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1 Introduction

In the United States (and perhaps also around the world) we have a joke about some students’
tendency to try to understand physics by memorizing equations: In comprehending electric
circuits, we say, it is important that such students completely master Ohm’s three laws for
current flow in a metal,

V = IR I = V/R R = V/I . (1)

In this chapter, we shall present the subtle relations between resistance, voltage and current,
and come to grips with the equations and the deep concepts governing metallic and insulating
behavior, and their extension to superconductors. We will see that there is considerably more
depth to the field than Ohm’s Three Laws, as represented by Eq. (1).

The difference between metals, insulators, and superconductors can be precisely defined, and
illustrated, within the framework of tight-binding Hamiltonians (TBH). That will be our pri-
mary language here. In addition to developing some analytic approaches to the solution of
these Hamiltonians, and hence their characterization into distinct charge transport categories, a
good fraction of the material will involve a discussion of how to implement the concepts and
equations in precise calculational frameworks, including exact diagonalization and Quantum
Monte Carlo (QMC).

The organization of this chapter is as follows. We first describe, in a rather qualitative way,
the different types of insulators (band, Anderson, and Mott) which can arise. Our criteria for
insulating behavior will focus on the appearance of a gap in the single particle energy levels
(band insulator), the appearance of localized eigenfunctions in the presence of disorder (Ander-
son insulator), or the possibility that interactions between electrons are so strong that motion of
electrons is inhibited (Mott insulator). The first two cases can be addressed with some precision
with simple calculations, but the latter is much more challenging. In fact, it is fair to say that a
full understanding of Mott insulating behavior has not yet been achieved, an especially unfortu-
nate state of affairs since out of Mott insulators many of the most interesting new materials and
novel physics develops.

The second part of the chapter develops a more formal set of mathematical criteria for distin-
guishing metals, insulators, and superconductors, one which focussed directly on the current-
current correlation function (and hence, in a sense, can be viewed as a proper treatment of the
quantities in Eq. (1) !) This closely follows the discussion of Scalapino, White, and Zhang in
Ref. [1]. These criteria will be shown to give sensible results both in simple analytic treat-
ments and also with QMC methods. In the latter case, disorder can also be included, along with
interactions.

The final section will outline alternative approaches to distinguishing metallic, insulating, and
superconducting behavior which involve an approximate formula for the conductivity and an
examination of the single particle spectral function.



Insulator, Metal, or Superconductor: The Criteria 2.3

2 A brief introduction to tight-binding Hamiltonians
Metals and band insulators

Tight-Binding Hamiltonians (TBH) allow for a simplified description of electrons in a solid,
which complements methods like density functional theory. Rather than calculate the wave
functions in continuum space, one instead focuses on a collection of discrete sites or orbitals
which the electrons can occupy and, between which, make transitions. We will assume the
student has some familiarity with second quantization, which forms the language of TBHs. We
begin with the simplest TBH

Ĥ = −t
∑
〈 j,l 〉σ

(
ĉ†jσ ĉlσ + ĉ†lσ ĉjσ

)
− µ

∑
j

(
n̂j ↑ + n̂j ↓

)
. (2)

Ĥ consists of a kinetic energy term which describes the destruction of a fermion of spin σ

on site l, via the operator ĉlσ, and its re-creation on site j, via the operator ĉ†jσ; and a chem-
ical potential term. The creation and destruction operators obey anticommutation relations
{ĉ†jσ, ĉ

†
lσ′} = {ĉjσ, ĉlσ′} = 0 and {ĉjσ, ĉ

†
lσ′} = δj l δσ σ′ , which guarantee that they describe

fermionic particles. As one consequence, the number operators n̂jσ = ĉ†jσ ĉjσ can take only the
values 0, 1.

The symbol
〈
j, l
〉

in Eq. (2) denotes the collection of pairs of sites between which the hopping
of electrons is allowed. Very commonly, this is restricted to the near neighbor sites of some
periodic lattice, for example a one-dimensional chain, two dimensional square, triangular, or
honeycomb lattice, etc. Because there are no interactions, the two spin species σ =↑, ↓ can,
for the moment, be considered independently. We will define the density ρ to be the number of
fermions per lattice site.

For most of this chapter, we will assume periodic boundary conditions. In this situation, the
translation invariance of the geometry suggests that going to momentum space will simplify
our understanding. Indeed, if we introduce

ĉ†kσ =
1√
N

∑
j

e+ik·j ĉ†jσ ĉ†jσ =
1√
N

∑
k

e−ik·j ĉ†kσ , (3)

the Hamiltonian Eq. (2) becomes diagonal: rather than destruction on one spatial site being
partnered with creation on a different spatial site, creation and destruction processes only occur
between identical momenta. It is worth emphasizing that the new ‘momentum creation and
destruction operators’ obey the same anti-commutation relations of the original operators in
real space, so that each of the momenta states k can be occupied by at most one fermion of each
spin species.

Let’s consider, for concreteness, a one dimensional chain. The explicit calculation is (ignoring
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the chemical potential term)

Ĥ = −t
∑
j,σ

( ĉ†j σ ĉj+1σ + ĉ†j+1σ ĉj σ )

= − t

N

∑
j,σ

∑
k

∑
k′

(
e−ik j ĉ†k σe

+ik′ (j+1)ĉk′ σ + e−ik (j+1)ĉ†k σe
+ik′ j ĉk′ σ

)
= − t

N

∑
k

∑
k′

∑
j σ

e+i(k
′−k) j(e+ik′ + e−ik

)
ĉ†k σ ĉk′ σ . (4)

If we use the orthogonality relation
∑

j e
+i(k′−k) j = Nδk k′ (which is also employed in the

inversion of the site to momentum transformation of Eq. (3)) we obtain the Hamiltonian in
momentum space

Ĥ =
∑
k σ

−2t cosk ĉ†k σ ĉk σ . (5)

