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What can modern QMC algorithms do? ~ WYMIH

Local updates (before 1994)
— 200 spins
— T/J=0.1

Cluster algorithms (after 1995)
— 2D quantum phase transition: 20°000 spins at T/J=0.005
— 2D square lattice: 1°000°000 spins at T/J=0.2

Extended ensemble methods (quantum Wang-Landau, parallel tempering)
— Allow efficient simulations at 1st order (quantum) phase transitions
— Determination of the free energy of a quantum system

These algorithms allow
— Accurate simulation of phase transitions in quantum systems
— Quantitative modeling of many quantum magnets and bosonic systems



Example: quantum phase transition R““Ulml

- Bilayer antiferromagnet

H-= JE ES S+ ES

p=1<i,j>
J << J,: spin gap, no long range order J>>J, :long range order
,.mmml vl 4
" iy “l'l;'! II 8y "l.ll"u--"l
Auuuuuuuu] o |\ 171 L
A28\ 1 'mr-r

Quantum phase transition at J, | J = 2.522(2)
Spin gap vanishes
Magnetic order vanishes
Universal properties



Example: critical exponents

2D quantum phase transition in a quantum Heisenberg antiferromagnet

«  Simulations of 20 000 spins at low temperatures | g ?Siin:;ifiigsn
Troyer, Imada and Ueda (1997) :

0.1 i
Model B v n Z 5 B =0.345 + 0.021 :
QMC results 0345+ 0685+ 0015+ 1018+ i
no assumption 0.025 0.035 0.020 0.02

3D classical 03689+ 0.7112+ 0.0375 +
Heisenberg 0.0003  0.0005 0.0005

Mean field 1/2 1 0

zv =0.695 = 0.032

0.01
0.01 & =(J/J)-((0yd), O-1

« Wang, Beach Sandvik (2006): refined data analysis: ¥=0.7106(9)
 More recent simulations with up to 1 million spins (Wessel et al., 2011).
 Consistent with classical 3D Heisenberg model exponents

 (Can do quantum simulations with the same accuracy as classical




Review: classical Monte Carlo simulations RWTH

« Want to calculate a thermal average
= EAce-/”Ec /Z with Z:Ee-ﬁ

 Exponentially large number of configurations
=> draw a representative statistical sample by importance sampling

_pE,
— Pick M configurations ¢, with probability P =¢ /4

. s . 1 M
— Calculate statistical average (4)~A = ﬁz
=1

— Within a statistical error Ad = \/(1+2TA>

-pE., :
e Problem: we cannot calculate 7. =¢ " “/Z since we do not know Z



Review: Markov chains and Metropolis RWTH

 Metropolis algorithm builds a Markov chain

C,—>C,—>..—>C,—>C, —..

» Transition probabilities W, for transition x — y need to fulfil
— Ergodicity: any configuration reachable from any other

Vx,ydn : (W”) =0

X,y

— Detalled balance:
%% D,

X,y

W D,

yXx

« Simple algorithm due to Metropolis et al (1953): W, =min[Lp,/p,]

~B(E,~E,)

« Needs only relative probabilities (energy differences) »./p.=e¢



RWTHAACHEN

Metropolis Algorithm: 60™ birthday UNIVERSITY

e (General formulation of the method
* Application: 2D hard-spheres

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicnoras METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,
Los Alamos Scientific Laboraltory, Los Alamos, New Mexico

AND

EpwARD TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION II. THE GENERAL METHOD FOR AN ARBITRARY

POTENTIAL BETWEEN THE PARTICLES

HE purpose of this paper is to describe a general

method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number N may be as high as
several hundred. Our system consists of a squaref con-

AT




Single spin-flip Metropolis algorithm RWTHAACHEN

* Here is the algorithm: /\ n
— Start with a random configuration ¢ } i (I e |
— Repeat the following many times: " AE=-4J *

« Randomly pick a spin E=3J-J=2J E'=J-3J=-2J

* Propose to flip that single spin, leading to a new configurations ¢’
« Calculate the energy difference AE=E[c']-E[c]
« |f AE<Q, the next configuration is ¢'

If AE>Q, accept ¢' with a probability exp(-BAE), otherwise keep ¢
» Measure all quantities of interest

 This algorithm is ergodic
« |t fulfills detailed balance

 Before taking measurements, need to equilibrate (thermalization)



Quantum Monte Carlo

Not as “easy” as classical Monte Carlo

Z=Tre =™

C
Calculating the energy eigenvalue E. is equivalent to solving the problem

Employ a mapping of the quantum partition function
to an effective classical statistics problem =
Z="Tre"™ = E D.
C

Different approaches
— World-lines via Trotter-Suzuki formula
— Path integrals (time-dependent perturbation theory in imaginary time)
— Stochastic Series Expansion (high temperature expansion)

