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1.  

Quantum many-body systems in nonequilibrium 



How to put 
a quantum many-body system 

out of equilibrium 
and observe its relaxation 



Time-resolved pump-probe spectroscopy   

�  Pump-probe setup: 
 

�  Pump laser pulse: 
puts system into nonequilibrium 
 

�  Probe laser pulse: 
looks at system after delay time 

 
 

�  Various time-resolved probes: 
 

�  t.-r. ARPES: photoemitted electrons 
 

�  t.-r. optical spectroscopy: transmitted/reflected light 
 

�  t.-r. X-ray or electron diffraction: snapshots of atomic positions 
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Melting of a Charge Density Wave in TbTe3 

  

�  trARPES on TbTe3: 1.5-eV 50-fs pump pulse, 6-eV 90-fs probe pulse 

�  photodoping  ! closing of CDW gap 
  ! electron thermalization  ! vibrational excitation 

Schmitt, Kirchmann, Bovensiepen, Moore, Rettig, Krenz, Chu, Ru, Perfetti, Lu, Wolf, Fisher, Shen, Science '08 



Quenched Bose condensate

Abrupt increase of interaction of 87Rb atoms:
Greiner, Mandel, Hänsch, Bloch ’02
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�  Time scales in pump-probe experiments 
 

�  Excitation due to pump pulse     ~ 10...100 fs 
 

�  Relaxation due to electron scattering    ~ 0...1000 fs 
 

�  Energy transfer to ion lattice       ~ 1...10 ps 
 

�   Time scales in cold-atom experiments 
 

�  Switching times        ~ 1...1000 ms 
 

�  Relaxation times        ~ 1...1000 ms 

       

Time scales in nonequilibrium dynamics 

! study relaxation of isolated quantum systems first!



How can an isolated system 
relax to an equilibrium state? 



Time evolution of isolated systems 

�  Schrödinger equation: 
 

�  Quantum quench:   Prepare          and switch to H at t = 0 
 

�  Time evolution for t ≥ 0: 

 

�  Energy after quench: 

�  Expectation values: 
 

�  Thermalization: 
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The thermal state: 
 

Putting a system into equilibrium 
by coupling it to a heat bath 



Gibbs ensemble for system + bath 

�  System + heat bath: 

 

�  Boltzmann relation: 
 
 
 

�  Obtain # of system states from bath: 

 
 

�  System in thermal state when in equilibrium with bath 

�  Microcanonical ensemble gives same results (in thermodyn. limit) 
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!
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Maxwell 1866, Boltzmann 1872, Gibbs 1878 
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An equivalent equilibrium formulation: 
 

Ensembles containing microstates 
with same a priori probabilities 



Equilibrium statistical mechanics

Prediction for equilibrium state:

• Fundamental postulate:

All accessible states equally probable ! S=−Tr[ρ̂ ln ρ̂]=max

• Âi conserved ⇒ fix Tr[ρ̂ensembleÂi] = 〈〈〈Âi〉〉〉t=0

⇒ ρ̂ensemble ∝ exp(−
∑
i λi Âi) Boltzmann-Gibbs ensemble

Maxwell 1866, Boltzmann 1872, Gibbs 1878
von Neumann 1927, Jaynes 1957, ..., Balian 1991

Integrable systems: Ĥeff =
L∑

α=1

εαn̂α ⇒ many constants of motion

• Generalized Gibbs ensembles: ρ̂GGE ∝ exp(−
∑
α λα n̂α)

Jaynes ’57
Girardeau ’69

Rigol et al. ’06
Cazalilla ’06

Rigol et al.’07

• 〈〈〈Â〉〉〉t→→→∞ = 〈〈〈Â〉〉〉GGE for simple observables and initial states
Kollar & Eckstein ’08

Barthel & Schollwöck ’08

Reformulation with fundamental postulate 
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Why does a many-body system 
relax to the thermal state? 



