13 Dynamical Mean-Field and
Dynamical Cluster Approximation Based
Theory of Superconductivity

Thomas A. Maier
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Contents
1 Introduction

2 Dynamical mean-field theory and dynamical cluster approximation
2.1 Preliminaryremarks . . . . . . . ...
2.2 General framework for the normal state . . . . ... ... ... ........
2.3 Nambu-Gorkov formalism . . .. ... ... ... ... ... .........
2.4 Pair-field susceptibility . . . . .. ..o

3 Superconductivity in the 2D Hubbard model
3.1 Attractive Hubbard model . . . . ... ... ... .. .. ...........
3.2 Repulsive Hubbard model . . . ... ... ... ... ... ..........
3.3 Extended Hubbardmodel . . . . . .. ... ... ... ... .........

4 Summary and concluding remarks

E. Pavarini, E. Koch, A. Lichtenstein, and D. Vollhardt (eds.)
DMFT: From Infinite Dimensions to Real Materials
Modeling and Simulation Vol. 8

Forschungszentrum Jilich, 2018, ISBN 978-3-95806-313-6
http://www.cond-mat.de/events/correll8


http://www.cond-mat.de/events/correl18

13.2 Thomas A. Maier

1 Introduction

The collective behavior of electrons in solids gives rise to a range of different emergent phe-
nomena, including magnetism, the fractional quantum Hall effect, and superconductivity. Of
these, superconductivity is perhaps the most fascinating state that has captivated generations of
physicists over more than a century. When cooled below a critical temperature 7., supercon-
ductors exhibit conductance without resistance, the property that underlies most applications of
superconductors, including power transmission and generation as well as medical applications.
A second and equally important effect observed in superconductors is the complete expulsion
of an external magnetic field during its transition to the superconducting state (the Meissner-
Ochsenfeld effect). This repulsion of magnetic fields can be stronger than gravity which leads
to levitation, the most fascinating manifestation of superconductivity. Fundamentally, it implies
that the electrons in superconductors behave collectively.

Conceptually, two main ingredients, illustrated in Fig. 1, are necessary to understand the su-
perconducting state [1]: (1) Electrons form boson-like Cooper pairs driven by a net attractive
interaction; (2) These Cooper pairs condense into a coherent macroscopic quantum state anal-
ogous to a Bose-Einstein condensate. The energy required to break up the pairs (also called
energy gap) suppresses the scattering processes from defects and impurities that would other-
wise give rise to electrical resistance in normal conductors.

But why would two negatively charged electrons, which repel each other because of the Coulomb
repulsion, would be attracted to form pairs? For conventional superconductors, which include
many elemental metals such as Hg, Al, and Nb, the attractive force that binds the electrons
arises from the interaction between the negatively charged electrons and the positively charged
ions. The distortion of the ion lattice left behind by the motion of an electron attracts a second
electron and thus results in an effective attractive interaction between the electrons. This at-
traction is local in space, resulting in an s-wave structure of the Cooper pair wave-function and
thus an isotropic s-wave gap in momentum space. But since the ion dynamics is slow compared

Fig. 1: Main conceptual ingredients of the BCS theory of superconductivity: (/) Through
a net attractive interaction, electrons form Cooper pairs and (2) the Cooper pairs become
phase coherent and condense into a single macroscopic quantum state. The binding energy AE
required to break up a pair suppresses the scattering processes that lead to resistance.
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Fig. 2: Schematic temperature-doping phase diagram of the cuprate high-temperature
superconductors: The d-wave superconducting state below the critical temperature T, emerges
upon hole doping of the antiferromagnetic parent compound. Upon cooling, it arises from
a normal state that hosts a pseudogap at low doping, where an energy gap is present in the
electronic excitations, or a strange metal non-Fermi liquid phase at higher doping. BCS theory
is not adequate to describe this situation and non-perturbative approaches are necessary to
accurately treat the electron-electron correlations that give rise to these phases.

to the electrons, it is strongly retarded in time, i.e., active at long time scales, where the effec-
tively instantaneous Coulomb repulsion can be overcome. These concepts are well described
and understood within a rigorous theoretical foundation, the BCS (Bardeen-Cooper-Schrieffer)
theory [2, 1], and its extension, the Migdal-Eliashberg theory [3,4].

Superconductivity in heavy fermion materials, copper-oxygen, and iron-based materials and
other related compounds, however, is thought to arise from a different mechanism than the
electron-phonon mechanism [5]. While the two main conceptual ingredients of BCS theory,
1.e., the formation of Cooper pairs and their condensation into a macroscopic quantum state,
still hold, the pairing mechanism that leads to the attraction of electrons is believed to be dif-
ferent from the electron-phonon mechanism. Because of the strong local Coulomb repulsion
in these systems, local s-wave pairing is energetically unfavorable and the Cooper pair wave
function is found to have a different symmetry; in the cuprates, for example, the pairs are bound
in a d,2_,2-wave state, in which the pair wave function changes sign in momentum space and
which corresponds to pair formation on nearest-neighbor atom positions in the crystal lattice.
Similarly, in the iron-based superconductors, the pairs are believed to form an extended, sign
changing s-wave state, in which the local amplitude is strongly reduced. As we will see, such
a pair structure with a sign change indicates that the pairing interaction is actually repulsive
in momentum space, in marked contrast to the conventional electron-phonon case. It is there-
fore generally accepted that pairing in these “unconventional” superconductors has a different
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origin, and most likely arises from the strong magnetic interactions or fluctuations between
the electron spins that result in an antiferromagnetic phase in the undoped parent compounds.
Moreover, BCS theory assumes that the superconducting state is created from a normal metal-
lic Fermi liquid state with well defined quasiparticles. In contrast, the normal state in many
unconventional superconductors is everything but normal (see Fig. 2). Strong electron-electron
correlations in these systems often lead to non-Fermi liquid behavior and BCS theory is not ad-
equate. One instead needs a non-perturbative approach that can handle the strong correlations
and which does not assume a Fermi liquid normal state as a starting point. Dynamical mean-
field theory (DMFT) [6] and the dynamical cluster approximation (DCA) [7] provide such a
tool, which allows us to study how superconductivity emerges in systems where the normal
state behavior is governed by strong electron correlations.

These lecture notes are concerned with such unconventional systems, in which superconductiv-
ity arises from the strong local Coulomb repulsion between the electrons. Given that supercon-
ductivity requires electrons to form pairs, this seems like a paradox. The goal of this lecture is
to demonstrate how DMFT and DCA calculations have helped us resolve this paradox. Follow-
ing a pedagogical discussion of the DMFT and DCA frameworks to study superconductivity, we
highlight a set of applications that showcase the ability of these approaches to provide important
insight. In this lecture we assume a basic familiarity with BCS, DMFT, and DCA theory.

2 Dynamical mean-field theory and dynamical cluster
approximation

2.1 Preliminary remarks

To keep things simple, we will focus most of these lecture notes on one of the simplest models
of correlated electron systems, the single-band Hubbard model [8]. Its Hamiltonian

H = Ztij Cl'Loch + U Z niTnu (1)

ij,0 i
is divided into a non-interacting part H, given by the first term and an interacting part Hiy
given by the second term. Here cgl) destroys (creates) an electron on site ¢ with spin ¢ and

ni, = cl_c, isthe corresponding number operator. The first (/1) term describes the hopping of

ioCio
electrons between sites 7 and 7 with amplitude ¢;;, and the second (H;y) term raises the energy
by the Coulomb repulsion U when two electrons with opposite spin reside on the same site. If
not otherwise noted, we consider the sites in this model to form a two-dimensional (2D) square
lattice with a hopping ¢;; = —t if ¢ and j are nearest-neighbor sites. Despite its simplicity, this
model is commonly believed to provide a description of the generic physics of the cuprate high-
temperature superconductors [9], in which photoemission experiments find a single electronic
band crossing the Fermi level.

