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10.2 Lucia Reining

1 Introduction

In this lecture we will present the Bethe-Salpeter equation (BSE) from the point of view of its
use in condensed matter physics and chemistry. In this context it is most often applied to the
calculation of optical spectra. For this reason we will work in the framework of linear response
theory, although, as we will see at the end, there are other uses of the BSE.
The BSE solves a many-body problem, expressed in terms of electrons, holes, and their inter-
action. It is convenient to formulate such a problem in terms of Green functions. Therefore, we
will start by briefly recalling the necessary tools.

2 Green functions and Dyson equations

Green functions are often encountered in scattering theory. Suppose a system is described by
Ĥ0, and V̂ indicates an extra potential that acts as a center for scattering. Assuming that the
energies ω form a continuum, one only has to determine the wavefunctions of the scattered
states. The Lippmann-Schwinger equation [1] gives the relation between an unperturbed state
|φ0〉 and an eigenstate of the full Hamiltonian |φ〉 at the same energy ω:

|φ〉 = (1−G0V̂ )−1|φ0〉 with G0 ≡ (ω + iη − Ĥ0)−1
|η→0+

. (1)

The Green functionG0 depends only on the unperturbed system. Moreover, it contains a bound-
ary condition: one imposes that the scattering contribution |φ〉 − |φ0〉 contains only outgoing
contributions. This boundary condition, which guarantees that the solution is causal, is ful-
filled thanks to the positive infinitesimal η. Eq. (1) is equivalent to |φ〉 = GG−1

0 |φ0〉 with the
definition of the full Green function G ≡ (1 − G0V̂ )−1G0, which fulfills the Dyson equation
G = G0 +G0V̂ G.
Like the Hamiltonian, the Green functions are non-local in space. In general they can also be
non-local in a spin coordinate. Moreover, their dependence on the frequency ω (see Eq. (1))
corresponds to a dependence on a time difference (whereas G depends on two times when the
Hamiltonian is time-dependent). In the following we denote a space-spin-time argument with
1→ (x1, t1)→ (r1, σ1, t1), and we use the convention that arguments with a bar are integrated
over: f(1̄)g(1̄)→

∫
d1 f(1)g(1). Then the Dyson equation can be written as

G(1, 2) = G0(1, 2) +G0(1, 3̄) V̂ (3̄)G(3̄, 2) . (2)

The Dyson equation is a general way to move from the Green function of a simpler system to
the Green function of a system in presence of an extra potential, which may depend on space,
spin and time. In the following we do not display spin unless necessary, supposing that we are
interested in spin-unpolarized systems.1 Moreover for simplicity we assume the temperature to

1In the most general case the Green function depends on two spin arguments. When the interaction is spin-
independent, the Green function is spin-diagonal, and in the absence of spin polarization, the two spin components
are equal. We mostly suppose to be in that case, and do not display spin for simplicity. Details on the spin-
dependent BSE can be found in [2].
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be zero, and the system to be in its ground state. To simplify notation we also omit the hat on
operators whenever it does not create confusion.
In the many-body electron system, there is scattering because of the Coulomb interaction be-
tween electrons, so the same considerations as above hold. The starting G0 is an independent-
particle Green function, describing electrons that are not scattered by other electrons.2 Its re-
tarded version GR

0 reads

GR
0 (r, t, r′, t′) = −iΘ(t− t′)

∑
s

ψs(r)ψ
∗
s(r
′) e−iεs(t−t

′) , (3)

where εs and ψs are the eigenvalues and eigenfunctions of the single-electron Hamiltonian h0.
The εs are the poles of G0 in frequency space, where GR

0 (r, r′;ω) =
∑

s
ψs(r)ψ∗s (r′)
ω−εs+iη .

Often it is more convenient to work with time-ordered Green functions instead of retarded ones;
we will also adopt this framework here. The time-ordered Green functionG0 of an independent-
particle system reads

G0(r, t, r′, t′) = −i
[
Θ(t− t′) Θ(εs−µ)−Θ(t′− t) Θ(µ− εs)

]∑
s

ψs(r)ψ
∗
s(r
′)e−iεs(t−t

′) (4)

so that electrons (states above the chemical potential µ) and holes (states below µ) contribute
with opposite sign.
The independent-particle Green function yields some important observables of the independent-
particle system. In particular, the density is n0(r) =

∑occ
s |ψs(r)|2 = −iG0(r, t, r, t+), where

t+ stands for t+ η. The diagonal of the spectral function Ass(ω) = 1
π
ImG0,ss(ω), which is the

imaginary part of the Green function in frequency space, is A0
ss(ω) = δ(ω − εs): it exhibits the

spectrum of electron addition and removal energies.
Suppose now that we add an extra static potential va to the system. The new Green function G
can be obtained from the Dyson equation (2) where V̂ is replaced by va. It will have the same
form as Eq. (4), but the eigenvalues and eigenfunctions that appear in Eq. (4) are those of h0+va.
They can also be used to evaluate the density and spectral function as above. Importantly for
our purpose, the independent-particle expressions are also valid when va is not some external
potential, but a system-internal mean-field potential such as the Hartree (vH) or Kohn-Sham
(vxc) ones. They even hold when one introduces a spatially non-local mean field, such as the
Hartree-Fock potential ΣHx, for which the Dyson equation reads

G(1, 2) = G0(1, ) +G0(1, 3̄)ΣHx(3̄, 4̄)G(4̄, 2) . (5)

Note that like the Hartree or Kohn-Sham potentials, the Hartree-Fock potential is instantaneous,
i.e., local in time, which means that ΣHx(3, 4) is proportional to δ(t+3 − t4).
When va depends explicitly on time, i.e., the system is out of equilibrium, G is no longer of the
simple form of Eq. (3). Although we will implicitly apply such a potential to our system later,
we do not need to consider the resulting Green functions explicitly here, since we will limit
ourselves to linear response.