Eigenstate Thermalization Hypothesis (ETH) 

 
 
 
 
 
 

Deutsch PRA '91, Srednicki PRE '94 
 Rigol, Dunjko, Olshanii, Nature '08 

 

4

lattice. We again found that the ETH holds true (3% relative
standard deviation of eigenstate-to-eigenstate fluctuations).
On the other hand, Figs. 3d-f show how the ETH fails

for an isolated one-dimensional integrable system. The lat-
ter consists of five hard-core bosons initially prepared in their
ground state in an 8-site chain, one of the ends of which we

then link to one of the ends of an adjoining (empty) 13-site
chain to trigger relaxation dynamics. As Fig. 3e shows, n(kx)
as a function of energy is a broad cloud of points, meaning
that the ETH is not valid; Fig. 3f shows that scenario (ii) does
not hold either.

FIG. 3: Eigenstate thermalization hypothesis. a, In our nonintegrable system, the momentum distribution n(kx) for two typical eigenstates
with energies close to E0 is identical to the microcanonical result, in accordance with the ETH. b, Upper panel: n(kx = 0) eigenstate
expectation values as a function of the eigenstate energy resemble a smooth curve. Lower panel: the energy distribution ρ(E) of the three
ensembles considered in this work. c, Detailed view of n(kx = 0) (left labels) and |Cα|2 (right labels) for 20 eigenstates around E0. d, In the
integrable system, n(kx) for two eigenstates with energies close to E0 and for the microcanonical and diagonal ensembles are very different
from each other, i.e., the ETH fails. e, Upper panel: n(kx = 0) eigenstate expectation value considered as a function of the eigenstate energy
gives a thick cloud of points rather than resembling a smooth curve. Lower panel: energy distributions in the integrable system are similar to
the nonintegrable ones depicted in b. f, Correlation between n(kx = 0) and |Cα|

2 for 20 eigenstates around E0. It explains why in d the
microcanonical prediction for n(kx = 0) is larger than the diagonal one.

Nevertheless, one may still wonder if in this case scenario
(i) might hold—if the averages over the diagonal and the
microcanonical energy distributions shown in Fig. 3e might
agree. Figure 3d shows that this does not happen. This is so
because, as shown in Fig. 3f, the values of n(kx = 0) for
the most-occupied states in the diagonal ensemble (the largest
values of eigenstate occupation numbers |Cα|2) are always
smaller than the microcanonical prediction, and those of the
least-occupied states, always larger. Hence, the usual thermal
predictions fail because the correlations between the values
of n(kx = 0) and |Cα|2 preclude unbiased sampling of the
latter by the former. These correlations have their origin in
the nontrivial integrals of motion that make the system inte-

grable and that enter the generalized Gibbs ensemble, which
was introduced in Ref. [3] as appropriate for formulating sta-
tistical mechanics of isolated integrable systems. In the non-
integrable case shown in Fig. 3c, n(kx = 0) is so narrowly
distributed that it does not matter whether or not it is corre-
lated with |Cα|2 (we have in fact seen no correlations in the
nonintegrable case).

The thermalization mechanism outlined thus far explains
why long-time averages converge to their thermal predictions.
A striking aspect of Fig. 1b, however, is that the time fluc-
tuations are so small that after relaxation the thermal predic-
tion works well at every instant of time. Looking at Eq. (1),
one might think this is so because the contribution of the off-

!! !!

Nonintegrable Integrable 

!!!!

hhhn|||A|||niii ⇡A(En)+ smaller, n-dep. terms

�����

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!



Eigenstate Thermalization Hypothesis (ETH) 

 
 

�  Energy dependence is that of microcanonical ensemble: 
 
 
 
 
 
 

 
�  Long-time average tends to thermal value: 

 
 
 
 
 
 
 

�  ETH sufficient for thermalization! 