The single-particle dynamics of the Hubbard Hamiltonian at finite temperatures is described

by the thermodynamic Green function and its Fourier-transform to Matsubara frequencies and
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momentum space

Gijo = — <TTCZ-U(T)C;[U> 2)
g
Gijo (iwn) = / dr €“r" Gijo(T),  wn = (2n+ 1)nT (3)
0
1 4
Go(k,iwn) = (g CLJ>>iwn =N Z etk(ri=r;) Glijo(iwy) . 4)
ij

Here 7 is the imaginary time, 7 the time ordering operator, 5 = 1/7T the inverse temperature
and w, = (2n 4+ 1)nT are the fermionic Matsubara frequencies. For problems with trans-
lational symmetry in space and time, the Green function becomes diagonal in momentum k
and frequency iw,, as stated in Egs. (3) and (4). The Green function (G of the non-interacting
system, i.e. H = H,, is given by

1
Go(k,w,) = ——, 5
o(k, iwy) i+ 11— ex (%)
where p 1s the chemical potential and €, the dispersion, obtained from a Fourier-transform of
the hopping ¢;;. For our 2D model with only nearest neighbor hopping ¢, we have

e = —2t(cos k, + cos ky) (6)

with k = (k,, k,). Finally, the Dyson equation

1
Gy (K, iw,) — X(k,iw,)

G(k,iw,) = (7)
defines the self-energy X (k, iw, ) as the difference between the (inverse) non-interacting Green
function GGy and the fully renormalized Green function GG and thus describes the effects of the
interaction term H;,; on the single-particle dynamics.

2.2 General framework for the normal state

Calculating the Green function G and self-energy X' in the thermodynamic limit is prohibitively
expensive as the problem size grows exponentially in the number of degrees of freedom (sites in
the Hubbard model). The DMFT and DCA approaches reduce this complexity by representing
the infinite-size system by a reduced-size cluster, and use coarse-graining in momentum space
to retain information about the degrees of freedom (sites) not contained on the cluster [7]. In
DMEFT the cluster consists only of a single site, called the impurity site, while in DCA the
cluster has several sites. The size of the cluster is controlled by the way the momentum space
is coarse-grained. Fig. 3 shows several examples starting from the single-site (N, = 1) DMFT
impurity. The DCA is obtained for N, > 1. It reduces to the DMFT for N, = 1 and approaches
the exact result for N, — oo. Because the DCA includes the DMFT as a limiting case, we
restrict the following discussion to the DCA.

The first Brillouin zone is split into N, patches of equal size. As illustrated in Fig. 3, each
patch is represented by a cluster momentum K at its center. The basic assumption of the
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DMFT: Ne=1 Ne=16A Ne=16B Exact:Ne=co

Fig. 3: Coarse-graining of momentum space: At the heart of the DCA (and DMFT) methods
is a partitioning of the first Brillouin zone into N, patches over which the Green function is
coarse-grained (averaged) to represent the system by a reduced number of N, “cluster” degrees
of freedom. The bulk degrees of freedom not included on the cluster are taken into account as
a mean-field. For N. = 1, the dynamical mean-field approximation is recovered, while for
N, — oo, one obtains the exact result. For a given cluster size N., one can have different
locations and shapes of the coarse-graining patches, as illustrated for N. =16A and 16B.

approximation is that the self-energy is only weakly momentum dependent (or purely local in
DMEFT), so that its momentum dependence is well represented by the coarse-grid of cluster
momenta K, i.e.,

Y(k,iw,) ~ Yo (K,iw,) (in DCA) or X(k,iw,) ~ X;;(iw,) (in DMFT). (8)

Here, X (K, iw,) is the self-energy of a cluster of size V., and X;(iw, ) that of a single-site
impurity in DMFT. One then sets up an effective cluster problem to calculate X.( K, iw,) or
Yii(iwy,). To this end, the Green function is coarse-grained over the DCA patches (or the full
Brillouin zone in DMFT)

Nc Z 1
N kGPKiwn — &+ m = Zc(Ka an) ’

G(K, iw,) = % S Gk, i) =

kePKk

€))

where P is the patch centered at K containing N/N,. momenta k. Note that in DMFT, the
sum runs over the full Brillouin zone and the coarse-grained Green function reduces to the
local Green function. Given G and X., one can then set up an algorithm, such as, for ex-
ample, the quantum Monte Carlo (QMC) algorithms discussed in Refs. [10, 11], to calculate
the cluster Green function. The non-interacting part of the cluster problem is defined by the
cluster-excluded Green function

G(K ,iw,) = (GTYK, iw,) + Zu( K, iw,)) (10)

where the cluster self-energy has been added to avoid double counting. While G(K ,iw,,) is
the Green function of a cluster of size V., note that the remaining lattice degrees of freedom
are encoded in G through the use of the coarse-grained Green function GG. Together with the
interacting part of the Hamiltonian, one then sets up the action for the effective cluster problem,
which reads after Fourier-transform to real space

B B B
i) = = [ dr [ 32 00,0 Gusio =) 30+ | dr S UG (P)01007, ()0 (7).
7,0 i (11)
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Here ¢ and ¢* are the Grassmann variables corresponding to the operators c and ¢!, respectively.
From this the cluster Green function

GmAf—f%:%/wawwﬁwgﬁ36““@7 (12)

with

szbwww*WM (13)

the partition function, is evaluated and used to determine the cluster self-energy
YK iw,) = Gy (K iw,) — G, (K iw,) . (14)

Then, using this new result for X.( K, iw,,) in Eq. (9), these steps are iterated to convergence.
We note that this DCA algorithm was recently extended into the DCA™' method [12] through the
inclusion of a self-energy Y/ (k, iw,,) with continuous momentum k dependence that replaces the
piecewise constant self-energy Y.(K , iw,,) in the coarse-graining step, while leaving the cluster
problem unchanged. This has the benefit that results depend less on the shape of the cluster that
is being used.

2.3 Nambu-Gorkov formalism

In this section we generalize the DCA (and DMFT) formalism to perform calculations in the
symmetry broken superconducting state. This phase is signaled by an order parameter that
describes the finite expectation value for the creation of a pair of electrons in time-reversed
momentum states

Ag = (crrc_gy) # 0 for some k. (15)

Here we restrict the discussion to spin singlet pairs and note that A can only be finite for a
grand canonical ensemble in which the particle number is not fixed. This is not a problem
for DMFT or DCA, since these approaches are formulated for the grand canonical ensemble.
The momentum structure of A determines the symmetry of the superconducting state. Exam-
ples are Ay oc 1 (s-wave), cos k, + cos k, (extended s-wave), cos k; — cos ky (d,2_,2-wave),
sin k, sin k,, (d,,-wave) or asin k, + bsin k, (p-wave). Because 4y is finite in the supercon-
ducting phase, one has, in addition to the normal Green function

Gk, iwn) = ({hps Chy)icn (16)

a finite anomalous Green function

F(k,iwn) = ((Chrs €=kt )i - (17)

Using the concept of Nambu spinors [1]

C
%=¢Mc@,%=(ﬁ> ()
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one then defines the Green function matrix in Nambu space [1]

(19)

