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Forschungszentrum Jülich, 2018, ISBN 978-3-95806-313-6
http://www.cond-mat.de/events/correl18

http://www.cond-mat.de/events/correl18


2.2 Ole Krogh Andersen

1 Introduction

In contrast to most other lectures in this Autumn-School series on Correlated Electrons, this
one will deal little with recent theories of how to describe and compute observables for corre-
lated materials, but mostly with insights derived a while ago from bands, not even quasiparticle
excitations, but merely Hohenberg-Kohn-Sham eigenvalues, Kohn’s “bastards of DFT”. After
scanning through previous year’s lectures and recent papers, I felt that this might not be entirely
inappropriate.

2 Periodic system of the elements

The most fundamental chemical insight ever derived from one-electron energies is Bohr’s theory
of the periodic system of the elements [1]. I therefore found it appropriate to start with a
reminder about the electronic structure of atoms (see also Refs. [2–5]).
Materials are made of atoms, and atoms are (almost) round. The electronic structure of an
atom can therefore be constructed from atomic orbitals, ϕl (εnl, r)Ylm (r̂)χσ (s), which are the
solutions of the one-electron Schrödinger equation in the spherically symmetric, self–consistent
potential, v (r), from the attractive protons in the nucleus and the repulsive (other) electrons in
the atomic shells. χσ (s) are the spin functions which are the eigenfunctions of ŝz, Ylm (r̂) are
the spherical harmonics which are eigenfunctions of l̂2 and l̂z, and the radial functions satisfy
the radial Schrödinger equations,

−
(
rϕl(εnl, r)

)′′
=
(
εnl − vl(r)

)
rϕl(εnl, r), with vl(r) ≡ v(r) + l(l + 1)/r2 (1)

(in atomic Rydberg units) with the boundary conditions that ϕ (r) be regular at the origin and
vanish at infinity. The potentials v (r) = vs (r) and vd (r) are shown in Fig. 3 for a neutral Pt
atom in weak lines.
For given l, the solutions of (1) are numbered in order of increasing energy, εnl, by the principal
quantum number, n, which takes the values l+1, l+2, . . ., because with this convention, the en-
ergy levels for a Coulomb potential, −2Z/r, are independent of l and given by εnl = −(Z/n)2,
Bohr’s formula from 1913, before quantum mechanics. The radial functions decay at large
distances as exp(−Zr/n) and the number of nodes in the radial function is n−l−1.
For a neutral atom with Z protons in the nucleus and Z electrons in the shells, the effective
charge defined in terms of the self-consistent potential through: Zeff (r) ≡ −rv (r) /2, decreases
from the value Z, towards 1 as r increases from 0 to ∞ due to the screening by the (other)
electrons. As a consequence, the 2 (2l + 1)-degeneracy of the attractive Coulomb potential is
lifted and the perturbation by the repulsive centrifugal potential, l (l + 1) /r2,will cause the one-
electron energies for the same n to increase with l : εns < εnp < εnd < ... Whereas the order
of the s- and p-energies is always such that εns < εnp < ε(n+1)s, the order of the d-energies
is such that ε(n+1)s < εnd when the nd-shell is empty, and such that εnp < εnd < ε(n+1)s

when the nd-shell is full. Analogously, εnd < ε(n−1)f when the (n− 1) f -shell is empty, and
ε(n−1)d < ε(n−1)f < εnd when the (n− 1) f -shell is full.
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Fig. 1: Periodic Table of the Elements. From Ref. [6].

If we now occupy the orbitals, of which there are 2(2l+1) per nl-subshell, with Z electrons in
order of increasing energy, we recover the Periodic Table, which has one entry for each value of
Z increasing in steps of 1 along one row after the other (Fig. 1). The rows are numbered by the
period, n, which is the principal quantum number of the outermost s-electron. As Z increases,
the first term of the radial potential,−2Zeff(r)/r+l(l+1)/r2, in Eq. (1) deepens and counteracts
the repulsive second term such that bound states occur if Z ≥ 5 (B), 21 (Sc), and 58 (Ce), for
l=1, 2, and 3, respectively. This leads to the insertion of the p-, d-, and f -series, whereby the
length of the period (number of one-electron states in the n-shell) becomes 2(lmax+1)2.
In the columns are the elements with similar chemical properties, and Fig. 1 gives the config-
uration, i.e., the numbers of electrons in the outer shells for the ground states of the neutral
atoms. With increasing l, the radial potential-well becomes more narrow and with it, the region
where εnl > vl (r), i.e., which is classically-allowed (see Fig. 3). This increased localization of
the orbitals with higher l leads to their decreased chemical activity and, hence, the very similar
chemical properties of the rare earths and of the actinides which are exclusively associated with
their outer s-, p-, and possibly d-electrons.
When, in the process of filling the nl-subshell, we move from one element to the next, the added
nl-electron will partly screen out the added proton. Specifically, the increase of Zeff (r) is 1 for
r in the region near the nucleus which is classically forbidden [vl (r) > εnl] for an nl-electron,
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Fig. 2: First ionization potentials as a function of Z. From Ref. [2].

trails off in the classically-allowed region, and vanishes outside. Hence, εnl will fall a bit, and
ϕl (εnl) will contract.
When the filling of the nl-subshell is completed and we start to fill into the next, n′l′-subshell,
the increase of Zeff (r) by unity does not start to trail off before r reaches the region allowed for
an n′l′-electron. If n′ ≥ n, this is outside the region of an nl-electron and εnl will therefore drop
sharply and ϕl(εnl) contract rapidly, the nl-shell thereby starts to become part of the core. The
Fermi level, εF , will jump up, from εnl to εn′l′ . This is what happens most dramatically when
going from ns2 np6 to ns2 np6 (n+1)s1, i.e., from an inert gas to an alkali metal, and far less
dramatically when going from ns2 to ns2 np1, i.e., from Be to B, from Mg to Al, from Zn to Ga,
from Cd to In, and from Hg to Tl. In the last three cases the upwards jumps are larger because,
here, also the full (n−1)d10 shell contracts. This shell structure is clearly seen in Fig. 2 showing
for increasing Z the experimental first ionization potential. In theory, this is the ground-state
energy of the positive ion minus that of the neutral atom. Neglecting multiplet effects and using
the transition-state potential [7], it is simply −εF .
For an nd-shell, εnd continues to drop after the nd band is full, i.e., when going from nd10(n+1)s1

to nd10 (n+1)s2, i.e., from Cu to Zn, from Ag to Cd, and from Au to Hg. This is because the
(n+1)s shell contracts as it gets filled and drags the nd shell along.
The abrupt behaviors observed when we start to fill into the n′l′-subshell do not occur if n′ < n,
because now ϕl′ (εn′l′) lies inside ϕl (εnl). This is the case at the beginning of a transition
series when going from ns2 to ns2 (n−1)d1, i.e., from Ca to Sc, from Sr to Y, from Ba to
La, or from Ra to Ac. Filling the more localized (n−1)d-shell, e.g., going from ns2 (n−1)d1

to ns2 (n−1)d2, hardly influences the ns energies and orbitals, εns and ϕs(εns). As ε(n−1)d

gradually drops, it will therefore at some stage reach εns whereby some of the electrons in the
ns-shell may be transferred into the (n−1)d-shell. After the filling of the (n−1)d-shell has
been completed, the filling of the ns shell will be resumed. The same holds for εnd and ϕd(εnd)
when filling the (n−1)f -shell in lanthanide or actinide series.



Insight from Bands 2.5

The positions and widths of the sp- and d-bands in the elemental, closely-packed transition
metals follow the same trends as the one-electron energies and orbitals described above. Also
the relative positions of O p-bands and transition-metal d-bands in transition-metal oxides are
roughly in accord with the ionization potentials in Fig. 2. Periodic Tables of the elements
containing information about bands in solids may be found in Refs. [8–12] and [4].
The relativistic effects may for the purpose of conceptual simplicity and with little loss of accu-
racy be included by formally using the Pauli Hamiltonian,

H = −∇2 + v (r)− 1

c2

((
ε− v(r)

)2
+ v′(r)

∂

∂r
− v′(r)

r
2ŝ · l̂

)
. (2)

Of the relativistic terms (∝ c−2) the two first, the mass-velocity and the Darwin term are diago-
nal in the lmσ-representation and may therefore be included in the radial equation for ϕl (ε, r).
But the last, the spin-orbit(SO)-coupling term is not diagonal because

〈
l′m′

∣∣∣ 2ŝ · l̂ ∣∣∣lm〉 =

(
mδm′m

√
(l+m)(l−m+1) δm′(m−1)√

(l−m)(l+m+1) δm′(m+1) −mδm′m

)
δl′l (3)

in the ↑, ↓-representation. Since the atom is round, ̂ ≡ l̂ + ŝ is conserved, so that l̂2, ŝ2, ̂z,
and ̂2, are good quantum numbers whose eigenvalues are specified by respectively l, s = 1

2
,

µ = m± 1
2
, and j = l ± 1

2
. From:

j (j + 1) = ̂ · ̂ = l̂ · l̂ + ŝ · ŝ + 2ŝ · l̂ = l(l + 1) + 3/4 + 2 ŝ · l̂

we then see that

2 ŝ · l̂ = −(1 + κ) =

{
l

−(l + 1)
when j =

{
l + 1

2

l − 1
2

.

Changing to the Pauli spinor representation, ϕκ(ε, r)Yκµ(r̂σ), the radial equation for r ϕκ(ε, r)
is (1), but with

1

c2

((
ε− v(r)

)2 − v′′(r)

2
− v′(r)

r
+ (1 + κ)

v′(r)

r

)
(4)

subtracted from the potential, v (r).
The relativistic terms are seen to have their origin in the regions close to the nuclei where the ve-
locity of the electron is high. Hence, they increase with increasing probability that the electron
is near the nucleus; that is, with increasing Z (approximately ∝ Z2) for a given nl-shell, and
with decreasing n and l for a given Z. The first term in Eq. (4), which is caused by the increase
of the electron’s mass with velocity, is always lowering its energy. The second term, which may
be interpreted as the correction of the electron’s potential energy due to its finite extent of the
order of the Compton wavelength h/m0c, raises the energy of s-electrons, but is negligible for
higher l. Those two first terms are by far the largest. They can be treated essentially exactly
by exchanging the radial Schrödinger equation (1) by the radial scalar Dirac equation, which
is like the perturbative Pauli equation (4), but without its last, SO-coupling term [13]. That
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Fig. 3: Energies, ε5d, and potentials, v(r) and vd(r), entering the radial Schrödinger equa-
tion (1) for atomic and fcc Pt in respectively weak and solid lines. The potentials are lined up
close to the nucleus. MTO is the MT zero. S and SWS are respectively the MT and the WS
radius. The latter is denoted s in the following. 1 Ry=13.6 eV. From Ref. [15].

term, ξ ŝ · l̂, is then added as in the Pauli Hamiltonian (2), but the parameter, ξl (ε), is obtained
accurately from the proper two coupled radial Dirac-equations [14]. The transition-metal band
edges and the SO coupling parameters for the nd-bands shown respectively in Figs. 7 and 10 in
the next section were calculated using the radial Dirac equations.

Finally, a brief reminder about the many-electron wavefunctions and energies of atoms: The
configurations given in the Periodic Table specify the occupations of the open nl-subshells.
Due to the 2(2l+1)-fold m- and σ-degeneracy of such a shell, several Slater determinants cor-
responding to the various possible occupancies ofm and σ may be formed for this configuration.
Since the Hamiltonian is invariant to all rotations, the proper linear combinations of Slater de-
terminants are those which correspond to definite values of L̂2, L̂z, Ŝ2, and Ŝz, and the energy
of such an L-S term, designated 2S+1L, is independent of ML and MS . The terms differ in
energy by intra-atomic Coulomb energies, i.e. eVs. The (2L+1)(2S+1)-fold degeneracy of a
term will be lifted by the SO coupling, in the presence of which L, S, J , and MJ , rather than
L, S, ML, and MS , are good quantum numbers. Here J is the quantum number for the length
of Ĵ ≡ L̂ + Ŝ. An atomic level is thus designated by the symbol 2S+1L2J+1, and the levels of a
given term form its multiplet structure.