Deutsch PRA '91, Srednicki PRE '94 
 Rigol, Dunjko, Olshanii, Nature '08 

 
hhhn|||A|||niii ⇡A(En)+ smaller, n-dep. terms

�����

Amic(E) = Tr[⇢mic(En)A]
�����

= 1
Zmic

X
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hhhn|||A|||niii =A(E)+ smaller terms

A(t) = hhh (t)|||A||| (t)iii
�����

=
X

n
hhhn|||A|||niii| {z }
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�����



•  Nonequilibrium: 
 

Thermalization is due to dependence of 
expectation values only on energy 
 
 

•  Equilibrium: 
 

Thermal Gibbs state is due to 
immersion in structureless heat bath 

 



2. 
Nonequilibrium Green functions 



Quantum time evolution 

�  Hamiltonian: 
 

�  Density matrix: 

�  Propagator: 
 

�  Expectation value of observable A: 

⇢(t) = U(t,0)⇢(0)U(0, t)
�����

H (t) = H(t)� µN(t)
�����

⇢(0) = 1
Z
e��H (0) = 1

Z
X

n
e��En|||niiihhhn|||

�����

d
dt
U(t, t0) = �iH (t)U(t, t0)

�����

U(t, t0) =
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¯
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hhhAiiit = Tr
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Kadanoff-Baym formalism with time contour 

�  Expectation value of observable A: 

�  Represent as integral over time contour C1 + C2 + C3: 

�  Insert formal time dependence into Schrödinger operator A: 

U(t, t0) =

8
>>>><
>>>>:

T exp

 
�i
Z t

t0
d¯tH (¯t)

!
for t > t0

¯

T exp

 
�i
Z t
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d¯tH (¯t)

!
for t < t0

hhhAiiit =
1
Z

Tr[U(�i�,0)U(0, t)AU(t,0)]
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hhhAiiit = Tr TC A(t) exp[�i RC d¯tH (¯t)]
Tr TC exp[�i RC d¯tH (¯t)]
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Contour calculus 

  

g(t 2 C) =

8
>><
>>:

g+(t) if t 2 [0, t
max

] on C
1

,

g�(t) if t 2 [0, t
max

] on C
2

,

g|(�i⌧) if t = �i⌧ on C
3

, ⌧ 2 [0,�],
Z

C
dt g(t) =

Z t
max

0

dt g+(t)�
Z t
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0

dt g�(t)� i
Z �

0

d⌧ g|(�i⌧) ,

[a⇤ b](t, t0) =
Z

C
d¯t a(t,¯t)b(¯t, t0) ,
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(
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3

,
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(
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d¯t �C(t,¯t)g(¯t) = g(t)

Re t
Im t

t

t’

tmax

1

2

3C

C

C

ïi `



Contour Green functions 

�  Contour time ordering: 
 

�  Action: 

 

�  Green function with 2 time arguments on branches C1 or C2 or C3: 
 

 

�  Let                  have time arguments on branches  

�  Symmetries:                                     for             etc.    

G(t, t0) = �ihhhc(t)c†(t0)iii = � i
Z

Tr
h

TC
n

exp(S)c(t)c†(t0)
oi

S = �i
Z

C
dtH (t)

�����

Gab(t, t0)
����� a,b = 1,2,3

�����

G11(t, t0) = G12(t, t0) t  t0
�����

TC A(t)B(t0) =
(
AB if t >C t0

±BA if t <C t0
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G13(t,⌧0) = G23(t,⌧0),
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Keldysh Green functions 

Retarded, Advanced, Keldysh, Mixed, Matsubara, lesser, greater GFs: 