G (k. i) = (W V)i, = < G ki) F (K, dwn) ) ,

ek, —iw,) —G*(k, iw,)

which contains information about both the normal and the anomalous Green function. Note
that the G matrix contains only two independent matrix elements G and F'. The elements in
the second row are related to those in the first row by general symmetry relations for Green
functions. In the presence of an external pairing field n(k) = (k) + in”(k), which couples to
C_k|Ckt, the non-interacting part of the Hubbard Hamiltonian becomes

ZW <6k03 — k)Ul —|-77 (k) )Epk, (20)

where the o; are the Pauli spin matrices

1 0 01 0 —1 1 0
00:(0 1>, oy = (1 O) 2:<i g>,agz(0 _1>. 1)

With this, the lattice Green function in the superconducting state becomes

G(k,iw,) = (iwnao — (ex — p)os —n'(k)oy — 1" (k)oy — (K, zwn)> (22)

with the cluster self-energy matrix

(23)

SL(K, i) = (zc (K iw) e (K, iwn) ) |

Ge(K, —iwn) =2 (K i)

Here, the diagonal parts X.( K, iw, ) describe the usual quasiparticle renormalization, while the
off-diagonal parts ¢.(K,iw,) contain information about the momentum and frequency depen-
dence of the pairing state. As in the normal state, the coarse-grained Green function

G, o) = 3 3 Gl ) = (F*(K,—iwn) —G*(K;iwn>> -

kEPK

is then used to calculate the corresponding non-interacting (cluster-excluded) Green function

matrix
Go(K iw,) = (GHK i) + Ze(Kiw,)) . (25)

To calculate 3.( K, iw, ), an effective cluster model is set up using G together with the inter-
action U

B B
= —/dT/ dT/Z wl(7) Go,ij (T — 7") ¥;(7") (26)
o Jo r

B
+ 5 [ dr S o I (ol ()]



Superconductivity within DMFT and DCA 13.9

where the ¥, and W; are spinors ¥ = ( 7> ¢;,) of Grassmann variables ¢! and ¢, which
1

generate coherent states corresponding to the fermionic operators c;,, and ¢;,, respectively. From

this, the cluster Green function
1 .
Guai(r = 7) = [ D B () e @)

where
Z = / D@ @] e "] (28)

is the partition function, is calculated using a cluster solver algorithm, such as e.g., a QMC
algorithm [13] or a non-crossing approximation (NCA) [14], and used to determine the cluster
self-energy

YUK, iw,) = Gy (K iw,) — G, HK iw,) . (29)

Then, just as in the normal state, using this new result for 3.( K, iw, ) in Eq. (22), steps (22) to
(29) are iterated to self-consistency. After convergence, the superconducting order parameter

AK) = XY (emen) = P(K,7 = 0) (30)

kePxk

is calculated from the coarse-grained anomalous Green function F'.
Two notes are in order:

e Usually one is interested in an instability to a superconducting phase in the absence of an
external pair-field, i.e., spontaneous U (1) gauge symmetry breaking. In this case, the cal-
culation is initialized with a finite pair-field n(k) with a given momentum structure. After
the first few iterations, the pair-field is switched off, and the system relaxes. If the calcu-
lation converges to a finite order parameter A(K), the system is in the superconducting
phase, otherwise it is in the normal state.

e The symmetry of the superconducting order is given by the momentum structure of the
coarse-grained A(K) and therefore restricted by the cluster size and geometry. In the case
of the DMFT, when N, = 1, A(K) = A is local, and therefore only superconducting
states with a local contribution such as s-wave or extended s-wave can be described.
Larger clusters are necessary to describe order parameters with a symmetry less than the
lattice symmetry. For example, a 2x2 cluster is the smallest cluster to describe phases
with a d2_,2-wave symmetry which transforms according to cos k, — cos k,,.

As a typical example of such a calculation, Fig. 4 shows DCA results from Ref. [14] for the
superconducting state of a 2D Hubbard model with U = 12t and electron filling (n) = 0.81
for a temperature 7" = 0.05¢. These results were obtained with a non-crossing approximation
to solve the DCA effective cluster problem on an N, = 4 site 2x2 cluster [15]. One sees
that the anomalous Green function F (K,w) = G'lg(K ,iw,) is finite, switches sign between
K = (7,0) and (0, 7), and vanishes for K = 0 and (7, 7). This is exactly what one expects for
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Fig. 4: d-wave superconducting state in a 2D Hubbard model: DCA/NCA calculation for an
N. = 4 site 2x2 cluster. Density of states near the chemical potential (a), and coarse-grained

anomalous Green function G12(K ,iw, — w+1id) = F(K,w+1d) (b), (c), and (d) for a system
with electron filling (n) = 0.81, temperature T = 0.05t and Coulomb repulsion U = 12t for
the different cluster momenta K . Figure from [14].

a d,2_,2-wave order parameter that transforms according to A(k) o< cos k, — cos k. Since the
DCA patches about K = 0 and (7, 7) contain equal parts of positive and negative contributions
of A(k), the coarse-grained result averaged over these patches vanishes, while A(k) has the
same sign over each of the patches centered at (7,0) and (0, 7) and switches sign between
them. The superconducting gap that arises from the finite pair amplitude is reflected in the
density of states (DOS) shown in the upper left panel, where the lower Hubbard subband of the
full spectrum is shown.

2.4 Pair-field susceptibility

An alternative way to identify an instability towards a superconducting phase (or any symmetry
broken phase for that matter) is to calculate the response of the system to an applied field (pair-
field in the case of superconductivity), i.e., the susceptibility, and then extrapolate that response
to the limit of a vanishing field. Spontaneous symmetry breaking occurs when the susceptibility
diverges in that limit.
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General formalism

In linear response theory, the superconducting response to an external pair-field 7., where «
specifies the symmetry (s-wave, d-wave, etc.), is given by the pair-field susceptibility

B8
P.(T) = / dr (A (1) AL(0)) 31)

0

since the pair-field 7, couples to the pairing operator

AT = E
a - gOé C C ) (32)

and we are interested in the response A, of the system to the pair-field. Here g, (k) is the form-
factor corresponding to the symmetry of interest, i.e., gq(k) = cos k, — cos k, for a d,2_, state,
for example. Instead of calculating the correlation function in Eq. (31) directly, the pair-field
susceptibility may be calculated within the formalism described in then previous section 2.3.
This is done by keeping the external pair-field 7, finite throughout the calculation and measuring
the order parameter A, at convergence. If this is done for a number of different magnitudes of
the external field 7., one has information on the 7, dependence of the order parameter A, (7, ).

The pair-field susceptibility P, may then be extracted from the limit of vanishing pair-field as

_ dAa(na)
Po= dn:

Ne %O.