2An independent-particle system can be the non-interacting one in some external potential, or it can have also
a part of the interaction included through a static mean field.
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However, below we will replace the instantaneous Hartree-Fock mean field by a more general
self-energy Σ(3, 4), which is not instantaneous, i.e., it depends on two time arguments (t3, t4),
or one time difference (t3 − t4) (one frequency) in equilibrium. As a consequence, G has no
longer the same simple structure as G0. Still, it can be calculated from the Dyson equation, if
the self-energy is known.
There are two ways to understand why the full self-energy is not instantaneous, or equivalently,
why the full Green function has a form different from Eq. (4). They are linked to the definition
and meaning of G. The one-body Green function is defined such that it describes electron
addition and removal from the full many-body system. In the Hartree and Hartree-Fock single-
particle Schrödinger equation the eigenvalues are directly the addition and removal energies;
this is Koopmans’ theorem. It implies that electrons are added or removed without influencing
the already present system electrons. However, in reality the system should react to the addition
of a charge, which leads to screening. This reaction is not instantaneous, but it needs time to
build up a screening cloud, and charge oscillations can be excited.3 This explains why the total
effective potential, which includes the self-energy, is not instantaneous but depends on a time
difference.
The fundamental difference between a static mean-field and a fully interacting system can also
be understood by looking directly at the Green function. The generalization of Eq. (4) to the
fully interacting Green function at zero temperature is [3]

G(r, t, r′, t′) = −i〈N |T
[
ψ̂(r, t) ψ̂†(r′, t′)

]
|N〉, (6)

where |N〉 is the N -particle many-body ground state, ψ̂ are field operators in the Heisenberg
picture, and T is the time-ordering operator defined as

T [A(t1)B(t2)]≡

{
A(t1)B(t2),

B(t2)A(t1),

t1 > t2
t1 < t2.

(7)

Eq. (6) shows that the Green function G is the probability amplitude to find an electron in (r, t)

if it has been inserted in (r′, t′) (and vice versa for a hole). This definition reduces to Eq. (4) in
absence of interaction, where the ground state |N〉 is a Slater determinant built with the single
particle orbitals ψs(r). As one can see from the definition (6) of the Green function, in analogy
to the non-interacting case,

n(r) = −iG(r, t, rt+) . (8)

The spectral function becomes

Ass(ω) = − 1

π
ImGss(ω) =

∑
λ

|fsλ|2 δ(ω − ελ) , (9)

3Note that especially in finite systems the Hartree or Hartree-Fock approximations are also used in a ∆ self-
consistent field (∆-SCF) approach, where charges are explicitly added to the system, which is allowed to relax
self-consistently. In this case, one implicitly includes screening, although in an adiabatic approximation that does
not lead to excitations.
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where ελ are electron addition and removal energies, and the fsλ are Dyson amplitudes projected
on single particle orbitals. These projections are in general not sharp. Therefore, contrary
to the non-interacting case the interacting spectral function is not just a single δ-peak, and
it shows a continuous distribution of weight in an extended system, although a pronounced
“quasi-particle” peak may still dominate the spectrum. Such a spectral function can only be
produced if G is solution of a Dyson equation with self-energy that is not instantaneous, and
which has therefore a Fourier transform that depends on frequency.

3 Linear response

In the following we will concentrate mainly on spectroscopic measurements, such as optical
absorption, electron energy loss experiments, or inelastic x-ray scattering. The experimental re-
sults can often be understood in terms of linear response theory. In particular, they are related to
the frequency-dependent dielectric function ε(ω), or equivalently, to the linear density-density
response function χ(ω). The linear response is the first-order change of the density δn in a
system due to an external perturbation vext, given as δn = χ vext. The response function and
the inverse dielectric function are related by

ε−1(r1, r2;ω) = δ(r1 − r2) +

∫
dr3 vc(|r1 − r3|)χ(r3, r2;ω) , (10)

where vc is the bare Coulomb interaction. More specifically, in a periodic system, this reads

ε−1
GG′(q;ω) = δGG′ + vc(q + G)χGG′(q;ω) , (11)

where q is a vector in the first Brillouin zone and G is a reciprocal lattice vector. Spectra are
obtained from ε or χ. The most important quantities are:

• The loss function −Im ε−1
GG(q;ω) = −vc(q + G) ImχGG(q;ω). This quantity can be

measured in an electron microscope by performing a momentum-resolved electron energy
loss experiment with a selected momentum transfer Q = q + G.

• The dynamic structure factor S(Q, ω) = − 1
π
ImχG,G(q, ω). One can measure S as a

function of energy and momentum transfer Q = q + G at a synchrotron by performing
inelastic x-ray scattering (IXS).

• The optical absorption spectrum Im εM(q, ω). Under certain conditions, it is given by
the macroscopic dielectric function εM(q, ω) = 1/[ε(q, ω)]−1

G=G′=0 in the limit of long
wavelength, q→ 0. In rather homogeneous systems, where the off-diagonal elements of
the matrix εG,G′ are small, εM(q, ω) ≈ εG=G′=0(q, ω).

Note that ε−1 yields the screened Coulomb interaction, W = ε−1 vc, which is the effective
interaction between classical charges in a medium. It is a key quantity in Hedin’s equations and
in the GW approximation to the self-energy. Both will be briefly recalled in Sec. 4.
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We will now see how to calculate linear response using Green functions. Let us concentrate on
the density-density response function χ = δn/δvext. With Eq. (8), this can be written as

χ(1, 2) = iG(1, 3̄)
δG−1(3̄, 4̄)

δvext(2)
G(4̄, 1+) , (12)

where we have used δG/δv = −G [δG−1/δv]G. Eq. (12) is a convenient starting point for the
various approximations that we will consider in the following.
Let us first look at the case of non-interacting particles. We can apply a potential vext to the
system and evaluate the linear response. In that case we have

G−1[vext] = G−1
0 − vext , (13)

where we have indicated explicitly that now G is a functional of vext. Using Eq. (12) we obtain
the independent-particle response function

χ0(1, 2) = −iG0(1, 2)G0(2, 1+) . (14)

Because of the opposite time-ordering of the two Green functions, one of the twoG0 contributes
only with a sum over occupied states v in Eq. (4), and the other one with a sum over empty
states c. Altogether, using Eq. (4) for G0, one finds the usual expression for the linear response
function χ0 of a non-interacting system, consisting of a sum over all possible transitions from
occupied to empty states (the resonant part) and vice versa (the anti-resonant part):

χ0(r, r′, ω) =
∑
vc

[
ψ∗v(r)ψc(r) ψ

∗
c (r
′)ψv(r

′)

ω − (εc − εv)− iη
− ψv(r)ψ

∗
c (r) ψc(r

′)ψ∗v(r
′)

ω + (εc − εv) + iη

]
. (15)

This independent-particle approximation is frequently used to describe absorption spectra. In-
stead, it is not at all appropriate to directly access loss spectra. The difference between ab-
sorption and loss is illustrated in Fig. 1: The left panel shows the absorption spectrum of bulk
silicon, the right panel shows the imaginary part of the full density-density response function χ,
as measured in electron energy loss spectroscopy at vanishing momentum transfer. The absorp-
tion spectrum rises steeply above 3 eV, which corresponds to the direct band gap. Instead, the
loss spectrum has its main feature at much higher energy, around 17 eV. In order to understand
how this difference comes about, let us move on and put some interaction in our system.
Suppose that we do this first on a mean-field level, by adding a potential vmf . Since this po-
tential is supposed to stem from the interaction between all electrons, in the spirit of DFT it is
reasonable to assume that it is a functional of the density, vmf = vmf [n]. Now we have

G−1 = G−1
0 − vext − vmf [n] , (16)

which leads to

χ(1, 2) = χ0(1, 2)− iG(1, 3̄)
δvmf [n](3̄)

δvext(2)
G(3̄, 1+) , (17)

where χ0 = −iGG|vext→0 is now built with a pair of equilibrium mean-field Green functions.
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Fig. 1: Electronic spectra of bulk silicon. Left panel: absorption spectrum Im εM(ω) (figure
by Francesco Sottile; experiment from [4]). Right panel: loss spectrum for vanishing momen-
tum transfer, from [5]. The important curves are experiment (dots), RPA (dashed), and BSE
(continuous).