Re t
Im t

t

t’

tmax

1

2

3C

C

C

ïi `

GR(t, t0) = 1
2(G11 �G12 +G21 �G22) = �i✓(t � t0)h{c(t), c†(t0)}i

GA(t, t0) = 1
2(G11 +G12 �G21 �G22) = i✓(t0 � t)h{c(t), c†(t0)}i

GK(t, t0) = 1
2(G11 +G12 +G21 +G22) = �ih[c(t), c†(t0)]i

G¬(t,⌧0) = 1
2(G13 +G23) = ihc†(⌧0)c(t)i

G ¬(⌧, t0) = 1
2(G31 +G32) = �ihc(⌧)c†(t0)i

GM(⌧,⌧0) = �iG33 = �hT⌧ c(⌧)c†(⌧0)i

G<(t, t0) = G12 = ihhhc†(t0)c(t)iii

G>(t, t0) = G21 = �ihhhc(t)c†(t0)iii



⌃
�����

Noninteracting case and Self-energy 

�  Free electrons: 

�  Contour GF: 

�  EOM: 

�  Def. of inverse GF: 

�  Solution: 

�  Self-energy    : 1-particle irreducible amputated Feynman diagrams 

�  Dyson equation for full GF: 

�  Def. of inverse of full GF: 
    

H0(t) =
X

k

[✏k(t)� µ]c†kck
�����

⇥
i @t + µ � ✏k(t)

⇤
G0,k(t, t0) = �C(t, t0)

�����

G�1
0,k(t, t0) =

⇥
i @t + µ � ✏k(t)

⇤
�C(t, t0)

�����

G0,k(t, t0) = �i
h
✓C(t, t0)� f(✏k(0)� µ)

i
e�i

R t
t0 dt̄ [✏k(t̄)�µ]

�����

G = G0 +G0 ⇤ ⌃⇤G
�����

G�1 = G�1
0 � ⌃

�����

G0,k(t, t0) = �ihhhck(t)c†k(t0)iii
�����



3. 
Nonequilibrium Dynamical Mean-Field Theory 



The DMFT philosophy 

�  Start from limit of infinite lattice dimension 

�  Scale the kinetic energy, i.e., NN hopping amplitude 

�  Map lattice problem onto 
   
    dynamic single-site problem with self-consistency condition 
 
    [ e.g. single-impurity Anderson model (SIAM) ] 
   
and solve numerically 
 

�  Extend to e.g. 

�  finite      using clusters, dual fermions, dyn. vertex approx., ... 
�  magnetic phases, phonons, ... 

�  input from density functional theory, ... 

d!1
�����

tij /
1p
d

�����

d
�����



The cavity method I 

�  Time-dep. Hubbard model: 

�  Pick out single site  i=0  from lattice action: 

�  Integrate out rest of lattice: 

H(t) =
X

ij�
tij(t) c

†
i�cj� +U(t)

X

i
ni"ni#

�����

Z = Tr
h

TC
n

exp(S
0

+�S + S(0))
oi

= Tr
0

h

TC
n

exp(S
0

)Tr

rest

⇣

exp(�S + S(0))
⌘oi

= Tr
0

h

TC
n

exp(S
0

+ ˜S)
oi

ZS(0)

S = S0 +�S + S(0),

S0 = �i
Z

C
dt

U(t)n0"(t)n0#(t)� µ

X

�
n0� (t)

�
,
�����

�S = �i
Z

C
dt

2
4 X

iî0,�
t�i0(t)c

†
i� (t)c0� (t)+ h.c.

3
5 ,
�����

S(0) = �i
Z

C
dtH (0)(t)

�����
Seff = S0 + S̃

�����

Equil.: Georges et al. RMP 1996 
Noneq.: Gramsch et al PRB 2014 



The cavity method II 

�  Result of integration over lattice sites i≠0: 
 
 
 

�  Hybridization functions: 
 

�  Power counting for            : 
 
 
 
 
 
 

�  Only one-particle Green functions (n=1) remain in hybridization! 
 

S̃ = �i
1X

n=1

X

�1...� 0n

Z

C
dt1 . . .

