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1. Introduction to Tight-Binding Hamiltonians: Metals and Band Insulators

Ĥ = −t
∑

〈ij〉σ

(c†iσcjσ + c†jσciσ)− µ
∑

iσ

(niσ + niσ)

• c†iσ (ciσ) are fermion creation(destruction) operators, site i, spin σ =↑, ↓.
• Kinetic energy t describes hopping between near-neighbor sites 〈ij〉.
• Chemical potential µ controls filling. (niσ = c†iσciσ is number operator.)

States labeled by site occupation numbers:

|n 〉 → |n1↑ n2↑ n3↑ . . . . n1↓ n2↓ n3↓ . . . . 〉.

Operators describe fermions: Anticommutation relations: {Â, B̂} = ÂB̂ + B̂Â.

{ĉjσ, ĉ
†
lσ′} = δj,lδσ,σ′ {ĉ†jσ, ĉ

†
lσ′} = 0 {ĉjσ, ĉlσ′} = 0.

ĉ†jσ| 0 〉 = | 1〉
ĉ†jσ| 1 〉 = ĉ†jσ ĉ

†
jσ| 0〉 = 0.

Pauli principle! Maximum occupation of a particular site with a given spin is 1.

Anticommutation ĉ†jσ ĉ†lσ = −ĉ†lσ ĉ†jσ ensures wave function antisymmetry.



Two alternate (but equivalent) solutions at U = 0 (“band theory”).

One works in real space. The other in momentum space.

Start with the real space analysis (useful for disorder later):

Ĥ commutes with the total number operators N↑ =
∑

j
nj↑ and N↓ =

∑

j
nj↓

Commutator of the kinetic energy on ‘link’ of the lattice with density at vertices:

[c†iσcjσ + c†jσciσ, niσ + njσ] = 0

Handy identity: [AB,C] = A{B,C} − {A,C}B.

Hopping contains creation and annihilation operators in pairs.

Implication: eigenstates of Ĥ come in separate sectors of total N↑ and N↓.

Consider single particle sector where N↑ = 1 and N↓ = 0.

Occupation number basis: |1 0 0 0 0 0 · · · 〉, |0 1 0 0 0 0 · · · 〉, |0 0 1 0 0 0 · · · 〉, · · · .



Example One: Linear chain. Ĥ moves occupied site to the left or right:

Ĥ |0 1 0 0 0 0 · · · 〉 = −µ |0 1 0 0 0 0 · · · 〉 − t |1 0 0 0 0 0 · · · 〉 − t |0 0 1 0 0 0 · · · 〉

Matrix for Ĥ, use periodic boundary conditions (pbc):

H =



















−µ −t 0 0 · · · 0 −t
−t −µ −t 0 · · · 0 0
0 −t −µ −t · · · 0 0
0 0 −t −µ · · · 0 0
...

...
...

...
...

...
−t 0 0 0 · · · −t −µ



















Mathematical identity: Eigenvalues of NxN tridiagonal matrix (pbc)

λn = −µ− 2t cos kn kn = 2πn/N n = 1, 2, 3, . . . N.

Proof: use ansatz vl = eikl in eigenvalue equation

−µ vl − t vl−1 − t vl+1 = λ vl.
(

− µ− t e−ik − t e+ik
)

eikl = λ eikl.

Discretization of k arises from pbc, v0 = vN and vN+1 = v1.



Eigenvalues of U = 0 Hubbard Hamiltonian in one particle sector (1d chain):

“Energy band” : ǫ(k) = −2t cosk

Eigenvectors (~vk)l = eikl are Bloch states → metal.

Two particle sector: N↑ = 2 and N↓ = 0.

N(N − 1)/2 occupation number basis states:

|1 1 0 0 0 0 · · · 〉, |1 0 1 0 0 0 · · · 〉, |1 0 0 1 0 0 · · · 〉, · · · .
Same construction as N↑ = 1: Act with Ĥ on each state. Get the matrix for Ĥ.

