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OUTLINE

•  Examples of correlated materials.
     Typical electronic structure.

•  The Hubbard model and the role of U.

•  Herring’s definition of Uà constrained LDA.

•  Screening and linear response theory.

•  Constrained RPA (cRPA) method.

•  Examples.



La2CuO4

EXAMPLES OF CORRELATED MATERIALS

22 yxd
−

Cu

O yxp ,

LDA

Anti-ferromagnetic insulator
but metallic in LDA



Sakuma et al, PRB 86, 245126 (2012)	


fcc larger volume	


fcc smaller volume	


THE α-γ PHASE TRANSITION IN CERIUM

The α-γ transition in Ce is isostructural (fcc). 
γ phase has a larger volume than α phase.

Experimental spectra:
drastic reduction in the QP weight in going
from the α- to γ-phase.

LDA or GW spectra: little change.	
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Nakamura et al, J. Phys. Soc. Jpn. 78, 083710 (2009)	


Exp:     metal                       insulator	


LDA band structures	


Metallic in LDA!

BEDT-TTF=bis(ethylenedithio)tetrathiafulvaene	


BEDT-TTF ORGANIC CONDUCTORS	




CHARACTERISTICS OF CORRELATED MATERIALS

•  Partially filled narrow band (3d or 4f) crossing the Fermi level

•  Failure of LDA or mean-field theory

•  Slight change of parameters can induce large change in materials properties,



↓
><

↑
+∑ ∑+= i

ij i
iij nnUcctH

One-band Hubbard model:	


The usual approach is
to model the narrow band
by a Hubbard Hamiltonian.	


Kotliar and Vollhardt, Physics Today 2004	


(A similar Hamiltonian was also
introduced independently
around the same time by
Gutzwiller, and Kanamori)

THE HUBBARD MODEL



Strongly correlated (U/t>>1):
If one electron is found on one site

then the other electron is to be found
on the other site with high probability 

U	


Energetically unfavourable
when U/t > 1

CORRELATED ELECTRONS:
THE ROLE OF U

t

à The two electrons cannot be treated as independent:
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Weakly correlated: U/t<1
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bonding

anti-bonding



First-Principles Methods:
Parameter-free but insufficient
for strongly correlated systems

Model Approaches:
Good for strongly correlated systems

but need parameters

dΣ

Ut,

DMFT
dΣ

Full one-particle
Hilbert space

• Local Density Approximation (LDA)  
• GW method • Dynamical Mean-Field Theory (DMFT) 

DMFTLDAH Σ+=Σ

DMFTGW Σ+Σ=Σ

UHLDA +=ΣLDA+U
LDA+DMFT

GW+DMFT What is U?	


Hubbard modelcorrelated
subspace
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U is the energy cost of moving an electron from one site to another. 

U

Half filling	


HERRING’S DEFINITION OF U



Example: 3d transition metal with configuration 	
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Ionisation energy Electron affinity 

HERRING’S DEFINITION OF U



Super cell 

Transition metal 
or rare earth atom 

The occupation 
number       is 
constrained by q 
at the chosen site 
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Cococcioni and de Gironcolo, PRB 71, 035105 (2005) 
Hybertsen, Schluter, and Christensen, PRB 39, 9028 (1989) 

=dv Lagrange multiplier 

dn

Dederichs, Blugel, Zeller, and Akai, PRL 53, 2512 (1984) 

CONSTRAINED LDA (CLDA)
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Additional non-local potential acting  on the impurity site	
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KOHN-SHAM EQUATION IN CONSTRAINED LDA



Change the 3d charge on the impurity, keeping the system neutral, 
do a self-consistent calculation and 
calculate the change in the 3d energy level à 

Hopping from and to 
the 3d orbitals is cut off. 

Super Cell

“impurity”
(3d or 4f atom)
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Anisimov and Gunnarsson, PRB 43, 7570 (1991) 

Janak’s theorem 

CONSTRAINED LDA (CUT-OFF METHOD)



SCREENING	


),( trVext ),( trindρ→ ∫ −=→ ),'()'('),( trrrvdrtrV indind ρ

),(),(),( trVtrVtrV indextscr +=

The external perturbation is screened by the electrons.	