For a given configuration the state of the lowest total energy usually follows from the three
Hund rules which dictate that one should first choose the maximum value of S consistent with
the Pauli principle, then the maximum value of L, and finally the minimum value, |L− S|, of J
if the shell is less than half full, and the maximum value, |L+ S|, of J if the shell is more than
half full.
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3 Band structures of the elemental metals

Referring to Walter Harrison’s textbook [4] for a more comprehensive view, I shall concentrate
on the elements in the left part of the periodic table. This part includes the one with d- and f -
electron elements. They become either superconducting (“itinerant”) or magnetic (“localized”)
at low temperature. A table reorganized in such a way that this separation becomes clearly
visible and exhibits the elements of particular interest, namely those (Ce-Pr, Pu-Am, Mn-Fe,
Rh-Co, Pd-Ni) around the border line, was reproduced as Fig. 1 in Richard Martin’s lecture
notes and discussed there [16].

3.1 Separating structure and potential

The structures of the alkali, alkaline earth, transition, noble, rare-earth, and most actinide metals
are close- or closely packed with 12 (fcc, hcp, dhcp) or 8 (bcc) nearest neighbors at ambient
temperature and pressure. The Wigner-Seitz (WS) cells are regular polyhedra with 12 or 8
faces and – as “seen” by an s-, p-, or d-electron with at most 4 orbital lobes – they are almost
spherical, and so is the crystal potential, V(r), inside a WS cell. If we approximate this potential
by a superposition of spherically symmetric potential wells, v(r), centered at the atomic sites:
V(r) ≈

∑
R v(|r−R|), each well can have short range. If we force it to vanish outside the

sphere inscribed the WS cell, this forces the crystal potential to take the form of a muffin-
tin (MT). Such potentials are used to generate the basis sets in the Korringa-Kohn-Rostocker
(KKR) and (linear) augmented plane-wave (L)APW methods of band theory [5, 17]. By being
able to handle slightly overlapping potential wells, muffin-tin orbitals (EMTOs, LMTOs, or
NMTOs) are, individually, more accurate than APWs [18].
The full lines in Fig. 3 show v(r) and vd(r) for the MT potential in fcc Pt, lined up near the nu-
cleus with the weak lines showing those potentials in a neutral Pt atom. In elementary, closely-
packed solids where the WS cells are neutral and nearly spherical, v(r) bends over towards the
value of the self-potential, −2/s, because the charge which in the neutral atom was outside the
WS sphere is compressed into it [19]. Adding now the centrifugal repulsion, we see that vd(r) –
rather than confining ϕd(ε5d, r) as in the atom– develops a barrier through which the 5d states in
the solid can leak out, thus causing the atomic 5d-level to broaden into a band (cross-hatched).
To understand the details of this, we need to consider how ϕl(ε, r) depends on ε in the neigh-
borhood of the atomic eigenvalue, εnl, as dictated by the radial equation (1) and the shape of
vl(r). This is illustrated in Fig. 2 of Ref. [18]. The aim is to find the energies for which we can
join linear combinations of partial waves,

∑
Rlm ϕl(ε, rR)Ylm(r̂R)cRlm [notation: rR ≡ r−R

and rR ≡ |rR|], with different lm and R smoothly across the boundaries of the WS cells and
thus form solutions of the Schrödinger equation for the solid. If it is a crystal with one atom
per cell, the linear combinations in neighboring cells separated by a translation t should merely
differ by the Bloch phase exp(ik · t). This is how Wigner and Seitz posed the band-structure
problem, but it proved difficult to solve in that way. However, the generalized WS rules, used in
the renormalized-atom approach [19], stating that there will be a band of l-character extending
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Fig. 4: Bare canonical d-bands, i.e., the eigenvalues of SR′l′m′,Rlm (k) , for the hcp structure
with c/a =

√
8/3. From Ref. [12].

from the energy, Bl, where ϕl(r) comes in flat to the WS sphere, i.e., ϕ′l(Bl, s) = 0, to the
energy, Al, where ϕl(r) has a node at the sphere, i.e., ϕl(Al, s) = 0, have proved quite accurate
and most useful.
The atomic-sphere approximation (ASA) [20] solved the problem to the extent that charge- and
spin-selfconsistent – and thus DFT – calculations could be carried out. It specified anisotropic
k-dependent boundary conditions for the radial logarithmic derivatives on the WS sphere,

Dl(ε) ≡ D{ϕl(ε, s)} ≡
sϕ′l(ε, s)

ϕl(ε, s)
, (5)

by the set of linear, homogeneous equations∑
lm

(
Sl′m′,lm(k)− Pl′(ε) δl′l δm′m

)
clm = 0 (6)

for the coefficients, clm, of the local partial-wave expansions. In the diagonal of the secular
matrix are l-dependent, ever-increasing potential functions of energy, which are

Pl(ε) ≡ 2(2l+1)
Dl(ε) + l + 1

Dl(ε)− l
≈ ε− Cl

∆l

[
1 + γl

ε− Cl
∆l

]−1

≡ 1

γl

ε− Cl
ε− Vl

, (7)

in terms of the ever-decreasing logarithmic-derivative functions (5). In fact, dDl(ε)/dε =

−〈ϕ2
l (ε)〉/sϕ2

l (ε, s), as follows from partial integration of 〈ϕ(ε′)| − ∇2 + v(r) − ε|ϕ(ε)〉 = 0

and ε′ → ε. On the right-hand side of the approximation (7), the potential functions are
parametrized in terms of potential parameters for the center of the l-band, Cl, its width, ∆l, and
its distortion, γl, or, alternatively, the square-well pseudopotential parameters, Vl ≡ Cl−∆l/γl,
and the band-mass parameters, µl and τl (= 1 for free electrons), to be defined in Eq. (11).
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The matrix Sl′m′,lm(k) is the bare canonical structure matrix, which depends on the Bloch vector
k, but is independent of the energy and the scale of the lattice. Each diagonal block, Slm′,lm(k),
can be diagonalized, once and for all, yielding the so-called canonical bands, Sli(k), which
upon scaling via Pl (ε) become the unhybridized l-bands, εli(k). In Fig. 4 we show the ten
canonical d-bands for the hcp structure with two atoms per primitive cell, the most common
structure of the elemental metals. Obviously, the detail displayed here is way beyond the WS
rules, which merely state that the l-band extends from Dl = 0 to −∞, which rescales to Pl
extending from −2(2l+1)(l+1)/l to 2(2l+1), i.e., from −15 to +10 for the d-band, from −12

to +6 for the p-band, and from −∞ to +2 for the s-band. This agrees surprisingly well with
the more accurate values taken at the edges of the canonical bands, albeit less well in the more
open bcc structure. This may be seen in Figs. 4 and 5, and in Refs. [8, 10–12]. The center of
gravity of a canonical band, i.e., its first moment integrated over the Brillouin zone, is zero, and
so is its average for any k-point, except for the canonical s-band, and for the p-bands at k=0.
Knowledge of the potential parameters, tables of which may also be found in Refs. [8, 10, 11]
and with most detail in [12], allows one to construct the unhybridized energy bands by placing
them at the respective energies, Cl, scaling them by, ∆l, and distorting them by γl. Finally,
the s-, p-, and d-bands belonging to the same irreducible representation (the numbers in Fig. 4)
should be allowed to hybridize by taking the off-diagonal blocks of the structure matrix into
account. This is illustrated in Fig. 6, but since the distortion of the s-band and its hybridization
with the p-band are relatively large, thus developing into a nearly free-electron like sp-band,
the unhybridized bands shown here were defined with respect to the screened structure matrix:
Sγ ≡ S [1− γS]−1. The quantities in this screening equation are matrices and γ is diagonal. In
the γ-representation, the one-electron Hamiltonian takes the simple, orthogonal tight-binding
form [12, 22]

Hγ
R′l′m′,Rlm(k) =

√
∆R′l′ S

γ
R′l′m′,Rlm(k)

√
∆Rl + CR′l′ δR′R δl′l δm′m. (8)

For completeness we have included an index, R, labelling the sites, R, of the atoms in the
primitive cell. For the hcp structure considered in Fig. 4, the two sites are identical, so that the
potential parameters are independent of R, but the dimension of structure matrix is doubled.
The ASA brought the realization that the bewilderingly complication of the band structures of
d- and f -band materials is primarily of structural origin and can be expressed as canonical
bands or hopping integrals. The potential and, hence, the approximations for exchange and
correlation, merely decide the positions and widths of – and the hybridizations between – these
s-, p-, d-, and possibly f -bands. This partly explained why a standard potential construction
could work so well for Fermi surfaces and low-energy excitations [10, 23]. The original KKR
method, has the form (6), but its structure matrix has long |R′−R|-range end thereby depends
strongly on energy so that obtaining the band structure, εj (k), requires a complicated search
for the roots of a secular determinant.
The insight leading to the ASA (6) was that the relevant energies, ε, are less than ∼2 Ry above
the potential, −2/s, in the region between the atoms (Fig. 3), whereby the corresponding wave-
lengths, λ ≡ 2π/κ & 2π/

√
2 a.u., exceed typical interstitial distances in closely packed mate-
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t2g 
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Fig. 5: Densities of states (DOS) for the bcc, fcc, and hcp
(
c/a =

√
8/3
)

bare canonical d-
bands and their separation into eg and t2g projections for the bcc (bottom left) and fcc (bottom
right) structures. From Ref. [8]. The open, heavy-hole FS-sheet in fcc Pd. The van Hove
singularities caused by the saddlepoints in this 5th band at P1 and P2, lying respectively 2 and
13 mRy below εF , bracket the large DOS peak at the top of the fcc d-bands. From Ref [15]. A
tiny hole pocket (not shown) caused by spin-orbit splitting at L existed in the calculation and
was observed later [21].

rials, and therefore need not be accurate. Similarly, partial waves with l . 3 cannot distinguish
between touching and slightly overlapping MT spheres. The simplest choice was therefore to
join a solution of the Laplace equation smoothly onto the partial wave at the WS radius:

ϕl(ε, r)

ϕl(ε, s)
=
Dl(ε) + l + 1

2l + 1

(
r

s

)l
+
l −Dl(ε)

2l + 1

(
r

s

)−l−1

and then subtract the function which is irregular at infinity

χl(ε, r) ≡ ϕl(ε, s)


ϕl(ε,r)
ϕl(ε,s)

− Dl(ε)+l+1
2l+1

(
r
s

)l
for r ≤ s

l−Dl(ε)
2l+1

(
r
s

)−l−1
for r ≥ s

(9)

to obtain a regular function which decays as an electrostatic 2l-pole field. This is essentially
the 1st-generation MTO whose tail is trivial to expand around other sites, thus giving rise to
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Fig. 6: Bcc vanadium. a): Unhybridized s(dotted)-, p(stippled)-, and d(full)-energy bands,
Cl + ∆lS

γ
li (k). b): Hybridized bands. Here, γs = 0.425, γp = 0.0907, and γd = 0.0095. From

Ref. [12].

the canonical structure matrix. Expressed in real space as two-center hopping integrals between
two MTOs at distance d, with the z-axis chosen along the inter-atomic vector, R−R′, and M
being the common azimuthal quantum number,

Sl′lM = (−1)l+M+1(l′ + l)! 2

√
2l′ + 1

(l′ +M)! (l′ −M)!