The structure of Eq. (5) is quite general, that is, also correct in higher dimension and on different
lattice structures. For an arbitrary TBH,

Ĥ =
∑
kσ

εk n̂kσ n̂kσ = ĉ†kσ ĉkσ . (6)

As noted earlier, Ĥ is diagonal in the momentum indices, so that a state characterized by the
occupation of certain momenta is an eigenstate of Ĥ with an energy equal to the sum of the
corresponding εk. This is, obviously, not true of position occupation number states. Different
lattice geometries are encapsulated in the specific dispersion relation εk. Summarizing, then,
when viewed in momentum space there is a single, continuous, ‘energy band’ which is, at T = 0

occupied by two, spin ↑ and ↓, fermions for all εk < µ. Such a model is always metallic, except,
at zero temperature T , in the trivial limits where µ is below the lowest level in the band, i.e.,
when there are no fermions on the lattice (ρ = 0) or when µ is above the highest level in the
band, i.e., when every level is occupied (ρ = 2).
A more interesting situation arises when multiple energy bands are present. This can occur in a
variety of ways. Again focussing on a one dimensional chain, consider an additional staggered
potential ∆

∑
j(−1) j njσ = eiπjnjσ in the Hamiltonian. When one goes to momentum space

the staggered potential mixes momenta k and k + π:

∆
∑
j

(−1)j c†jcj = ∆
1

N

∑
j

∑
k

∑
p

eiπj e−ikj c†k e
+ipj cp = ∆

∑
k

c†kck+π . (7)

(We have used the orthogonality relation
∑

j e
+i(p+π−k) j = Nδk p+π again.) Now, going to

momentum space has not fully diagonalized the Hamiltonian: the wavevectors k and k+π mix.
Using the forms already written down for the hopping term,

H =
∑
k

(
c†k c†k+π

)( −2t cos k ∆

∆ −2t cos (k + π)

)(
ck
ck+π

)
, (8)
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Fig. 1: The dispersion relation of a one dimensional non-interacting TBH before (black) and
after (red, blue, green) a staggered potential (−1)j n̂j is added. The staggered potential opens
a gap near k = ±π/2 and leads to insulating behavior at half-filling.

where the k sum is over the reduced Brillouin zone −π/2 < k < π/2, so as not to overcount
the modes.
This structure is not restricted to a one dimensional chain, but will arise for any ‘bipartite’ lattice
(that is, one whose sites divide into two sets A and B such that the neighbors of A belong only
to B and vice-versa. In this general situation, momenta k and k + ~π mix. One must still do a
final diagonalization of the 2x2 matrices in Eq. (8). The allowed energy levels are

Ek = ±
√
ε2k +∆2 , (9)

where k ranges only over the reduced Brillouin zone containing only one of each pair k and
k+ ~π. The dispersion relation of Eq. (9) has a gap 2∆ separating the positive and negative Ek.
The system is insulating, not just in the trivial limits when there are no electrons on the lattice or
when all sites are fully occupied, but also at half-filling ρ = 1, which occurs when the chemical
potential −2∆ < µ < +2∆. See Fig. 1
One way of diagnosing such a band insulator is by computing ρ(µ). Within an energy band, the
density ρ increases as the chemical potential µ is raised. However, for µ in the gap, ρ is constant.
This plateau in ρ(µ) reflects a vanishing of the electronic compressibility κ = ∂ρ/∂µ = 0. We
will see that this criterion for insulating behavior applies also to interaction-driven situations,
but not to the disorder-induced Anderson insulator.
In the discussion above we generated multiple bands and a band gap through an additional stag-
gered potential. One could also generalize the original TBH, Eq. (2), so that several fermionic
species are present. One can, for example, allow two orbitals (and associated operators ĉ and d̂)
on every site of a square lattice,

Ĥ =− t
∑
〈 j,l 〉σ

( ĉ†jσ ĉlσ + ĉ†lσ ĉjσ )− t
∑
〈 j,l 〉σ

( d̂†jσd̂lσ + d̂†lσd̂jσ )

− t′
∑
jσ

( d̂†jσ ĉjσ + ĉ†jσd̂jσ )− µ
∑
j

(n̂dj ↑ + n̂dj ↓ + n̂cj ↑ + n̂cj ↓) . (10)
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Each of the individual fermionic species associated with operators ĉ and d̂ hops on near-neighbor
sites. However, the two types of fermions are also allowed to interconvert on the same site of
the lattice, with hopping parameter t′.
Once again going to momentum space, the mixing of the two fermionic species leads to

Ĥ =
∑
kσ

εkĉ
†
kσ ĉkσ +

∑
kσ

εkd̂
†
kσd̂kσ + t′

∑
kσ

(
d̂†kσ ĉkσ + ĉ†kσd̂kσ

)
=
∑
k

(
c†k d†k

)( εk t′

t′ εk

)(
ck
dk

)
. (11)

The final 2x2 rotation yields the energy levels,

E±k = −2t
(
cos kx + cos ky

)
± t′ . (12)

This band structure is somewhat more rich than that which arises from a staggered potential,
where a gap opens for any nonzero ∆. Here, instead, the bands overlap for t′ < 4 t and the
system is always metallic (except for ρ = 0 or ρ = 2). However, it can be made insulating at
ρ = 1 if t′ > 4 t. The TBH of Eq. (10) is sometimes used to describe ‘bilayer’ geometries,
where c and d label two different spatial layers, as opposed to distinct orbitals.
The considerations of this section have described the simplest type of metal-insulator transition:
Fermions which are noninteracting, on a translationally invariant lattice such that the placement
of the chemical potential either within one of the energy bands (a metal) or in a gap between
them (insulator).

