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1. Introduction to Tight-Binding Hamiltonians: Metals and Band Insulators
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(¢;,) are fermion creation(destruction) operators, site i, spin o =1, |..
e Kinetic energy t describes hopping between near-neighbor sites (ij).

e Chemical potential u controls filling. (ni, = ¢l ¢, is number operator.)
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States labeled by site occupation numbers:

|n> — |n1¢n2¢n3¢....n1¢n2¢n3¢....>.

Operators describe fermions: Anticommutation relations: {A, B} = AB + BA.

{¢ JO,,cl(7  } = 05,1005.0/ { Ja,cla ,+ =0 {¢i5: ¢, ) = 0.
&,10) = 1)
6o1) = &,6,10) = 0.
Pauli principle! Maximum occupation of a particular site with a given spin is 1.
Anticommutation cJr c;rg = é;ra éjg ensures wave function antisymmetry.



Two alternate (but equivalent) solutions at U = 0 (“band theory”).
One works in real space. The other in momentum space.
Start with the real space analysis (useful for disorder later):

H commutes with the total number operators Ny = >_;nit and Ny = ) iy,
Commutator of the kinetic energy on ‘link’ of the lattice with density at vertices:
T T —

[Ciacja + Cjaci07 e + njO'] =0
Handy identity: [AB,C] = A{B,C} —{A,C}B.
Hopping contains creation and annihilation operators in pairs.

Implication: eigenstates of H come in separate sectors of total N+ and N;.
Consider single particle sector where N+ =1 and N = 0.
Occupation number basis: [100000---), |[010000---), |[001000---),



Example One: Linear chain. H moves occupied site to the left or right:
f[\OlOOOO---) = —n|010000---) —¢t|100000---) —¢]001000---)

Matrix for H, use periodic boundary conditions (pbc):

—u —t 0 0 0 —t \

—t —u -t 0 0 O

0 —t —u 0 0

H = 0 0 —t —pu 0 0
\ —t 0 0 0 —t —pu )

Mathematical identity: Eigenvalues of NxN tridiagonal matrix (pbc)
An = —u — 2t cos ky, kn = 2mn/N n=1,2,3,...N.
Proof: use ansatz v; = e**' in eigenvalue equation

—pv; —tvi—1 —tvg = Avy.
(_ — fom ik _ te—l—ik:)ez'kl L

Discretization of k arises from pbc, vo = vy and vn4+1 = V1.



Eigenvalues of U = 0 Hubbard Hamiltonian in one particle sector (1d chain):

“Energy band” : e(k) = —2t cosk

Eigenvectors (v ); = e'*" are Bloch states — metal.

T'wo particle sector: N4y =2 and N; = 0.
N(N — 1)/2 occupation number basis states:
110000---), [101000---), [100100---),
Same construction as Ny = 1: Act with H on each state. Get the matrix for H.
Diagonalizing yields N(N — 1)/2 eigenvalues and eigenvectors.
Eigenvalues are sums of pairs of the eigenvalues of N+ = 1 matrix
with the Pauli Principle restriction (choose distinct eigenvalues).
Similar result for all sectors Ny = 3, 4, 5, ...

Interactions turn the Hubbard Hamiltonian into a many body problem.



Second, treatment of U = 0 limit (d = 1). Canonical transformation:

1 : 1 .

T 2 : ikl 7 T 2 : —ikl 7
C = — (& C, _. C = —— e C, .
ko /_N ; lo lo /_N - ko

Momentum k discretized: same number of CLU as czra.

Inverse relation follows from orthogonality identities:

1 1(k—p)l 1k (l—
NZG( p):(;k,p _Z (I—3) _ L
l

These are discrete analog of [ dk e’ = 27§(x).

Anticommutation relations preserved (suppress spin indices):

1 —1 1 pm
{Ckncy];}: \/—Nzl:e klczy\/—N;Ger In
= % Ze_ikleJripm{Cl,Cjn}

_ N Ze—zkl —i—zpm6 = Ze—l—z(p k)m5 = 5l€,p

I,m



Transform d = 1 noninteracting Hubbard Hamiltonian to momentum space:
H= —tzl: (cLlcl + czrcHl)
_ _tz % Z Z (6ik(l—|—1)€—z’pl 4 gihlg=ip(+D) )CLCP
l ko p
=t Y S (e g e ),
k l
= —¢ Z zp:ék,p(eik e P )cch
k
— Z (:ik 4ok )CLC,C
k
A=Y ccle, =3 e

Reproduce energy band ¢, = —2t cosk.
Sum of independent (mutually commuting) number operators.

Evident that single particle levels € give solution for all particle sectors.



Example Two: (d=1) Hubbard Hamiltonian with staggered potential,
H = tz clelc:l—I—clclJrl —|—AZ )ele,

Write (—1)" = €™ and go to momentum space.