√
2l + 1

(l +M)! (l −M)!

(
s

d

)l′+l+1

. (10)

For 1st-generation MTOs the two-center Slater-Koster integrals [24] take the factorized form
Vl′lM =

√
∆R′l′m′ Sl′l m−m′

√
∆Rlm. For a general direction of the z-axis, e.g., the global z-axis

in a crystal, the bare structure matrix is given analytically in Ref. [14]. Using the real-valued
cubic harmonics listed on pp. 7.38/39 in Ref. [24], instead of the spherical harmonics, the bare
canonical two-center integrals are given in Table II of Ref. [25], which – with Vl′lM as given
above – is identical with those in Ref. [24].
The condition that a linear combination of MTOs solves the Schrödinger equation is then, that
inside any sphereR′ and for any l′m′, the sum of the tails from all other sites cancel the artificial,
regular Laplace solution in Eq. (9). Despite the extreme simplicity of expression (10), the long
range of the bare s- and p-MTOs (9) is for most purposes unpractical, and this is the reason why
screened Laplace solutions were chosen for the tails of the 2nd-generation MTOs [12, 22].
Fig. 7 shows the behavior of the Fermi level and the DFT-LDA band edges, Ad, Bd, Bs, and Bp

across the 3d 4sp, 4d 5sp, and 5d 6sp series with respect to the zero of electrostatic potential in
the infinite solid. The sp-bands are so wide that their tops, As and Ap, are beyond the frame
of the figure. The most significant trends follow from the filling of the subshells, like for the
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Fig. 7: Band edges in the elemental, close-packed (n−1)d ns np metals. Bl bottoms of the s
(red), p (green), and d (blue) bands. Ad (dark blue) top of the d band. EF (black) Fermi level.
The filled part of the sp and d bands are respectively dotted and cross hatched. The zero of
energy is the electrostatic potential at the WS sphere. Lu rather than La was taken as the 3rd
5d metal. DFT-LDA and LMTO were used in the calculations. From Table III in Ref. [12].

elements (Figs. 1 and 2): First, and most dramatically, the filling of the ns band going from
the alkalis to the alkaline earths causing Bs, Bp, and Bd to drop sharply and the ns orbital to
contract. Subsequently, the gradual development of the (n−1)d-band from being empty and
free-electron like in the alkali- and alkaline earths, to being an occupied semi-core band beyond
Cu, Ag, and Au, i.e., in Zn, Cd, and Hg. When going from the alkaline earths to the first tran-
sition metal, Bp and Bd move below the Fermi level, but while Bd and Bs continue to drop,
Bp moves up again and more or less stays slightly above εF throughout the transition series.
The shape and occupation of the nearly-free-electron ns np-band thus stay fairly constant. The
Fermi level follows a parabolic, downwards curving trend which results from the combined
effects of filling-up the d-band and lowering its center of gravity. The internal work function,
−εF , differs by the surface dipole from the external work function, which experimentally in-
creases from 3.1 eV in Y to 5.5 eV in Pd, as an example, while −εF merely increases by 0.4 eV
from 2.3 to 2.8 eV. The experimental ionization potential for atoms shown in Fig. 2 increases
from 6.5 to 8.5 eV [26].

Included in the LDA energies in Fig. 7 is the solid-state effect that the filling of first the ns- and
then the (n−1)d-bands causes the lattice to contract (Fig. 8) and this, itself, causes the bands to
broaden. The broadening is most visible for the d-bands whose bandwidth, Ad − Bd = 25∆d,
and reaches its maximum at respectively V, Nb, and Ta. Going from one period to the next,
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Fig. 8: Equilibrium WS radii for the elemental alkali, transition, and nobel metals. Open dots
are the experimental values. The line and the full dots are the results [12] of LDA LMTO [14,26]
calculations. The open triangles are LSD calculations for Fe, Co, and Ni. From Ref. [12].

i.e., increasing n, makes the orbitals expand and with them, the lattice and the bandwidths.
Now, the energy of an electron, free with respect to a flat potential Vs (≡ Bs) is purely kinetic,
and its band therefore scales like s2. In Fig 9, we therefore plot for the 4d 5sp series the filled
free-electron bandwidth s2(εF − Vs), which is seen to be more constant than εF in Fig. 7. The
s2(Cd − Vs)-measure of d-band position, together with the inverse of the mass at the center
of the d-band, Eq. (11), clearly exhibit the drop and narrowing of the d-band with respect to
the sp-band. Fig. 9 finally shows the behavior of the square-well pseudopotentials Vl, and the
inverse of the band masses, τl, at the respective Vl

1

µl
≡ s2∆l =

1

2
s3ϕ2

l (Cl, s) and
1

τl
=

1

2l + 3
s3ϕ2

l (Vl, s) . (11)

These inverse masses are proportional to the respective probability amplitudes at the WS sphere,
i.e., between the atoms. Since the partial waves are normalized to unity in the WS sphere, this
means that, had the partial wave been as in the atom, the band mass would be proportional
to the (re)normalization integral over the WS sphere [19]. The bottom of the 5s-band lies
well above the 4f -pseudopotential which, itself, is close to the potential ∼ −2/s at the WS
sphere. Moreover, the 5s-mass is significantly smaller than unity and attains a minimum, as do
(Vf − Vs) s2 and (−2/s− Vs) s2, near the middle of the series. This means that the 5s-electron
is excluded from the core region (orthogonalization hole). For a further discussion of this point
and other trends in the 4d 5sp series see Ref. [9].
The relativistic corrections (4) originate close to the nuclei and are negligible between the atoms.
But this does not mean that their effects in solids are the same as in atoms: In the ASA we
may, initially, normalize the solution, ϕl (ε, r), of the radial equation to have the same behavior
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Fig. 9: Band positions relative to the bottom of the s-band, Bs=Vs, in dimensionless units,
and intrinsic band masses, τl and µd, on a reciprocal scale, in the 4d 5sp-series; see text.
Open circles from the Mattheiss-Slater [27] construction (from Ref. [8]) and full lines from
the LDA [26] (from Ref. [10, 12]). For Rb, Sr, and Ag, the LDA yield Fermi surfaces in better
agreement with experiments.

near a given nucleus, i.e., integrate the radial equation outwards with the same initial condition
regardless of the surroundings and the energy. In the solid, ϕl (ε, r) must then be (re)normalized
to inside the WS sphere [see, e.g., Eq. (11)], and this makes the magnitudes of the relativistic
effects larger in the solid than in the atom by a factor of approximately 1/ (1− qnl), where
qnl is the fraction of the atomic nl-electron which lies outside the WS sphere. This fraction is
about 0.5 for s-electrons and less than 0.1 for d-electrons. The partial-wave renormalization
furthermore causes the magnitude of the relativistic effects in the solid to increase from the
bottom (Bl) to the top (Al) of the band, and this increase is nearly a factor two! The width
of the l-band is thereby decreased by the relativistic shifts, but increased by the SO splitting.
When going beyond the ASA, such renormalization effects are described by the overlap of the
MTOs (see Fig. 3 in Ref. [18]).

Of the relativistic corrections, the shifts are the most important and they have been included in,
e.g., Figs. 7 and 9. The downwards shift of the center of the ns-band (due to the mass-velocity
minus Darwin terms) with respect to the center of the (n−1)d band (due to mass-velocity),
Cns − C(n−1)d, is about 15 mRy, 75 mRy, and 250 mRy in the middle of the 3d-, 4d-, and 5d-
series, respectively. As a result, the number of non-d-electrons increases from 1.50±0.10 e/atom
in the 3d- and 4d-series to 1.75 ± 0.15 in the 5d-series. Here, the smaller/larger number refers
to the beginning/end of the series. Note also that the bottom, Bp, of the p-band is occupied in
the second half of the 3d- and 5d-, but not in the 4d-series.
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Fig. 10: Left: LSD [26] Stoner parameter, I , at εF calculated [12] with the LMTO method and
using the procedure of Janak [28]. Right: Spin-orbit coupling parameter ξd (Cd) for the center
of the d-band in elemental transition metals as a function of Z2. Note that ξd (ε) increases by
about a factor 2 from the bottom to the top of the d-band. From Ref. [12].

The SO coupling parameters shown in Fig. 10 are typically one order of magnitude smaller
than the relativistic shifts. Moreover, for crystals with inversion symmetry, the SO coupling
cannot split the two spin bands and therefore gives rise to splittings of first order in ξ only in
small regions of k-space near points of degeneracy. SO coupling is important near the top of
the d-bands where the bands have t2g character (see Fig. 5).
The abrupt increase in the size of the relativistic effects seen in Figs. 7 and 10 between the
2nd (Ba) and 3rd (Lu) 5d-elements is caused by the jump of Z due to the insertion of the 14
Lanthanides. All of those are, contrary to the case for the atoms (Fig. 1), trivalent 5d-metals
(4fn5d16s2) with the exceptions of divalent Eu (4f 76s2) and Ce (4fx5d2−x 6s2), whose α-γ
transition was discussed by Richard Martin in last year’s lecture notes [16]. In this connection
it should be mentioned that the actinides are 5fn6d17s2-metals whose 5f -electrons are itinerant
in the first- and localized in the second part of the series.
In the 60ies and 70ies, energy bands computed using the standard, non-selfconsistent, Mattheiss-
Slater construction of the crystal potential [27] were found to give surprisingly good agreement
between experimental and computed Fermi surfaces, and useful optical spectra for nearly all
elemental metals in the 4d- and 5d-series [10]. When in the late 70ies and early 80ies it became
possible to perform selfconsistent DFT calculations [9, 10, 29–31], it turned out that one and
the same local exchange-correlation potential [26] not only gave “bastard” bands which were
nearly identical with those obtained with the Mattheiss-Slater construction (see Fig. 9), but also
gave what DFT was designed for: good total energies, or rather: good total-energy differences,
e.g., lattice constants, structures, trends, and last, but not least, Car-Parrinello molecular dy-
namics [10, 12, 31–33]. Towards the end of the 80ies DFT was accepted in a large part of the
condensed-matter community and rapidly spreading beyond [23].
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3.2 Force theorem, pressures, and structures

The cohesive properties (at T=0) can be computed from the total-energy. But this provides
little insight, because it is expressed in terms of largely cancelling quantities, the selfconsis-
tently calculated Coulomb energies of the electron-electron and proton-proton repulsions and
of the electron-proton attraction, plus the kinetic energy of the electrons. However, the cohe-
sive properties only involve total-energy differences and these are given to first order by the
difference of the one-electron energies calculated for frozen one-electron potentials (i.e., the
difference of kinetic energies avoids double counting of the e-e interactions) plus the difference
of Madelung energies. This so-called force theorem was originally proved within the LDA in
Refs. [10, 34, 35]. With appropriate definitions it holds in general, but only to 1st order [36].
In the following, I shall illustrate this by application to pressure-volume relations and crystal
structures of the closely-packed elemental metals.

3.2.1 Partial pressures

Neglecting the zero-point motion of the nuclei, the pressure, P , which must be applied in order
to keep the crystal in equilibrium at a given volume, V , is the change of the total energy with
uniform compression (see top left part of Fig. 11). In terms of the equation of state, P (V), the
equilibrium atomic volume, V0 = (4π/3) s3

0, is determined by P (V0) = 0, the bulk modulus by
B = −dP /d lnV|V0 and the cohesive energy per atom by

Ecoh = −
∫ ∞
V0
PdV = −

∫ ∞
s0

3PVd (ln s) ,

where s0 is the equilibrium WS radius. With the force theorem, the pressure is most conve-
niently calculated by “peeling the skin off” the self-consistent, cellular potential, moving the
frozen potentials together in the compressed structure, and recalculating the sum of the one-
electron energies. To the change of the latter, should finally be added the change of electrostatic
energy between the cells. I.e.