3 Antiferromagnetic and charge density wave insulators

Insulating behavior which is closely connected, from the viewpoint of mathematical structure,
to that of the previous section arises when interactions are included within mean-field theory
(MFT). Consider the most simple type of TBH interaction, a repulsion between spin up and spin
down fermions on the same spatial site. Together with the kinetic energy of Eq. (2) we obtain
the Hubbard Hamiltonian,

Ĥ = −t
∑
〈 j,l 〉σ

(
ĉ†jσ ĉlσ + ĉ†lσ ĉjσ

)
− µ

∑
j

(
n̂j ↑ + n̂j ↓

)
+ U

∑
j

n̂j ↑n̂j ↓ . (13)

The MFT approximation consists of recasting the interaction term in Eq. (13) as,

U
∑
j

(
n̂j ↑ 〈n̂j ↓〉+ n̂j ↑ 〈n̂j ↓〉 − 〈n̂j ↑〉 〈n̂j ↓〉

)
. (14)

It is clear that if the fermionic occupations possess an antiferromagnetic (AF) pattern, 〈n̂j↑〉 =
ρ+ (−1)jm and 〈n̂j↓〉 = ρ− (−1)jm, on a bipartite lattice, then a staggered potential similar
to that described by Eq. (7) is present. As a consequence of this ‘spin density wave’ (SDW), a
band gap opens and ‘Slater’ insulating behavior arises, in direct analogy of the argument leading
up to Eq. (8).



Insulator, Metal, or Superconductor: The Criteria 2.7

Although this MFT treatment of the Slater insulator is indeed close to that of a staggered poten-
tial, it is worth emphasizing that AF can also arise away from ρ = 1. Of course, it is necessary
to determine whether the ansatz for 〈njσ〉 in which the occupations vary spatially actually low-
ers the free energy for nonzero m. The answer will depend, in general, on U and ρ and can be
used to generate the MFT phase diagram. The result for the d = 2 square lattice is given in [2].
Note that it is also possible that a ‘ferromagnetic’ ansatz 〈n̂j↑〉 = ρ +m and 〈n̂j↓〉 = ρ −m,
lowers the energy. This is quite a bit less likely to lead to an insulating gap since, as discussed
above within the context of a bilayer model, a large order parameter m is required to introduce
a gap between energy bands which are rigidly shifted, whereas a gap immediately opens for any
staggered potential amplitude ∆.
A similar type of insulator arises when fermions interact with local phonon (oscillator) modes
p̂ j, q̂ j, rather than with each other, e.g. in the Holstein model

ĤHolstein − t
∑
〈 j,l 〉σ

( ĉ†jσ ĉlσ + ĉ†lσ ĉjσ ) +
1

2

∑
j

(
p̂2j + ω2q̂2j

)
+ λ

∑
j

(
n̂j↑ + n̂j↑

)
q̂ j . (15)

One can get a preliminary understanding of its physics by ignoring the phonon kinetic energy
and considering only static ionic displacements. On a bipartite lattice, an oscillating set of
displacements 〈 q̂ j 〉 = q0(−1)j opens a gap in the fermion dispersion relation precisely as
with a staggered potential associated with an AF spin pattern. Unlike the latter case, however,
the resulting densities of up and down spin are in phase, leading to a charge density wave
(CDW) as opposed to a SDW. At half-filling, the lowering of the electronic energy from εk
to Ek = −

√
ε2k +∆2 favors non-zero values of q0. Against this competes the increase in the

potential energy ω2
0 q

2
0/2. Which effect dominates depends on the phonon frequency ω0, the

electron-phonon coupling λ, the dimensionality of the lattice, and, of course, a proper treatment
of quantum fluctuations of the phonons.

4 Anderson and Mott insulators

In this section we combine a discussion of two distinct types of insulator, those arising from
disorder and those arising from strong repulsive interactions.
Anderson insulators develop from randomness in a tight binding Hamiltonian. We begin our
discussion by considering a one dimensional TBH with a single site at the chain center N/2
with a lower energy than all the others

Ĥ = −t
∑
j,σ

(
ĉ†j σ ĉj+1σ + ĉ†j+1σ ĉj σ

)
− µ0 c

†
N/2 ,σcN/2 ,σ . (16)

Figure 2(top left) shows the eigenenergies, obtained numerically by diagonalizing Ĥ . Since
translation invariance is broken by the impurity, we no longer label the eigenvalues with a
momentum index k. Nevertheless, all but one of the eigenvalues form a band, which looks very
much like the ε(k) = −2t cos(k) in the absence of the impurity (µ0 = 0). However, there is
one extremal eigenvalue split off from all the others, which we have placed at n = 512. This
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Fig. 2: Top Left: Eigenspectrum of the TBH Eq. (16) for a chain of length N = 512 and
impurity depths µ0 = 0.05, 0.10, 0.20, 0.50. Shown over their full range, the energy levels are
indistinguishable from each other and from those of Fig. 1. Top Right: A blow-up of the eigen-
spectrum allows the resolution of the impurity level split off below the energy band. Bottom Left:
Participation ratios of all eigenvectors are of order the number of sites N , except for the single,
localized mode. Bottom Right: The square of the components of the associated eigenfunctions,
in the vicinity of the defect at N/2 = 256. As the impurity depth µ0 decreases, the eigenfunc-
tions are less localized. Since momentum is no longer a good quantum number in the presence
of the breaking of translation invariance by the defect, the horizontal axes in the top row are
labeled by the eigenvalue index j rather than k.

separation is clear in the blow up of Fig. 2(top right). Figure 2(bottom right) plots the square
of the amplitude of the components

∣∣φj∣∣2 of the localized eigenfunctions. They are seen to be
sharply peaked at N/2.
A useful way to characterize the spatial extent of an eigenfunction with components φj (which
we assume are normalized to

∑
j

∣∣φj∣∣2 = 1) is via the participation ratio P

P−1 =
∑
j

∣∣φj∣∣4. (17)

If the eigenfunction is fully localized on a single site j0, that is, if φj = δ(j, j0), it is easy to see
P−1 = 1 and hence P = 1. On the other hand, if the eigenfunction is completely delocalized
φj = 1/