Since vmf is a density functional, and the density itself depends on the external potential vext,
we can use a chain rule in the functional derivative, which leads to a Dyson equation for χ

χ(1, 2) = χ0(1, 2)− iG(1, 3̄)
δvmf [n](3̄)

δn(5̄)

δn(5̄)

δvext(2)
G(3̄, 1+)

= χ0(1, 2) + χ0(1, 3̄)
δvmf [n](3̄)

δn(5̄)
χ(5̄, 2) . (18)

One important example for such a mean-field response is the time-dependent Hartree approxi-
mation, where vmf [n](r, t) = vH [n](r, t) =

∫
dr′ vc(r − r′)n(r′, t). In that case the functional

derivative, the kernel of the Dyson equation, equals simply vc, and χ0 is built with Hartree Green
functions. More generally, an approximation of the form χ = χ0 + χ0vcχ for any χ0 = iGG,
where G is some mean-field Green function, is called Random Phase Approximation (RPA).
The RPA has been proposed for the homogeneous electron gas by Pines and Bohm [6–8], and
it is today used in many contexts and for many materials.
The natural way to go beyond the time-dependent Hartree approximation is Time-Dependent
Density-Functional Theory (TDDFT). We can do this by adding a Kohn-Sham exchange-corre-
lation potential vxc such that vmf = vH + vext + vxc. This potential should be a functional of
the density in the whole space, and at all past times.4 Following the same path that has led to
Eq. (18) this yields

χ(1, 2) = χ0(1, 2) + χ0(1, 3̄)
[
δ(t3̄ − t5̄)vc(r3̄ − r5̄) + fxc(3̄, 5̄)

]
χ(5̄, 2) , (19)

4This is a requirement of causality. TDDFT is usually formulated in a causal framework. We use mostly a
time-ordered formulation in these lecture notes, because this facilitates many-body perturbation theory which is
the main topic here. However, it is easy to move from one to the other, as one can see for example by comparing
Eqs. (3) and (4). One only has to be careful to be consistent.
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where we have defined the exchange-correlation kernel fxc(3, 5) = δvxc(3)/δn(5). Note that,
contrary to the Hartree part, it is not instantaneous.
If the exact vxc were known, χ from Eq. (19) would be the exact density-density response
function, because the potential would yield the exact time-dependent density. However, this
is not the case. Most often very simple approximations are used, such as the adiabatic local
density approximation (ALDA), where vxc(r, t) depends only on the density at point r and time
t and fxc(3, 5) is therefore proportional to δ(t3− t5) δ(r3−r5). In extended systems, the ALDA
often yields results close to the RPA ones, when the same χ0 is used. This is illustrated in
the left panel of Fig. 1. The curves labeled RPA and ALDA have been obtained using LDA
Green functions for G. The ALDA shows only minor modifications with respect to the RPA.
Both are not very good: the Kohn-Sham gap in χ0 underestimates the experimental gap by
about 50%. This is not recovered by the RPA or ALDA kernels, so the onset of absorption
is underestimated with respect to experiment. Also the lineshape differs from the measured
one, since there is not enough oscillator-strength on the low-energy side, although one can still
recognize a correspondence between calculated and measured spectra. The loss spectrum in the
right panel, instead, is reasonably well described by the RPA.
In order to understand the difference between absorption and loss spectra, it is enough to look
at the RPA, and to neglect off-diagonal elements of the matrices in reciprocal space. Then, as
outlined in the beginning of this section, absorption is given approximately by

Im εG=G′=0(q, ω) = −vc(q) Imχ0,G=G′=0(q, ω) for q→ 0 ,

whereas the loss function at vanishing momentum transfer is

−Im [1/(1− vc(q)χ0,G=G′=0(q, ω))] for q→ 0 .

To first order in the Coulomb interaction the two expressions are equal. However, the Coulomb
interaction is strong, and the difference is very obvious for bulk silicon in Fig. 1. As anticipated,
comparison of the two panels shows that the loss function in the right panel has its main struc-
tures at much higher energies than the absorption spectrum, which is shown in the left panel. In
the RPA the difference between the two only stems from the long-range Coulomb interaction
vc. This interaction causes a correlated motion of all particles as response to an external pertur-
bation. These are long-range charge oscillations, called plasmons. They give rise to the strong
peak in the loss function in Fig. 1. With vc(q) = 4π/q2, the Coulomb kernel is particularly
important for small momentum transfer q in extended systems. It is the dominant effect in loss
spectra.
At larger momentum transfer 4π/q2 is smaller, and the two kinds of spectra are more similar.
The energy of the plasmon changes as a function of momentum transfer. With this plasmon
dispersion, the sharp peak moves into the continuum of electron-hole transitions and decays into
a broad structure. Plasmons are a broad topic, and more can be found for example in [9]. Here
the important lesson to take away is that the RPA contains the physics of plasmons, because it
includes the long-range variation of the Hartree potential.
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The neglect of off-diagonal elements is an approximation. As Eq. (11) shows, because of scat-
tering at the periodic crystal potential, εGG′ is not diagonal, so its inversion (or, equivalently,
the solution of the Dyson equation) mixes different momentum transfers. Therefore, even when
one is interested in the response to a macroscopic, long-range, perturbation the system can
respond with charge fluctuations on a microscopic scale. These are included in a calculation
through the G 6= 0 components of vc(q + G). The effects of the microscopic components
of vc are called crystal local-field effects (LFE) [10–12]. Microscopic components of the in-
duced Hartree potential gain in importance when the system is inhomogeneous, and when one
probes shorter distances, with increased momentum transfer. In absorption spectra, only the mi-
croscopic components contribute, since the macroscopic component of vc is eliminated by the
double inversion εM = 1/ε−1. The effect of the microscopic components (the LFE) is usually
moderate in extended systems, with variations of spectra of the order of 10% or less for simple
semiconductors, but they can have more important effects in systems with localized electrons,
or in layered systems, which are more inhomogeneous.
The fact that the RPA contains plasmons and crystal local-field effects explains its generally
good performance in describing loss spectra, the dynamic structure factor, and therefore also
the screened Coulomb interaction W . The limitations of the RPA, instead, can be best detected
when one looks at optical absorption in the first few eV spectral range. We have seen the
example of silicon in Fig. 1 above. It is typical for simple semiconductors.
The situation is even worse for insulators, where strongly bound excitons can occur. Roughly
speaking, excitons are due to an effective interaction between the excited electron and the hole
left behind. Since these are a positive and a negative charge, similar to a hydrogen atom, the
interaction can lead to bound states that are clearly detected in experimental absorption spectra.
However, neither in the RPA nor in the ALDA bound excitons can be described. To date, a few
exchange-correlation kernels exist that can produce bound excitons, but their reliability and/or
computational efficiency are not yet satisfactory. Moreover, none of them can overcome the
problem that the Kohn-Sham band gap is usually smaller than the threshold of optical absorp-
tion. This means that the kernel should shift the spectrum to higher energies, which turns out
to be a very difficult task. These problems suggest to move away from density functional the-
ory, towards Green function functional theory, using self-energies and many-body perturbation
theory.