Proton Z	


Proton in an electron gas	


Screening charge )(),( t
r
ZtrVext θ−=

Example:	


External perturbation	


),( trindρ

Coulomb potential 1/|r-r’|
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SCREENED POTENTIAL

In semiconductors or insulators the screening 
is not complete, due to the band gap.

r
Z
ε
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=λ screening length	




SCREENING WITHIN
LINEAR RESPONSE THEORY	


),()()( rtVrtVrtV indextscr +=

∫ −+= )'()'(')( trrrvdrrtV indext ρ

∫ −= )''()';',('')( trVttrrRdtdrrt extindρ

response function	


∫ −= )'()'(')( trrrvdrrtV indind ρ

perturbing 
field	


Screened field	
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SCREENED COULOMB INTERACTION	


Instantaneous Coulomb potential at point r
arising from a point charge (electron) at r’.

)'();',( rrvrrVext −=ω

∫ −+= ),();,()(),(),( 221121 ωωωω rVrrRrrvdrdrrVrV extextscr
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=)''( tr parameters

Screened Coulomb
interaction

)'(|)]''(ˆ),(ˆ[|)'',( tttrrtitrrtR −ΨΨ−= θρρ

Kubo’s formula for retarded response function:

Need a good approximation for R

General formula



POLARISATION FUNCTION	


indρ

Definition of polarisation function P:
Response function with respect to the screened field	


Screened field	
External field	


extRV= )( indext VVP +=
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extindind vRVvV == ρ

extindextext VvRPvRVPRV )1()( +=+= ρ

PvRPR +=

Since         is arbitrary:	
extV

...+++=+= vPvPvvPvvvRvvW

vPWvW +=

vRvvW +=c.f.
PW=Rv



TIME-DEPENDENT HARTREE APPROXIMATION
or RANDOM-PHASE APPROXIMATION (RPA)	


indρ

The response of an interacting system to an external perturbation is assumed
to be given by the response to the total (screened) field as if the system were non-interacting.	


Non-interacting
response function (RPA)	


Screened field	
External field	


(Interacting)
response function	


extRV= )( indext VVP +=

In RPA, approximate P by the non-interacting response function:
)1,2()2,1()2,1( +−= GiGP 1	
 2	
 Plain bubble
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THE NON-INTERACTING LINEAR RESPONSE FUNCTION

0ϕ

1ϕ

0ε

1ε

U	


0ϕ

1ϕ

0ε

1ε

To reduce the Coulomb interaction
the  spin-up electron jumps to
the excited state à polarisation.

SCREENING PROCESS 	


Screening or correlation amounts to
lowering interaction energy	




CONSTRAINED RPA (CRPA): A METHOD FOR CALCULATING U

 PRB  70, 195104 (2004)

rd PPP +=

dP

rP

µ

Polarisation:	


r

d
rP

r

Key physical idea:
U should be obtained as a screened Coulomb interaction without screening from

the electrons residing in the subspace that defines the Hubbard model.	


SrVO3 perovskite	


d-sub

gtV 2

Example:

r-sub r-sub



vPWvW +=
Fully screened interaction	


the effective interaction in
the d-subspace (the Hubbard U)	


vvPW 1)1( −−=→

vvPvPW dr
1]1[ −−−=

vvPvPvP drr
11 }])1(1){1[( −−−−−= 111)( −−− = ABAB

vvPPW rdr
11 )1()1( −− −−=

vvPWU rr
1)1( −−==

rW

rdr WPWW 1)1( −−=

UvPvU r+=

rW

CRPA FORMULA FOR U
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POLARISATION FUNCTION IN RPA
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Full system	


Correlated 
bands	
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Independent of
band-structure method.	
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The Hubbard U is determined by two main factors:
•  Screening, i.e., the polarisation P
•  The choice of orbitals when computing the matrix elements	
 )(, ωklijU
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U. von Barth,
The electronic structure of complex systems, Advanced Study Institute (1982)
M. Springer and FA, PRB 57, 4364 (1998).	
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In cLDA, calculate	
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ε with constrained hopping	


In cRPA, calculate 	
 1−ε with constrained screening, i.e., removing
screening channels already included in
the model. 	