√
N we have P−1 = 1/N and hence P = N . By considering other cases one can
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be convinced that, roughly speaking, P measures the number of sites in the lattice where φj is
“large.” Figure 2(bottom left) plots these participation ratios. They are all of the order of the
lattice size N (meaning the states are delocalized) except for a single mode (j = 512) which is
localized.
This problem is formally very similar to that of localization of vibrations of a harmonic chain
with a single massm′ or spring k′ which differs from all the others, in the sense that the solution
of both reduces to diagonalization of the same type of matrices. In the case of vibrations, it is
interesting to note that localization occurs only for a defect mass which is lighter than all the
others. This can be seen to be physically reasonable in the extreme limits: If m′ � m, one
pictures the very light mass as vibrating back and forth between the heavy ‘walls’ provided by
its neighbors. A heavy defect, m′ � m, shoves aside its neighbors and its vibrations spread
throughout the chain.
The problem of a small number of impurities in a noninteracting TBH can be treated analyti-
cally [3]. The procedure is sufficiently interesting and important to provide the initial steps here.
In order to connect this discussion with the previous material, it is useful to recall an alternate
approach to the solution of noninteracting TBHs.
We solved Eq. (2) by a rather sophisticated method, namely by doing a canonical transformation
on the fermionic creation and annihilation operators which diagonalized Ĥ . A less sophisticated
solution is to construct the matrix for Ĥ using position occupation states as a basis. This is done
in the usual way, by allowing Ĥ to act on each basis vector. Because Ĥ conserves particle num-
ber (fermion creation and destruction operators always appear as partners), its matrix consists
of independent blocks corresponding to the particle number. For a linear chain of N sites with
periodic boundary conditions, then

Ĥ | 1 0 0 0 0 0 · · · 0 0 〉 = −t | 0 1 0 0 0 0 · · · 0 0 〉 − t | 0 0 0 0 0 0 · · · 0 1 〉
Ĥ | 0 1 0 0 0 0 · · · 0 0 〉 = −t | 1 0 0 0 0 0 · · · 0 0 〉 − t | 0 0 1 0 0 0 · · · 0 0 〉
Ĥ | 0 1 0 0 0 0 · · · 0 0 〉 = −t | 1 0 0 0 0 0 · · · 0 0 〉 − t |0 0 1 0 0 0 · · · 0 0 〉

· · · etc. (18)

The calculation of the single particle eigenstates φ and eigenenergies E, in the absence of an
impurity, therefore corresponds to the linear algebra problem,∑

n

Lmn φn = 0 Lmn = E δmn − t δm,n−1 − t δm,n+1 , (19)

where L is the matrix of numbers which forms the single particle block of Ĥ in the occupation
number basis.
The nontrivial solution of Eq. (19) requires the vanishing of the determinant |L | = 0. It is an
easily proven that the k component of the nth eigenvector is φn = eikn, and Ek = −2 t cosk,
solve Eq. (19). The periodic boundary conditions discretize the allowed k values to k = 2πn/N

with n = {1, 2, 3, . . . , N}. Notice that this solution is precisely the same as that arising from
the transformation to momentum space operators, Eq. (5)!
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t

U

Fig. 3: The qualitative physics of the Mott insulator is seen by considering a half-filled system
(one particle per site). Left: When the on-site repulsion U between particles is weak, they are
free to hop around the lattice. Empty, singly, and doubly occupied sites are all present, with
only the average density equalling one particle per site. Right: On the other hand, when U is
very large compared to t, it is energetically preferable for the particles to sit with exactly one
fermion on each individual site.

This second approach to the problem lends itself nicely to an attack on the behavior in the
presence of randomness. One can write the problem as,∑

n

Lmn φn =
∑
k

δLmk φk →
(
I −GδL

)
φ = 0 , (20)

where δL is the matrix which contains the local chemical potentials and G = L−1. In the case
of Eq. (16), δL has a single nonzero entry along its diagonal.
A solution to Eq. (20) is,

φn =
∑
lk

Gnl δLlk φk . (21)

However, this a only ‘formal’ solution because the unknown variables φn appear on both sides
of Eq. (21). However, note that the non-trivial solution of Eq. (21) requires | I − GδL | = 0.
The important observation is that the sparsity or δL enormously simplifies the linear algebra
problem. Instead of rank N , the matrix I − Gδ L whose determinant must be computed
has much lower rank. Furthermore, the solution of the eigenproblem of L is known, we have
an explicit expression for the Green function, Gnl =

∑
k e

ik(n−l)/Ek. Amazingly, then, the
problem of the modes in the presence of n � N defects boils down to the diagonalization of
an n × n matrix, whose elements involve the known defect potential δL and Green function
G. Ref. [3] provides some explicit examples, and a beautiful graphical solution of several
interesting cases.
Having discussed the situation when there is a single, or small number of, defects, it is natural
to ask what happens when there are many impurities present, for example when there is a
randomly chosen chemical potential on every site of the lattice. This is the problem of ‘Anderson
Localization’ [4]. In one dimension, all the eigenstates become localized, for any amplitude of
disorder. This is also true in two dimensions, although just barely [5]. In three dimensions, the
eigenfunctions at the extremes of the spectrum (that is, those associated with the largest and
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x
t t

Fig. 4: The Pauli Principle prevents fermions of like spin on adjacent sites from hopping
(left), a process which is allowed if the fermions have opposite spin (right). In the case of
antiparallel spin, the intermediate state created by the hop has a doubly occupied site, and
hence a potential energy U . The resulting second order lowering of the energy relative to the
parallel spin arrangement is proportional to −t2/U .