AZ(_ ) Clcl = A+ Z MZZ — CI]; Z e, = chick+w

l k
H not fully diagonalized: momenta k and k + 7 mix.

H = Z Ck:+7r )( _ztACOSk —2tcosA(k+7T) ) ( N )

Ck:—|—7r

k sum is over the reduced Brillouin zone —7/2 < k < /2.

Diagonalization of 2x2 matrix yields two bands Ej = i\/ —2t cosk)? + AZ.

Band gap 2A opens at reduced Brillouin zone boundaries k = +m/2.



Diagonalization of 2x2 matrix yields two bands Ej = i\/ —2t cosk)? + AZ.
Band gap 2A opens at reduced Brillouin zone boundaries k = +7/2.
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Example of most simple type of Metal-Insulator Transition:
e Fixed A # 0: Insulator if —A < 1 < +A in gap (p = ). Otherwise Metal.

o At fixed p = %, Insulator if A becomes nonzero.



Example Three: Generalize to several orbitals

ﬁ:_tz (Téla+claJa tz la—l_dladja)

<j71>0 <J1>O‘
/ Foa oAt g
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¢ and d' fermions hop between near-neighbor sites (t).

.'.

Inter-orbital hybridization ¢’ converts C; a?/j on the same site j.

Momentum space:

A
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t' just rigidly shifts bands up and down.
The final 2x2 rotation yields the energy levels,

Ef = —2tcosk +t .

Staggered potential A(—1)): band gap opens for any nonzero A.

Here: bands overlap for t' < 4t and the system is metallic.

Insulating at p = 1 if ¢’ > 4+¢ (at half-filling).

Also describes ‘bilayer’ geometries: ¢ and d' label two distinct spatial layers.

Application of uniaxial strain or pressure to tune t'.
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Example Four: Periodic Anderson Model (PAM). One orbital is ‘localized’.
No hopping ¢t on d orbitals.

H:_tz CIO‘+CIO'JO' —|_VZ 10+d10J0>

(J.1)o (J.1)o
Momentum space

m=S e ) (D) (8 )

k k



t=1.0 V=0.2

Final diagonalization

Er. = %(ek 4 \/ez —|—4V2)

‘Hybridization gap’. Dispersionless d repels ¢ band at k = +7/2 crossing.

Summary of these examples:
Simplest (single particle) type of metal-insulator transition:
e Noninteracting fermions on a translationally invariant lattice.
e placement of the chemical potential:
Within a band: metal

In gap between bands: insulator.



2. Antiferromagnetic and Charge Density Wave Insulators: Mean Field Theory

Within Mean Field Theory (MFT), insulating behavior arising from interactions
and a nonzero order parameter has a very similar mathematical structure!

Hubbard Hamiltonian

H = —t Z ClO'—|_ClO'AJO' _NZ(ﬁjT"‘ﬁjQ‘i‘UZﬁjTﬁji-

(j,)1) o Jj J

U is an on-site repulsive interaction.

This is a many-body problem (quartic in fermionic operators)
UZ NG L = UZ JTCJTCMCN

MEFT': recast the interaction term so that it is quadratic

UZ W) g (fge) — () (1) ) -



MEFT: recast the interaction term so that it is quadratic

UZ w0 g () — () () ) -

An antiferromagnetic (AF) pattern of the fermionic occupations (n;,)
(751
(M50)

looks just like a staggered potential to the opposite spin species nj—..

p+(=1m — (p+ (=1 m)ny
p—(=1m — (p— (=1 m) np

m is antiferromagnetic order parameter.

A ‘spin density wave’ (SDW) opens a band gap and ‘Slater’ insulator.
Require self-consistent solution. Patterns (nj+), (nj;) — energy bands.
What value of m minimizes free energy for these bands?

Optimal m depends on lattice geometry (noninteracting bands); U, T', and p.

Generate MFT phase diagram (metallic/insulator regions).

Similar CDW insulators arise when fermions interact with local phonon modes .

Added feature is competition with energy cost to stretch bonds.



3. Anderson and Mott Insulators: Disorder and Interactions

Anderson insulators arising from disorder.
Mott insulators arising from strong repulsive interactions treated outside of MFT.

d = 1 hopping Hamiltonian again, with random chemical potentials p;:

= _tz jO'Aj—}—la A;r+1a ja Zﬂj an"'nN)

7,0
Numerically dlagonahze real space H.
—uy —t 0 0 0 —t \
-t  —upu2  —t 0 0 0
0 —t — U3 —t 0 0
H = 0 0 —t g 0 0
\ —t 0 0 0 oo =t —uN )

Translation invariance broken by impurities. —A < p; < +A
Can no longer label the eigenvalues with a momentum index k.
Resulting localized eigenvectors are not extended Bloch states.

‘Anderson Insulator’: localized states do not conduct.