Sign problem if some p_. < O (thus try to avoid this)

Then, need efficient updates for the effective classical problem

RWTHA



Hamiltonian of spin-1/2 models

« Example: two sites
— Anisotropic exchange interactions J,,, J,
— Magnetic field h
Hoyy =J,(SIS3 +S87S) +J.S:8% - hl(S7 +57)

ny +QO- - QO+ zQz z z
(/S +S7SHY+J.S:8: - h(S7 +57)

— Heisenberg model: J,, =J, =J

Lo /. +h 0 0 0
H =SS, -h(S; +5;) 4 L
0 -5 7@ 0
. o . H oz = J J
e Hamiltonian matrix in 2-site basis 0 7*—” — 42 0
|
TR RS o 0 0 Lo



. RWTHAACHEN
The world-line approach UNIVERSITY

 Representation based on mapping a quantum spin-1/2 system
onto a classical Ising-like model

1454
Progress of Theoretical Physics, Vol. 56, No. 5, November 1976

Relationship between d-Dimensional Quantal Spin
Systems and (d+1)-Dimensional Ising Systems

——Equivalence, Critical Exponents and Systematic Approximants
of the Partition Function and Spin Correlations

Masuo SUZUKI

Department of Physics, University of Tokyo, Tokyo 113

(Received May 29, 1976)

The partition function of a quantal spin system is expressed by that of the Ising model,
on the basis of the generalized Trotter formula. Thereby the ground state of the d-dimensional
lsing model with a transverse field is proven to be equivalent to the (d+1)-dimensional
Ising model at finite temperatures. A general relationship is established between the two
partition functions of a general quantal spin system and the corresponding Ising model with
many-spin interactions, which yields some rigorous results on quantum systems. Some

applications are given.




The Trotter-Suzuki decomposition RWTH

 (Generic mapping of a quantum spin system onto a classical model
« Split Hamiltonian into two easily diagonalizable pieces

H=H1 +H2 H O_I-I_(?.C).I_-I(_Z)_O_I-L(s_)_o_l-_l(i).o
2 —
—eH —€(Hy+H —¢H, ,~¢H -

e M =gt M*H) = g™Mig™2 L O(e) o0 o-0 o
+

H,o o0---0 o0---0

 QObtain a decomposition of the partition function

Z=Tre ™ =Tre ") 2 lim Tr[(e ¥ MY (At =B/ M)

~AtH, A, \M 2
=Tr[(e™"e ") |+ O(AT")
- Insert sets of complete basis states between operators

— b —ATHI hd * —ATHZ * oo o * —ATHI
= <11 ‘e Lym ><le ‘e le-1> <13 ‘e

A

. . -At,
i, )i, |e

i)



Example: Spin-1/2 Heisenberg model RNUINI I“I}\é%‘w

Quantum problem in d dimensions maps onto a classical problem in d+1
- Expand the states |i,) in the S? eigenbasis
- Effective Ising-model in d+1 dimensions with 2- and 4-sites interaction terms

_ . -Ad| | - . -AtH, . . -At, | -
Z = 2<ll ‘e 12M><12M ‘e 12><12 ‘e ll>

il 9 ..,izM

—AtH,

le-1> e <l3 ‘e

- Each of the Al

liogm > — P SPINS

matrix elements

liog-1> = = down spins

. ~At, , | .
<lj+1 € lj> - application of
—ATH
corresponds to a o e
Q
row of shaded £
>
plaquettes and | s
. -%, liz >
contribution to Z @
E| iy

equals the product

space direction
over those plaguettes P



R\NTI'I

The weights for the Heisenberg model ~

The partition function becomes a sum of products of plaquette weights

Conservation of magnetization on each bond
The only allowed plaquette-configurations are:

s |

w(C,) e AT/ e cosh(A/ /2) |e*”"* sinh(-AJ /2)
I

Ferromagnetic (J<0)
— All weights are positive

Antiferromagnetic on a bipartite lattice
— trace requires an even number of spin-flip terms, so that overall sign vanish, and can be ignored

r'd
Frustrated antiferromagnet: T (
— we have a sign problem (see later) /

I—1



World-lines R\l\liljm‘ll\é\lgls-llw

« Each valid configuration is represented by continuous world-lines

liq>
ligm = — Up SpPIiNs

= = down spins

application of

liom-1>

©

Q

£

Py lig >

(3]

5| f2> ()= [] wc,)
g liq> plaquettes p

space direction

»  Sampling over all (important) world-line configurations
— According to the above weight
— Try to generate a new configurations from a given one



RWTHAACHEN
Local updates UNIVERSITY

* Move the world-lines locally using Metropolis
Acceptance probabilities given by the resulting plaquette weights

« Example moves:
— Insert or remove two “kinks”’

-
o

— Shift a single “kink”

§H




Beyond local updates

* Problems with local updates:
— Restricted to canonical ensemble

— No change of magnetization (particle number), winding number

— Critical slowing down near phase transitions

* Solution for classical Monte Carlo: cluster algorithms
— R. H. Swendsen and J. S. Wang PRL (1987)
— U. Wolff, PRL (1989)

 Try the same for the quantum case
— Loop algorithm by H.G. Evertz, G. Lana and M. Marcu, PRL (1993)
— Worm algorithm, operator loops, directed loops, ...