4 Self-energies and generalized response:
the Bethe-Salpeter equation

In order to understand how moving to the framework of Green functions and self-energies can
cure the problems of approximate density functionals, we can look at the simplest approxima-
tion to the self-energy, the Fock exchange operator Σx.
Let us start with the band gap. In Hartree-Fock (HF) we have Koopmans’ theorem, which states
that HF eigenvalues equal electron removal and addition energies, expressed as Hartree-Fock
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total energy differences. Since relaxation is not included in this framework, the HF band gap is
in general much too large compared to experiment. For example, in silicon the direct HF gap is
almost 9 eV, whereas the experimental value is about 3 eV (see Fig. 2).
Let us now try to calculate the HF response function using, again, Eq. (12). From Eq. (5) the
equivalent to Eq. (16) is

G−1 = G−1
0 − vext − vH −Σx . (20)

Strictly speaking, like vH also the exchange self-energy Σx is a functional of the density.
However, its explicit form is not known, maybe not existent or at best non-analytic. Instead,
we know Σx(1, 2) as a functional of the one-body spin-resolved density matrix ρ(1, 2) =

−iG(x1.t1;x2, t
+
1 ); it is Σx(1, 2) = −δ(t+1 − t2) vc(r1 − r2) ρ(1, 2). Let us now try to fol-

low the lines of Eq. (18) while using ρ instead of the density n in the chain rule for Σx. This
yields

χ(1, 2) = χ0(1, 2) + χ0(1, 3̄)δ(t3̄− t5̄)vc(r3̄− r5̄)χ(5̄, 2) + χnl
0 (1; 4̄, 3̄)

δΣx[ρ](3̄, 4̄)

δρ(6̄, 5̄)
χnl(6̄, 2, 5̄),

(21)
where we have defined the three-point response functions

χnl
0 (1; 4, 3) ≡ −iG(1, 3)G(4, 1+) and χnl(6, 2, 5) ≡ δρ(6, 5)

δvext(2)
. (22)

The additional non-locality in χnl
0 stems from the non-locality of Σx and is not problematic.

Instead, the functional derivative with respect to the non-local density matrix creates a problem:
Eq. (21) is not a closed equation for the desired χ(1, 2). In order to obtain a closed equation,
we have to generalize the equation to make it fully three-point, by looking from the very start
at δρ(1, 1′)/δvext(2). With δΣx[ρ](3, 4)/δρ(6, 5) = −δ(t+3 − t4) δ(3, 6) δ(4, 5) vc(r3 − r4) and
carrying out the same steps as before, this leads to

iχnl(1, 2, 1
′) = G(1, 2)G(2, 1′) +G(1, 3̄)G(4̄, 1′) iΞHx(3, 5, 4, 6)χnl(6̄, 2, 5̄) , (23)

where the kernel of this Dyson equation reads

iΞHx(3, 5, 4, 6) ≡ i
δΣHx(3, 4)

δG(6, 5)
= δ(3, 4) δ(5, 6) vc(3, 5)− δ(3, 6) δ(4, 5) vc(3, 4) , (24)

and vc(1, 2) includes the δ-function in time. This is now a closed equation for the response
of the spin-resolved density matrix. In order to obtain the desired density response, one has
first to solve for the density matrix response, and then use the fact that by definition χ(1, 2) =

χnl(1, 2, 1).5 Note that G are now HF Green functions at vext = 0. Indeed, Eq. (23) is the linear
response in the time-dependent Hartree Fock (TDHF) approximation.
Fig. 2 shows the result for bulk silicon, taken from [13]. The dots are the experimental spectrum,
the same as in Fig. 1. At the far right of the figure, the dot-dashed curve represents Imχ0 built
with HF Green functions. Since the HF gap is almost 9 eV, the result is far off experiment.

5For the response of the total density one also has to sum over spin.
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Fig. 2: Absorption spectrum of bulk silicon in the TDHF approximation, from [13]. Dots:
experiment. Dot-dashed curve: independent-particle spectrum using Hartree-Fock ingredients.
Continuous curve: TDHF result.

Instead, the kernel ΞHx used in Eq. (23) has a dramatic effect: the spectrum becomes sharper
and moves to lower energies, recovering more than half of the discrepancy to experiment. This
very important effect is due to the second part of ΞHx, the derivative of Σx. The effect of the
first part is a shift of spectral weight to higher energies, but it is very small since, as explained
earlier, only the microscopic part of the variation of the Hartree potential contributes to the final
absorption spectrum.
The TDHF case contains almost everything we need to understand the Bethe-Salpeter equation:

• A Dyson equation for the density-matrix response has to be solved in order to obtain the
density response.

• The starting χ0 has a gap that can be interpreted as a difference between electron addition
and removal energies. This is called the quasi-particle gap, and it is the gap that would be
measured for example in direct and inverse photoemission.

• The variation of the Hartree potential is the same as in the RPA. Its effect on absorption
spectra is moderate (whereas it is responsible for plasmons that are seen in loss spectra).

• The variation of the Fock exchange moves the spectrum to lower energies. Its effect is
strong. We find now spectral weight within the quasi-particle gap: this means that we
have a bound exciton. In other words, the variation of the exchange is responsible for the
electron-hole attraction.