Diagonalizing yields N(N − 1)/2 eigenvalues and eigenvectors.

Eigenvalues are sums of pairs of the eigenvalues of N↑ = 1 matrix

with the Pauli Principle restriction (choose distinct eigenvalues).

Similar result for all sectors N↑ = 3, 4, 5, . . .

Interactions turn the Hubbard Hamiltonian into a many body problem.



Second, treatment of U = 0 limit (d = 1). Canonical transformation:

c†kσ =
1√
N

∑

l

eiklc†lσ. c†lσ =
1√
N

∑

k

e−iklc†kσ.

Momentum k discretized: same number of c†kσ as c†lσ.

Inverse relation follows from orthogonality identities:

1

N

∑

l

ei(k−p)l = δk,p
1

N

∑

k

eik(l−j) = δl,j

These are discrete analog of
∫

dk eikx = 2πδ(x).

Anticommutation relations preserved (suppress spin indices):

{

ck, c
†
p} = { 1√

N

∑

l

e−iklcl ,
1√
N

∑

m

e+ipmc†m
}

=
1

N

∑

l,m

e−ikle+ipm
{

cl , c
†
m

}

=
1

N

∑

l,m

e−ikle+ipmδl,m =
∑

l

e+i(p−k)mδl,m = δk,p



Transform d = 1 noninteracting Hubbard Hamiltonian to momentum space:

Ĥ = −t
∑

l

(

c†l+1cl + c†l cl+1

)

= −t
∑

l

1

N

∑

k

∑

p

(

eik(l+1)e−ipl + eikle−ip(l+1) )c†kcp

= −t
∑

k

∑

p

1

N

∑

l

eil(k−p)( eik + e−ip
)

c†kcp

= −t
∑

k

∑

p

δk,p
(

eik + e−ip
)

c†kcp

= −t
∑

k

(

eik + e−ik
)

c†kck

Ĥ =
∑

ǫkc
†
kck =

∑

ǫknk

Reproduce energy band ǫk = −2t cosk.

Sum of independent (mutually commuting) number operators.

Evident that single particle levels ǫk give solution for all particle sectors.



Example Two: (d=1) Hubbard Hamiltonian with staggered potential,

Ĥ = −t
∑

l

(

c†l+1cl + c†l cl+1

)

+∆
∑

l

(−1)lc†l cl

Write (−1)l = eilπ and go to momentum space.

∆
∑

l

(−1)l c†l cl = ∆
1

N

∑

l

eiπl
∑

k

e−ikl c†k
∑

p

e+ipl cp = ∆
∑

k

c†kck+π

Ĥ not fully diagonalized: momenta k and k + π mix.

H =
∑

k

(

c†k c†k+π

)

(

−2t cos k ∆
∆ −2t cos (k + π)

)(

ck
ck+π

)

k sum is over the reduced Brillouin zone −π/2 < k < π/2.

Diagonalization of 2x2 matrix yields two bands Ek = ±
√

(−2t cosk)2 +∆2.

Band gap 2∆ opens at reduced Brillouin zone boundaries k = ±π/2.



Diagonalization of 2x2 matrix yields two bands Ek = ±
√

(−2t cosk)2 +∆2.

Band gap 2∆ opens at reduced Brillouin zone boundaries k = ±π/2.

Example of most simple type of Metal-Insulator Transition:

• Fixed ∆ 6= 0: Insulator if −∆ < µ < +∆ in gap (ρ = 1
2
). Otherwise Metal.

• At fixed ρ = 1
2
, Insulator if ∆ becomes nonzero.
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Example Three: Generalize to several orbitals

Ĥ = −t
∑

〈 j,l 〉σ

( ĉ†jσ ĉlσ + ĉ†lσ ĉjσ )− t
∑

〈 j,l 〉σ

( d̂†jσd̂lσ + d̂†lσd̂jσ )

−t′
∑

jσ

( d̂†jσ ĉjσ + ĉ†jσd̂jσ )− µ
∑

j

(n̂d
j ↑ + n̂d

j ↓ + n̂c
j ↑ + n̂c

j ↓) .