Z

C
dt0n⇤�1...� 0n(t1, . . . , t

0
n) c

†
0�1
(t1) . . . c0� 0n(t

0
n)
�����

⇤�1...� 0n(t1, . . . , t
0
n) =

(�i)n�1

n!2
X

i1,...,jn

t0i1(t1) · · · tjn0(t0n) G
(0),c
i1�1,...,jn� 0n(t1, . . . , t

0
n)
�����

d!1
�����

⇤�1...� 0n(t1, . . . , t
0
n)/

X

i1,...,jn| {z }
/d2n

t0i1(t1) . . . tjn0(t0n)| {z }
/(
p
d)�2n

G(0),c(i1�1),...,(jn� 0n)(t1, . . . , t
0
n)| {z }

/(
p
d)�2(2n�1)

/ 1
dn�1

cavity!Green!func7on!
(site!i=0!removed)!



�  Action for the cavity site i=0: 
 
 
 
 
 
 
 
 

�  Hybridization function: 
 
 
 
 

�  Self-consistency for NN hopping on the Bethe lattice  

The DMFT action 

⇤� (t, t0) =
X

i,j
t0i(t)G(0),cij� (t, t

0)tj0(t0)
�����

tij =
vp
Z

�����

⇤� (t, t0) = v(t)G� (t, t0)v(t0)
�����

Seff = �i
Z

C

dt

U(t)n"(t)n#(t)� µ

X

�
n� (t)

�

� i
Z

C

dt1
Z

C

dt2
X

�
⇤� (t1, t2)c†� (t1)c� (t2)



�  Lattice and impurity Green function: 

�  Lattice and impurity self-energies: 
 

�  For DMFT action:                                                local self-energy! 

�  Self-consistency conditions: lattice and impurity Dyson equation 

 

 

Local self-energy and self-consistency 

(G�1
lat )ij(t, t

0) = [�ij(i@t + µ)� tij(t)]�C(t, t0)� (⌃lat)ij(t, t0)
�����

G�1(t, t0) = (i@t + µ)�C(t, t0)�⇤(t, t0)� ⌃(t, t0)
�����

(⌃lat)ij(t, t0) = �ij⌃(t, t0)
�����

Gij(t, t0) = �ihhhci (t)c
†
j (t

0)iiiS
����� G(t, t0) = G00(t, t0)

�����

Z

C
dt1 [(i@t + µ)�C(t, t1)�⇤(t, t1)� ⌃(t, t1)]G(t1, t0) = �C(t, t0)

�����

Z

C
dt1

X

l

h
[�il(i@t + µ)� til(t)]�C(t, t1)� ⌃(t, t1)

i
Glj(t1, t0) = �ij�C(t, t0)

�����



�  DMFT iteration: 
 

�  start from a hybridization function 
 

�  obtain impurity Green function  
 

�  obtain self-energy      from impurity Dyson equation 
 

�  obtain new local Green function              from lattice Dyson eq. 
 

�  obtain new hybridization function  

 
 

�  Must solve Volterra-type integro-differential eqs. 

�  Can be implemented as time-propagation scheme 

Solution of DMFT equations by iteration 

G(t, t0) = �ihhhc(t)c†(t0)iii
�����

⌃
�����

⇤
�����

G(t, t0)
�����

⇤
�����

see 
RMP 2014 

& 
references 



Real-time impurity solvers 

�  Many-body perturbation theory 
 

�  Weak-coupling perturbation theory 
 
[ sample code available as Supp.Mat. for RMP 86, 779 (2014) ] 

�  Strong-coupling perturbation theory 
 
 

�  Continuous-time Quantum Monte Carlo 
 
 

�  Hamiltonian-based methods / exact diagonalization 
 
 

�  Falicov-Kimball model 

see Lecture Notes for references 



4. 
Interaction quench in the Hubbard model 

H =
X

ij�
tij c

†
i�cj�

| {z }
=
X

k�
✏k c

†
k�ck�

+ U(t)
X

i
ni"""ni###



Strong-coupling regime: 
collaps-and-revival oscillations 



Interaction quench in the Hubbard model

Hubbard model in DMFT: (bandwidth = 4, density n = 1)
Eckstein, Kollar, Werner PRL ’09, PRB ’10

Large interaction quench from to U = 5

〈〈〈c†
kσ c

kσ〉〉〉t

 0

 0.5

 1

n(ε,t)

0.5 1 1.5 2 2.5 3

-2
-1

0
1

2
ε

t

n(ε,t)

momentum k

time

Collapse-and-revival oscillations

due to vicinity of atomic limit (U =∞)

Hubbard interaction quench: Collapse & revival 

!!!!!!!!!!!!!!!!!!!!!!!!!!

