Additional non-local potential acting on the impurity site

P, =@, e,

n, =Z|<¢d |z//kn>|2

>




CONSTRAINED LLDA (CUT—OFF METHOD)
Anisimov and Gunnarsson, PRB 43, 7570 (1991)

Super Cell

_, Hopping from and to
the 3d orbitals is cut off.

“impurity”/
(3d or 4f atom)

Change the 3d charge on the impurity, keeping the system neutral,

do a self-consistent calculation and 92E  9e

calculate the change in the 3d energy level > U = - = d
on, on,

Janak’s theorem




SCREENING

External perturbation

v
I/ext(rﬂt)%pind(rﬂt) g ind(r9t) =fd]" V(r_r')pind(r'Dt)

!

Coulomb potential 1/lr-r’l

V. .(rt)y=V_(r,t)+V. . (rt)

The external perturbation 1s screened by the electrons.

Example: Proton in an electron gas

Vext(’” b)) = —Zﬁ(t) Screening charge 0. (r,1)
r

Proton Z




SCREENED POTENTIAL

A = screening length

In semiconductors or insulators the screening
1s not complete, due to the band gap.

Z

Er




SCREENING WITHIN
LINEAR RESPONSE THEORY

response function perturbing
v field

0, . (rt) = f dridt' R(r,r';t—t") V_,(r't")

Screened field
V o (1) = Vo (P 4V, (D), Y, (r1) = [dr'v(r =), (1)

=V rO) + [ dr'v(r =10, (')

=Vext(rt)+f dr'v(r—’”')f dr''dt'R(r',r'';t ="V, (r''t")

V (r,w)=V

scr ex

(r,w) +f ar'dr"'v(r —r"YR(r',r'"; o)V, (r", w)

V. (w) =\[1 + vR(a))]}Vext(a))

scr

e (w)




SCREENED COULOMB INTERACTION

V. (tr't)=v(r-r)o(-t") Instantaneous Coulomb potential at point r
arising from a point charge (electron) at r’.
| IV |
V. (rrw)=v(r-r) (r { ) — parameters

Vi (rio)="V, (r,w)+ f dridryy(r = 1) R(n, r; o), (1, 0) General formula

W(r,r';w)=v(r-r'") +f drdrv(r —r)R(r,, ry; 0)v(r, = 1'")

Scre.ened CQulomb W =v+ vRv
Interaction

Kubo’s formula for retarded response function:

R(rt,r't") = =i W |[p(rt), p(r't)]| W O(t - 1')

Need a good approximation for R




POLARISATION FUNCTION

Definition of polarisation function P:
Response function with respect to the screened field

IOind= RVext = P\(Vexz‘ + Vznd})

T |

External field Screened field




IOind =RVext =P(Vext +V;nd)

Vnd = VIOind = VR Vext

l

RV

ext

= P(Vext + VRIOind) = P(l + VR)I/ext

Since V/,_ is arbitrary:

R =P+ PvR

W=v+vRv=v+vPv+vPvPv+...

W =v+vPW

cf. W =v+vRv




TIME-DEPENDENT HARTREE APPROXIMATION
or RANDOM-PHASE APPROXIMATION (RPA)

In RPA, approximate P by the non-interacting response function:

P(1.2) = —iG(1.2)G(2.1%) 1© » Plain bubble

The response of an interacting system to an external perturbation is assumed
to be given by the response to the total (screened) field as if the system were non-interacting.

(Interacting) Non-interacting
response function | | response function (RPA)

\ /
IOind= RVext = P\(Vext + de/)

T |

External field Screened field




THE NON-INTERACTING LINEAR RESPONSE FUNCTION

occ unocc

P(r,r';w) = E E

o, (Ng, (g (Mg, () @ ()e,()e (e, ()
w-(g,—€)+i0 w+ (g, —€)—10

SCREENING PROCESS

@ {8‘\ @ H €

§00 ﬂ H E i % ” E
u JvL 0 <: U 0

To reduce the Coulomb interaction
the spin-up electron jumps to
the excited state = polarisation.

) N
< |

Screening or correlation amounts to
lowering interaction energy




CONSTRAINED RPA (CRPA): A METHOD FOR CALCULATING U

Key physical idea:
U should be obtained as a screened Coulomb interaction without screening from
the electrons residing in the subspace that defines the Hubbard model.

Polarisation: P =F, + F,

Example: 7 4
o A
SrVO3 perovskite
o Density of States | PI/'
Vi, T
- . | A
o] d b, e
ol ! . /d ;/\/\)M\//\
- rosub  Femiee r-sub °
d-sub &

PRB 70, 195104 (2004)



CRPA FORMULA FOR U

Fully screened interaction

W=v+vPW —W=(>10-vP) v
W =[1-vP.—vP, v

=[(1-vB){1-(1-vP) VP }1 v (4B)' =B'4™

|
w

=(1-W.P)'(1-vP) v
( r d) \( r) }
|
/4

r

W =(1-W,P)"'W,

U = I/Vr = (1 — VPr )‘lv the effective interaction in
the d-subspace (the Hubbard U)

U=v+vPU




POLARISATION FUNCTION IN RPA

' occ unoccwi (r)l/j;k (}/')l/jl* (}/")rwj (}/'1)
Full system  POrio)=» >

= W—&€;+& xi0

Correlated  p (,,,,,.;w)=§ uﬁcwi(zﬂ)w}f(zﬂ)w;(w)wj(r.)

bands = = W—¢€;+& =i0
P =P-P,

', ' . ', Independent o
V@ars@) = v =7 +f drdrV(r =1 E(5, 7, ) Uz, 15, 0) bancistructurgmethod.