ĉ† and d̂† fermions hop between near-neighbor sites (t).

Inter-orbital hybridization t′ converts ĉ†j ↔ d̂†j on the same site j.

Momentum space:

Ĥ =
∑

kσ

ǫkĉ
†
kσ ĉkσ +

∑

kσ

ǫkd̂
†
kσd̂kσ + t′

∑

kσ

(

d̂†kσ ĉkσ + ĉ†kσ d̂kσ

)

=
∑

k

(

c†k d†k
)

(

ǫk t′

t′ ǫk

)(

ck
dk

)

.
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t′ just rigidly shifts bands up and down.

The final 2x2 rotation yields the energy levels,

E±
k = −2t cos k ± t′ .

Staggered potential ∆(−1)j: band gap opens for any nonzero ∆.

Here: bands overlap for t′ < 4 t and the system is metallic.

Insulating at ρ = 1 if t′ > 4 t (at half-filling).

Also describes ‘bilayer’ geometries: c† and d† label two distinct spatial layers.

Application of uniaxial strain or pressure to tune t′.
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Example Four: Periodic Anderson Model (PAM). One orbital is ‘localized’.

No hopping t on d orbitals.

H =− t
∑

〈j,l〉σ

(c†jσclσ + c†lσcjσ) + V
∑

〈j,l〉σ

(c†jσdlσ + d†lσcjσ)

Momentum space

H =
∑

k

(

c†k d†k
)

(

−2t cos k V
V 0

)(

ck
dk

)



Final diagonalization

Ek = 1
2

(

ǫk ±
√

ǫ2k + 4V 2
)

‘Hybridization gap’. Dispersionless d repels c band at k = ±π/2 crossing.

Summary of these examples:

Simplest (single particle) type of metal-insulator transition:

• Noninteracting fermions on a translationally invariant lattice.

• placement of the chemical potential:

Within a band: metal

In gap between bands: insulator.



2. Antiferromagnetic and Charge Density Wave Insulators: Mean Field Theory

Within Mean Field Theory (MFT), insulating behavior arising from interactions
and a nonzero order parameter has a very similar mathematical structure!

Hubbard Hamiltonian

Ĥ = −t
∑

〈 j,l 〉σ

( ĉ†jσ ĉlσ + ĉ†lσ ĉjσ )− µ
∑

j

(n̂j ↑ + n̂j ↓) + U
∑

j

n̂j ↑n̂j ↓ .

U is an on-site repulsive interaction.

This is a many-body problem (quartic in fermionic operators)

U
∑

j

n̂j ↑n̂j ↓ = U
∑

j

c†j ↑cj ↑c
†
j ↓cj ↓

MFT: recast the interaction term so that it is quadratic

U
∑

j

(

n̂j ↑ 〈n̂j ↓〉+ n̂j ↑ 〈n̂j ↓〉 − 〈n̂j ↑〉 〈n̂j ↓〉
)

.



MFT: recast the interaction term so that it is quadratic

U
∑

j

(

n̂j ↑ 〈n̂j ↓〉+ n̂j ↑ 〈n̂j ↓〉 − 〈n̂j ↑〉 〈n̂j ↓〉
)

.

An antiferromagnetic (AF) pattern of the fermionic occupations 〈njσ〉

〈n̂j↑〉 = ρ+(−1)j m →
(

ρ+(−1)j m
)

nj↓

〈n̂j↓〉 = ρ− (−1)j m →
(

ρ− (−1)j m
)

nj↑

looks just like a staggered potential to the opposite spin species nj−σ.

m is antiferromagnetic order parameter.

A ‘spin density wave’ (SDW) opens a band gap and ‘Slater’ insulator.