In one dimension, all eigenstates localized, for any amplitude of disorder.
Also true in two dimensions, although just barely.
In three dimensions:

e Eigenfunctions with largest and smallest eigenvalues: localized.

e Eigenfunctions near center of spectrum: extended.

e Energy separating these two behaviors: mobility edge F..

Anderson metal-insulator transitions:
e 11 < F.: only localized eigenfunctions are occupied — insulator.
e 11 > F,: extended states become occupied — metal.

In contrast to band, SDW, and CDW insulators, no gap in spectrum.

Most powerful approach actually not diagonalization, but transfer matrix.



Fairly opaque: physics hidden in diagonalizing random matrix.

Can develop insight from numeric and analytic solution to single defect problem.
Diagonalize matrix with o # 0 on just one site jp.

Most eigenvalues continue to look like —2t cosk.

However, one extremal eigenvalue split off from all the others.

| 1y =0.20
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How do we know the associated eigenvector is localized?
Squares of amplitudes of components ‘qﬁj |2 are sharply peaked at jo.

N = 512 site chain with defect at jo = 256.

0.3 —— T
: ~ 1y = 0.05]
| — 1, =0.10]
0.2+ i, = 0.20]
N I —].l0=0.50:

E._,

0.1F i
O— . | L |¥§- |

200 220 240 260 280 300 320

|

Formal similarity to localization of vibrations in harmonic chain with defect mass.



Small number of impurities can also be treated analytically.

Single particle eigenstates ¢ and eigenenergies E, in the absence of an impurity:

ZLmn Cbn =0 Lmn — E(smn — tém,n—l — t5m,n—|—1 ;

Nontrivial solution requires | L | = 0.

In the presence of randomness,

> Lomén=> 6Lpmeds —  (I-G5L)¢p=0,
n k

§L is matrix containing local chemical potentials; G = L™'. “Solution” is,

On = Z Gni 0Lk ¢ -
1k

However unknown variables ¢,, appear on both sides!
Sparsity of §L enormously simplifies the linear algebra problem |I — GJ§L | = 0.
Instead of rank N (number of sites), I — G § L has rank n (number of defects).

Furthermore, we have an explicit expression G = ), etk(n=0) /Ek.



Hubbard-Mott Insulator is the most subtle by far.
Describes qualitative “strong correlation” physics of many-electron materials
e Transition metal monoxides, cuprate superconductors, ...
e On-site repulsion U sufficiently large — Mott Insulator
e Exchange interaction J o< t* /U — Antiferromagnetism
e Stripes and other charge/spin inhomogeneities.

e d-wave superconductivity 777
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Mott Insulators and Antiferromagnetism: Qualitative Pictures

Consider a lattice of sites with
“commensurate filling”:

The average number of electrons
1S one per site.

“quantum fluctuations” (kinetic energy t)

and thermal fluctuations 71", both favor
electrons moving around lattice.

Metal: odd number (one) particle per cell/site.



But what if there were a large
repulsive interaction U between
electrons on the same site?

A Mott Insulator forms.
Basic physics of parent compounds
of cuprate superconductors!



Two ways to destroy Mott Insulator:
x Decrease U/t: By applying pressure (MnO)
* Shift (n) # 1: Dope chemically (cuprate superconductors)

What is optimal spin arrangement?
Hopping of neighboring parallel spins forbidden by Pauli.

Antiparallel arrangement lower in second order perturbation theory.

t t

R

AE® =0 AE® o« —t2 /U = —J

Mott insulating behavior and antiferromagnetism go hand-in-hand.
Qualitative picture of cuprate physics before doping.

Still do not fully understand why cuprates superconduct after doping.



Quantum simulation results for the square lattice Hubbard Hamiltonian at U = 4t.

p(p) develops a plateau at half-filling signalling Mott insulator has formed.

U=4.0 N=8x8 N=8x8 U=4t p=0.25t
1.04——

103 ]

102}

101+

In many situations Slater insulator forming at small U due to the opening of

an AF gap, merges smoothly, as U increases, into Mott insulator.



4. Metals, Insulators, and Superconductors: Formal Definitions

The most natural quantity to distinguish metals and insulators: conductivity o.

Require response of current to vector potential A, (1). Modifies hopping,

chcl - cchHx > eieA“’(l)chcl + e_ieA‘""’(l)cIcHx :
Expand in powers of A.
2
: € kx(l) 2
Ka=K— (ﬁlAml Aml)
A ; ejz (1) Az (1) + 5 D
Jo(l) =it Z (ch S Cly — c;raclerg) paramagnetic current density
kx(1) = —t Z (chgwcl(I -+ CITUCHQM) kinetic energy density .