Uy (@) = [ drdr' g, (r)g,(r"U (.1 0)g, ()@ (r)

The Hubbard U is determined by two main factors:
e Screening, i.e., the polarisation P
* The choice of orbitals when computing the matrix elements U, , (a))' :




CONNECTION BETWEEN cRPA AND cLDA

9°E Qe 1 5°E
=——=(@@ | (v+ Q. = X
mom,  om. (e v+ L low;) Lo =55
In cLDA, calculate U = 9€;  with constrained hopping
on,

l

In cRPA, calculate e !

with constrained screening, 1.e., removing
screening channels already included in

the model.

U. von Barth,
The electronic structure of complex systems, Advanced Study Institute (1982)
M. Springer and FA, PRB 57, 4364 (1998).




ADVANTAGES OF CRPA

e Full matrix U
e Energy-dependent U
e Onsite and offsite U
o U(r,r’;w)is basis-independent:
Can use any band-structure method
e The concept of cRPA is general, can go beyond RPA .

JUSTIFICATION OF RPA:
Vertex corrections beyond RPA are expected to be large within the correlated subspace,
These vertex corrections are taken care of by the Hubbard model.

For i1solated d-subspace

U ~ 1 long range
CF (metallic screening is absent
a >1 when calculating U)




MAXIMALLY LOCALISED WANNIER ORBITALS

V _sp
PnR) = (27)3 /dBk.c le“l‘is’fm)%

| = EwmQSm (k)

LDA wave functions

By varying §, minimise the extent of the orbitals

Q2 = 3" (ProlrIpn0) — |(@aolrlpno) )
n

Marzari and Vanderbilt, PRB 56, 12847 (1997)




WANNIER ORBITALS OF SrVO3
0\?
o o

xz orbital
Z,, model (tzé + e, )+ O, model

Fig. 4: Contour plot of the maximally localized Wannier function (MLWF) of SrVOs. If we
take the x axis to be the horizontal direction and the z axis to be the vertical direction, the
Wannier function corresponds to xz. The red (blue) represents the positive (negative) contour:
The Wannier function is centered at the vanadium site, which is located at the center of the
cube. The green spheres at the corners are strontium atoms, and white spheres at the centers
of the faces are oxygen atoms. The MLWF is optimized in the t,, model which consists of three
to,-like states. We note that the Wannier function has tails on the oxygen sites.
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BEDT-TTF ORGANIC CONDUCTORS

k - (BEDTTF), k - (BEDTTF),
Cu(NCS), Cu,(CN), K —(BEDTTF), kx —(BEDTTF),
Exp: metal insulator Cu(NCS), Cu,(CN),
=E=—d0|p=—==——10 e i,
e —— N e e e > Jf >F
= =3 =3
"o g [T Do b e | ———— = = &,
T | 2 ! 221 221
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== U ~1/(57)

- X
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U is almost isotropic and long ranged.
Nearest-neighbour U/onsite U ~0.45

Nakamura et al, J. Phys. Soc. Jpn. 78, 083710 (2009)

Maximally localised Wannier orbitals of
K —(BEDTTF),Cu(NCS),
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CRPA FOR ENTANGLED BANDS

We first choose an energy window covering the 3d band and
construct maximally localised Wannier orbitals

20
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Marzari and Vanderbilt, PRB 56, 12847 (1997)




Nickel (paramagnetic)

CRPA FOR ENTANGLED BANDS

; O ! !
[ | | | |
| A | | Construct projection operator for the d subspace:
10 £ B2 |
~ | | | —
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m | | | md
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-D I -1 r
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-10
IF X W L | 3 K
" d space 0
Y T BN H =
15 ) . 0 r space
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Miyake et al PRB 80, 155134 (2009), also Sasioglu, Friedrich, and Bluegel PRB 2011
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U'and J (eV)

NEAREST-NEIGHBOUR U and J
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U AND J FOR THE EARLY LANTHANIDES

U
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Nilsson ef al PRB 88, 125123 (2013)




DYNAMIC (FREQUENCY-DEPENDENT) U

—e— t2g model
W (t2g model) | 7
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DOS (states/eV/spin)
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week ending

PRL 106, 236805 (2011) PHYSICAL REVIEW LETTERS 10 JUNE 2011

Strength of Effective Coulomb Interactions in Graphene and Graphite

T.O. Wehling," E. Sasioglu,” C. Friedrich,” A.I. Lichtenstein,' M. I. Katsnelson,” and S. Bliigel”
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FIG. 3 (coloronline). Frequency dependence of the on-site and
nearest-nei % hbor interaction obtained from cRPA for oraphene
) and graphite. For graphite Um(w) = Uj,(w) is

(h = 21.2

shown, which is virtually the same as U5 (w).

U (w)] <0.15 eV for w

< 20 eV.
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La2CuO4

_ O p—~>Cud

plasmon

0 10 20 30 40 50 60

w [eV]

Werner et al, PHYSICAL REVIEW B 91, 125142 (2015)

FIG. 1. (Color online) LDA band structure (solid lines). In addi-

tion, the left panel shows the Wannier interpolated (disentangled)

band structure for the one-band model and the right panel the N\
corresponding band structure for the three-band model (thick dashed <
lines). The color coding in the right panel indicates the d character of \
the bands. The symmetry points are defined as I’ = (0,0), K = (m.) f
and X = (m,0) and the vertical axis is in eV,
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SUMMARY

cRPA provides a systematic and general scheme for determining U
from realistic band structures
—>bridging first-principles and model calculations of correlated materials.

Open problems:
- Entangled bands: not clear how to define the model.

- What 1s the best way of downfolding the energy-dependence of U?
(How to construct a model with a static U)

- How to go beyond RPA: e.g., include ladder diagrams in