All this might seem to be meaningless, since what judges a theory at the end is agreement with
experiment – and TDHF visibly does less well than the simple RPA based on an LDA G shown
in Fig. 1! However, the problem of HF is clear: it is the absence of screening (or more generally
formulated, of correlation), which makes band gaps too large, and interactions too strong. The
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introduction of screening, even in relatively simple ways, brings remarkable improvement. For
example, hybrid functionals include screening in a effective way by adding a fraction of Fock
exchange to local Kohn-Sham potentials. Moving from time-dependent HF to time-dependent
hybrid-functional calculations leads to very decent absorption spectra in semiconductors, as has
been shown for example in [14].
A more systematic way to introduce screening is to get better self-energies Σxc instead of Σx

from many-body perturbation theory. We will do this in the next section; here we will conclude
by generalizing Eq. (23) to a form that is usually called the Bethe-Salpeter equation (BSE).
The BSE describes a generalized response, where a non-local (in space, spin and time) “poten-
tial” is applied to the system, and the variation of the Green function, instead of its equal-time
limit (the density matrix) is determined. Moreover, since now we are heading for a more general
self-energy, we can no longer suppose that it is known as functional of the density matrix; in-
stead, we will have approximations that are explicit functionals of the Green function. With this
is mind, all steps can be carried out in close analogy to the derivation of the TDHF equations.
With the definition

L(1, 2, 1′, 2′) ≡ δG(1, 1′)

δvext(2′, 2)
(25)

we find the Bethe-Salpeter equation [15]

L(1, 2, 1′, 2′) = L0(1, 2, 1′, 2′) + L0(1, 3̄′, 1′, 3̄)Ξ(3̄, 2̄, 3̄′, 2̄′)L(2̄′, 2, 2̄, 2′) , (26)

with

Ξ(3̄, 2̄, 3̄′, 2̄′) ≡ −iδ(3̄, 3̄′) δ(2̄′, 2̄) vc(3̄, 2̄) +
δΣxc(3̄, 3̄

′)

δG(2̄′, 2̄)
. (27)

The uncorrelated L0(1, 2, 1′, 2′) = G(1, 2′)G(2, 1′) contains the Green function G, solution of
the Dyson equation

G(1, 2) = G0(1, 2) +G0(1, 3̄)Σ(3̄, 4̄)G(4̄, 2) . (28)

This is analogous to Eq. (5), with ΣHx replaced by the full self-energy Σ = vH +Σxc.
From the definition of L in Eq. (25) it follows that

χ(1, 2) = −iL(1, 2; 1+, 2+) ; (29)

as in the case of TDHF, χ can only be obtained after solving the full BSE for L.
The four-point function L is a two-particle correlation function. One can calculate it formally
from Eq. (25), starting from a one-body Green function G in the presence of an external poten-
tial. The derivation is delicate since the potential can be non-local in time [16], but the result
is qualitatively intuitive: the applied potential contributes vext ψ

† ψ to the time evolution in the
Heisenberg picture. The derivative of G = −i〈N |T

[
ψ̂ ψ̂†

]
|N〉 with respect to vext leads there-

fore to an expression with four field operators. It is closely linked to the two-particle Green
function

G2(1, 2, 1′, 2′) = (−i)2 〈T
[
ψ̂(1) ψ̂(2) ψ̂†(2′) ψ̂†(1′)

]
〉 , (30)
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Fig. 3: The Bethe Salpeter equation for the propagation of an electron-hole pair.

via
L(1, 2, 1′, 2′) = −G2(1, 2, 1′, 2′) +G(1, 1′)G(2, 2′) . (31)

The two-particle correlation function, and therefore the BSE, contain much more than just the
density-density response function, which is the small part given by Eq. (29). In particular, the
order of times is crucial to select different pieces of physics, since it determines the order of the
four field operators. In the density-density response this order alternates ψ and ψ†, which means
that electron-hole pairs are described. Alternatively, the order can be for example ψ†ψ†ψψ: this
describes the propagation of two holes. Also various combinations of spin-resolved response
can be described. We will not delve into these subjects, but it should be clear that, given the
general Bethe-Salpeter equation, these problems can be treated in strict analogy to the electron-
hole case. The BSE for the propagation of an electron-hole pair is expressed graphically by the
diagrams in Fig. 3.
The time structure of the BSE is a particular complication. The quantities that appear in the BSE
depend on four time arguments, which corresponds in equilibrium to three time differences, or
three frequencies in the Fourier transform. With the definition of the time differences [17]

τ2 = t1 − t1′ , τ3 = t2 − t2′ , τ1 =
1

2
[(t1 + t1′)− (t2 + t2′)] (32)

and of the Fourier transform

C(t1, t2, t1′ , t2′) =
1

(2π)3

∫
dω̄1 dω̄2 dω̄3 C(ω̄1, ω̄2, ω̄3) e−iω̄1τ1 e−iω̄2τ2 e−iω̄3τ3 , (33)

the frequency structure of the BSE (26) is [18]

L(ω1, ω2, ω3) = L0(ω1, ω2, ω3) +
L0(ω1, ω2, ω̄4)

(2π)2
Ξ(ω1, ω̄4, ω̄5)L(ω1, ω̄5, ω3) . (34)

The definitions are not unique, and the only requirement is to be consistent. With the present
choice, τ2 and τ3 are differences in the time where the electron and the hole are considered, and
τ1 is the average time of propagation. In frequency space the density-density response from
Eq. (29) reads

χ(ω) =
1

(2π)

∫
dω2 L(ω, ω2) =

1

(2π)2

∫
dω2 dω3 L(ω, ω2, ω3) , (35)

where we have used the same symbol L for the integrated function that depends only on two
frequencies.
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Since ω3 appears as a dummy index in Eq. (34), it can be integrated before the equation is
solved. The new equation reads

L(ω1, ω2) = L0(ω1, ω2) +

∫
dω4 dω5

L0(ω1, ω2, ω4)

(2π)2
Ξ(ω1, ω4, ω5)L(ω1, ω5) , (36)

with
L0(ω1, ω2) = −iG(ω2 +

ω1

2
)G(ω2 −

ω1

2
) . (37)

If one performs also the integration over ω2 in Eq. (36), one runs into a problem similar to the
density response in HF, namely, the equation is no longer of closed form. Therefore, one has to
solve Eq. (36) and only subsequently perform the integration.