3PV ≡ −dEtot

d ln s
= −

occ∑
ik

δεi (k)

δ ln s
− δMad

δ ln s
, (12)

where δ indicates the derivative for frozen potentials in the first term and frozen charge densities
in the second [36]. For closely-packed elemental solids, the latter may often by neglected so
that only the one-electron energies remain.
In the ASA (6), only the logarithmic-derivative functions (5) change because they must be re-
evaluated at an infinitesimally smaller WS radius. What happens to the band edges, Bl and Al,
may be understood from the bottom left part of Fig. 11, where the bonding and antibonding
partial waves, ϕl(Bl, r) and ϕl(Al, r), are shown for cases where Bl and Al lie above the value
vl(s) of the effective potential at the sphere (dotted) and where they lie below (full) [see Fig. 3].
In the dotted case, the region between the atoms is classically allowed so that, according to
the radial Schrödinger equation (1), rϕl(ε, r) curves towards the r-axis, whereas in the full,
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Fig. 11: Top left: Total and partial pressure-volume curves (schematic). The bulk modulus is
the slope of the curve, the equilibrium volume is the intersection with the volume axis, and the
cohesive energy is the area below the curve from the intersection to infinity. Bottom left: Radial
wave functions (normalized for r → 0), ϕl(r), at the bottom (Bl) and top (Al) of the l-band.
The dotted/full lines are for cases whereBl andAl are above/below the effective potential, vl(s),
at the WS sphere. The sign of the partial pressure, Pl, is indicated. Right: Partial pressures
calculated with LDA LMTO [12] for the 5sp 4d and 6sp 5d series as functions of the percentage
deviation from the experimental WS radius at zero pressure. The calculated deviations are
indicated by “th”. From Ref. [12].

classically forbidden case, rϕl(ε, r) curves away from the axis and the electron must tunnel out
of the WS sphere in order to get to a neighboring atom.

Now, under compression we need to re-install the bonding/antibonding boundary conditions
at s−ds and to use the fact proved below Eq. (7), that the logarithmic derivative is an ever-
decreasing function of energy. From Fig. 11 we see that if s is classically allowed, the slope
ϕ′l(Bl, s−ds) is positive, so that in order to re-install the zero-slope condition, we must increase
the energy, i.e., the bottom of the l-band goes up upon compression, and this means that it adds
to the pressure, Pl(Bl), i.e., will tend to press the nuclei apart. This is the case for electrons
in bonding states at the bottom of broad bands such as s and p, because their centrifugal re-
pulsion vanishes, or is small, and because the bandwidth is proportional to [−dDl(ε)/dε]

−1 =

sϕ2
l (ε, s)/〈ϕ2

l (ε)〉, the probability of being at the sphere. If, on the other hand, the interstitial
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region is classically forbidden, ϕ′l(Bl, s − ds) is negative and the bottom of the l-band there-
fore goes down in energy upon compression. Its contribution to the pressure is negative, i.e.,
the bonding electrons at the bottom of narrow bands are attractive, they tend to keep the nu-
clei together. This is the case for transition-metal d-bands. At the top of an l-band, the slope
ϕ′l(Al, s − ds) is always negative, so that in order to re-install the ϕl(Al, s) = 0 condition, we
must always increase the energy, and this means that the antibonding electrons at the top of an
l-band are always repulsive, i.e., press the nuclei apart.
The right-hand side of Fig. 11 shows for the metals in the 4d- and 5d-series the partial pressures
as functions of the percentage deviation of s from the experimental low-temperature values. The
values where the total pressure vanishes, the theoretical WS radii, are indicated by arrows. The
experimental and theoretical absolute values were shown in Fig. 8. The picture of the bonding
emerging is that the d-electrons contract the crystal against the repulsion from the “more free”
sp-electrons. This attraction increases until the bonding states in the lower part of the d-band
are full and filling of the antibonding states in the upper part starts. In Au, the d-electrons are
seen to be repulsive (hard core repulsion) while in Ag, they are still attractive. We also note that
the bulk moduli in the 6sp 5d-series are larger than those in 5sp 4d-series. Had it been possible
to decompose the pressures according to an spd-set of local orbitals, rather than partial waves,
the small attractive f -pressures would have been associated with the tails of these orbitals.
The ASA pressure relation was originally derived from the virial theorem and we can get to
the form given by Pettifor [37] by using the radial Schrödinger equation (1) to express the
derivative, δDl(ε)/δ ln s, of the logarithmic-derivative function (5) as

−s
(
s ϕ′

ϕ

)′
= −s(s ϕ)′′

ϕ
+
s ϕ′

ϕ
+

(
s ϕ′

ϕ

)2

=
(
ε− vl(s)

)
s2 +D(ε)

(
D(ε) + 1

)
.

Note in passing, that since Dl(Dl + 1) = (Dl + l + 1)(Dl − l), the contribution to the pressure
by not only electrons at the bottom, Bl, but also at the center, Cl, of the band, and at the energy,
Vl, of the square-well pseudopotential is proportional to ε − vl(s). Now, the energy, εl(D),
corresponding to the boundary condition D at s, i.e., the function inverse to Dl(ε), is

−δεl(ε)
δ ln s

= −δDl(ε)

δ ln s

(
dDl(ε)

dε

)−1

=
((
ε− vl(s)

)
s2 +

(
Dl(ε) + 1

)
Dl(ε)

)
s ϕ2

l (ε, s)

where ϕl(ε, r) is normalized to 1 in the WS sphere. Multiplication by the l-projected DOS and
integration up to the Fermi level yields Pettifor’s pressure relation. The form (12) is more intel-
ligible and, using the Hamiltonian (8) or the full LMTO version, requires the δ ln s-derivatives
of the potential parameters given analytically in, e.g., Ref. [12].

3.2.2 Structures

The structural sequence for the non-magnetic transition metals at low temperature and ambient
pressure is: hcp (Sc, Y, Lu), hcp (Ti, Zr, Hf), bcc (V, Nb, Ta), bcc (Cr, Mo, W), hcp (Tc, Rs), hcp
(Ru, Os), fcc (Rh, Ir), and fcc (Ni, Pd, Pt). Already in the late 60ies [39], it had been pointed out
that this reflects a trend in the sum of the one-electron energies, but the force theorem made the
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Fig. 12: Left: (a) First moment of the canonical d-band density of states in Fig. 5 as function of
its occupancy, nd. Note that negative values are upwards so that the curve resembles that of the
cohesive energy. (b) The bcc-fcc and hcp-fcc structural differences, now with positive moments
upwards. From Refs. [30, 10]. Right: Structural energy differences calculated by LDA-LMTO
for the 4sp 3d, 5sp4d and 6sp 5d series at the experimental equilibrium volumes and plotted as
functions of the calculated number of d-electrons. From Ref. [38].

computational procedure accurate and more generally applicable. Now, if we assume that the
difference between the closely-packed structures, at conserved atomic volume, is a 1st-order
effect, we can use the force theorem with the same atomic-sphere potential in all structures,
and if we use the ASA, the Madelung energy vanishes because the spheres are neutral. If we
finally neglect the s- and p-bands and consider merely the bare, canonical d-bands, the structural
energy difference in units of ∆d is simply the difference between the 1st canonical moments,∫ S(nd)

SNd(S) dS, with nd ≡
∫ S(nd)

Nd(S) dS,

shown to the left in Fig. 12 as a function of the number, nd, of bare, unhybridized d-electrons per
atom. The canonical densities of states, Nd(S), were shown in Fig. 5 and S(nd) is the canonical
Fermi level. As mentioned before, the 1st moment of a bare canonical band always vanishes
when the band is full. HadNd(S) in Fig. 5 been rectangular, the first moment would have been a
parabola resembling the behavior of the cohesive energy as a function of the d-band filling [40].
But now, the structural differences shown at the bottom of Fig. 12 clearly reproduce the observed
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structural sequence. The characteristic two-peak structure in the bcc DOS, makes this structure
stable for materials with the Fermi level in the gap between the peaks. By properly including
the s- and p-bands and the hybridization with them, as well as the Madelung- and the so-called
combined-correction to the ASA, i.e., by doing proper LDA-LMTO calculations, Skriver [38]
obtained the results shown in the right-hand panel. Independent, exhaustive LAPW total-energy
calculations [41] for merely bcc and fcc Cr, Mo, and W agree within 2 mRy with Skriver’s
results, thus confirming his approach. But also the ten-times-smaller energy differences between
the hcp and fcc metals, having merely different stackings along (111) and, hence,Nd(S)-shapes,
give structures in agreement with experiments. Skriver also considered La, Ce, and Lu, as well
as Th and Pa. In fact, of the 39 non-magnetic cases studied, only for Na, Au, Yb, and Pa, the
correct structure was less stable than the one calculated.
Using the same methodology as Skriver, McMahan and Moriarty studied the pressure-induced
phase transitions between the closely-packed structures of Na, Mg, Al, and Si, and found these
transitions to be driven by the hybridization of the occupied sp-bands with the bottom of the
3d-band moving down with pressure. Earlier, and in a similar way, Duthie and Pettifor [42]
had explained the Lanthanide structural sequence: hcp, Sm-type, double-hcp, fcc, observed for
decreasing atomic number and increasing pressure as a result of the increasing population of
the falling 5d-band.

3.3 Band magnetism

The generalization of DFT to a spin-DFT [26, 43] was a first step in “helping” the density
functional, through symmetry breaking, to treat exchange and correlation more accurately than
in the LDA, which merely uses the xc-energy density, εxc(ρ), calculated for the homogeneous
electron gas as a function of its density. In spin-DFT, the independent variable is the space-
diagonal matrix element of the first-order density matrix, ρ(rσ, rσ′), and the self-consistency
condition for the one-electron potential in the Schrödinger equation, which generates the density
as:

ρ(rσ, rσ′) ≡
∑
k

θ(εF − εk)ψ∗k(rσ)ψk(rσ
′) , (13)

is given by

V (rσ, rσ′) = Vext(rσ, rσ
′) + VC(r) + Vxc(rσ, rσ

′) . (14)

Here, Vext is the Coulomb potential of the protons plus an external spin-dependent potential,
such as: −sgn(σ)µBH with sgn(↑↓) = ±, from a uniform magnetic field, VC is the classical
Coulomb potential from all electrons, and Vxc(rσ, rσ′) is the exchange-correlation potential. In
case the potential (14) has translational symmetry, the state-label k is ik. The density generated
self-consistently from this potential minimizes the total-energy functional.
In its local approximation (LSD), spin-DFT uses εxc (ρ↑, ρ↓) for a homogeneous electron gas
subject to a homogeneous magnetic field which creates a density, ρ = ρ↑ + ρ↓, and a spin
density, m = ρ↑−ρ↓. The corresponding exchange-correlation potential is diagonal in spin and
equals ∂(ρ εxc(ρ↑, ρ↓)]/∂ρσ ≡ µxc σ(ρ↑, ρ↓). Expansion around the non spin-polarized values,
ρ↑ = ρ↓ = ρ/2, i.e., in powers of m yields εxc(ρ↑, ρ↓) = εxc(ρ) + ε′′xc(ρ)m2/4 + O(m3), and,
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hence, for the exchange-correlation potential

µxc ↑
↓
(ρ,m) = µxc(ρ)±mρ ε′′xc(ρ)/2 +O(m2). (15)

Here, µxc and ε′′xc(ρ) are both negative, so that increasing m = ρ↑− ρ↓ lowers the potential seen
by a ↑-electron and rises it for a ↓-electron, i.e., exchange tends to align the spins. This leads
to Hund’s 1st rule for degenerate levels (an open shell) in atoms and since the Pauli principle
prevents multiple occupation, level-separation works against spin-polarization.