smallest eigenvalues) are localized, while the eigenfunctions near the center of the spectrum are
extended. The energy which separates these two behaviors is referred to as the mobility edge.
In 3D one has the appearance of Anderson insulating behavior, and the possibility of associated
metal-insulator transitions: If the chemical potential lies below the mobility edge, only localized
eigenfunctions are occupied, and the system is an insulator. When µ crosses the mobility edge,
extended states become occupied, and the system becomes a metal. It is important to emphasize
that, in stark contrast to the band, SDW, and CDW insulators previously discussed, there is no
gap in the spectrum. The compressibility κ is nonzero in the insulator, and a plot of density ρ as
a function of chemical potential µwould show no marked signal at the transition from Anderson
insulator to metal.
The final qualitative discussion concerns “Mott insulators,” whose behavior arises from inter-
actions, as opposed to gaps in the band structure or localization by disorder. Consider a single
band Hubbard Hamiltonian, for example on a square lattice, at “half-filling” (one electron per
site). The simple physical picture of a Mott insulator is that if the on-site repulsion U is very
large, the energy cost for the double occupation which must occur in order for the electrons to
move, overwhelms the kinetic energy and freezes the electrons in place. See Fig. 3.
Although in Fig. 3 the spin orientations of the fermions are not indicated, it is natural to ask
if they have any preferred arrangement. There are several arguments which suggest AF order.
The first treats the hopping term in the Hubbard Hamiltonian Eq. (13) perturbatively. Consider
two adjacent sites, both singly occupied with fermions of parallel spin. The interaction energy
is zero, and, because of the Pauli Principle, the matrix element of the kinetic energy in this
state vanishes, so there is no shift in the energy. If the fermions have antiparallel spin, however,
the kinetic energy operator connects to an intermediate state with one empty and one doubly
occupied site, with energy U . Thus the energy of a pair of sites with antiparallel spin fermions
is lowered by ∆E ∼ −t2/U . See Fig. 4. There are other arguments suggesting AF dominates
at half-filling, for example a calculation of the magnetic susceptibility of the Hubbard Hamil-
tonian within the random phase approximation. A very nice early discussion of these ideas,
emphasizing several unique features of the square lattice dispersion, is contained in Ref. [2].
Figure 5 shows some quantum simulation results for the square lattice Hubbard Hamiltonian
at U = 4. ρ(µ) develops a ‘Slater-Mott’ plateau at half-filling. (See below.) The figure uses
a convention in which the interaction term is written in particle-hole symmetric form so that
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Fig. 5: Left: The density ρ as a function of the chemical potential µ for the Hubbard Hamilto-
nian on a square lattice at U = 4t and three different inverse temperatures β = t/T = 4, 6, 8.
As β increases, Right: The density of fermions at a nonzero chemical potential, as a function of
β shows that ρ→ 1.

µ = 0 corresponds to ρ = 1. The vanishing of the compressibility, κ = 0, at ρ = 1 is a
truly remarkable change in behavior since, on the square lattice, the noninteracting system has
a divergent density of states at half-filling: κ = ∞ at U = 0! The algorithm used in the
figure is ‘determinant QMC’. This approach treats the interactions between electrons exactly,
on lattices of finite spatial extent (a few hundred up to about a thousand spatial sites), and thus
provides a much more rigorous treatment than that provided by MFT. The reader is referred to
Refs. [2, 6–8] for a discussion of DQMC and its application to magnetism in the 2D Hubbard
Hamiltonian.
The review of these ideas emphasizes an important point: in many situations (especially on
bipartite lattices) a ‘Slater insulator,’ which occurs at weak to intermediate U due to the opening
of an AF gap, merges smoothly, as U increases, into the Mott insulator where the lack of
transport predominantly arises from the high cost of double occupancy. There is no sharp
boundary between these two types of insulator, but rather a gradual crossover. A very deep
question indeed is whether for fermionic systems symmetry breaking such as AF order always
accompanies the Mott insulator, or whether a featureless, translationally invariant Mott phase
can occur, as for collections of bosonic particles [9].

5 Formal definitions

The proverbially alert reader will have noticed that the preceding discussion avoided what would
seemingly be the most natural quantity to distinguish metals and insulators, namely the conduc-
tivity σ. This is because transport properties are a bit more subtle to deal with. We will now
consider σ and develop an understanding, which unifies the preceding, more qualitative, dis-
cussion. An added bonus will be the fact that the superfluid density, the defining characteristic
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of a superconductor, naturally arises. The discussion in this section very closely follows that of
Ref. [1]. The derivation is a bit dense. The key ‘practical results’ are Eqs. (30) and (31) which
allow for the determination of Drude weight D and superfluid density Ds from the current-
current correlation function Λxx.
Consider the response of the current to presence of a vector potential Ax(l). As shown in
Ref. [10], this modifies the hopping term in the kinetic energy (suppressing the spin indices),

c†l+xcl + c†l cl+x → eieAx(l)c†l+xcl + e−ieAx(l)c†l cl+x . (22)

This can be expanded in powers of A so that the kinetic energy K acquires an additional term
which can be expressed in terms of the paramagnetic current density in the x direction ejpx(l)
and the kinetic energy density on bonds in the x direction, kx(l),

KA = K −
∑
l

(
ejpx(l)Ax(l) +

e2kx(l)

2
Ax(l)

2
)

(23)

jpx(l) = it
∑
σ

(
c†l+xσclσ − c

†
lσcl+xσ

)
kx(l) = −t

∑
σ

(
c†l+xσclσ + c†lσcl+xσ

)
.