Require self-consistent solution. Patterns 〈n̂j↑〉 , 〈n̂j↓〉 → energy bands.

What value of m minimizes free energy for these bands?

Optimal m depends on lattice geometry (noninteracting bands); U , T , and ρ.

Generate MFT phase diagram (metallic/insulator regions).

Similar CDW insulators arise when fermions interact with local phonon modes .

Added feature is competition with energy cost to stretch bonds.



3. Anderson and Mott Insulators: Disorder and Interactions

Anderson insulators arising from disorder.

Mott insulators arising from strong repulsive interactions treated outside of MFT.

d = 1 hopping Hamiltonian again, with random chemical potentials µj :

Ĥ = −t
∑

j,σ

( ĉ†j σ ĉj+1σ + ĉ†j+1σ ĉj σ )−
∑

j,σ

µj

(

nj↑ + nj↓

)

.

Numerically diagonalize real space Ĥ.

H =



















−µ1 −t 0 0 · · · 0 −t
−t −µ2 −t 0 · · · 0 0
0 −t −µ3 −t · · · 0 0
0 0 −t −µ4 · · · 0 0
...

...
...

...
...

...
−t 0 0 0 · · · −t −µN



















Translation invariance broken by impurities. −∆ < µj < +∆

Can no longer label the eigenvalues with a momentum index k.

Resulting localized eigenvectors are not extended Bloch states.

‘Anderson Insulator’: localized states do not conduct.



In one dimension, all eigenstates localized, for any amplitude of disorder.

Also true in two dimensions, although just barely.

In three dimensions:

• Eigenfunctions with largest and smallest eigenvalues: localized.

• Eigenfunctions near center of spectrum: extended.

• Energy separating these two behaviors: mobility edge E∗.

Anderson metal-insulator transitions:

• µ < E∗: only localized eigenfunctions are occupied → insulator.

• µ > E∗: extended states become occupied → metal.

In contrast to band, SDW, and CDW insulators, no gap in spectrum.

Most powerful approach actually not diagonalization, but transfer matrix.



Fairly opaque: physics hidden in diagonalizing random matrix.

Can develop insight from numeric and analytic solution to single defect problem.

Diagonalize matrix with µ0 6= 0 on just one site j0.

Most eigenvalues continue to look like −2t cosk.

However, one extremal eigenvalue split off from all the others.



How do we know the associated eigenvector is localized?

Squares of amplitudes of components
∣

∣φj

∣

∣

2
are sharply peaked at j0.

N = 512 site chain with defect at j0 = 256.

Formal similarity to localization of vibrations in harmonic chain with defect mass.



Small number of impurities can also be treated analytically.

Single particle eigenstates φ and eigenenergies E, in the absence of an impurity:

∑

n

Lmn φn = 0 Lmn = E δmn − t δm,n−1 − t δm,n+1 ,

Nontrivial solution requires |L | = 0.

In the presence of randomness,

∑

n

Lmn φn =
∑

k

δLmk φk →
(

I −GδL
)

φ = 0 ,

δL is matrix containing local chemical potentials; G = L−1. “Solution” is,

φn =
∑

lk

Gnl δLlk φk .

However unknown variables φn appear on both sides!

Sparsity of δL enormously simplifies the linear algebra problem | I −GδL | = 0.

Instead of rank N (number of sites), I − Gδ L has rank n (number of defects).

Furthermore, we have an explicit expression Gnl =
∑

k e
ik(n−l)/Ek.



Hubbard-Mott Insulator is the most subtle by far.

Describes qualitative “strong correlation” physics of many-electron materials

• Transition metal monoxides, cuprate superconductors, ...

• On-site repulsion U sufficiently large → Mott Insulator

• Exchange interaction J ∝ t2/U → Antiferromagnetism

• Stripes and other charge/spin inhomogeneities.

• d-wave superconductivity ???
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Mott Insulators and Antiferromagnetism: Qualitative Pictures

Consider a lattice of sites with

“commensurate filling”:

The average number of electrons

is one per site.