Alternatively, one may calculate the correlation function in Eq. (31) directly in the normal state
of the system. This does not require the Nambu-Gorkov formalism discussed in Sec. 2.3, i.e., the
calculation may be carried out in the normal state. What is required, however, is a calculation

of the 4-point two-particle Green function [10]

Gao..04 (1, 25 13, 24) = —(Trc, (21)C,, (x2)ch (23)ch, (24)) (33)

where the combined index x; = (X, 7;) has both spatial X; and imaginary time 7; coordinates.
Fourier-transforming on both the space and time variables gives Goy, . o, (K4, ks; ko, k1) with
k = (k,iw,). From this, one may then calculate the pair-field susceptibility as

Zga ) Gagur(k, =k, =K' K) ga(K'). (34)

k,k'

The way G5 is calculated in the DCA algorithm is similar to the way G is calculated at the
single-particle level. Just as the Dyson equation (7) relates the Green function to the self-
energy, the Bethe-Salpeter equation (BSE) relates G5 to the irreducible particle-particle vertex
function I'PP(k, —k; —k', k). It reads

/ / T
G (K, =k, =K' K') = Gi(k) GL(=F)dr + > Gilk) Gy(~k) (35)
k,ll

X Fpp(k', —/{7, —]{7”, /C//> GQ"N‘LT(]CH, —]{7”, —k’l, /{Z/>
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Fig. 5: Feynman diagrams for the Bethe-Salpeter equation: The two-particle Green function
(G5 in the particle-particle channel on the left hand side has a bare contribution (first diagram
on the right-hand side) that describes the propagation of a pair of electrons in time-reversed
momentum and spin states, and a vertex contribution (second diagram) that describes the (re-
peated) scattering of the pair due to the interactions in the Hamiltonian.

and is schematically shown in Fig. 5. This equation describes the propagation of a pair of
electrons in time-reversed momentum and spin states and the repeated scattering of this pair
due to the Coulomb term in the Hamiltonian.
Just as the self-energy Y (k, iw,) is approximated by the cluster self-energy X.(K,iw,), the
irreducible vertex function I ™? is approximated by the corresponding cluster irreducible vertex
function [10]

IPP(k,—k,—k K)~I"™(K,-K,—-K' K'), (36)

where K = (K, iw,) and K’ = (K’ iw,). Just as the self-energy, the cluster irreducible vertex
I'PP is determined from the solution of the cluster problem, i.e., by calculating the cluster two-
particle correlation function

T
Goeryit (K, —K, —K',K') = G.4+(K) Ge | (—K)dr xr + N Z G.1+(K)G. (—~K) (37)
C gn
X FC pp(K, _[(7 _[(//7 K//) GQ@T\L\LT(K”, _K”, _}(l7 K/) )

Deﬁning [GQC]KJ(, = GQC,Ti¢T<K7 —K, —K/, K,), [ch]K,K’ = G07T<K) GC7¢(—K) 5K,K’ and
[TPP| ¢ g = NLFCPP(K, —K,—K', K') , and writing Eq. (37) in matrix notation in K, K’, one
then has

Lepp = [ch] [G2c]_1 : (38)

Using the cluster vertex I PP(K,—K,—K’', K') in the BSE for the lattice G5, one can then
calculate the coarse-grained two-particle Green function for the lattice

. N2
Gopyp (K, —K,-K' K') =

(k, —k, —K | &) (39)

kEPK k/EPK/

- 6(2)7 ( 5]( K/ Z GQ TwL

C K
X Fcpp(Kj _K7 _‘[(//7 K//) GQ7T¢¢T(K//, _K”, _K/, K/) ]

with the coarse-grained bare propagator

Go (K Z Gi(k) Gy (—k). (40)

kEPK
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Here we used the fact the cluster vertex I PP(K,— K, —K’, K') only depends on the cluster
momenta K and K’ so that the sum over k” in Eq. (35) can be partially carried out over the
patches. The coarse-grained (G5 may then be inserted into Eq. (34) to obtain

T2
Z Jo(K) Gop 1 (K, —K, —K', K') go(K") , (41)
C KK/
where we have separately coarse-grained the form factor g, (K) = N./N > cp  ga(k). Note

that one can also take into account the full £ dependence of ¢, (k) by using the modified algo-
rithm discussed in Ref. [10].

Bethe-Salpeter eigenvalues and eigenfunctions
Writing Eq. (39) in matrix form
Gy =[1- Gg,urgp]_lég,m = Gg,w[l - ngég,u]_l (42)

we see that a divergence in G4 occurs when the term in brackets vanishes. Eq. (42) can be recast
in terms of the left (#%) and right eigenvectors (#%) of the “pairing matrix” ngc‘;gﬁ |» Where,
for example, @f is determined from [16]

T _
= D Tl K) G () 61(K) = Al (), @)
¢ g

By transforming the term in brackets in Eq. (42) onto this eigenbasis of the pairing matrix, one
can write Eq. (42) as

R L K!
Gop (K, K') = G py( Z %a (b faF)dalH). (44)

Since the pair-field susceptibility is given by Eq. (41), we see that a superconducting instability
occurs when the leading eigenvalue )\, becomes equal to one, and the symmetry of the corre-
sponding state is determined by the momentum and frequency structure of ¢*(K') and ¢Z(K).
This approach is in many ways more powerful than calculating the response function directly,
because here, one does not have to assume a given form factor g, (k) and therefore cannot
“miss” the structure of the dominant correlations.

We note the similarity of Eq. (43) to the familiar BCS gap equation

1 « V(k,k') tanh (5 Ep) A(K')
N 2 2 Epy

= A(K). (43)

&
where V' (k, k') is the pairing interaction, which is essentially given by the low frequency limit
of I'’P(k, k'), Ej the Bogoliubov quasiparticle energy that is encoded in the Green function
G(k), and A(k) the superconducting energy gap. In fact, Eq. (45) is derived from a Bethe-
Salpeter equation in the superconducting state analogous to the normal state equation (43) under
a number of simplifying assumptions. Hence, we see that the leading eigenvector ¢je.q(K) =
ot (K) is the normal state analog to the superconducting gap A(k). Close to the transition at
T =T, they are equivalent.
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3 Superconductivity in the 2D Hubbard model

We now demonstrate how the DMFT and DCA approaches have been used to investigate un-
conventional superconductivity in the simplest model of correlated electron systems, the 2D
Hubbard model given by the Hamiltonian in Eq. (1) on a square lattice. We start by discussing
the attractive model, which has U < 0, and then turn to the repulsive model with U > 0.
While the former should be viewed as a toy model to study pairing, the latter has been studied
extensively in the context of the high-7.. cuprates.

3.1 Attractive Hubbard model

The Hamiltonian of the attractive Hubbard model is given by the Hamiltonian in Eq. (1) with an
attractive local Coulomb interaction U < 0. Since the Coulomb interaction between electrons is
repulsive, 1.e. positive, the negative U interaction should be considered an effective interaction
that may result from integrating out other degrees of freedom, such as phonons in the case of the
BCS model. In contrast to this case, however, the interaction U is an instantaneous static inter-
action without frequency dependence. Since the interaction between the electrons is explicitly
attractive, this model provides an interesting toy model and testbed to study the superconducting
phase transition as a function of the electron filling (n) and interaction strength |U|/t.

In fact, this problem has been studied extensively in the literature (see, e.g., Ref. [17] and refer-
ences therein). As this model does not suffer from the usual fermionic negative sign problem,
large scale quantum Monte Carlo simulations have been used to study the temperature versus
|U| phase diagram. One generally finds a finite temperature phase transition to a superconduct-
ing phase at finite doping (n) < 1, while at half-filling (n) = 1, this phase is suppressed to
zero temperature by its degeneracy (due to particle-hole symmetry) with a charge-density wave
(CDW) phase. As one moves away from half-filling, CDW correlations are suppressed and the
superconducting 7, rises sharply. Since the pairing interaction U between electrons is local,
one finds that the superconducting phase has s-wave symmetry, i.e., the Cooper pairs forming
this state are local.