Differentiating Eq. (23) with respect to Ax(l) yields the total current density, which includes
both paramagnetic and diamagnetic contributions,

jx(l) = −
δKA

δAx(l)
= e jpx(l) + e2 kx(l)Ax(l) (24)

If one assumes a plane wave form for the vector potential,

Ax(l, t) = Re
(
Ax(q, ω) e

iq·l−iωt) , (25)

then the resulting current is,

〈jx(l, t)〉 = Re
(
〈 jx(q, ω)〉 eiq·l−iωt

)
〈 jx(q, ω)〉 = −e2

(
〈kx〉 − Λxx(q, ω)

)
Ax(q, ω) . (26)

The real-frequency current-current correlation functions Λ(q, ω) are related to those at Matsub-
ara frequencies iωm = 2πmT ,

Λxx(q, iωm) =
1

N

∫ β

0

dτeiωmτ 〈jpx(q, τ)jpx(−q, 0)〉 , (27)

by analytic continuation.
Equations (26), (27) and the calculations leading to them are simply somewhat more complex
versions of the relations such as the one which expresses the magnetization induced by an
applied Zeeman field, to the magnetization-magnetization correlation functions and thereby the
magnetic susceptibility χ, or any of the other multitude of ‘fluctuation-dissipation’ relations
which arise from linear response theory.
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It remains to connect this rather abstract quantity to more physical objects like the superfluid
density: For bosonic particles, the superfluid density can be measured in, for example, a tor-
sional oscillator experiment. As T is decreased below the superfluid transition temperature, the
moment of inertia of a liquid in a container abruptly decreases, because the liquid inside no
longer couples to the walls of the container. As we discuss below, for fermionic particles the
superfluid density determines the distance to which a magnetic field penetrates a superconduc-
tor.
One of the early fundamental advances in understanding superconductivity was London’s ob-
servation that the Meissner effect follows if one assumes the current density is proportional to
the vector potential,

jx(qy) = −
1

4π

1

λ2
Ax(qy) . (28)

That is, magnetic fields will be expelled from a superconductor at distances beyond the pene-
tration depth λ,

1

λ2
=

4πnse
2

mc2
, (29)

which depends on the superfluid density ns. A comparison of Eqs. (28), (29) with Eq. (26)
provides a link between the superfluid weight Ds = ns/m and the current-current correlation
function:

Ds

πe2
= −〈−kx 〉 − Λxx(qx = 0, qy → 0, iωm = 0) . (30)

The usual relations between vector potential and electric field, Ex = −∂Ax/∂t, and between
the conductivity and electric field, result in an analogous formula for the Drude weight, the delta
function contribution Dδ(ω) to the conductivity,

D

πe2
= −〈−kx 〉 − Λxx(qx = 0, qy = 0, iωm → 0) . (31)

Details of this connection are in Ref. [1].
The third limit, in which the longitudinal momentum is taken to zero, relates Λ to the kinetic
energy,

〈−kx 〉 = Λxx(qx → 0, qy = 0, iωm = 0) . (32)

Summarizing, the key results are the following: Depending on the limits in which the momenta
and frequency are taken to zero, one can obtain superfluid densityDs and Drude weightD from
the current-current correlation function.
The superfluid density Ds and the Drude weight D form a basis for distinguishing an insulator
(D = Ds = 0), from a metal, (D 6= 0, Ds = 0), from a superconductor (Ds 6= 0). It is
rather remarkable that these alternate limits of approaching zero momentum and frequency
yield distinct results and profoundly different physical quantities, especially to physicists who
are accustomed to not being overly worried about the subtleties of the order of operations.
We will introduce the simplified notation ΛL ≡ limqx→0 Λxx(qx, qy = 0; iωn = 0) and ΛT ≡
limqy→0 Λxx(qx = 0, qy; iωn = 0) so that Eqs. (30) and (32) can be simply expressed as Ds =

π[−Kx − ΛT ] and −Kx = ΛL respectively.
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Fig. 6: Left: Kinetic energy Kx, longitudinal ΛL, and transverse ΛT limits of current-current
correlation function for the attractive Hubbard model with U = −4 t at temperature T = 0.1
and filling ρ = 0.875. The horizontal axis is the strength of random site energies −V < µi <
+V . The data indicate that ΛL = −Kx over all parameter ranges, as required by gauge
invariance. Right: The superfluid density Ds = π

(
−Kx−ΛT

)
and Drude weight D. To within

the accuracy of the numerics, D = Ds. See Eqs. (30), (31), and also Fig. 7

6 Applications of formal theory

Ref. [1] considered the simplest TBHs to check their formalism, namely the clean, single band
attractive and repulsive Hubbard Hamiltonians on a square lattice. Here we present results [11]
on a TBH which also includes disorder in the site energies (an additional term

∑
i vi(ni↑ + ni↓)

in the Hubbard Hamiltonian), to illustrate how powerful and general Eqs. (30), (31) truly are.
We use the same DQMC approach which generated the data shown in Fig. 5 (and which was
used in [1]). We note, however, that the implementation of these criteria within DQMC requires
the evaluation of imaginary time-dependent observables, as opposed to the algorithmically more
simple equal time quantities like the energy, density, and magnetic, charge, and pairing structure
factors. Such calculations slow down DQMC simulations quite significantly, especially at low
temperatures and on large spatial lattices.
It is important to note that, while the presence of randomness breaks translation invariance
for a single disorder realization, translation invariance is recovered after disorder averaging.
Typically one finds calculations for 10-100 distinct instances of the local site potential {vi} are
required in DQMC simulations such as those described here.
Results from [11] for ΛT , ΛL and −Kx are plotted in Fig. 6(left) as a function of the strength V
of randomness in the site energies−V < vi < +V . The attractive interaction strength U = −4,
temperature T = 0.10, and density ρ = 0.875. D and Ds are plotted in Fig. 6(right). They
decrease monotonically with disorder. There is a critical value Vc beyond which D = Ds = 0

and the system becomes insulating. These results are consistent with a direct superconductor to
insulator transition in 2D, without an extended intervening metallic phase.
Figure 7 provides some numerical details on the extrapolation in Matsubara frequencies which,
following Eq. (31), is needed to captureD. Similar plots showing the momentum extrapolations
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Fig. 7: Illustration of the details of the extrapolation procedure to obtain the Drude weight D
via Eq. (31). The horizontal axis n = ωn/(2πT ). Parameters are as in Fig. 6. In the metallic
phase, which occurs precisely at the critical point V = Vc ∼ 3.25, the slope of D(ωn) can be
used to obtain σdc. See text.

to obtain Ds and verify ΛL = −〈Kx 〉 are not shown, but can be found in Ref. [1]. Note that
in general the simulations are performed in a regime where there are up to several hundred
Matsubara frequencies, but only 10-30 momenta in each direction, an order of magnitude less.
Thus the momentum extrapolations needed for ΛL and ΛT are typically more challenging than
those for D.
As argued in Ref. [1], the extrapolation in Fig. 7 can also be used to obtain the dc conductivity
via

D(ωn) = πσdc|ωn| . (33)

We will use this as a consistency check against alternate ways of quantifying the metal-insulator
transition and obtaining σdc.