Eckstein et al., PRL '09, PRB '10 [CT-QMC] 



Weak-coupling regime: 
metastable prethermalized state 



Interaction quench in the Hubbard model

Hubbard model in DMFT: (bandwidth = 4, density n = 1)
Eckstein, Kollar, Werner PRL ’09, PRB ’10

Small interaction quench from to U = 2
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Hubbard interaction quench from 0 to U 
Eckstein, Kollar, Werner, PRL ’09, PRB ’10 
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Prethermalization regime 

�  Weak interactions: 

 
 

�  Unitary pert. theory: trafo, evolve, backtrafo 
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�  Prethermalization less pronounced in low dimensions 

 
            d = 1, U from 0 to 1                          d = 2, U from 0 to 2  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Prethermalization in one and two dimensions 
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See also short-time expansion by Hamerla & Uhrig PRB '13, NJP '13 



�  Prethermalization less pronounced in low dimensions 
 
 
             d = 1 and d = 2                d = 2 
       
 

 
               perturbative correction 
              does not reach a plateau 

                     
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Prethermalization in one and two dimensions 

short-time expansion, Hamerla and Uhrig, PRB '14 
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points in momentum space have to be evaluated we have to
restrict ourselves to n = 6 commutations. Thus the data in
Fig. 1 are not of the highest accuracy for the longer time, but
they render an excellent overview. All other figures present
data for n = 9 commutations.

For the relatively large value U = 2W , the momentum
distribution in Fig. 1 shows oscillations over the whole
Brillouin zone. At the instants at which the jump vanishes, see
panel t = 1.7/W , the distribution is featureless and almost
constant, indicating a state which is essentially local in real
space. But afterwards, the jump reoccurs and the momentum
distribution resembles the initial one qualitatively. Thus the
total behavior follows a collapse-and-revival scenario.

The results in Fig. 1 suggest that it would be very
fascinating to observe such a behavior in fermionic systems
experimentally. Note that collapse-and-revival was observed
experimentally after the interaction quench in a bosonic system
[1]. But there is an essential qualitative difference between the
fermionic and the bosonic collapse-and-revival. As seen in
Fig. 1, the fermionic one is characterized by the disappearance
and reappearance of the Fermi surface, i.e., a one-dimensional
singularity in the two-dimensional Brillouin zone. In contrast,
the bosonic collapse-and-revival is related to the disappearance
and reappearance of a zero-dimensional singularity, namely of
a δ function in the bosonic momentum distribution at the center
(" point) of the Brillouin zone.

We find that the jump #nkF
(t) behaves very similarly

at all points of the Fermi surface. No significant difference
between the jumps at the corners of the Fermi surface, i.e.,
at k = (±π,0) and (0, ± π ), and those at the middle of the
edges, i.e., at k = (±π/2, ± π/2), appears up to the time
scales investigated. This is illustrated in Fig. 2 for the jump
#n(t) at the given momenta on the Fermi surface. Note that the
difference between curves for different momenta first increases
on increasing U before decreasing again for larger U . In any
case, it remains small even for U = 0.5W up to the time scales
investigated. In the remainder, we will only show results for
k = (π,0) for simplicity if not stated otherwise.
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FIG. 2. (Color online) Jump #n(t) calculated at two positions on
the Fermi surface for various interaction strengths U . The curves for
U = 1.0W change their style for larger times; at that point we no
longer consider them fully reliable.