Because we are in 2D, for which the Mermin-Wagner theorem [18] forbids a finite temperature
transition to a phase in which a continuous symmetry is broken, such as the U(1) gauge symme-
try that is broken in the superconducting phase, the instability instead is a Kosterlitz-Thouless
(KT) transition [19,20] to a superconducting state in which the correlations decay algebraically.
DMFT and DCA calculations, however, do not obey the Mermin-Wagner theorem. They ne-
glect the long range, beyond mean-field fluctuations that lead to the destruction of long-range
order at finite temperature, the fundamental reason for this theorem. Due to their mean-field
character, DMFT and DCA instead display mean-field type transitions. In DCA calculations,
however, non-local fluctuations are taken into account up to the size of the cluster, and one may
see KT behavior in a finite region above 7., where the correlations are limited in range to within
the cluster. Close to 7., when the correlation length exceeds the cluster size, however, the KT
behavior changes over to mean-field behavior.
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Fig. 6: Superconductivity in the attractive Hubbard model: Transition temperature T, in
the negative U Hubbard model versus |U| at a filling of (n) = 0.85 calculated with DCA/QMC.
T. keeps rising with |U| in the DMFT (N, = 1) limit, while non-local fluctuations on the 4x4-
cluster DCA calculation start suppressing T, at larger |U|.

Fig. 6 shows the results of single-site DMFT (V. = 1) and 4 x4-site DCA (N, = 16) calcula-
tions of 7. in an attractive Hubbard model with nearest-neighbor hopping ¢ and electron filling
(n) = 0.85. Here T, for the s-wave superconducting state was determined from the temperature
T at which leading eigenvalue \;(7") of the Bethe-Salpeter equation (43) crosses one. We see
that in both cases, 7T, initially rises with increasing |U|. This is expected, since the increasing
pair binding energy ~ |U| leads to an increasing energy reduction associated with forming a
superconducting phase, so that it occurs at higher temperatures.

At larger |U|, however, one observes different behavior: While T, keeps rising for NV, = 1, it
already starts to level off a bit. For N, = 16, one even sees non-monotonic behavior, where 7
falls again after reaching a maximum for |U| ~ 6¢. How can we understand this behavior, given

the fact that with increasing |U]|, the pair-binding energy keeps increasing? This behavior is
known as the BCS-BEC crossover [21], where BEC stands for Bose-Einstein condensation. For
small attractive interactions U, the physics is well described by BCS theory. The Cooper pairs
are weakly bound and their size, determined by the superconducting coherence length ~ 1/|U],
is large. Therefore, the pairs have large spatial overlap, and as soon as they form, they become
phase coherent. In contrast, in the large |U| regime, the pairs are tightly bound and much more
local objects. Hence, they have a harder time to become phase coherent, since the phase of
individual pairs can fluctuate more easily. In this case, even though the pair-binding energy
is large, 1. is suppressed, since phase coherence does not set in until lower temperatures are
reached. DMFT only describes the spatially local aspect of this physics, i.e., phase fluctuations
in time. Instead, the finite size clusters in the DCA also know about the spatial aspect of this
physics, i.e., phase fluctuations of local pairs on different sites. This explains why 7. is reduced
in the 16-site cluster relative to the single-site results.
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Fig. 7: Kosterlitz-Thouless transition temperature in the attractive Hubbard model: 75"
for different electron densities d = (n) for U = —4t calculated with DCA™/QMC. The results
were obtained by calculating T.(N,) from the leading (s-wave) eigenvalue of the Bethe-Salpeter
equation for different cluster sizes N. and extrapolating the results to the exact N, — oo limit,
where they compare well with finite size lattice DOMC calculations by Paiva et al. Figure
from [22].

In fact, for even larger clusters one would expect 7. to drop even more. An example of this is
shown in Fig. 7, which displays the results of a DCA™ calculation of T, versus electron filling
d = (n) for U = —4. The inset shows the linear cluster size (/N,) dependence of T, for
different (n), and one sees that 7, keeps dropping with increasing cluster size. For a filling of
(n) = 0.8, close to the filling used in Fig. 6, we see that 7. ~ 0.25 for U = —4 drops to ~ 0.15
in the infinite cluster size limit. Here, 7.(/V.) was again determined from \;(7.(N.)) = 1 and
the (exact) infinite cluster size limit 7,.(N. — oo) = Tkr is obtained from fitting the 7,.(N.,)
curves with the expected KT behavior [19,20]

B+ log(VN )P @0

Here, we have assumed that the transition at finite [V, occurs at the temperature 7..(/N..), at which
the superconducting correlation length reaches the linear cluster size. The log arises from the
fact that this correlation length has an exponential temperature dependence in the KT case.

The main panel in Fig. 7 shows T for different (n) determined this way. Also shown are results
from finite size lattice determinant QMC calculations by Paiva er al. (solid black curve) [17].
We see that the DCA™ results agree very well with those of Paiva et al., showing that the DCA
approximation and the procedures used to determine 7, provide reliable results.
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3.2 Repulsive Hubbard model

We now turn to the 2D repulsive Hubbard model. Its Hamiltonian is given by Eq. (1) with
U > 0. Unlike the attractive model, there is no explicitly attractive interaction in this model
that could lead to superconductivity. Rather, the only interaction that is present is repulsive.
Nevertheless, this model has been investigated extensively in the context of superconductivity,
because it is commonly believed to provide a generic and the simplest description of the physics
of cuprate high-temperature superconductors [9].

So how can a model with only a repulsive interaction have a superconducting instability? Vari-
ous cluster DMFT and DCA studies have been concerned with addressing this question. Since
the local Coulomb repulsion U in this model is large (a realistic description of the cuprates re-
quires U/t 2 6), an s-wave superconducting state, in which the electrons are paired on the same
site, is energetically unfavorable. Rather, one expects a state in which the electrons are paired
on different sites. Since DMFT can only describe local order parameters, it is not adequate to
study superconductivity in this model. Rather, one needs to use cluster extensions of DMFT,
and here we focus on DCA studies of this problem.

Superconducting instability

If the Hubbard model is supposed to describe the cuprate high-temperature superconductors,
then it should have a superconducting instability to a d,2_,2-wave state with a cos k, — cos k,
momentum structure. By Fourier-transforming to real space, we see that in this state, the elec-
trons are paired on nearest-neighbor sites with a d,2_,2 phase (+1 along £x and -1 along +y).
Thus, one needs at least a 4-site 2x2 cluster to describe this state. The earliest DCA calcula-
tions of this problem were therefore done for a 2x2 cluster. The left panel in Fig. 8 shows the
temperature versus doping = 1 — (n) phase diagram of the 2D Hubbard model with U/t = 8
that resulted from this DCA N, = 4 study [23]. And indeed, it has an extended d,2_,2-wave
superconducting phase at finite doping ¢ below the critical temperature 7,.. Here 7, is the tem-
perature 7" where the pair-field susceptibility in Eq. (41), Py(7"), with a d2_,2-wave form factor
ga(K) = cos K, — cos K, diverges.

In addition, the phase diagram has an antiferromagnetic phase below the Néel temperature 7.
This phase transition was determined in an analogous manner to that for the superconducting
phase, by calculating the spin susceptibility x,(Q,T) = Y, e'@x—x) foﬂ dr (T:5;(1)S3(0))
for Q = (m,m), where S7 = (C;[TCZ»T — CLCZ- 1)/2 is the usual z-component of the spin operator.
This is done in the same manner as for the pair-field susceptibility, i.e., within the framework
described in Sec. 2.4, by calculating the irreducible vertex (in the spin S = 1 particle-hole
channel) from the corresponding cluster susceptibility, and then using this vertex in the Bethe-
Salpeter equation for the lattice susceptibility xs(Q,7") [10]. Even though the Mermin-Wagner
theorem (see discussion in Sec. 3.1) does not allow for an antiferromagnetic phase at finite 7’
in the purely 2D model, the mean-field character of the DCA leads to this phase transition at
finite 7'. In the real cuprate materials, it is the coupling between the copper-oxygen planes that
stabilizes this transition at finite 7.
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Fig. 8: D-wave superconductivity in the 2D repulsive Hubbard model: Left panel: The
temperature T versus doping 6 = 1 — (n) phase diagram calculated with DCA/QMC for a
2%2 cluster with U = 8t has an antiferromagnetic phase near half-filling below I\, a d-
wave superconducting phase at finite doping below T, and pseudogap behavior in the normal
state below T™*. Right panel: Temperature dependence of the inverse pair-field susceptibility

1/ Py(T) calculated with DCA/QMC for different cluster sizes for U = 4t and (n) = 0.9. T,
is only weakly dependent on cluster size N. when N, 2 12. Figures from [23] (left) and [24]
(right).