3.3.1 Ferromagnetism

For a para- or ferromagnet (without SO coupling) in the presence of a uniform magnetic field,
which provides the Zeeman splitting ±µBH, the band-structure problem decouples into sepa-
rate Schrödinger equations (14), one for each direction of spin. By filling the states to a com-
mon Fermi level (13) and solving selfconsistently, the zero-temperature spin-magnetizations,
m = 〈m(r)〉, the uniform susceptibilities, µBdm/dH, and magnetic contributions to the cohe-
sive properties may be computed [30].
This was done in the mid-70ies using the ASA [29] and the results were interpreted in terms of
Stoner theory with the exchange constant, I , obtained from the Stoner equation: Cd↓ − Cd↑ =

mI + 2µBH using the computed magnetization and splitting of the centers of the d-bands.
Gunnarsson [44] used the spin-splitting of the xc-potential to order m in Eq. (15) and treated it
by 1st-order perturbation theory on top of the paramagnetic bands. Hence, the band-splitting is

εj↓(k)− εj↑(k) =
〈
ψjk(r)

∣∣−ρ(r) ε′′xc[ρ(r)]m(r)
∣∣ψjk(r)

〉
+ 2µBH ≈ mI + 2µBH. (16)

In the last approximation, the jk-dependence of I was neglected. Janak [28] evaluated I

from essentially the same expression with the expectation value taken as the average over the
paramagnetic Fermi surface. This is appropriate when subsequently filling the exchange-split
bands (16) to a common Fermi level in order to get, first, the magnetization and, then, the
splitting, m/N(εF ), by dividing m by the paramagnetic DOS per spin. Equating this split-
ting with the approximation (16), yields Stoner’s expression for the exchange-enhanced spin-
susceptibility

χ ≡ µBm/H = 2µ2
BN(εF )

(
1− IN(εF )

)−1

. (17)

The values of I obtained for Fe, Ni, Rh, Ir, Pd, and Pt from LSD ASA calculations of Cd↓−Cd↑
[29,30] and from approximation (16) agree within a few percent. The trends apparent in Fig. 10
were explained by Gunnarsson [44] for the late transition metals plus V, and by Janak [28] for
the entire 3d and 4d series, although in considerably less detail. The dominating trend that I
decreases with increasing Z and, hence, with increasing ρ, is due to εxc being dominated by
εx ∝ ρ1/3, so that the kernel behaves like −ρ ε′′x ∝ ρ−2/3 = (4π/3)2/3r2

s , which decreases
with ρ. For understanding that in a given series, I rises again until it drops sharply at the noble
metals, we use the ASA, i.e., take −ρ(r) ε′′xc[ρ(r)] and m (r) to be spherically symmetric, and
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expand ψjk(r) on the FS in partial waves. Since only partial waves with the same l contribute
to I as defined in (16), we get

I ∼ s

∫ 1

0

(
rs(r)/r

)2
(
α
(
rϕsp(εF , r)

)2
+ (1− α)

(
rϕd(εF , r)

)2
)2

d(r/s), (18)

leaving out constants and using εx instead of εxc.
The form (18) with α = 0 is the one discussed by Gunnarsson for the transition metals [44].
He showed that the factor (rs(r)/r)

2, apart from its general decrease with Z, for Z given and r
increasing, increases outside the last core np-shell, i.e., for r & 0.3s, and peaks for r ∼ 0.8s.
This peaking is the combined result of the general increase of rs(r) with r and the filling of the
nd-shell, whose charge-density peaks for r . 0.5s. One factor (rϕd(εF , r))

2 in (18) comes from
|ψjk(r)|2 and the other from m(r)/m. The product, (rϕd(εF , r))

4, is very strongly peaked at a
value r . 0.5s, which moves towards the edge of the np-shell as the Fermi level moves towards
the top, Ad, of the d-band (Fig. 7) where (rϕd(Ad, r))

4 vanishes smoothly for r approaching s.
This behavior of the integrand (rs(r)/r)

2 (rϕd(εF , r))
4 explains the increase of I through the

second half of a transition series (Fig. 10).
Prior to the filling of a d-shell, i.e., for the alkali-, alkaline-earth, and rare-earth metals, (rs(r)/r)

2

merely increases monotonically with r, once it is outside the core, and its value at the WS sphere
is approximately given by nr3

s(s) = 1, where n =1, 2, 3 is the number of valence electrons
(Fig. 19 in Ref. [12]). The contribution to I of the sp-electrons is taken care of in Eq. (18)
by α ≡ Nsp(εF )

(
Nsp(εF ) + Nd(εF )

)−1, the relative sp-character on the Fermi surface. For
nsp = n = 1 and 2, the factor

(
rϕsp(εF , r)

)4, is the only one relevant, and it is fairly constant
in the outer part of the WS sphere. The decrease of I for n increasing from 1 to 2, thus follows
the factor- 2−2/3 decrease of r2

s(s). How, upon entering a transition series, this decreasing trend
is taken over by the increasing trend at the end of the series, is described by Eq. (18) with α
decreasing from 1 to 0 and rs(r) developing the above-mentioned d-peak. Finally, the relatively
low I-values for the noble metals is due to the sp-character on the FS jumping from about 10 to
50% for Cu and Ag, and to 70% for Ag.
If we use the approximate Stoner equation (16) for a ferromagnet, the condition for spin self-
consistency is that the integral over the paramagnetic DOS (per spin) over the energy range
mI + 2µBH equals the magnetization m. Since the number of electrons, n↑ + n↓, must be kept
constant, m/2 spins must be moved from above the paramagnetic Fermi level, εF , to below.
This is illustrated in the left-hand panel of Fig. 13 using the unhybridized, canonical bcc d-DOS
shown in Fig. 5, which is a good approximation for the d-projected DOS, Nd(ε), in paramag-
netic bcc Fe (see Fig. 7 in Ref. [8]). Insight to the workings of this self-consistency condition
is provided by the construction from Nd(ε) of a function, N̄(n,m), which is the DOS per spin,
averaged around the Fermi level corresponding to an occupancy of n/2 spins, over a range
corresponding to m spins. I.e.: for an assumed m, we move the Fermi level up and down in
the rigid DOS until the integral is respectively increased and decreased by m/2. With4 being
the splitting between these two Fermi levels, N̄(n,m) ≡ m/4. This band-structure function
is shown as a function of m at the bottom. Since, for paramagnetic Fe where nd=6.5, εF is a
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Fig. 13: Left: Stoner construction for ferromagnetism using the canonical, bcc d-DOS in Fig. 5
for Fe. Dotted/full line: I = 0/65 mRy (from Ref. [12]). Right bottom: Canonical fcc N̄ (nd,m)
for varying nd as functions of m. The dots are at the crossing with 1/I at normal pressure. The
reason why mmax is not exactly 10 − nd is that the d-projected DOS for fcc Pd, rather than
the fcc canonical d-band in Fig. 5 was used [30]. Right top: Slater-Pauling curve showing the
magnetization, m, as a function of d-band occupation, nd. The full curves were calculated with
the procedure shown to the left and below using the experimental structures (hcp taken as fcc)
and with I and nd interpolated between the values calculated for Fe, Co, and Ni. Experimental
values were obtained for the pure metals and intermetallic alloys (• NiCu, + CoNi, · FeCo,
� NiFe fcc, � NiFe (bcc), × FeCr). From Ref. [30].

bit below the big bcc DOS peak, N̄d(6.5,m) starts to increase from N(εF ) for m increasing,
but as soon as εF↓ has passed above the top of the peak, N̄ (n,m) drops and eventually hits the
plateau caused by the t2g states at the top of the d-band (see Fig. 5). N̄ finally vanishes when
all mmax ∼3.5 holes at the top of the d-band are filled. Knowledge about the interaction, I , and
with H=0, allows us to find the selfconsistent value of m as the solution of: N̄ (n,m) = I−1.

We see that I ∼67 mRy does not suffice to split εF↓ beyond the edge of the t2g plateau and εF↑
below the bottom of the pseudogap. So Fe is not, like fcc Ni and hcp Co, a strong ferromag-
net, but has a moment of m=2.2µB/atom with 54% eg character [8], as may be imagined from
Fig. 5 and which is in good agreement with the experimental 53%. Similarly, for fcc Ni the
Stoner condition with I=73 mRy and nd=8.7 yields a moment of 0.68µB/atom with only 24%
eg-character, also in agreement with the experimental 19% [45]. The canonical fcc N̄(8.5,m)

shown in Fig. 13 at the bottom to the right (turned by 90o with respect to the bcc N̄(6.5,m) to
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the left) is approximately the one appropriate for Ni, and the dot marks the crossing with I−1.
In the right-hand, upper part of Fig. 13, we show in full line the ferromagnetic moments, m,
as functions of nd, calculated as shown on the left-hand side using the experimental structures
(hcp taken as fcc) and with I and nd interpolated between the values calculated for Fe, Co,
and Ni. This so-called Slater-Pauling curve is compared with experimental values (dots) for
the pure metals and intermetallic alloys. So-called strong ferromagnets are those with εF↓ split
above the top of the d-band and thus have m = 10− nd. The late fcc and hcp metals have high
I-values (Fig. 10), and the high peak in the d-DOS at nd=8.5 (Fig. 5) keeps the average DOS,
N̄ (nd,m) , above I−1 for all m . 10− nd and for nd decreasing from 10 to about 7.2.(Fig. 13
bottom right). At that point, I−1 gets above N̄ (nd,m) for all m. This drop of m happens also
for the real alloys, but at a slightly larger nd. For nd decreasing below 7.3, the structure changes
from fcc (hcp) to bcc and the Fermi level enters the large peak in the bcc DOS and thereby
makes N̄ (nd,m) reach above I−1. By nd=6.5, we have the situation of bcc Fe illustrated to
the left in the figure. For nd decreasing further, I−1 increases and εF moves down-hill on the
low-energy side of the large peak, whereby N̄ (nd,m) flattens out, and by nd ∼5.2, it is entirely
below I−1.

With pressure, mainly the band-width parameter ∆d in the Hamiltonian (8) changes; increasing
approximately like s−5 (note the difference between ∆d and the exchange splitting 4). This
means that if N̄(n,m) refers to the canonical S- or Sγ-scale, the self-consistency condition
becomes: N̄ (n,m) = ∆d(s)/I, whereby the N̄ vs. m curves at the bottom of Fig. 13 become
pressure vs. m curves (see Fig. 5 in Ref. [30]). Under pressure, bcc Fe thus looses its moment
gradually. Had we constructed N̄(6.5,m) using the hcp and fcc DOS curves shown in Fig. 5,
N̄ would with m increasing from 0, start off from a somewhat lower value than for bcc Fe,
but then stay constant, because the canonical DOS for the hcp and fcc structures are fairly flat
around nd=6.5, until dropping to zero near 3.5. For fcc and nd=6.6, this is shown in the bottom
right-hand part of Fig. 13. This means that, since for hcp and fcc Fe N̄(n, 0) is slightly larger
than ∆d/I at normal pressure, this changes as ∆d is increased by a slight lattice compression,
and the moment vanishes abruptly (hcp) or within a small pressure range (fcc) (Figs. 4-6 in
Ref. [30]).
Had it not been for its ferromagnetism, Fe would not have been bcc, but hcp like Ru and Os
with nd ∼ 6.5. This is clearly seen in Fig. 12 on the right-hand side and at the bottom to
the left. The top-left “bond-energy” curve can be used for each direction of spin in bcc Fe
to realize that its bond energy, the value at nd = 6.5 of the chord connecting the values at
6.5∓m, is lower (the sum of one-electron kinetic energies is higher) than those of hcp and fcc
paramagnetic Fe. The energy gain comes from the exchange energy, −m2I/4. Compression
reduces m as explained above, and the point where gain of exchange energy equals the cost in
kinetic energy gives the critical value of the moment for which the structural phase transition
occurs. The observed phase transition from bcc ferromagnetic to hcp non-magnetic Fe, occurs
at a pressure of 100 kbar when m and s have both been reduced by a few per cent. (Actually,
the stability of ferromagnetic bcc Fe over non-magnetic hcp Fe is marginal and depends on the
DFT used [46]).
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The loss of kinetic energy associated with magnetism may in Stoner theory be described as
contribution to the pressure given by:

3PdmagnV = −δ ln∆d

δ ln s

∫ m

0

m′dm′

2N̄ (n,m)
− 1

µd

(
m2I + 2µBH

)
. (19)

Here, −δ ln∆d/δ ln s ∼ 5 and µ−1
d = s2∆d was shown in Fig. 9. From Fig. 8, we realize that

the magnetic metals do have relatively large WS radii (open dots), but that LSD calculations
(open triangles) for Fe, Co, and Ni only account for a fraction of these anomalies.
Turning now to fcc Ni under pressure, we need the canonical fcc N̄ (8.7,m)-curve, but shall
use N̄ (8.5,m) which is shown at the bottom right-hand side of Fig. 13 as a proxy. We see that
the dot marking its crossing with ∆d/I at zero pressure, can be raised by the large factor ∼2.4,
before reaching the peak at m ∼0, which is the one in the canonical DOS caused by the saddle-
points P1 and P2 in the 5th band (Fig. 5). 2.4 is the factor by which the d-bandwidth (∝ ∆d)

can be increased before an fcc ferromagnet (FM) with 8.5 d-electrons looses its moment. Since
Ni under pressure keeps its fcc structure, it also keeps its moment up to several Mbars because
d ln∆d/d ln s ∼ −5, B ∼2 Mbar, and ∂B/∂P ∼4 [29].
If we now increase the saturation moment from the 0.6µB of Ni (0.8µB for the proxy) by
decreasing the number of d-electrons, i.e. moving up the Slater-Pauling curve in Fig. 13 and
the Fermi level moving down the low-energy side of the canonical fcc DOS peak and into the
u-shaped valley in Fig. 5, the fcc N̄ (nd,m)-curves loose their peak and become flat once the
valley is entered. This happens when nd ∼8. From the values of N̄ (nd, 0) , we see that the
bottom of the valley is reached when nd ∼7.4, and that by ∼6.6 the Fermi level has moved
up so high on the low-energy side of the valley that the DOS exceeds ∆d/I and a FM with a
low moment becomes stable. The large-moment FMs exist as long as the high DOS peak at
nd =8.6 continues to raise the average N̄ (nd,m) above ∆d/I, which happens until nd falls
below 7.3. The 8 & nd & 6.5 region is that of the Invar alloys which keep their atomic volume
constant over a useful range of temperatures. In the early 60ies, this was explained as the
effect of competing large-moment large-volume and low-moment low-volume states [47]. With
pressure, the ∆d/I-dots move up their respective fcc N̄ (nd,m)-curves in Fig. 13. We see that
the initial slope, −dm/dP , stays constant until nd=7.4, but that the pressure where the moment
disappears in a 1st-order transition, corresponding to the ∆d/I-line touching the maximum of
N̄ (nd,m), falls rapidly as we move away from Ni.
On exhibit at the entrance to the mineralogical museum in Copenhagen is a 20 tons iron-nickel
meteorite found at Cape York in Greenland. It consists of a bcc and an fcc phase with a common
orientation throughout the entire meteorite, which therefore seems to have been a single crystal
in the mother asteroid. The fcc phase (taenite) has been found to be an simple, ordered FeNi
alloy consisting of alternating (100) layers of Fe and Ni, which disorders by heating to 750 K
for 50 hours [48]. This demonstrates that the meteorite has not –since its formation in the parent
planet– been reheated to a temperature above 730 K for longer than 50 hours.
Attempting to get “insight” to the properties of the Earth’s inner core, we [49] performed a
proper LSD calculation for taenite resulting in Fig 14. In the ferromagnetic DOS, we see the ↑
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Fig. 14: Results of LSD LMTO calculation for fcc FeNi (taenite). Left: Number(A)- and den-
sity(B) of states per FeNi. Fe(C)- and Ni(D)-projected DOS. Right: FM magnetization and
Pressure as functions of the relative deviation of the WS radius from its experimental value at
1 kbar. From Ref. [49].

and ↓ fcc peaks, split on either side of εF , and we also see that the Fe(C)- and Ni(D)-projected
DOS share these peaks, but with the dominant weight on Fe, because Cd lies higher- and ∆d is
broader in Fe than in Ni. Most remarkable: The FM magnetization stays robustly above 2µB
for pressures up to 5 Mbar (causing a 15% compression of s). Using, instead, the rigid-band
picture and N̄ (7.7,m) in Fig. 13, m would drop significantly already at a 20% reduction of
∆d/I, i.e. at a mere 4% reduction of s. So apparently, taenite is special. We were fascinated by
the thought that the earth’s core could be a ferromagnet, but 40 years ago we did not know how
to treat fluctuations at high temperatures.
For more recent LSD calculations of the spin and orbital moments in Fe, Co, and Ni, see
Ref. [50].

3.3.2 Spin spirals

One may go beyond collinear spin-polarization by allowing the direction of spin-quantization
to depend on r, or simpler and more relevant for magnetic order, on the site, t. Let us consider
the case where all spin-quantization axes lie in the same plane, i.e., not on a cone. Provided that
spin-orbit coupling (causing magnetic anisotropy) is neglected, it does not matter which plane
we take. We choose the xy-plane and let φ (t) give the direction of spin on site t. With the
matrix for hopping from site t and spin σ to site t′ and spin σ′ being htt′δσσ′ in the global spin
frame, it becomes:

h̃tσ,t′σ′ =


↑ ↓

↑ cos φ(t′)−φ(t)
2

i sin φ(t′)−φ(t)
2

↓ i sin φ(t′)−φ(t)
2

cos φ(t′)−φ(t)
2

htt′

in the local frame. Here, htt′ could be the ASA Hamiltonian (6), Hγ
t′l′m′,tlm, before Fourier-

summing it to k-space. Including the exchange splitting,4 (t), the total one-electron Hamilto-
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nian in the local frame is therefore

H̃tσ,t′σ′ ↑ ↓
↑ −4(t)

2
δt,t′ + cos φ(t′)−φ(t)

2
htt′ i sin φ(t′)−φ(t)

2
htt′

↓ i sin φ(t′)−φ(t)
2

htt′
4(t)

2
δt,t′ + cos φ(t′)−φ(t)

2
htt′

,

h00 is the on-site orbital Hamiltonian. 4 (t) is an orbital matrix, which is approximately diago-
nal, with4 in the d-block, possibly with different eg and t2g elements, and zero in the sp-blocks.
With4 positive, ↑ will be the majority spin.
If the sites, t, now form a lattice and all atoms are equivalent, i.e. we have 1 atom per transla-
tional cell, then htt′ = h (t′ − t) . If also 4 (t) and φ (t′) − φ (t) are translationally invariant,
i.e. equal to respectively 4 and φ (t′ − t) , then the Hamiltonian, H̃tσ,t′σ′ = H̃ (t′ − t)σ,σ′ , is
translationally invariant and therefore diagonal in the Bloch representation

H̃ (k)σ,σ′ ↑ ↓
↑ −4

2
+
∑

t e
ik·t cos φ(t)

2
h (t) i

∑
t e

ik·t sin φ(t)
2
h (t)

↓ i
∑

t e
ik·t sin φ(t)

2
h (t) 4

2
+
∑

t e
ik·t cos φ(t)

2
h (t)

.

The hopping matrix, h (t) becomes h (k) , e.g. Hγ
l′m′,lm (k) , in the Bloch representation. For a

spin spiral of wave-vector q,
φ (t) ≡ q · t, (20)

we therefore get

2H̃ (q,k)σ,σ′ ↑ ↓
↑ −4+h (k + q) + h (k) h (k + q)− h (k)

↓ h (k + q)− h (k) 4+ h (k + q) + h (k)

where we have redefined k to have its origin at −q/2. This representation in which the local
exchange splitting, 4, appears in the diagonal and the hopping difference in the off-diagonal,
is the natural one when4 is large and q is small. However, a unitary transformation brings the
Hamiltonian into the simplest form

H̃ (q,k) (↑ − ↓) /
√

2 (↑ + ↓) /
√

2

(↑ − ↓) /
√

2 h (k) 4
2

(↑ + ↓) /
√

2 4
2

h (k + q)

, (21)

where the paramagnetic bands are in the diagonal and 4 is in the off diagonal. For small 4,
this form is the natural one.
We recapitulate: All spins have been chosen to lie in the same plane, which in the absence
of spin-orbit coupling is arbitrary. In all planes perpendicular to q, all spins are identical, but
as we progress by t in the plane, they turn by the angle t · q. For q=0, we get back to the
FM Hamiltonian (but doubly degenerate). If in the xy-plane the lattice is square with lattice
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constant 1, q=(π, 0) gives an antiferromagnet (AF) with stripe-order and q=(π, π) an AF with
checkerboard-order.
Incommensurability is no complication as long as SO coupling is neglected. We simply must
have the same Abelian group in configuration and spin space. In configuration space, the gen-
erators of this group are the primitive lattice translations. In spin space, they are the primitive
lattice translations, times turning the axes of spin quantization by a fixed angle: Subject yourself
(being either a charge or a spin) to such an operation, look around, and you cannot see that you
moved. It is of course essential that only the direction, and not magnitude of the magnetization
changes. The band structure in the presence of the spin spiral has lost the crystalline point-group
symmetry, but the number of states remains 1 per primitive cell and BZ, i.e.: the problem can
be solved for any q without increasing the size of the primitive cell. This is all not obvious and
I believe that Sadratskii was the first who realized it [51].
The reduction to the Stoner model has the conceptual advantage of cutting the self-consistency
loop into a band-structure part, which for a given spin order, q, site, and orbital-dependent
exchange-splitting field, 4, yields the site and orbital-dependent spin-moments, m (q) , plus
a self-consistency condition which states that m (q) /4 = I−1. The band-structure part gives
insight into the complicated static response, χ (q) ≡ m (q) /4, of the non-interacting system,
and not only in the linear regime [52].

3.3.3 Local exchange couplings

The spatial dependence of the magnetic coupling in metals, i.e. the change in total energy
upon turning the direction of one spin with respect that of a neighbor is needed to calculate
for instance Curie temperatures and magnon spectra. By considering infinitesimal spin rota-
tions rather than spin flips, Lichtenstein and Katsnelson could use the force theorem locally
and derived an elegant expression for the second derivative of the total energy in terms of the
one-electron Green function ,

[
(ε− i0) δRR′δll′δmm′ −Hγ

Rlm,R′l′m′

]−1. Their expression has be-
come a standard tool for complex magnetic systems and made it possible to simulate magnetic
properties of real materials via ab initio spin models [53–55].

