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The Bethe-Salpeter Equation

— Concepts: embedding, auxiliary systems, s.c. functionals, Dyson eq.s
— TD-GFT
— The electron-hole problem
— Approximations
—> Realizations

— Applications

—> Notes






Key quantities:
W(®) = () v

V (0)=€(0)V_ (o)

e'(m) =1+ vy(w)

on(m) = () oV (w)

ext
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pectroscopy: aims

Hy(x ,...x ) = EWY(X ,...X )




Embedding

(auxiliary system)



— Concepts: ¢ —» O

Observables can be simulated by an effective world

A practical example, simulate zero gravity

(expectation values)



— Concepts: calculate only expectation values

Calculate only what you want,.....so that you can understand!

Hy (x,...x )=E Y (X ,...X )

Want: — total energy E_
— expectation values like

* density
* spectral functions
* dielectric function

V (w)=¢'(@V_ (o)

tot ext

Do not want: - all many-body y (X ,....X )



One effective world (auxiliary system) for every observable?
o
-~ @D




— Concepts: 0 — Q

Use effective key quantities from which we get expectation values

@

@<-




- The effective quantities:

Used to calculate expectation values



— [llustration: DFT

/LDA or SO
Effective (auxiliary ) world — Q = density

Direct access to density and top valence
(independent-particle expression)

NOT to bandgaps, for example!!!
Hohenberg-Kohn-Sham






— Response?

Effective quantities 1n an effective world

ndent quantities —



‘e, (TD)DFT point of view: moving density

0
















Linear response:
on=y oV

oo

X=% X, [0V/on] X, + X, [0V/On] X, [0V/On] X, + X, [oV/on]..............
X=X, "% [oV/ienlx  Pyson equation



Excitation ? — Induced potentials

—

Change of potentials

o

Approximation
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Strategy

— Define an effective quantity from which we can get exp. values
(in principle, and reasonably well also in practice)

— Build an auxiliary system that yields this quantity
— Use it to calulate observables

— For response functions (variations of observables),
also take into account variations of the potentials



- More flexible effective quantity: G

n(

— Propagators. G yields all exp. values of 1-body operators



G(1,2) = -i <T[y()y'(2)]>  1=(r,,0,t)

- n(1)=-iG(1,1")

Dyson equation: G=G + G 2 G









— The effective world:

2(r,r',€)

Direct access to electron addition and removal spectra
(bandstructure, lifetimes, satellites,....,density,...total Energy..)

Other: DMFT X (o)



= 2~inGg “GW”
L. Hedin (1965)

W= () v






GW today: standard for bandstructures

LDA GW HF

Bandstructure of germanium, theory versus experiment

GW calculations, Rohlfing et al., PRB 48, 17791 (1993)






Strategy

— Define an effective quantity from which we can get exp. values
(in principle, and reasonably well also in practice)

— Build an auxiliary system that yields this quantity
— Use it to calulate observables

— For response functions (variations of observables),
also take into account variations of the potentials



— What is missing?

Dressed hole

Change of potentials

Dressed electron



van Leeuwen work






— Linear response: Bethe-Salpeter equation

X=X, + %, [oV/on] X
Dressed hole

e-h interaction

Dressed electron



— Linear response: Bethe-Salpeter equation

X=X, +X X

Dressed hole

e-h interaction

Dressed electron



on(r,t)=x(rt;r'thHoV (r't)

ext
x(tr't)=x (rtr't)+ x (rtr t )[OV(r t )/on(r t )] x (r,t;r't)

rt - 1
11





















Hartree-Fock: X(5,6) = iv(5,6)G(5,6")

n(rt) = -iG(rt,rt")
n(r,r';t) = -iG(rt,r't")



— Linear response: Bethe-Salpeter equation

X=X, +X X

Dressed hole

e-h interaction

Dressed electron



Silicon

F. Bruneval et al.






W static









(or inverting)
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Notes:

* Finite systems and correlation
* The “bandgap problem”
* BSE yields a two-particle correlation function

*2. =1IGWI



Notes:

* Finite systems versus correlation in extended systems



MnO



MnO

Strong electron-hole correlation!



Notes:
* Finite systems and correlation

* The “bandgap problem”



V. Olevano et al. (2000)
(bulk silicon 1998)

Larson et al., PRL 99, 026401 (2007)
Exciton: Lee, Hsueh, Ku, PRB 82, 081106 (2010)



NiO: density of states

LDA=0.7eV
sCCOHSEX+GW =4.6 eV
Exp=4.3 eV

M. Guzzo, Master thesis (2008)



NiO: dd excitations

Strongly bound
excltons

Q ~ 8A'[111]
M. Gatti et al. (2014)

BSE(q): M. Gatti and E. Sottile, Phys. Rev. B 88, 155113 (2014) (LiF)



NiO: dd excitations

Large
cancellations



Notes:
* Finite systems and correlation
* The “bandgap problem”

* BSE yields a two-particle correlation function






Other combinations yield other correlations

-1



CO molecule

Noguchi, Ishii, Ohno, J. Chem. Phys. 125, 114108 (2006)



Notes:
* Finite systems and correlation
* The “bandgap problem”

* BSE yields a two-particle correlation function

*2 =1IGWI


















Exciton dispersion in LiF

M. Gatti and F. Sottile, Phys. Rev. B 88, 155113
Exp. P. Abbamonte et al., Proc. Natl. Acad. Sci. USA 105, 12159 (2008).









Mixed Dynamic Structure Factor

Strongly bound exciton visible
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What can we do with it?
For example, induced charges

H = H electron T+ H ext ()

In linear response:

Ralf Hambach
Giulia Pegolotti
Claudia Roedl
Igor Reshetnyak

(exchange)



Induced Charges

Plane-wave external potential

Excitonic effects visible
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[1] P. Abbamonte et al. Phys. Rev. Lett. 2004. [2] P. Abbamonte et al. Advanced Materials 2010.



RPA BSE
At 14.1 eV

PhD thesis I. Reshetnyak



Excitonic effects in photoemission satellites

[1] Marisa Scrocco Phys. Rev. B, 1985.



Overall comparison to experiments
F2p

F2s

Lils

[1] S. P. Kowalczyk et al. Phys. Rev. B, 1974



Analysis

[1] Marisa Scrocco Phys. Rev. B, 1985.



Analysis

[1] Marisa Scrocco Phys. Rev. B, 1985.
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L. Hedin, “On correlation effects in electron spectroscopies and the GW approximation,’
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Strinati, G., “Application of the Green’s function method to the study of the optical-properties of
semiconductors,” Rivista del Nuovo Cimento 11, 1, 1988. Pedagogical review of the theoretical
framework underlying today’s Bethe—Salpeter calculations. Derivation of the main equations
and link to spectroscopy.

Onida, G., Reining, L., and Rubio, A., “Electronic excitations: density-functional versus many-body
Greens-function approaches,” Rev. Mod. Phys. 74, 601, 2002. Review of ab initio calculations

of electronic excitations with accent on optical properties and a comparison between Bethe—
Salpeter and TDDFT
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http://etsf.polytechnique.fr
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