The phase diagram also displays a line labeled 7™ This line does not indicate a phase transition.
Rather, it indicates the temperature below which the bulk spin susceptibility x(Q = 0,7)
starts to drop when the system is further cooled. This exotic behavior is very different from the
Pauli susceptibility of a normal metal, which is basically independent of temperature at low 7.
The downturn in x,(Q = 0,7) signals the opening of a pseudogap in the low energy spin
excitations, which is also observed in various measurements in the cuprates [25]. In addition, at
the same temperature 7, the single-particle spectral function A(k,w) = —Im G(k,w + i0)/7
starts to show a pseudogap, 1.e., a partial suppression of spectral weight at the Fermi level w = 0.
This is also observed in photoemission experiments in the cuprates, and provides evidence that
not only the spin degree of freedom, but electronic excitations in general are suppressed at low
energies. Thus, just like in the real materials, superconductivity in the Hubbard model emerges
from an exotic state, which is very different from a normal metal.

Coming back to superconductivity, the question arises of what happens to the phase transition
in more accurate calculations employing larger clusters when longer-ranged fluctuations are
taken into account. Just like for the attractive Hubbard model, where the critical temperature
is found to drop in larger clusters because of the inclusion of spatial phase fluctuations (see
previous Sec. 3.1), we would expect 7. to fall when larger clusters are used. Does 7. go to
zero or will it remain finite in the exact infinite size cluster limit? This question was first
addressed with the larger cluster DCA calculations [24] of the pair-field susceptibility in a
Hubbard model with U = 4t and (n) = 0.9 shown in the right panel of Fig. 8. Here, the
temperature dependence of the inverse pair-field susceptibility 1/P,(T") is plotted for a number
of different cluster sizes and shapes (indicated by the letters "A’ and 'B’ following the cluster
size, see Ref. [24]), and the lines are fits to the exponential KT behavior one expects in two
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Fig. 9: Dominant correlations in the 2D repulsive Hubbard model: DCA/QMC results for
a 24-site cluster with U = 4t and (n) = 0.85. Left panel: Leading eigenvalues of the Bethe-
Salpeter equation (43) in different channels. The Q = 0 pairing eigenvalue has d»_,2-wave
symmetry and increases towards one at low temperatures. The Q = (7, ) magnetic eigenvalue
dominates but saturates at low temperatures, and the Q = 0 charge eigenvalue remains small.
The inset shows the position of the cluster momenta K in the 24-site cluster. Right panel:
The frequency w,, = (2n + 1)7T" dependence of the (normalized) leading d,_,2-wave pairing
eigenvector ¢q( K ,wy,) for T' = 0.125t reflects the w,,, = 2mnT dependence of the (normalized)
antiferromagnetic spin susceptibility x(Q = (m,7),wn). The inset shows the d,2_,2-wave
cos K, — cos K, momentum dependence of ¢,(K,w, = nT) along the dashed line shown in
the left inset. Figure from [26].

dimensions, i.e., Py(T) ~ exp[2B/v/T — T.]. We see that 1/FP,(T) goes to zero, i.e., Py(T)
diverges, at a temperature 7,.(NV,.) for most clusters, with the 4-site cluster clearly showing the
2 12,

~Y

largest T, ~ 0.05t. As expected, for larger clusters 7. falls but is stabilized when N,
for which T, ~ 0.02t. More recent calculations [22] using the DCA™ extension were able to
go to even larger clusters, and found similar results with similar 7, in the large cluster limit.
These calculations were also done for larger U = 7¢, for which a larger 7. ~ 0.05¢ was found.
These calculations have thus provided evidence that the doped 2D Hubbard model has a d-wave
superconducting instability at finite temperatures.

Pairing mechanism

So far, the calculations we have discussed are “numerical experiments”, i.e., they show that a
model, despite the presence of only repulsive interactions, can have a superconducting ground
state, but do not give an answer to the question of what causes it. Unlike real experiments,
however, we can directly analyze the effective interaction that gives rise to superconductivity in
this model, i.e., the irreducible particle-particle vertex """ (K, K') that enters the Bethe-Salpeter
equation (43) for the pair-field susceptibility. This vertex describes the scattering of a pair of
electrons with momenta and spins (k 1, —k ) to a pair of electrons with (k' T, —k' |) (see
Fig. 5). As discussed in Sec. 2.4, we can also study the leading eigenvalue and -vector of the
Bethe-Salpeter equation and thus obtain new insight into this question.
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The left panel of Fig. 9 shows the temperature dependence of the leading eigenvalue \;(7") of
the particle-particle Bethe-Salpeter equation (43) for U = 4t, (n) = 0.85, calculated with DCA
in the 24-site cluster shown in the inset [26]. As one sees from the blue curve, it rises sharply
at low temperatures and approaches one, consistent with the divergence in the pair-field suscep-
tibility. One can also construct similar Bethe-Salpeter equations for the charge and magnetic
particle-hole channels. The leading eigenvalues for these channels are shown inred (Q = (, )
magnetic) and green (Q = 0 charge). We see that the magnetic eigenvalue is initially domi-
nant, approaches one, but then saturates at values smaller than one at low temperatures. The
leading eigenvalue in the charge channel, in contrast, remains small over the entire temperature
range. From this, we can conclude that antiferromagnetic and superconducting correlations are
the dominant correlations in the system.

The momentum dependence of the eigenvector ¢,( K, w,,) corresponding to the leading pairing
eigenvalue along the dashed line in the inset of the left panel is shown in the inset of the right
panel. We see that it has a d,2_,2-wave cos K, — cos K, dependence. We note that in contrast
to the calculation of the pair-field susceptibility, where a d-wave form factor is assumed, here
this comes out naturally. The Matsubara frequency dependence of the pairing eigenfunction
¢a(K , w,) is shown in the main right panel and compared with the frequency dependence of the
Q = (7, ™) magnetic susceptibility xs(Q, w,,). From this we see that (1) the pairing is retarded,
i.e., frequency dependent, and (2) the pairing dynamics reflects that of the antiferromagnetic
spin fluctuations.

We can also study the momentum and frequency dependence of I'"?( K, w,,, K’ w,/) directly.
Its momentum dependence is shown for three different temperatures in Fig. 10. We see that
I'’’(K, K') is peaked at large momentum transfer K — K’ = (7, 7), and this peak increases
in size as the temperature is lowered. This mirrors the growth of the antiferromagnetic spin
fluctuations with decreasing temperature, as seen in the plot of x(Q = (7, 7), w,, = 0) in the
same figure.

Interestingly, we see that the pairing interaction /P in momentum space is positive, that is,
repulsive! One may then ask: How does a repulsive interaction give rise to pairing? The
answer lies in its momentum structure. If we look at the Bethe-Salpeter equation (43), or its
simpler version, the BCS gap equation (45), we see that for an interaction V (k, k') = V that
does not depend on momentum, a non-trivial solution A(k) # 0 only exists if V' < 0. This
follows from the minus sign on the left hand side and the fact that the other terms under the
sum are all positive. This is the case for the conventional BCS superconductors or the attractive
Hubbard model discussed in Sec. 3.1, for which V' < 0 and the gap equation gives an s-wave
gap A(k) = A without momentum dependence.