3.4 Fermi surfaces and mass renormalizations

For the elemental metals in the 4d- and 5d-series the Fermi surfaces (FSs) calculated using LDA
(or Mattheiss-Slater) agree with de-Haas-van-Alphen (dHvA) measurements of the extremal
areas of the cyclotron orbits on the FS to an accuracy better than what corresponds to a 15 mRy-
shift in the position of the d- with respect to the non-d bands [10]. For the fcc late 5d- and
4d-metals [15], the agreement is even beyond 5 mRy – and best for Pt and Pd where over 80%
of the DOS at the Fermi level, N(εF ), is contributed by the large, 5th-band d-hole sheet shown
in Fig. 5, the same, which in combination with the larger Stoner I (Fig. 10) and the smaller
3d-bandwidth is responsible for the FM in fcc Ni.
Pd is nearly ferromagnetic and its uniform, static spin-susceptibility (17) is enhanced by a
Stoner factor ∼10, over the Pauli value, which is proportional to N (εF ) like the electronic-
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specific heat coefficient. In the late 60ies it had been suggested [56] that such ferromagnetically
correlated, paramagnetic (PM) spin fluctuations would be detrimental for the singlet Cooper
pairs formed via the electron-phonon interaction and, hence, could be the reason why Pd does
not become a superconductor at low temperature like e.g. its neighbor Ir. Moreover, the inter-
action of the conduction electrons with these spin fluctuations would lead to an enhancement of
the electronic mass and specific-heat coefficient, initially estimated –using a spherical FS– to
be a factor 4. Comparison of the measured specific-heat coefficients with N (εF ) for the above-
mentioned calculated band structures gave mass enhancements of 1.37 for Ir, 1.44 for Rh, 1.63
for Pt, and 1.66 for Pd [15]. Experimental results for the cyclotron masses (energy-derivatives
of the extremal areas on the FS) did not exist for Ir, and dHvA for Rh only gave masses for the
smaller orbits. They exceed the calculated band masses by factors around 1.1, except for the
largest orbit where the mass enhancement was 1.3. So, presumably, the mass-enhancement for
the large, 5th-band sheet, which for Rh and Ir is Γ -centered and closed, is the 1.44 obtained
from the specific heat. Also for Pd, no masses could be detected from orbits around the 5th-
band sheet, but only from a smaller d-like sheet and the large sp-like sheet. In all those cases,
the masses exceeded those calculated by factors 1.5-1.7, which is consistent with the factor 1.66
obtained from the specific heat. For Pt, masses from several orbits on all three sheets could be
measured and were found to be enhanced by factors of 1.44, 1.45, and 1.54 for the orbits on the
sp-sheet, and by 1.30, 1.68, and 1.72 for those on the large d-hole sheet; thus consistent with the
specific heat enhancement. In the 80ies, this was supported by more detailed experiments and
analyses [57]. In conclusion, a mass enhancement of∼1.4 was attributed to the electron-phonon
interaction (λep ∼0.4) [58]. This agreed with McMillans estimate for the superconductor Ir and
with rigid-MT calculations of λep in the early 80ies, and with S.Y. and D.Y. Savrasov’s DFT
linear-response calculations [59] in the mid 90ies. The remaining mass-enhancement in Pd was
attributed to the PM spin fluctuations (λe−sf ∼0.25). The results of the first spin-fluctuation cal-
culation using LDA bands to calculate e.g. χ (q,q′, ω) [60] and of Savrasov’s linear-response
calculations from the late 90ies [61] agreed with this small value.
For the exchange-split FS of ferromagnetic bcc Fe, dHvA experiments [62] found surprisingly
good agreement with the FS calculated with LSD [63], e.g., the sum of- and difference between-
the numbers, n↑=5.08 and n↓=2.93, extracted from the extremal areas agree closely with the
number of electrons, 8, and Bohr magnetons, 2.12. The mass-enhancements, found to range
between 1.5 and 3.0, were larger than for, e.g., Pd.

4 Post 1986

The discoveries beginning in 1986 of high-temperature superconducting materials (HTSCs)
which without doping are AF insulators –as is the case for cuprates– or AF metals –in case of
iron pnictides and chalcogenides– caused enormous interest in the role of AF-correlated spin
fluctuations as mediators of the superconductivity [64–67].
In the ruthenates, depending on the distortion of the RuO6-octahedra building these corner-
sharing perovskites [68, 69], not only AF- but also FM spin fluctuations exist. This was shown
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by Mazin and Singh by demonstrating, first, that the diverse magnetic properties of the 3D
ruthenates, SrRuO3, CaRuO3, and Sr2YRuO6 follow from the Stoner band-picture as conse-
quences of differences in oxygen positions and Ru-O-Ru hopping paths (Ca makes the oxygen
octahedra rotate and Y blocks the paths). In these materials the detailed lattice structure is thus
crucial for the magnetic properties. Next, they found 2D Sr2RuO4 to have strong FM spin fluc-
tuations causing susceptibility- and mass renormalizations, as well as a critical temperature for
triplet p-wave-pairing superconductivity, which agreed quantitatively with observations. The
subsequent experimental observation of AFM in Ca2RuO4, lead Mazin and Singh to calculate
the susceptibility of Sr2RuO4 for all q-vectors. That revealed competing AF spin fluctuations
(confirmed later by neutron scattering), and concomitant singlet d-wave pairing. This, finally,
led them to suggest that the actual superconducting ground state of Sr2RuO4 is determined by a
competition between the p- and d-wave-pairing states [70].

4.1 ARPES

The intensive interest in HTSC lead to a development of angle-resolved photo-electron spec-
troscopy (ARPES) which, by the end of the millennium, was able to observe single-particle ex-
citations from the occupied bands with 2-meV accuracy and 0.2◦ angular resolution and thereby,
in some people’s view, obviated the need for band-structure calculations. But of course, ARPES
has problems of its own, such as surface-, final-state, and matrix-element effects [71].

After much smoke had cleared, the LDA FSs predicted a decade earlier for the HTSCs in their
normal state usually turned out to be correct, e.g. for the YBa2Cu3O7 FS with sheets from the
two plane-bands and the chain-band [72–74]. This being settled –more or less– the challenge
was –and remains– to observe how the bands get from kF , where they agree with the LDA,
but have a smaller, renormalized slope to join the LDA bands again, deeper down, below the
Fermi level. These are the effects of the real part of the self-energy describing the interactions
with e.g. phonons and spin-fluctuations. The imaginary part produces broadening. The mass
renormalization is a measure of the strength of the interaction, and the energy over which this ς-
shaped anomaly (kink) occurs, is determined by the energy-spectrum of the interacting boson.
For phonons, this energy is the Debye energy, for spin-fluctuations it is wider, but less well
known. And then, there are competing phases. To observe and understand what happens to the
anomaly when entering the superconducting state is the holy grail, so let us therefore leave the
HTSC and return to Pd.

For fcc Pd, it has been possible with polarization-dependent, high-resolution ARPES to study
the self-energy effects of the sp-like band along ΓK, where the large d-sheet (Fig. 5) is avoided
[75]. The anomaly was found to be 20 meV below εF , in agreement with the Debye energy,
and the renormalization of the Fermi velocities were found to yield λep=0.39±0.05 in agree-
ment with the above-mentioned, previous studies. For this sp-like band, it was estimated that
λee ∼0.02. Analysis of the anomaly indicated a possible contribution from PM spin-fluctuations
down to 100±50 meV below εF , and that λe−sf ∼0.06 for the sp-like band.
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4.2 Static and dynamical mean-field approximations

LSD worked surprisingly well for the elemental metals. Even for the actinides and the transition-
metal oxides, CaO through NiO, it reproduced the onset of antiferromagnetism and the asso-
ciated large lattice expansion upon passing the middle of the series [34]. But LSD failed to
reproduce the proper band gap, by an order of magnitude in MnO and NiO, and FeO and CoO
were even metals! However, it was not until 5 years later when LSD was applied unwisely to
the Mott insulator NiO [76], and another 4 years when it failed to reproduce the antiferromag-
netism –a ground-state property– in undoped La2CuO4 –I being ∼5 times too small– that the
failures became widely recognized [77].

This then gave birth to the self-energy-corrected (SIC) LDA [78], a proper DFT which, however,
gave bad bands, and the LDA+U which, like LSD, helped the functional, but by using Hubbard
U instead of Stoner I in a static mean-field approximation [79, 80]. Values of U, the properly
screened, on-site Coulomb integral, had previously been calculated by constrained LDA [81,82]
for use in the Anderson impurity model whose Coulomb repulsion is merely on the impurity
site [83]. LDA+U works successfully for insulators with spin- or orbital order [84–87], but the
description of (finite-temperature) paramagnetic Mott-insulating states, or of spectra of corre-
lated metals are entirely out of reach. This problem is related to the dynamical nature of electron
correlations not accounted for in static mean-field approximations.

In 1989, Metzner and Vollhardt [88] had observed that the single-band Hubbard model with
Coulomb repulsion, U, between two electrons on the same site and integral, t, for hopping
between nearest-neighbor sites becomes far more tractable, while preserving much of its inter-
esting correlation physics, if taken at infinite dimensions (after appropriate scaling). Moreover,
the correlation energy in the weak-coupling limit turns out to be nearly the same for D=∞, as
for D=3. Hence, the D=∞-Hubbard model seemed to be not only simple, but also realistic.

(Although two decades earlier, I had set out to provide many-body theorists with a simple way
to obtain realistic band structures and had exploited, that in metals there are usually far more
neighbors than lobes in a d-orbital, had I come across Ref. [88], I could not have cared less.
This is the danger of having no training in many-body physics).

Georges and Kotliar [89] soon realized that the D=∞-Hubbard model can be mapped ex-
actly onto the Anderson impurity model –supplemented by a self-consistency condition for
the energy-dependent (dynamical) coupling to the non-interacting medium. Hence, the quasi-
particle peak of the Hubbard model may arise self-consistently from the Kondo resonance of
the impurity model [90]. So what they achieved was to construct a mean-field picture of the
Hubbard model which becomes exact as D → ∞, and to provide an idea about how to solve
the D=∞-Hubbard model. The immediate question was whether the D=∞-Hubbard model
at half filling exhibits a metal-insulator Mott transition in the high-temperature, paramagnetic
phase, i.e. whether, upon increasing U, the quasiparticle peak will develop into a gap by trans-
fer of weight to the lower and upper Hubbard bands. The affirmative answer was found within
months by Georges and Krauth who solved the Anderson impurity problem numerically and,
independently, also by Rozenberg, Zang, and Kotliar. This dynamical mean-field approximation
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(DMFT) is what eventually opened the door for theoretical treatment of correlated electrons in
real materials [91, 92].
(Although we had, for the impurity model, been computing realistic Coulomb integrals and
hybridization-functions, and for alloys had been computing band structures using the coherent-
potential approximation [93], we did not get the idea to combine them).
By suggesting the so-called LDA++ scheme, Lichtenstein and Katsnelson [94] proposed how
model Hamiltonians of strongly correlated materials could be derived from DFT and thereafter
solved by techniques like the Hubbard-I approximation or DMFT [95]. Together with an inde-
pendent, simultaneous contribution by Anisimov, Kotliar et al. [96], this work marks the birth
of the LDA+DMFT scheme which brings numerical LDA realism to DMFT [97].
But since that is at the heart of this series of autumn schools, I will proceed with a short de-
scription of a few of the applications in which I happened to be involved.

4.3 Transition-metal oxides (TMOs)

The TM sp-orbitals are far more extended than its d-orbitals, and in the oxides, the former
therefore hybridize stronger with the O 2p orbitals than the latter. This pushes the TM sp-bands
up, above the top of the d-bands, and can formally be neglected. For most transition-metal
oxides, the d-bands lie completely above the O 2p bands (see Fig. 2), and the hybridization
between them splits the d-bands into e.g. t2g- and eg-subbands [69, 98].