5 The Bethe-Salpeter equation from the GW approximation

At this stage, we have everything in hand to calculate the response function starting from an
arbitrarily complicated self-energy. The task is hence to find a good approximation for Σ,
beyond ΣHx. We have already anticipated that the most important missing ingredient for our
purpose is screening. The task of the present section is to put this hand-waving argument on a
more rigorous basis. A widely used approach is diagrammatic expansions in the framework of
many-body perturbation theory. Here we take another (though strictly analogous) way, which
is closer to the spirit of this lecture about linear response. There is no space for a detailed
derivation; more can be found in the book [19], which we closely follow here.
From the definition (6) of the Green function one can derive its equation of motion

G(1, 1′) = G0(1, 1′) +G0(1, 2̄) vH (2̄)G(2̄, 1′) + iG0(1, 2̄) vc(2̄, 3̄)L(2̄, 3̄+, 1′, 3̄++) . (38)

It expresses the fact that the propagation of a particle in a system of many electrons equals the
propagation of a single particle, modified by the classical electrostatic (Hartree) potential of all
electrons, the Fock exchange that is contained in the last term (and that can be obtained with
the approximation L ≈ L0), and correlation effects such as the reaction of the other electrons,
which is expressed by the fact that L is related to a variation of G via Eq. (25).
We can now transform Eq. (38) into a Dyson equation by using Eq. (25) and the trick δG/δv =

−G [δG−1/δv]G. This defines a self-energy Σ = vH − ivcG [δG−1/δvext]. Moreover, we can
introduce screening by using the chain rule δ/δvext = [δ/δvcl][δvcl/δvext], where vcl ≡ vext+vH .
With this choice, δvcl/δvext = ε−1, which makes the screened Coulomb interaction W = ε−1 vc
appear. Altogether, these manipulations lead to a set of equations known as Hedin’s equations:

Σxc(1, 2) = iG(1, 4̄)W (1+, 3̄) Γ̃ (4̄, 2; 3̄) (39)

W (1, 2) = vc(1, 2) + vc(1, 3̄)P (3̄, 4̄)W (4̄, 2) (40)

P (1, 2) = −iG(1, 3̄)G(4̄, 1) Γ̃ (3̄, 4̄; 2) (41)

Γ̃ (1, 2; 3) = δ(1, 2) δ(1, 3) +
δΣxc(1, 2)

δG(4̄, 5̄)
G(4̄, 6̄)G(7̄, 5̄) Γ̃ (6̄, 7̄; 3) (42)

G(1, 2) = G0(1, 2) +G0(1, 3̄)Σ(3̄, 4̄)G(4̄, 2) . (43)



Bethe-Salpeter Equation 10.15

These equations contain

• the irreducible polarizability P , Eq. (41). It is the response of the density to the total
classical perturbation vcl. It is linked to χ via χ = P + P vc χ. When the vertex function
Γ̃ is set to 1, P describes non-interacting electron-hole pairs: this is the RPA. Otherwise,
Γ̃ contains the information that the two particles interact. The equation for Γ̃ can be
transformed into a BSE for the irreducible part L̃ (the generalization to four points of P )
of L by integrating with two Green functions, or into the BSE (26) for L by including the
Hartree potential.

• The screened interaction W is different from the bare vc when the system is polarizable,
i.e., P is not zero. It is dynamical, which means, frequency-dependent, because of the
frequency-dependence of P .

• The vertex function Γ̃ also appears in the self-energy: it corrects for the fact that W
is the screened interaction between classical charges, whereas the system particles are
fermions. Moreover, P is the polarizability of all electrons, including the one that should
be screened. This self-screening error is removed by the Γ̃ in the self-energy.

• Variations of the self-energy, in turn, determine the vertex function. Similarly to the bare
Coulomb interaction, which is a first derivative of the Hartree potential, δΣxc/δG plays
the role of an effective exchange-correlation interaction.

The GW approximation consists in setting Γ̃ to 1 everywhere. This means that W is calculated
in the RPA, and Σ = iGW . This approximation is exactly what we have been heading for: it is
a sort of dynamically screened Hartree-Fock. Contrary to Hartree-Fock, the GW self-energy is
not instantaneous, because W depends on a time difference.
The Dyson equation for G in Hedin’s equations is the only equation that exhibits the external
potential via the non-interactingG0. The other equations are universal, and can be used to create
expressions for the quantity of interest with increasing accuracy. Typically one starts with a
guess, like Σxc = 0, and from this calculates Γ̃ , P , W , and then again Σxc as functional of G.
This yields expressions with terms of higher orders in W . The formulae become increasingly
complex, and one cannot go too far. However, at least one update of W has become a standard
ingredient in the toolbox of condensed matter calculations: in a first step Γ̃ = 1, which yields
the RPA for P and W and the GW approximation for Σxc. Then Γ̃ is recalculated. This can be
transformed into a BSE (26) for L, with Ξxc = δΣGW

xc /δG. The resulting kernel reads

ΞGWA
xc (1, 2, 3, 4) = iδ(1, 4) δ(2, 3)W (1, 2) + iG(1, 3)

δW (1, 3)

δG(4, 2)
. (44)

The first term is very similar to Ξx of time-dependent Hartree-Fock, but now it is screened. The
diagrams for the contribution to ΞHxc that contains only the variation of the Hartree potential
and this first term are shown in Fig. 4.
The second term is of higher order inW [20], and it goes beyond the linear response of the elec-
trons to an added charge: the screened interaction itself changes when the system is perturbed.
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Fig. 4: Kernel of the GW-BSE, as explained in the text. The dashed line is the electron-hole
exchange interaction that stems from the variation of the Hartree potential. The wiggly line
represents the direct electron-hole attraction. It is depicted with a minus sign in order to stress
the fact that it is attractive.

Usually this term is neglected, both because it is of higher order, and, very pragmatically, be-
cause it would be much more cumbersome to calculate. It has not been investigated very much,
but there has been no strong evidence to date that it would be crucial to include it. Therefore,
one usually sets

ΞGW
xc (ω1, ω2, ω3) ≈ iW (ω2 − ω3) . (45)

Here we can see a major difference to TDHF: since the GW self-energy is not instantaneous,
the BSE cannot be solved frequency by frequency. From Eq. (36), the coupling of frequencies
reads

L(ω1, ω2) = L0(ω1, ω2) +
1

2π
L0(ω1, ω2)

∫
dω̄3 [vc −W (ω2 − ω̄3)]L(ω1, ω̄3) . (46)

This looks very annoying. However, it should be noted that also L0 has acquired a non-trivial
frequency dependence: the Green functions that yield L0 = GG are now GW ones, which
means, they are no longer of an independent-particle type but have a complicated spectral func-
tion, where weight is transferred from the quasi-particle to satellites. If the remaining quasi-
particle weight is Z < 1 (let us say, 0.7), a transition between quasi-particle peaks would show
up in the spectrum of L0 with weight Z2 [21] (which would yield a weight reduction by a factor
of 1/2). This, however, is not what is observed. The reason is that these dynamical effects in L0

cancel to a large extent with the dynamical effects in ΞGW
xc [22]. Therefore, in realistic calcu-

lations most often the Green functions G in L0 are replaced by quasi-particle ones with weight
Z = 1, and the frequency dependence of W in ΞGW

xc is neglected. Besides the fact that the
quasi-particle G’s are usually derived as an approximation from the fully frequency dependent
GW self-energy, one might call the resulting method “linear-response time-dependent screened
Hartree-Fock”.
Now one can integrate ω2 in Eq. (46), and the GW-BSE becomes