B. Comparison to the behavior in 1D

In Fig. 3 we compare the quench dynamics in 1D and
in 2D at half-filling for various values of U . Our findings
provide evidence that in 2D the same dynamical transition
exists between quenches to weak and to strong interactions
that was observed previously in ∞D [21], by the Gutzwiller
approach [22], and in 1D [31]. For quenches to stronger
interactions (U ! 0.7W ), one observes dominant oscillations
which decay slowly. At half-filling, these oscillations display
zeros in the jump #n as in the previous cases [21,22,31]. Away
from half-filling, the minima still exist, but they are no longer
at #n = 0 (not shown).

For quenches to weak and moderate interactions we observe
a decay of #n with only hardly visible oscillations, cf. the
curves for U < 0.7W . These oscillations can be attributed to
the finite bandwidth W , i.e., the frequency of oscillations is the
bandwidth W . This explanation is supported by the fact that the
oscillations are stronger in 1D than in 2D because the Van Hove
singularities in 1D (inverse square roots, ∝ #ω−1/2) [9,18,31]
are much more pronounced than in 2D (jumps, ∝ #ω0). This
argument is in line with the observations that no oscillations
are observed in the infinite-dimensional calculations based on
the Bethe lattice with the infinite branching ratio displaying
even less pronounced singularities (square roots, ∝ #ω1/2)
[21].

Another remarkable contrast to the 1D curves consists in the
much faster decay of the jump in 2D. This feature is striking
in the curves in Fig. 3 which all start with the same curvature
−U 2/2 determined by U alone. We interpret this important
qualitative difference by the fact that the decay of the jump in
1D is governed by slowly decreasing power laws [4,5,18,32].
The 2D characteristics appear different: The 2D system allows
for sufficiently effective scattering mechanisms so one may
expect to observe first signs of true relaxation governed by
exponential decay #n(t) ∝ exp(−at) with a relaxation rate
a > 0 for longer times. We will come back to this point below.
For intermediate values of U ≈ 0.7W we find a particularly
fast decaying jump, indicating efficient relaxation indeed, cf.
Fig. 3.
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FIG. 3. (Color online) Comparison of the time dependence of the
jump #n(t) for various U in half-filled Hubbard models: Solid lines
show the 2D, and the dashed lines of the corresponding grayscale
(color) show the 1D data.
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FIG. 6. (Color online) Leading perturbative correction fkF
(t) as

it appears in (4) and is defined in (5) evaluated in 2D for the half-
filled Hubbard model at two different momenta on the Fermi surface.
Logarithmic fits are included.

half-filling. But we attribute this nonexistence to the perfectly
flat stretches of the Fermi surface linking the four points
(±π,0) and (0, ± π ). In the vicinity of these flat regions
only the perpendicular momentum transfer matters while the
parallel one can be integrated over yielding just a certain
prefactor. As a result, the relevant, perpendicular scattering
processes behave as if they were acting in 1D. If this hypothesis
turns out to be true, any system doped away from half-filling
should show prethermalization because the Fermi surface will
be curved. But the time scales on which the effect of doping
becomes visible are presumably very long for low doping.
Thus the interaction values U at which plateaus become
discernible will be fairly low. Further work is called for to
elucidate this issue.

E. Weak quenches and their decay

We have argued that due to the divergence of fkF
(t) for t →

∞ the jump in (4) does not display a prethermalization plateau
[26,33]. A second corollary is that the strict perturbative result
becomes unphysical, namely negative, see, e.g., the dotted
curve in Fig. 7. This happens even for arbitrarily small U if
t is chosen to be sufficiently large. We have to reconcile this
behavior with the physical fact "nkF

! 0 because otherwise
there is no way to estimate the relaxation. Based on the analogy
to the 1D case [4,5,18,32], we propose the hypothesis that
the logarithmic divergence is the signature of a power-law
behavior if there were no relaxation. In other words, only the
deviation from the power-law behavior can be taken as sign of
relaxation.