7 Conductivity and spectral function

This final section before the conclusions will focus on two further QMC approaches to the
metal-insulator transition. The first technique, like those of Sec. 6, begins with the current-
current correlation function, but has the advantage of avoiding analytic continuation and ex-
trapolation to zero momentum or frequency. It is, however, approximate. The second method
moves away from Λxx and instead considers the spectral function.
Consider the fluctuation-dissipation theorem

Λxx(q, τ) =

∫ +∞

−∞

dω

π

exp(−ωτ)
1− exp(−βω)

ImΛxx(q, ω) . (34)

In principle one can invert this Laplace transform to get ImΛxx, but this process is known to be
very ill-conditioned [12]. We instead proceed as follows: If the temperature T � Ω, the scale
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Fig. 8: Left: The resistivity ρdc = 1/σdc obtained from Eq. (35) as a function of temperature.
The on-site attraction U = −4 t and the density ρ = 0.875. The curves are (top to bottom)
for disorder strengths V = 5.0, 4.5, 4.0, 3.5, 2.0, 2.5, 2.0, 1.5, 1.0. For large V , ρdc increases
as T is lowered, indicating insulating behavior. For small V , ρdc decreases as T is lowered,
indicating metallic behavior. The open symbol at T = 0.10 is the value of ρdc inferred from the
V = Vc data in Fig. 7. See text. Right: The data are replotted to show ρdc as a function of V for
curves of constant T . The crossing indicates the approximate position Vc of the metal-insulator
transition. For these parameters, the superconducting transition temperature Tc . 0.05t, so
no abrupt drop in ρdc occurs. The quantum of resistance ρQ = h/(4e2) = π/2 in our units
(~ = e2 = 1).

at which ImΛ deviates from its low frequency behavior ImΛ ∼ ωσdc, it is useful to evaluate
Eq. (34) at the largest possible imaginary time, τ = β/2. By doing this, the factor e−ωτ cuts off
all contributions to the integral for frequencies above Ω, allowing us to replace ImΛ by ωσdc,
and enabling an analytic evaluation of the integral. The result

σdc =
β2

π
Λxx(q = 0, τ = β/2) , (35)

provides a very useful approximate formula for σdc, subject to the restrictions noted above.
The reasoning leading to Eq. (35) is dubious for non-random systems: for example, for a Fermi
liquid, the scale Ω ' 1/τe−e ∼ N(0)T 2, so that it is impossible to satisfy T � Ω at low T .
However, in the presence of strong disorder Ω it is set by V. Since Ω is T -independent, it is
possible to lower the temperature sufficiently far in the DQMC simulation to make Eq. (35)
applicable.
There is a quite nice consistency between the different methodologies to characterize the phases
of the model, and even the quantitative values of the conductivity. For example, Fig. 6 shows an
onset of nonzero D and Ds for V in the range 3 . V . 4 as the disorder strength is decreased.
These results are based on Eqs. (30), (31). Meanwhile, the crossings of the data for ρdc in
Fig. 8 indicate Vc ∼ 3.5. Here Eq. (35) was utilized. Analysis of D based on Eq. (31) yields
Vc ∼ 3.25 and, furthermore, via Eq. (33), gives a numerical value for σdc which agrees quite
closely with Eq. (35). This sort of careful cross-checking of numerics is of course essential in
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Fig. 9: Superconducting-insulator transition in thin amorphous Bi films as a function of carrier
density [17]. Note the qualitative similarity to Fig. 8. (As noted in the caption to Fig. 8, the less
abrupt drop in the DQMC data is a consequence of the fact that T > Tc over the temperature
range shown.)

any calculational approach, but is especially important in QMC studies of interacting fermions,
where limitations of finite size and the sign problem are especially acute.

As a connection to real materials, we observe that the curves in Fig. 8 are remarkably similar
to those found in the experimental literature on the two dimensional superconductor-insulator
transition (SIT) in the presence of disorder [13]. In these studies, the SIT has been accessed
in a wide variety of ways: by explicitly changing the degree of microscopic disorder (similar
to the model studied here in which V is varied, by altering the film thickness, by applying a
magnetic field, or by changing the carrier density. An example of the latter tuning method is
given in Fig. 9. With DQMC, different ways of driving the SIT have also been explored with
DQMC [11, 14–16].

One further method of distinguishing metals and insulators relies on the computation of the
momentum-resolved spectral functionA(q, ω) and its sum, the density of states. The formalism
is similar to that of Eq. (34), except involving the single-particle Green function G(q, τ).

G(q, τ) =

∫ +∞

−∞
dω

exp(−ωτ)
1 + exp(−βω)

A(q, ω) N(ω) =
∑
q

A(q, ω) . (36)

Figure 10 shows what this diagnostic discloses concerning the square lattice Hubbard Hamilto-
nian at half-filling. One observes that N(ω = 0) → 0 as T → 0 both for weak U , the ‘Slater
insulator’ driven by SDW order, and at intermediate U where the crossover begins to Mott in-
sulating behavior. The size of the insulating gap is roughly given by the temperature range over
which N(ω = 0) is small. This is seen to increase with increasing U .
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Fig. 10: Density of states at the Fermi surface, N(ω = 0) of the half-filled Hubbard Hamilto-
nian as a function of temperature T for different values of the interaction strength U = 2, 4, 6.
As T → 0, the density of states vanishes in all cases. One concludes the Hubbard Hamiltonian
on a square lattice with ρ = 1 is insulating over the entire range 0 < U <∞.