L(x1, x2, x1′ , x2′ ;ω) = L0(x1, x2, x1′ , x2′ ;ω)

− iL0(x1, x̄3, x1′ , x̄3;ω) vc(x̄3, x̄4)L(x̄4, x2, x̄4, x2′ ;ω)

+ iL0(x1, x̄4, x1′ , x̄3;ω)W (x̄3, x̄4)L(x̄3, x2, x̄4, x2′ ;ω) . (47)
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This equation still exhibits all spin arguments. The spin structure of ΞGW
Hxc is

ΞGW
σ3σ2σ3′σ2′

= −iδσ3σ3′ δσ2′σ2 vc + iδσ3σ2′ δσ3′σ2 W. (48)

In spin space, the equation can be decoupled into singlet and triplet contributions [2]. In a
spin-unpolarized material and without a spin-dependent interaction the result is

Lsinglet = L0 + iL0 [W − 2vc]L
singlet

Ltriplet = L0 + iL0 WLtriplet. (49)

As we can see, the variation of the Hartree potential enters with a factor of two in the singlet,
whereas it is absent in the triplet. This difference causes the so-called singlet-triplet splitting.
In the following we concentrate on singlets, which can be optically allowed.

6 A two-body Schrödinger equation

There are various ways to solve the BSE (47), for example, by iterative inversion. For small (less
than 100 electrons) systems sometimes the equation is transformed into the form of an effective
two-particle Hamiltonian that is then diagonalized. This is interesting, because it suggests a
simple physical interpretation. To obtain this form, we first write the equation in the basis of
the orthonormal orbitals ψn(r) that diagonalize G0, and therefore L0, which reads

L n4n2
0n1n3

(z) = 2i
(fn1 − fn2) δn1n4δn2n3

z − (εn1 − εn2)
, (50)

where z is a complex frequency containing the appropriate infinitesimal imaginary part, f are
occupation numbers, and spin has been summed. We also define interaction matrix elements as

vn4n2
n1n3

=

∫
dr1 dr2 ψ

∗
n1

(r1)ψn4(r1) v(r1, r2) ψn3(r2)ψ∗n2
(r2) , (51)

for both vc and W. This transforms the BSE into

Ln4n2
n1n3

(z) = [L−1
0 +

i

2
Ξ]−1 n4n2

n1n3
= 2i [H2p − I z]−1 n4n2

n1n3
(fn2 − fn4) (52)

with I the identity matrix. Here we have defined the effective two-particle Hamiltonian H2p

H2p n4n2
n1n3
≡ (εn2 − εn1) δn1n4δn2n3 + (fn1 − fn3)Ξ

n4n2
n1n3

, (53)

where
Ξn4n2
n1n3
≡ 2v n3n2

c n1n4
−W n4n2

n1n3
. (54)

Optical transitions happen between occupied and empty states. Therefore the only combination
of indices that is needed in a non-metal at T = 0 is couples of occupied and empty states, which
means, we only need terms of the form

Ξv′c′

v c = 2v cc′

c vv′ −W v′c′

v c . (55)



10.18 Lucia Reining

As we can see, the variation of the Hartree potential gives rise to a dipole-dipole interaction,
called electron-hole exchange. The variation of the GW self-energy, instead, is called direct
electron-hole interaction, since it contains the interaction between the charge densities of elec-
trons and holes.
The full two-particle Hamiltonian is only pseudo-hermitian [23], because of the coupling be-
tween resonant (v → c) and anti-resonant (c → v) transitions. In the Tamm–Dancoff approx-
imation (TDA) [24, 25, 3], this coupling is neglected. This is often a very good approximation
for optical spectra of bulk materials [26]. It is more critical for finite systems [23]. One also has
to be careful when calculating loss spectra [5], because they are influenced by the long-range
part of vc, which gives rise to strong coupling. For simplicity, in the following we give expres-
sions in the TDA; the appropriate formula for the pseudo-hermitian full case can be found for
example in [27, 19].
To perform BSE calculations in practice, one first determines W and the quasi-particle band
structure, typically from a GW calculation. With this, the two-particle Hamiltonian H2p is built
using the expressions above. The next step is its diagonalization,∑

n3n4

H2p n3n4
n1n2

An3n4
λ = EλA

n1n2
λ . (56)

In the TDA, the retarded L is then built from

Ln3n4
n1n2

(ω) = 2i
∑
λ

An1n2
λ A∗n3n4

λ

ω − Eλ + iη
(fn4 − fn3) . (57)

Each couple (nn′) corresponds to a pair (vc) of an occupied and an empty state. In the absence
of electron-hole interaction, each eigenstate A∗n1n2

λ would correspond to a given electron-hole
pair, Avcλ = δvvλδccλ , and the transition energy would be εc−εv. Instead, when the electron-hole
interaction is switched on, one can no longer associate a transition λ with one independent-
quasiparticle transition (vc): transitions are mixed by the interaction. Note that this already
occurs when only the variation vc of the Hartree potential is considered, i.e., in the RPA: the
self-consistent response of the electron system, even on a classical electrostatic level, has non-
trivial effects. Of course, the interaction also affects the transition energies, which are now Eλ
instead of εc − εv.
In a solid and for vanishing momentum transfer q → 0, the resonant part of the independent-
particle retarded response function reads

χ0
00(q→ 0, ω) = 2

∑
vck

|ρ̃vkc|2

ω − (εck − εvk) + iη
, (58)

where the ρ̃ are dipole transition matrix elements between quasi-particle states. Instead, with
all the above approximations the result obtained from the BSE is