In order to use this hypothesis we pass from the logarith-
mically diverging (4) to the power-law behavior

"nkF ,exp(t) = exp ( − U 2fkF
(t)) + O(U 4), (6)

where we omit the corrections O(U 4). This result only uses
the leading perturbative result, but extrapolates it as a power
law. Indeed, a comparison to a diagrammatic analysis based
on dynamic cluster theory [35] shows that weak quenches
follow the prediction exp ( − U 2fkF

(t)). For illustration, the
dashed-dotted curve in Fig. 7 shows the result from (6) for
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FIG. 7. (Color online) Fits (dashed lines) to the jump "n(t) from
the EOM (solid lines) for quenches to weak interactions, fits based on
Eq. (7). Exemplarily for U = 0.5W , the dotted line shows "nkF ,2nd(t)
from Eq. (4) and the dashed-dotted line "nkF ,exp(t) from Eq. (6).

the case U = 0.5W . Note that the solid curves display the full
result which can be taken to be exact up to the times shown.

The perturbative result "nkF ,exp(t) in Eq. (6) serves as our
reference in the following ansatz:

"nweak(t) = "nkF ,exp(t) exp{−[(at)4 + b4]−1/4 + b}. (7)

The last factor is again chosen such that it is compatible with
all known properties of "n(t). It starts smoothly; all quadratic
dependence in U is contained in the first factor "nkF ,exp(t) in
all orders in t , and the quadratic behavior in t is also fully
described by "nkF ,exp(t) because the U 2 term is sufficient to
describe the short-time behavior. This can be concluded from
the EOM used here and it was previously concluded based
on other techniques [33]. Thus, the minimal relaxation factor
exp{−[(at)4 + b4]1/4 + b} is chosen such that it does not alter
the exactly known t2 term. Together with the fact that only
even powers in time and in U can occur leads to the use of the
unusual exponent of 1/4.

Based on (7) we fit the EOM data and determine a and b
in this way. The results are shown in Fig. 5 for smaller values
of U , i.e., on the left side of the dashed vertical lines. We are
aware that the decay rate a and the crossover time b/a ensuing
from this analysis are only estimates in view of the hypothesis
necessary to analyze the data. The decay rate a increases only
weakly for increasing U ; our data are consistent with a ∝ U 4

as it is built into the fit function (7). The U 2 dependence is
taken into account by the factor "nkF ,exp(t).

Our analysis is not unbiased but relies on certain as-
sumptions. We emphasize that this is also the case in many
other approaches on relaxation which rely on a probabilistic
description which has relaxation built in, see, for instance,
Refs. [36,37].

Except for a fairly narrow window between U ≈ 0.65W
and 0.7W , the EOM data allow us to decide whether a
strong quench with oscillatory behavior [Eq. (3)] occurs or
whether a weak quench displaying only some shoulders or
wiggles occurs [Eq. (7)]. The existence of these two qualitative
different regimes, separated by a dynamic transition, is
obvious. This 2D result is in line with previous observations
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Intermediate-coupling regime: 
fast thermalization 



Interaction quench in the Hubbard model

Hubbard model in DMFT: (bandwidth = 4, density n = 1)
Eckstein, Kollar, Werner PRL ’09, PRB ’10

Intermediate interaction quench from to U = 3.3
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Uc
dyn~3.4 well-captured by time-dependent Gutzwiller approximation: Schiro & Fabrizio PRL 2010 
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Summary and Outlook 



Summary and Outlook 

�  Thermalization of correlated systems in nonequilibrium 

�  Eigenstate thermalization hypothesis: 
 
 Thermalization is due to energy eigenstates that 
 contribute only according to their energy  

 

�  Thermalization does not occur in integrable systems 
 

�  Nonequilibrium dynamical mean-field theory 
 

�  Controlled approximation for nonequilibrium problems 

�  Many applications: 
 quenches, pulses, periodic driving, ... 
 cluster extensions, ... 
 magnetic phases; phonons; bosons; ... 