CONNECTION BETWEEN cRPA AND cLDA



•  Full matrix U
•  Energy-dependent U
•  Onsite and offsite U
•  U(r,r’;ω) is basis-independent:
  Can use any band-structure method
•  The concept of cRPA is general, can go beyond RPA .

r
U

α
1~ long range 

(metallic screening is absent 
when calculating U)	


JUSTIFICATION OF RPA:
Vertex corrections beyond RPA are expected to be large within the correlated subspace,

These vertex corrections are taken care of by the Hubbard model.

ADVANTAGES OF CRPA	


1>α

For isolated d-subspace	




MAXIMALLY LOCALISED WANNIER ORBITALS	


By varying S, minimise the extent of the orbitals	
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LDA wave functions	


Marzari and Vanderbilt, PRB 56, 12847 (1997)	




gt2 pgg Oet ++ )( 2model	
 model	


xz orbital	


WANNIER ORBITALS OF SrVO3	




gg tt 22 →

allt g →2

allt g →2

ggp etO ,22 →

allt g →2

allO p →2

No screening:
bare interaction

Controlling the screening channels:
U as a function of       (eliminated transitions)

SrVO3

U=3.5 eV	


The O 2p plays a crucial role
in determining U	


PRB 74, 125106 (2006)	


dP

Vaugier et al,
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Nakamura et al, J. Phys. Soc. Jpn. 78, 083710 (2009)	
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U is almost isotropic and long ranged.
Nearest-neighbour U/onsite U ~0.45

Maximally localised Wannier orbitals of	

22 )()( NCSCuBEDTTF−κ

Exp:     metal                       insulator	


BEDT-TTF ORGANIC CONDUCTORS	


)5/(1~ rU

bare v	
 bare v	




Minimise the extent of the orbitals	
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w
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LDA wave functions	


Marzari and Vanderbilt, PRB 56, 12847 (1997)	


CRPA FOR ENTANGLED BANDS	


We first choose an energy window covering the 3d band and 
construct maximally localised Wannier orbitals	


3d	

4s	


Ni



Disentangled 3d band structure from
maximally localised Wannier orbitals

Nickel (paramagnetic)	


Miyake et al PRB 80, 155134 (2009), also Sasioglu, Friedrich, and Bluegel PRB 2011	


4s	

3d	


Approximation: The off-diagonal
elements are set to zero	


Construct projection operator for the d subspace:	
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CRPA FOR ENTANGLED BANDS	




Present: PRB 80, 155134 (2009)	


Hubbard U for the 3d series	


Fully screened interaction W of
the 3d series	


Previous: Phys. Rev. B 77, 085122 (2008)	


disentangled	


Energy
window	




NEAREST-NEIGHBOUR U and J

J	

U’



Nilsson et al PRB 88, 125123 (2013)	


U AND J FOR THE EARLY LANTHANIDES

U J



Miyake  et al, unpublished	


ReU	
ImU	


Plasmon
excitation	


∫
∞

−
−=

0 22 '
)'(Im''2)(Re

ωω
ωω

ω
π

ω
UdvU

DYNAMIC (FREQUENCY-DEPENDENT) U

SrVO3	


SrVO3	




4f band	




Large nearest-neighbour U	




La2CuO4 Werner et al,

O pàCu d
plasmon



EXCHANGE J AS A FUNCTION OF FREQUENCY	


Difficult to screen 
a charge distribution
without l=0 component

bare J
bare Coulomb



cRPA provides a systematic and general scheme for determining U
  from realistic band structures
àbridging first-principles and model calculations of correlated materials.	


Open problems:

-  Entangled bands: not clear how to define the model.

-  What is the best way of downfolding the energy-dependence of U?
  (How to construct a model with a static U)

- How to go beyond RPA: e.g., include ladder diagrams in P

SUMMARY