“quantum fluctuations” (kinetic energy t)

and thermal fluctuations T , both favor

electrons moving around lattice.

Metal: odd number (one) particle per cell/site.



+U

But what if there were a large

repulsive interaction U between

electrons on the same site?

A Mott Insulator forms.

Basic physics of parent compounds

of cuprate superconductors!



Two ways to destroy Mott Insulator:

∗ Decrease U/t: By applying pressure (MnO)

∗ Shift 〈n〉 6= 1: Dope chemically (cuprate superconductors)

What is optimal spin arrangement?

Hopping of neighboring parallel spins forbidden by Pauli.

Antiparallel arrangement lower in second order perturbation theory.

x t t

∆E(2) = 0 ∆E(2) ∝ −t2/U = −J

Mott insulating behavior and antiferromagnetism go hand-in-hand.

Qualitative picture of cuprate physics before doping.

Still do not fully understand why cuprates superconduct after doping.



Quantum simulation results for the square lattice Hubbard Hamiltonian at U = 4t.

ρ(µ) develops a plateau at half-filling signalling Mott insulator has formed.
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In many situations Slater insulator forming at small U due to the opening of

an AF gap, merges smoothly, as U increases, into Mott insulator.



4. Metals, Insulators, and Superconductors: Formal Definitions

The most natural quantity to distinguish metals and insulators: conductivity σ.

Require response of current to vector potential Ax(l). Modifies hopping,

c†l+xcl + c†l cl+x → eieAx(l)c†l+xcl + e−ieAx(l)c†l cl+x .

Expand in powers of A.

KA = K −
∑

l

(

ejpx(l)Ax(l) +
e2kx(l)

2
Ax(l)

2
)

jpx(l) = it
∑

σ

(

c†l+x σclσ − c†lσcl+x σ

)

paramagnetic current density

kx(l) = −t
∑

σ

(

c†l+x σclσ + c†lσcl+x σ

)

kinetic energy density .

Differentiating with respect to Ax(l) yields the total current density,

jx(l) = − δK

δAx(l)
= e jpx(l) + e2 kx(l)Ax(l)



Plane wave form for the vector potential,

Ax(l, t) = Re
(

Ax(q, ω) e
iq·l−iωt

)

,

results in current,

〈jx(l, t)〉 = Re
(

〈 jx(q, ω)〉 eiq·l−iωt
)

〈 jx(q, ω)〉 = −e2
(

〈kx〉 − Λxx(q, ω)
)

Ax(q, ω) .

Matsubara frequencies iωm = 2πmT , current-current correlation function

Λxx(q, iωm) =
1

N

∫ β

0

dτeiωmτ 〈jpx(q, τ)jpx(−q, 0)〉 ,

Analogous to response of magnetization M to an applied Zeeman field.

Susceptibility expressed as magnetization-magnetization correlation function.

χ =
d〈M〉
dB

= β〈M2〉

Final step: Connect Λ to Drude weight D and superfluid density Ds.



Superfluid density determines magnetic field penetration into superconductor.

London’s observation:

Meissner effect follows if current density is proportional to the vector potential,

jx(qy) = − 1

4π

1

λ2
Ax(qy) .

Magnetic fields expelled from superconductor beyond penetration depth λ,

1

λ2
=

4πnse
2

mc2
,

which depends on the superfluid density ns.

Link superfluid weight Ds = ns/m and current-current correlation function:

Ds

πe2
= −〈−kx 〉 − Λxx(qx = 0, qy → 0, iωm = 0) .



Relation between vector potential and electric field, Ex = −∂Ax/∂t, and between
conductivity and electric field yields analogous formula for the Drude weight, the
delta function contribution Dδ(ω) to the conductivity,

D

πe2
= −〈−kx 〉 − Λxx(qx = 0, qy = 0, iωm → 0) .