In contrast, the pairing interaction we find for the Hubbard model is positive and has momentum
dependence. In particular, it increases with increasing momentum transfer k — k’. The Fermi
surface of the doped Hubbard model is schematically shown in the right panel of Fig. 11. It is
similar to that of the hole-doped cuprates. The pairing interaction V' (k, k') scatters a pair with
momenta (k, —k) to a pair with momenta (k’, —k’) for k and k' near the Fermi surface and this
scattering is strongest for a momentum transfer of k — k' = (7, 7). If the pairing gap A(K')
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Fig. 10: Momentum structure of the pairing interaction in the 2D Hubbard model: Top
panel: K — K' dependence of I'""(K , K') for w,, = w, = w1 calculated with DCA/QMC
for a Hubbard model with U = 4t and (n) = 0.85 on a 4x4 cluster for different temperatures.
Lower panel: Q-dependence of the spin susceptibility xs(Q,w,, = 0) for the same parameters.
Both quantities display a similar increase near (mw, ) as the temperature is lowered. Figure

from [5].

is positive for k' = (m,0), and V(k — k') predominantly scatters pairs from k' = (7,0) to
k = (0,7), the gap equation has a non-trivial (A(k) # 0) solution if A(k) < 0 for k = (0, 7).
This is the case for a d,2_,2-wave gap A(k) ~ cosk, — cos k,, which changes sign between
k = (7,0) and (0, 7). Hence, the d,2_,2-wave momentum structure of the gap arises naturally
from a pairing interaction that is repulsive in momentum space and peaked at large momentum
transfer. In fact a superconducting gap that changes sign on the Fermi surface generally signals
a non-BCS like repulsive pairing interaction and therefore is taken as evidence for the presence
of unconventional superconductivity [5].

How a repulsive pairing interaction that is peaked at (7, ) can lead to pairing can also be seen
by Fourier-transforming the interaction /" (K, K') to real space, according to

TPl ) =Y X' (K K') e, (47)

K.K'

for w,, = w,y = 7T Here, I'*"({,,(,) is the strength of the w,, = w,, = T pairing interaction
between a singlet pair formed with one electron at the origin and the other at site (¢, ¢,). Itis
shown in the right panel of Fig. 11. We see that this interaction is strongly repulsive for on-site
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Fig. 11: D-wave pairing from repulsive interactions: Left panel: Sketch of how repulsive
scattering at large momentum transfer gives rise to d,»_,2-wave pairing for the Fermi surface
of a hole-doped Hubbard model. For this case, a gap that changes sign between the regions
near (m,0) and (0, ) satisfies the BCS gap equation (45). Right panel: Real space Fourier-
transform I'P?((,, (), Eq. (47), of the pairing interaction I'"? (K, K') for w, = w, = 7T
shown in Fig. 10 for T' = 0.125t. Here red (blue) bars indicate positive (negative) values of
I’ (¢, 0,) and the length of the bars corresponds to its magnitude. The pairing interaction
is strongly repulsive for on-site pairs, but attractive when the electrons forming the pair sit on
nearest-neighbor sites. Figure from [5].

pairs, but attractive (negative) if the electrons are on nearest-neighbor sites. At longer distances,
the interaction keeps oscillating but falls of rapidly with distance.

We have seen that the momentum and frequency structure of the pairing interaction given by
the irreducible particle-particle vertex I'P?(k,w,,, k', w, ) reflects that of the spin fluctuations
described by the spin susceptibility xs(q, wy,). In fact, from weak coupling theory, one expects

that

Fpp(kawm k/awn’) ~ gU2Xs<k - k/awn - Wn’); (48)

where U is a coupling constant. This form of the pairing interaction is only approximate, i.e.,
it only accounts for a subset of the Feynman diagrams that enter I *?. However, DCA studies
have found that other contributions, such as the charge fluctuations, are negligible [16]. Hence,
this approximate form has been shown to give a very good approximation of the “exact” DCA
vertex /PP and thus the resulting eigenvalues and -vectors of the Bethe-Salpeter equation, and
therefore 7. [27]. One then speaks of a spin-fluctuation pairing interaction, in which the pairing
is mediated by the exchange of (antiferromagnetic) spin fluctuations [5]. In contrast to the
electron-phonon interaction, however, in this case the electrons that are being paired provide
their own pairing glue, i.e., there are no separate degrees of freedom such as the phonons in
conventional superconductors that mediate the pairing. Thus, it is not possible to separately
tune the degrees of freedom that are being paired and the degrees of freedom that mediate
the pairing. This makes it difficult to optimize 7,.. One may see this by using a separable



Superconductivity within DMFT and DCA 13.23

<
o
o
%) B O\
oo / o—o\o
o o
o / \
S C e
= { T T T T \
o
- V
(b) (o] d(X) =]
Vy(x =0.05)
[e0)
©
p ® Pyolx)
S 7 / do
a’  Pao(x=0.25)
< | o
o
\ .
N o<
o /D
(o]
QS a—" \O\o\o
e { w w w w ]
0.00 0.05 0.10 0.15 0.20 0.25

X

Fig. 12: Dome-shaped structure of the superconducting phase: 7op panel: Superconducting
1. versus doping x in the 2D Hubbard model with U = 8t calculated with DCA/QMC for
an 8-site cluster. Bottom panel: Normalized interaction strength V,; and intrinsic pair-field
susceptibility P, versus doping x for T' = 0.125t. The dome-like shape arises from competing
trends in these two quantities as the doping varies. Figure from [28].

approximation for /PP [26],
'K, K') = =V da(K) ¢a(K), (49)

which becomes valid close to 7, when the d-wave eigenvalue )\, is well separated from other
eigenvalues. With this, the Bethe-Salpeter equation (43) for the d-wave eigenvalue becomes

Va(T) Pyo(T) = Ag (50)

with the “intrinsic” d-wave pair-field susceptibility Py o(T) = T/N. Y, ¢3(K) G5 1 (K).

The doping x = 1 — (n) dependence of P;,(7") and V(1) extracted from V; = \;/ Py via
Eq. (50) is shown in the bottom panel of Fig. 12 together with the x-dependence of 7,.. From
this we see that the doping x, as a tuning parameter, has opposite effects on the strength of the
pairing interaction V5 and the intrinsic pair-field susceptibility P, and thus 7, as seen in the
top panel: With decreasing x, Vj rises, but Fq falls, and the opposite behavior is observed
with increasing x. The increase in Vj; as half-filling (x = 0) is approached can be understood
from the increase in the strength of the spin-fluctuations. The reason that this increase does not
lead to an increase in 7. is that, at the same time, P, is suppressed. This can be understood
from a reduction in the quasiparticle weight as the Mott state is approached. The interplay of
the pairing strength 1 and the intrinsic pair-field susceptibility P, and their opposite doping
dependence lead to the dome-shaped 7. seen in the top panel of Fig. 12.
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3.3 Extended Hubbard model

In the conventional electron-phonon mechanism of superconductivity, retardation is a neces-
sary ingredient in order to overcome the repulsive effect of the Coulomb interaction. In the
Hubbard model, as well as in the cuprates, however, the d-wave structure of the Cooper pair
wave function completely avoids the strongly repulsive effect of the local Coulomb U, because
the electrons making up the pair sit on nearest-neighbor sites. Retardation is therefore not a
necessary ingredient in this case. From the strong frequency dependence of the d-wave eigen-
vector shown in Fig. 9, however, we see that the pairing is nevertheless retarded on a scale set
by the dynamics of the spin fluctuations.