χ00(q, ω) = 2
∑
λ

|
∑

vckA
vkc
λ ρ̃vkc|2

ω − Eλ + iη
. (59)
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Again we can see the mixing of transitions induced by the eigenstates Aλ of the BSE two-
particle Hamiltonian, and the modification of transition energies. Note that this expression
yields directly the optical spectra, if the long-range (G = 0) contribution to vc is omitted in the
BSE.
Let us now illustrate and analyze the BSE with two examples. We will concentrate on the effect
of the direct electron-hole interaction W, since the contribution vc has been discussed earlier in
the framework of the RPA.
The first example is the optical absorption of bulk silicon. The modest performance of the RPA
and the ALDA has been shown in the left panel of Fig. 1, and the crucial need for screening
was illustrated by the TDHF results in Fig. 2. The pink dot-dashed curve in the left panel of
Fig. 1 is GW-RPA, which means, the GW-BSE is solved by neglecting W in the kernel. Since
now the starting band structure is the GW one, the spectrum is at higher energies than the RPA
or ALDA ones. However, it is now too much displaced to higher energies. On the other hand,
since screening is included, the overshooting is not as drastic as in HF in Fig. 2. The GW-BSE
results including W in the kernel are given by the continuous black curve: it shows very good
agreement with experiment, both concerning position and spectral shape.
One might wonder why there is any effect ofW at all in bulk silicon, since its dielectric constant
is about εM ≈ 12, so screening is very strong, and W should be small. Indeed, a closer analysis
shows that the transition energies are almost unchanged with respect to the GW-RPA ones.
It should be noted that in infinite systems transition energies do not change to first order in
W , because the first order is given by the diagonal of the matrix, which tends to zero for an
infinitely dense k-point sampling, so for smallW no effect on energies should be expected. The
coefficients Aλ, instead, can change already to first order, since matrix elements are summed in
the first order correction to eigenstates. Moreover, in the first-order perturbation correction to
states, matrix elements appear in the numerator, and differences between zero-order transition
energies in the denominator. The bandstructure of silicon shows almost parallel bands in large
portions of the Brillouin zone, and has therefore many independent-particle transitions at similar
energies. This makes the denominator small and creates a strong effect of the electron-hole
interaction, even though the numerator is small because W is so strongly screened. The shift to
lower energies of spectral weight in the optical spectrum of silicon is hence a pure interference
effect.
On the opposite side, we find large gap insulators or low-dimensional systems with weak screen-
ing. In this case even the transition energies can be strongly affected. In particular, W is an
attractive interaction, because here W is the interaction between an electron and a hole. This
leads to new transition energies within the quasi-particle gap: these are the energies of bound
excitons. The difference between the transition energy and the quasi-particle gap is called exci-
ton binding energy. It can be as large as several eV.
Indeed, when one approximates the band structure by two parabolic bands, calculates the matrix
element of W using plane waves for the orbitals, and replaces sums over k-points in the Bril-
louin zone by integrals over the whole k-space, the GW-BSE takes the form of a Schrödinger
equation for the hydrogen atom, with a modified electron and proton mass and a screened
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Fig. 5: Excitonic spectra q2 Im εM(q, ω) in graphane (left) and a hexagonal BN sheet (right),
for various momentum transfers q along the Γ -M direction, indicated on the right side in Å−1.
The quasi-particle band gap is shown by the red arrow. From [28].

Coulomb interaction. This is the Wannier model for excitons, which predicts Rydberg series of
bound electron-hole states for three-dimensional solids. It works surprisingly well for not too
strongly bound excitons, and can yield reasonable results even for binding energies in the eV
range. For even stronger bound excitons, where the onsite interaction dominates, the Frenkel
model is more appropriate; it can also be derived from the GW-BSE (see [19]).
As an example for bound excitons, Fig. 5 shows q2 Im εM(q, ω) for graphane (a hydrogenated
graphene sheet, left panel) and one layer of hexagonal boron nitride (right panel). In both
cases, important structures are found within the quasi-particle band gap, which is indicated by
the red arrow. Binding energies are larger than one eV in both cases. The different nature of
the excitons in these two materials can be inferred from their dispersion: the bound exciton
in graphane changes its position in a parabolic way, whereas in h-BN the dispersion is rather
linear, after a first, more rapid, rise. This is discussed in [28].

7 Excitons and correlation

In the context of these lecture notes, it is interesting to comment about various aspects of corre-
lation concerning excitons. Here we would like to concentrate on two points:

• Excitons are strongly correlated electron-hole pairs.

• The BSE contains cancellation effects between self-energy corrections and electron-hole
interaction. These can be particularly important in correlated materials with localized
electrons.
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Fig. 6: Excitonic effects in MnO, from [29]. Distribution of spin-up density in the (001) plane
for an excitation at 5.2 eV. The position of the hole is indicated by the large black ball in the
center. Light red balls represent Mn atoms with occupied 3d spin-up orbitals and dark blue
balls are Mn atoms with occupied 3d spin-down orbitals. Oxygen atoms are indicated by small
black balls.

To illustrate the first point, it is enough to look at the exciton wavefunction. It is a superpo-
sition of products of the wavefunctions of the single electrons and holes, determined by the
coefficients Aλ

Ψλ(re, rh) =
∑
vkc

Avkcλ ψ∗vk(re)ψck(rh) . (60)

This is a correlated two-particle wavefunction: in order to know the probability distribution of
the electron, one has to fix the position of the hole, and vice versa.

Let us look at such a wavefunction, for the example of the magnetic material MnO [29]. Its
antiferromagnetic ordering consists of alternating planes of occupied spin-up and spin-down
Mn 3d orbitals. In order to visualize the charge density of an excited electron, one has to
chose the excitation energy, and the position of the hole. In Fig. 6, which is taken from [29],
the excitation energy corresponds to a peak in the absorption spectrum at 5.2 eV. For the hole
position one usually chooses an occupied orbital; here the hole is fixed on an Mn atom where
the spin-up orbital is occupied. Because of the dipole transition rules, a spin-up electron is
excited from an occupied to an empty spin-up orbital. This determines the distribution that is
observed in Fig. 6.

Surprisingly, the picture in Fig. 6 breaks translational invariance, since the exciton extends over
several unit cells. How is this possible? The reason is that we had to fix the position of the hole,
because of the electron-hole correlation. However, the probability to find the hole in a given
unit cell is periodic, so overall translational invariance is respected.
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Let us now come to the second point anticipated above, cancellations. To get an idea, think of
a single electron. Even if you excite it, there should be no interaction effects – there is no other
electron to interact with. However, the BSE starts with L0, in other words, with a difference
of electron addition and removal. In the addition process the system gets two electrons: now
there is interaction! This spurious effect has to be removed by the electron-hole interaction. In a
solid with delocalized electrons some cancellation is seen (look for example at silicon in the left
panel of Fig. 1), but it is far from complete; otherwise, we would never need the BSE. However,
when electrons are localized, and especially at low density, in a certain sense one comes closer
to the regime of single electrons, and cancellations are more important. Therefore in these ma-
terials sometimes the RPA evaluated with Kohn-Sham wavefunctions gives surprisingly decent
excitation spectra, for example in transition metal oxides like V2O3 [30].

There are many more aspects of optical or loss spectra in the BSE that one might want to
address; more can be found for example in [19]. However, one should not forget that the BSE
yields in principle the full two-particle correlation function, and more information can be gained
from it. Applications such as the calculation of correlated two-hole states [31, 32], or total
energies [33], promise an increasingly broad horizon for people interested in the Bethe-Salpeter
equation.
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