Third limit, longitudinal momentum taken to zero, relates Λ to kinetic energy,

〈−kx 〉 = Λxx(qx → 0, qy = 0, iωm = 0) .

Summary: Depending on the limits in which the momenta and frequency are taken
to zero, one can obtain the superfluid density Ds and Drude weight D from the
current-current correlation function. Then:

• Insulator: D = Ds = 0.

• Metal: D 6= 0 Ds = 0.

• Superconductor: Ds 6= 0.

Alternate limits of approaching zero momentum and frequency yield distinct re-
sults and profoundly different physical quantities.



5. Applications of Formal Theory: Quantum Monte Carlo

Can explicitly evaluate Λ and its different limits with Quantum Monte Carlo.

Attractive Hubbard model with disorder of magnitude V . Basic physics:

• If U < 0 fermions form pairs which can then condense to a superfluid.

• This superfluid can be destroyed by randomness, which localizes the pairs.

ΛL ≡ limqx→0Λxx(qx, qy = 0; iωn = 0) Ds = π[−Kx − ΛT ]

ΛT ≡ limqy→0 Λxx(qx = 0, qy; iωn = 0) Kx = −ΛL

Critical value Vc beyond which D = Ds = 0 and the system becomes insulating.



Extrapolation in Matsubara frequencies captures Drude weight, D.

D(ωm) = π
(

−Kx − Λxx(qx = 0, qy = 0, iωm

)

D vanishes at a value consistent with Vc for vanishing of Ds.

Suggests direct superconductor-insulator transition; no intervening metallic phase.

Similar plots showing the momentum extrapolations to verify ΛL = −〈Kx 〉.



6. Conductivity and Spectral Functions

An alternate analysis of conductivity begins with fluctuation-dissipation theorem,

Λxx(q, τ) =

∫ +∞

−∞

dω

π

exp(−ωτ)

1− exp(−βω)
ImΛxx(q, ω) .

Inversion of Laplace transform to get ImΛxx, is very ill-conditioned.

If T << Ω, the scale at which ImΛ deviates from ImΛ ∼ ω σdc,

σdc =
β2

π
Λxx(q = 0, τ = β/2) ,

Onset of nonzero Ds:

3 . Vc . 4.

Crossings of ρdc:

Vc ∼ 3.5.

Analysis of D:

Vc ∼ 3.25.



Data from QMC simulations remarkably similar to experimental literature.

2D superconductor-insulator transition (SIT) in the presence of disorder.

Means to access SIT:

• Changing the degree of microscopic disorder.

• Altering the film thickness.

• Applying a magnetic field

• Changing the carrier density.

Carrier density tuned SIT in

Bi, Pb, Sn, In1−xOx films.



Distinguishing metals and insulators via momentum-resolved spectral function

G(q, τ) =

∫ +∞

−∞

dω
exp(−ωτ)

1 + exp(−βω)
A(q, ω) N(ω) =

∑

q

A(q, ω) .

Square lattice Hubbard Hamiltonian at half-filling:

N(ω = 0) → 0 as T → 0

• Small U : Slater insulator

driven by SDW order

• Intermediate U crossover

to Mott insulator.

Size of insulating gap ∝ temperature range over which N(ω = 0) = 0.

Momentum resolution: Track peak in A(q, ω) to infer

dispersion of dressed quasiparticle excitations.



7. Summary

[1] Non-interacting or MFT (quadratic) tight binding Hamiltonians.

Metal to Band Insulator:

Compute single particle energy levels.

Position of chemical potential relaive to gap.

Anderson Insulator:

Driven by disorder; localized eigenstates

Position of chemical potential relative to mobility edge.

[2] Interacting (quartic) tight binding Hamiltonians.

Mott Insulator

Large interactions restrict motion of fermions.

(Very) difficult to solve. Numerics: QMC, DMRG, DMFT

[3] Formal Criteria for Insulator, Metal, Superconductor

Limits of current-current correlation function.