4.3.1 Wannier Orbitals

Since it makes the chemistry and physics intelligible, and because DMFT requires a small basis
set of correlated single-particle orbitals [100], it has become customary to project out of the
Rydbergs-wide DFT Band structure a set (or sets) of so-called maximally localized Wannier
functions, which span for instance the O 2p and the TM d-bands, and, hence, have the TM sp-
orbitals folded down into the tails of mainly the O 2p orbitals, or merely the eg-band with the
tails of the O 2p- as well as those of the sp- and t2g-orbitals on the TM neighbors folded in.
We prefer to generate such Wannier orbitals (WOs) directly, as symmetrically orthonormalized,
minimal basis sets of NMTOs [18]. These are like linear MTOs (LMTOs), which use a linear
{ϕ (r) , ϕ̇ (r)}-expansion of the energy dependence of the partial waves. If the downfolding
is massive and the range of the MTOs therefore long and their energy dependence strong, the
expansion needs to be of higher than linear order, hence of order N > 1.
The WOs can also be used to form intelligible tight-binding (TB) models [98, 101]. For the
HTSCs, we [102] for instance found the empirical trend (Fig. 4 in Refs. [103] or [104]) that
the transition temperature, Tc max, for optimal doping increases with the ratio t′/t between the
2nd and 1st-nearest-neighbor hopping integrals in a massively downfolded, half-full one-band
model (Cu d9−x). The connection between t′/t and the chemistry, i.e. the structures and com-
positions of the 15 different families of HTSCs whose t′/t are shown in the figure, we have
understood: These hopping integrals are between effective Cu 3dx2−y2 orbitals sitting on a
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square lattice with primitive translations (1, 0) and (0, 1) , and with each Cu connected by oxy-
gens at (1

2
, 0) and

(
0, 1

2

)
. The t-hop is along x, from dx2−y2 at (0, 0) to dx2−y2 at (1, 0) , via O

px at
(

1
2
, 0
)
, or equivalently, along y. The t′-hop is from (0, 0) to (1, 1) . In this description,

all orbitals (partial waves) are thus folded down into one, effective Cu dx2−y2 orbital. But this
orbital does, of course, have tails of O 2px at

(
±1

2
, 0
)

and of O 2py at
(
0,±1

2

)
, to which the

hopping in an up-folded three-band model is antibonding pdσ. The t′ hop is “around the corner”
on the square CuO2 lattice, and proceeds via a so-called axial orbital which is a particular hy-
brid of Cu 3d3z2−1, Cu 4s, apical O 2pz, and whatever the latter bonds covalently to, such as La
5d3z2−1. Note that the TB Hamiltonian is now up-folded to have four orbitals. Apical oxygens
are those forming the apexes of the elongated CuO6 octahedron, and the t′/t trend is caused
by differences in this elongation, i.e. distance to apical oxygen, and in what the 2pz-orbital on
the latter binds to out there in the “doping” layers. But the physics, the correlation with Tc max,

remains to be understood or disproved.
In the cuprates the center of the Cu 3d band is only a few eV above that of the O 2p bands and
the hopping between the two is so large that they form a common band. The strongest hopping
integral is pdσ and it creates for the CuO2 plane a bonding-, a non-bonding-, and an antibonding-
band spanning about 8 eV in the LDA. It is the latter band which the above-mentioned t, t′, t′′

model describes.

4.3.2 Metal-insulator transition in V2O3

The theoretical Mott-transition is the one in the single-band Hubbard model investigated by
Georges and Krauth, and by Rozenberg, Zang, and Kotliar. But the DMFT+LDA NMTO cal-
culations in which I have been involved, of experimentally observed metal-insulator transitions
in TMOs, all dealt with multi-band systems where the isostructural (not-symmetry breaking)
metal-insulator transition was basically the opening a gap between occupied and unoccupied
bands by moving them apart.
V2O3, for instance, undergoes an isostructural phase transition from a paramagnetic metal (PM)
to a paramagnetic insulator (PI) upon raising the temperature from 20◦ C to about 400◦, the
transition temperature depending on the Cr-content in the 1% range. All V atoms and all O
atoms are equivalent, and since each V brings in 5 electrons and each O has two holes to be
filled, there remains 2 electrons per V. The VO6 octahedra are nearly perfect and since the
pdσ interaction is stronger than the pdπ interaction, the more antibonding V 3d-like eg level lies
above the less antibonding V 3d-like t2g level. As a consequence, the electronic configuration
is V t22g. All three orbitals hop to their neighbors, and with 4 formula units per primitive cell in
this corundum structure, the LDA band structure is a solid mess of 12 bands, spread over 2.5
eV and 1/3 filled; a metal (see Fig. 15).
There is a slight displacement of the V ions along the 3-fold [111] axis, away from the centers
of their octahedra, so that the distance between a vertical (≡111) V2-pair whose octahedra in
this corundum structure share a (111) face, is slightly longer than the distance between the
centers of their octahedra. The xy, yz, and xz orbitals therefore rehybridize into one orbital,
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Fig. 15: The V2O3 story (see text). Three first panels: Experimental PM structure at 20 ◦C.
1st panel: LDA hopping integral between effective a1g (light) and eπg (dark) orbitals, −0.25 eV
(upper left), and between a1g orbitals on the vertical pair, −0.49 eV (upper right). LDA t2g
bands with- (lower left) and without (lower right) all a1g-eπg hops. 2nd panel: Input Hamil-
tonian, DMFT output Hamiltonian, energy-linearized quasiparticle (QP) Hamiltonian and its
band structure. 3rd panel: DMFT spectrum. 4th panel: Experimental PI structure at 400 ◦C.
LDA hopping integral between vertical pair, –0.41 eV (upper). LDA a1g-eπg unhybridized band
structure (lower). From Ref. [99].

(xy + yz + xz) /
√

3 = 3z2
111 − 1, of symmetry a1g and two degenerate orbitals of symmetry

eg, called eπg , whereby the t2g level is split into an upper a1g and a lower, doubly degenerate eπg
level. But this trigonal crystal-field splitting is 0.3 eV, an order of magnitude smaller than the
bandwidth. At the Γ point, the center of the Brillouin zone, where a1g and eπg cannot mix, the
4 a1g levels are raised with respect to the 8 eg levels by the 0.3 eV. The pure a1g- and eπg - band
structures, obtained by settting all hopping integrals between a1g and eg orbitals to zero, shows
that the bottom of the a1g and the top of the eg band are at Γ, so that their distance, 2.0 eV of
which the trigonal splitting contributes −0.3 and the hoppings 2.3 eV, can be read off the fully
hybridized LDA bands.
The on-site Coulomb repulsion, however, prefers by 3J = 2.1 eV to have one ↑ electron in each
eg orbital, and none in the a1g orbital. And this is basically what our DMFT calculation [99]
at 100◦ C provides: It, first of all, “spin-polarizes” the bands and moves the ↓-weight to a very
broad, incoherent upper Hubbard band lying U = 4.2 eV above the partly occupied ↑-band. For
the latter, it then enhances the crystal-field splitting from 0.3 to 1.85 eV, whereby the a1g bands
essentially empties into the eπg band; the bottom of the former merely dips a 0.15 eV below the
top of the latter.
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With the splitting almost as large as the bandwidth, the a1g-eg hopping is strongly reduced,
whereby the dispersion resembles that of pure LDA a1g and eg bands. But on top of this, there
are quasiparticle renormalization by factors 2.5 and 5 for respectively the a1g- eπg -bands, and,
finally, inside the eπg -band there is strong e-e scattering which makes it incoherent. The metallic
quasiparticles are those on the small a1g sheet of FS.
Upon increasing the temperature across the metal-insulator transition, there is an increase of
the so-called umbrella distortion which changes the LDA band structure. In particular, the
distortion makes the effective ddσ hopping integral between vertical V2 pair decrease from
−0.49 to −0.41 eV, whereby the distance between bottom of the a1g and the top of the eπg LDA
bands, is reduced from 2.0 to 1.7 eV. A Coulomb-enhanced crystal-field splitting of 1.85 eV
would thus suffice to separate the bands. Sure enough, the DMFT calculation with the new
LDA bands for the high-temperature structure, but the values of U and J unchanged, yields a
small, insulating gap. This, we felt, demystified what for more than 30 years was considered
the Mott transition.

4.4 Elemental metals

The e-e interaction effects in V2O3 are really drastic in comparison with those in Pd. Savrasov et
al. [105] recently returned to the problem of calculating the effects on the self-energy, Σ (ω,k) ,

from the interaction with the paramagnons in Pd and included the k-dependence by combining
the LDA with the fluctuational exchange (FLEX) approximation. By including ladder diagrams,
FLEX can describe spin-fluctuations, in contrast to quasi-particle self-consistent GW (QSGW )
approach (see below). As the results turned out to have only a small k-dependence, they were
compared with those of LDA+DMFT, and found to be in better agreement with experiments,
yielding λ=0.1–0.3 for U=1–2 eV.
From ARPES for ferromagnetic bcc Fe, it was concluded in 2010 [106] that previous estimates
of the d -band narrowing due to many-electron effects were too large due to neglect of SO-
splitting in the LSD calculations, and of final-state transitions plus final-state broadening in
the photoemision analysis. As a result, many-electron effects seem to narrow the d-band by
merely 10%. In accord with the measured cyclotron masses [62] and the LSD calculations,
the renormalizations of the Fermi velocities are in the range 1.5−3, presumably with λep ∼0.4
like for Pd, and a similar contribution from the electron-magnon interaction. However, whereas
the two latter are expected to extend down to respectively 40 and 300 meV below εF , the self-
energy anomaly was observed down to at least 500 meV, and finally attributed to many-electron
effects.
The quasi-particle self-consistent GW (QSGW ) approach which has been most successful in
describing weak, but k-dependent correlations, was recently applied to bcc Fe and fcc Ni by
Schilfgaarde et al. [107]. For Fe, the agreement with the available FS data from dHvA was
perfect, and the mass enhancements and the ARPES were well described. Due to its Σ (ω)

lacking k-dependence, DMFT does less well for ARPES. QSGW gave a 25% narrowing of the
d-bandwidth, but that may have been due to neglect of SO splitting as suggested in Ref. [106].
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For Ni, the PM part of the QSGW bands were in excellent agreement with experiments, but
the exchange splitting was overestimated by a factor 2, even more than in the LSD, and the
moment was overestimated by 20% and, hence, much worse than in the LSD. This problem is
known for itinerant magnets, the iron pnictides, in particular. This failure was ascribed to the
inability of GW to treat spin-fluctuations, and it was demonstrated by use of QSGW+DMFT,
that a reasonable, simple cure is to add an external magnetic field adjusted get the moment right.
The approach by Mazin et al., who adjust the Stoner I, is at least based on Morya’s fluctuation
theory [108].
Friedel once asked me about the real-space reason for the double-peak in the bcc DOS, which
for instance is crucial for the martensitic transformation in steels. As seen in Fig. 5, the reason
is not a separation of eg- and t2g-characters. But what is seen in this figure, is that in FM bcc Fe,
the FS has mostly t2g character (the ↑-sheet exclusively) and the big peak mostly eg character.
This was recently found to have consequences for the real-space exchange interactions [109]:
The t2g states are itinerant and determined by FS nesting, while the eg states form localized
moments which must be treated by DMFT. Most important was the subsequent insight [110]
that for both fcc and bcc structures, and throughout the 3d series, the exchange coupling between
an eg orbital and a t2g orbital on a near neighbor vanishes.
Most recently the local magnetic moments in Fe and Ni at ambient and Earth’s-core conditions
were studied [111] using an arsenal of methods, in particular DMFT. At normal pressure, the
Curie temperature of Fe comes out about 30% too large while that of Ni is slightly too low. The
authors (re-)discovered the van Hove singularities in fcc Ni and concluded that without these, Ni
would not be a strong-coupling quantum magnet. Moreover: “The most important implication
of our results for Ni comes from the observation that even at a pressure of hundreds of GPa
(Mbars), the position and shape of these sharp features in the DOS do not change dramatically.
Ni remains in its fcc structure up to even larger pressures and its magnetic moments, though
smaller, are much more robust than those of Fe”.
Well, in the process of substituting I with U, and static- with dynamical mean-field theory,
insights from canonical band theory were apparently forgotten. In the end, AI may take over.
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