8 Conclusions

We began this chapter with some simple qualitative pictures of metals and various types of in-
sulators: (i) band insulators which arise when a TBH has several non-overlapping bands and the
chemical potential lies between them; (ii) SDW and CDW insulators whose origin can be un-
derstood within a MFT treatment of interactions between the electrons or between electrons and
phonons; (iii) Anderson insulators formed by disorder; and (iv) the most challenging situation,
Mott insulators driven by strong interactions.
We then turned to a formal way of characterizing metals and insulators in terms of different
limits of the current-current correlation function, and the implications for the conductivity and
superfluid density. Our qualitative pictures of the distinction between metal and insulator in (i)
and (ii) focussed on the spectrum of the Hamiltonian rather than the conductivity. The MFT
treatment of the formal criteria showed the linkage between the two pictures.
The formal criteria have also been used in conjunction with QMC in the solution of the Hubbard
Hamiltonian [1] to show that they indeed work when the interactions are treated more exactly
than in MFT. We gave some illustrations of this approach when disorder and interactions are
both present which serves as a specific model calculation for the superconducting to insulator
phase transition [11], which is so well-explored experimentally [13]. Finally, we showed a
few QMC results for the conductivity, spectral function, and density of states in determining
insulating behavior.
It is worth noting two further approaches to the question of the metal-insulator transition which
have also been widely used in QMC. The first is an analysis of the behavior of the electron
self-energy at small Matsubara frequencies. For a illustration of this method, see [18]. The
second is an analytic continuation of the imaginary time dependent spin, χ(τ) = 〈M(τ)M(0)〉,
and charge, P (τ) = 〈N(τ)N(0)〉, correlation functions. Here M =

∑
i

(
ni↑ − ni↓

)
and N =
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∑
i

(
ni↑ + ni↓

)
. The presence of ‘spin and charge gaps’ in the low frequency behavior of their

Laplace transforms χ(ω) and P (ω) can be used to infer the presence of insulating behavior
associated with spin and charge order. See, for example, [19].
We finish by returning to the opening of this chapter, presenting the reader with a question: In
our first encounter with the idea of conductors, one associates the resistance R in Ohm’s law
with some sort of scattering mechanism which provides for the loss of energy. Where is such
dissipation in models like the clean Hubbard Hamiltonian?



Insulator, Metal, or Superconductor: The Criteria 2.21

References

[1] D.J. Scalapino, S.R. White, and S. Zhang, Phys. Rev. B 47, 7995 (1993)

[2] J.E. Hirsch, Phys. Rev. B 31, 4403 (1985)

[3] A.A. Maradudin: Theoretical and Experimental Aspects of the Effects of Point Defects and
Disorder on the Vibrations of Crystals, Solid State Physics 18, 273–420 (1966)

[4] P.W. Anderson, Phys. Rev. 109, 1492 (1958)

[5] E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. Ramakrishnan,
Phys. Rev. Lett. 42, 673 (1979)

[6] R. Blankenbecler, D.J. Scalapino, and R.L. Sugar, Phys. Rev. D 24, 2278 (1981)

[7] J.E. Hirsch and S. Tang, Phys. Rev. Lett. 62, 591 (1989)

[8] C.N. Varney, C.R. Lee, Z.J. Bai, S. Chiesa, M. Jarrell, and R.T. Scalettar,
Phys. Rev. B 80, 075116 (2009)

[9] M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989)

[10] R.E. Peierls, Z. Phys. 80, 763 (1933)

[11] N. Trivedi, R.T. Scalettar, and M. Randeria, Phys. Rev. B 54, 3756 (1996)

[12] J.E. Gubernatis, M. Jarrell, R.N. Silver, and D.S. Sivia, Phys. Rev. B 44, 6011 (1991)

[13] D.B. Haviland, Y.Liu, and A.M. Goldman, Phys. Rev. Lett. 62, 2180, (1989);
A.F. Hebard and M.A. Paalanen, Phys. Rev. Lett. 65, 927 (1990);
J.M. Valles, R.C. Dynes, and J.P. Garno, Phys. Rev. Lett. 69, 3567 (1992); and
A. Yazdani and A. Kapitulnik, Phys. Rev. Lett. 74, 3037 (1995)

[14] P.J.H. Denteneer, R.T. Scalettar, and N. Trivedi, Phys. Rev. Lett. 83, 4610 (1999)

[15] P.J.H. Denteneer, R.T. Scalettar, and N. Trivedi, Phys. Rev. Lett. 87, 146401 (2001)

[16] P.J.H. Denteneer and R.T. Scalettar, Phys. Rev. Lett. 90, 246401 (2003)

[17] K.A. Parendo, K.H. Sarwa B. Tan, A. Bhattacharya, M. Eblen-Zayas, N.E. Staley, and
A.M. Goldman, Phys. Rev. Lett. 94, 197004 (2005)

[18] R.M. Noack and D.J. Scalapino, Phys. Rev. B 47, 305 (1993)

[19] M. Vekic, J.W. Cannon, D.J. Scalapino, R.T. Scalettar, and R.L. Sugar,
Phys. Rev. Lett. 74, 2367 (1995)




	Introduction
	A brief introduction to tight-binding Hamiltonians; Metals and band insulators
	Antiferromagnetic and charge density wave insulators
	Anderson and Mott insulators
	Formal definitions
	Applications of formal theory
	Conductivity and spectral function
	Conclusions