Differentiating with respect to A, (1) yields the total current density,

o) = =5 = 2 + € k() AL )




Plane wave form for the vector potential,
Az (1, t) = Re(As(q,w) ") |
results in current,
(7= (1)) = Re({ja(q,w)) "+ ™)
¢ ((ke) = Are(a,w) ) A (@)

(Je(q,w))

Matsubara frequencies iw,, = 2rm1’, current-current correlation function
. 1 & LW, T / - .
Meal@vivon) = 3 [ dre (i2(a. 1)72(~a,0)
0

Analogous to response of magnetization M to an applied Zeeman field.

Susceptibility expressed as magnetization-magnetization correlation function.

d(M)

X:d—B:B<M2>

Final step: Connect A to Drude weight D and superfluid density Ds.



Superfluid density determines magnetic field penetration into superconductor.
London’s observation:

Meissner effect follows if current density is proportional to the vector potential,

. 1 1
]x(Qy> — T An ﬁ Aw(%) .

Magnetic fields expelled from superconductor beyond penetration depth A,

I Arnge?

A2 mc?2

which depends on the superfluid density ns.

Link superfluid weight Ds = ns/m and current-current correlation function:

D
Te?

— —<—]€g;> —Agm:(q:zz — OaQy — Oaiwm — O) :



Relation between vector potential and electric field, £y, = —0A,/0t, and between
conductivity and electric field yields analogous formula for the Drude weight, the
delta function contribution D§(w) to the conductivity,

D
— = —(—ks) — ANaz(qz = 0,9, = 0,iwy, — 0) .

Te?

Third limit, longitudinal momentum taken to zero, relates A to kinetic energy,

(—kz) = Azz(qz — 0,9y = 0,iw,, =0) .

Summary: Depending on the limits in which the momenta and frequency are taken
to zero, one can obtain the superfluid density Ds and Drude weight D from the
current-current correlation function. Then:

e Insulator: D =D, =0.
e Metal: D#0 Ds;=0.
e Superconductor: Ds # 0.

Alternate limits of approaching zero momentum and frequency yield distinct re-
sults and profoundly different physical quantities.



5. Applications of Formal Theory: Quantum Monte Carlo

Can explicitly evaluate A and its different limits with Quantum Monte Carlo.
Attractive Hubbard model with disorder of magnitude V. Basic physics:
e If U < 0 fermions form pairs which can then condense to a superfluid.

e This superfluid can be destroyed by randomness, which localizes the pairs.
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Critical value V. beyond which D = Ds; = 0 and the system becomes insulating.



Extrapolation in Matsubara frequencies captures Drude weight, D.

D(wm) =7( — Ko — Aza(gz = 0, gy = 0, iwm )
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D vanishes at a value consistent with V. for vanishing of Dj;.

Suggests direct superconductor-insulator transition; no intervening metallic phase.

Similar plots showing the momentum extrapolations to verify A* = —( K, ).



6. Conductivity and Spectral Functions

An alternate analysis of conductivity begins with fluctuation-dissipation theorem,

T dw  exp(—wT)
Aez(q,7) = ImA:(q,w) .
@n=[  ZEPE S A (aw

Inversion of Laplace transform to get Im A, is very ill-conditioned.
If T' << QQ, the scale at which ImA deviates from ImA ~ w oy,

2

Ode = %Am(q =0,7=05/2),

et U=-40 <n>=0.875 Onset of nonzero D:
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Data from QMC simulations remarkably similar to experimental literature.
2D superconductor-insulator transition (SIT) in the presence of disorder.
Means to access SIT:

e Changing the degree of microscopic disorder.

e Altering the film thickness.

e Applying a magnetic field

e Changing the carrier density.
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Distinguishing metals and insulators via momentum-resolved spectral function

B oo exp(—wT) B
Gq, ) = /_ AP A N (w) _gA(q,w) |

Square lattice Hubbard Hamiltonian at half-filling:

0.4 —
—v—U=2
[ o A\ —o—U=A |
03} DA =6 Nw=0)—>0asT —0
f/‘ \“v\ .

—~ 7 v, ' e Small U: Slater insulator
o v

02f :
g ; driven by SDW order
< ol e Intermediate U crossover

' to Mott insulator.
0.0 o

Size of insulating gap o« temperature range over which N(w = 0) = 0.

Momentum resolution: Track peak in A(q,w) to infer

dispersion of dressed quasiparticle excitations.



7. Summary

[1] Non-interacting or MFT (quadratic) tight binding Hamiltonians.
Metal to Band Insulator:
Compute single particle energy levels.
Position of chemical potential relaive to gap.
Anderson Insulator:
Driven by disorder; localized eigenstates

Position of chemical potential relative to mobility edge.

[2] Interacting (quartic) tight binding Hamiltonians.
Mott Insulator

Large interactions restrict motion of fermions.

(Very) difficult to solve. Numerics: QMC, DMRG, DMFT

[3] Formal Criteria for Insulator, Metal, Superconductor

Limits of current-current correlation function.