The situation changes when an additional nearest-neighbor Coulomb repulsion

VoY e (51)
(ig),o0’

is considered and added to the Hubbard Hamiltonian in Eq. (1). The idea is that in realistic
systems, the Coulomb repulsion is hardly screened to a purely local interaction, but has an
additional short-ranged contribution. The resulting extended Hubbard model has recently been
studied with DCA to examine the effect of V' on d-wave superconductivity [29]. For d-wave
pairs, where the electrons sit on neighboring sites, V' is expected to have detrimental effects on
superconductivity.
This is seen in the plot of 7. versus the strength of V' shown in Fig. 13. These results were
obtained from 2 x2-cluster DCA calculations of the leading d-wave eigenvalue for the extended
Hubbard model for U = 7t and (n) = 0.9. Although, as expected, 7, is reduced with increas-
ing V, this decrease is rather modest, even up to relatively large values of V' close to U/2. Why
is d-wave superconductivity so robust with respect to a nearest-neighbor Coulomb repulsion V,
which, in a static picture, will strongly reduce the binding energy of a d-wave pair and thus
should rapidly suppress 7.7 A clue lies in the frequency dependence of the pairing interaction.
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0.02
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0.00 T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

\%
Fig. 13: Resilience of d-wave pairing to a nearest-neighbor Coulomb repulsion: DCA/QMC
2x2-cluster results for T, versus the nearest-neighbor Coulomb repulsion V' in an extended 2D
Hubbard model with U = Tt and (n) = 0.9. Figure from [29].
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Fig. 14: The role of retardation in the pairing mechanism: Left panel: DCA/QMC 2x2-
cluster results for the d-wave projected pairing interaction I ;(iw,, = iw, —iw, ) with w, = 7T
versus wy, for different values of V for (n) = 0.9 and T = 0.1t. [, is attractive at low
frequencies and for finite V' turns repulsive at higher frequencies. Right panel: Frequency
dependence of the leading d-wave eigenvector ¢4(K ,w,,) for K = (m,0) for different values
of V. The sign change in ¢4( K , w,,) reduces the repulsive effect of V and thus stabilizes d-wave
superconductivity. Figure from [29].

Fig. 14 shows a plot of the d-wave projected pairing interaction

_ ZK',K" gd(‘K)Fpp(K’wn? K,7wn’)gd(K,)

Ty(wp = wp — wyr) = S (K (52)

Here g4(K) = cos K, — cos K, and w,y = 7T. For V= 0, we see that [ ;(w,,) is negative
over the whole frequency range. In other words, the pair scattering is attractive in the d-wave
channel, as we know from the previous results for the standard model without V. When V' is
turned on, we see that [;(w,,) remains attractive at low frequencies, but then turns repulsive at
higher frequencies. This reflects the fact that V' is repulsive in the d-wave channel.

The dynamics of Iy(w,,) is similar to that of the conventional electron-phonon superconductors,
which is attractive at low frequencies due to the electron-phonon interaction, and repulsive at
high frequencies due to the Coulomb repulsion. The effect of this sign change on the d-wave
pairing eigenvector is shown in the right panel of Fig. 14, where the frequency dependence of
¢4( K, wy,) is plotted for different values of V. As seen before in Fig. 9, for V' = 0, it rapidly falls
to zero. For finite V', however, we see that ¢4( K, w,) changes sign and turns negative at high
frequencies, reflecting the sign change in the d-wave pairing interaction [ ;(iw,,). Thus, just as
¢4(K,w,) changes sign in K to adapt to the repulsive nature of the pairing interaction at large
momentum transfer, ¢4( K, w,) also changes sign in frequency to adapt to the repulsive tail of
the pairing interaction due to the Coulomb V. Therefore, just as in the electron-phonon case,
retardation is important and necessary to protect the d-wave pairs from the repulsive effects of
the (nearest-neighbor) Coulomb interaction.
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4 Summary and concluding remarks

In these lecture notes, we have described how one can study superconductivity within the DMFT
and DCA frameworks and how these approaches have been used to provide new insight into the
nature of the pairing mechanism that leads to superconductivity in Hubbard models. As with
other ordered states, there are always two alternative methods to determine a possible phase
transition to a symmetry broken state within a mean-field approach like DMFT and DCA. The
first option is to extend the algorithm to account for a finite order parameter that describes
the symmetry broken state (anomalous propagator (cxt+c_g,) in the case of superconductivity),
and start the calculation with a finite field that couples to the order parameter. This field is
then switched off after a few iterations and the calculation relaxes to either a state with order or
without. One may also keep the field turned on during the full calculation, carry out calculations
for different field strengths, and then calculate the response (susceptibility) to the field from the
derivative of the order parameter with respect to the field. The transition temperature 7. is then
obtained from the temperature where the susceptibility diverges. The second option is to carry
out the usual normal state calculation in the absence of order or an external field, but instead
calculate the susceptibility directly from the 4-point correlation function constructed from the
order parameter. Since both DMFT and DCA approaches are thermodynamically consistent [7],
both calculations will give identical results for the susceptibility and therefore 7.

We have also seen that DMFT and DCA are powerful approaches to study superconductivity
in Hubbard models. DMFT, due to its local nature, can only describe superconducting phases
with order parameters that have a local contribution, such as s-wave. Applied to the attractive
Hubbard model, it allows to study s-wave superconductivity, which is expected in the doped
model due to its on-site attractive pairing potential U < 0. While it captures the rise of 7. with
increasing |U|, DCA calculations employing larger clusters are needed to describe the downturn
of T, at large |U| due to phase fluctuations.

For the repulsive Hubbard model, s-wave pairing is energetically unfavorable and therefore
DMEFT is not an adequate approach. DCA calculations employing a 2x2 cluster are the sim-
plest possible calculations to study the d,2_,2-wave pairing state that is expected for this model,
which offers the most basic description of the cuprate high-temperature superconductors. And
indeed, such 2x2-cluster DCA calculations have found properties reminiscent of the real ma-
terials, including antiferromagnetic, d-wave superconducting, and pseudogap behavior. DCA
calculations also find that superconductivity remains stable in larger cluster calculations, pro-
viding evidence that the doped 2D Hubbard model does have a finite temperature d-wave su-
perconducting transition.

Finally, we have seen that one can go beyond these numerical experiments and use these ap-
proaches to get insight into the mechanism that leads to pairing in these systems. Unlike real
experiments, these calculations can be used to directly analyze the momentum and frequency
structure of the pairing interaction. For the simple Hubbard model, one finds that it reflects the
momentum structure of the spin fluctuations, and one speaks of a spin-fluctuation pairing inter-
action. Just as in the conventional electron-phonon case, this interaction is retarded on a scale
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set by the dynamics of the antiferromagnetic spin fluctuations. While this retardation is not
needed to overcome the local Coulomb repulsion in the simple Hubbard model, we have seen
that it is essential in making the d-wave pairing state resilient to an additional nearest-neighbor
Coulomb repulsion.

Because of the difficulty associated with solving the DMFT impurity or DCA cluster problem,
most applications of these approaches in the field of superconductivity have been concerned
with single-band Hubbard models. Additional orbital degrees of freedom must, however, be
included in more complex models if one wants to study most materials other than the cuprates,
such as, for example, the iron-based superconductors. While this remains a challenging but
desirable task for the long term, more immediate progress may be made with simple toy models,
such as the bilayer Hubbard model studied in Ref. [30], that have some overlap with the physics
of the real materials.
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