RWTHA/



Cluster-updates in classical Monte Carlo RWTHAACHEN

* Ask for each spin: “do we want to flip it against a neighbor?”’
— antiparallel: yes

— parallel: costs energy
e Acceptwith P =exp(-24J])
« Otherwise: also flip neighborl P =1-exp(=24J)
 Repeat for all flipped spins => cluster updates

t{#t
et —
1 |

» No more severe critical slowing down!




Cluster algorithms: Formal description R\I\I11-I"*:‘ ;‘ HEN

Extend the phase space (Kandel-Domany framework)

— From configurations C to configurations + graphs (C,G) Ising model.

C: spins

Z=YIW(C)= Y YW(C,G)with W(C)= Y W(C.6) G: clusters

Choose graph weights independent of configuration
1 graph G allowed for C

W(C,G)=A(C,G)V(G) where A(C,G) = ,
O otherwise

2. Discard c‘ionfiguration 4. Discard graph
Perform updates cC, = (€. — G = (C,,,.G) 4, C,.,

. V&) : , :
1.Pickagraph G “1¢1=w o 3. Pick any allowed new configuration

Detailed balance is then assured



Cluster algorithms: The Ising model T I

. We need to find A(C,G) and V(G) that fulfill W (€)= EW(C G) = EA(C GV (G)
— Do this on the local (bond) level

A(C,G) 0-0 (o Je) W(C)
T 1 1 e+t
RTRA 0 1 e
V(G) etbl _e=hl e
»  This means for: ¢ = (.6 =G TP
L : e’ —e
— Parallel spins: pick connected graph o0-o0 with P(o-0 )= —

— Antiparallel spins: always pick open graph o o
* And for: G — (C,,6) = C,

— Configuration must be allowed = connected spins must be parallel
=> connected spins flipped as one cluster

i+1°



The loop algorithm

RWTHAACH

* Classical Swendsen-Wang cluster algorithm for the Ising model
— two choices on each bond: connected or disconnected

()

— all connected spins are flipped together

O O

* Loop algorithm is a generalization to quantum systems
— world lines must not be broken
— always 2 or 4 spins on a plaquette must be flipped together

—

—>

E i

]

N~

— four different connection types (local graphs)

1 =

X



- L AACHEN
Local graphs - Heisenberg limit RWFIH
H yeionpors = z S-S, W(C) = SW(C.6) = SACGV(G)
I, G G
A(C,G) I:I D W(C)

¥ 1 1 1+ (J/4) At

— 1 0 1-(J/4) At

\ 0 1 (J/2) At

V(G) 1-(J/4) At (J2) At

» Here, we give the expression in the small Az/J limit, relevant for later discussion
» Connected spins form a cluster and have to be flipped together



Global loop update

RWTHAACHEN
UNIVERSITY

Example of a single loop flip
1. Choose breakups on each plaquette

2. Pick a loop

+ 3. Flip spins along this loop
Time

Space




Easy plane antiferromagnet R"ﬂ“

Y
m B ‘
& 22 L |

J
Hypy =22 Y (S7S7+ 5780 +J. ) S°8°
2<E> o <E> : W(C)= Y W(C.G)= Y AC.GV(G)
G G

with 0= J, sty

A(C,G) I:I D X W(C)

1 1 0 1+ (J./4) At
1 0 0 1-(J./4) At
0 1 1 (J,,/2) At

V(G) 1-(J /4)Ar (J./2) At (J,,-J)/2 At

xy Yz

 Connected spins form a cluster and have to be flipped together



Ising-like ferromagnet

sz Ll -t ZQZ
H,, =_7<E>(S,. S+, SJ.)—JZ<E>SiSj
i,j i,j

with Os]xy <J,

W(C) = EW(C,G) - EA(C,G)V(G)

A(C.G) I:I X m W(C)
1 0 0 1- (J./4) At
1 1 1 1+ (J/4) At
| 0 1 0 (J,,/2) At
VG) | 1-U/dAe | (o 2) 00 | (JA)2 A

* Now 4-spin freezing graph is needed for J_, = J.

— Connects (freezes) loops



The Ising limit

7Q2 J
HIsing = _J<E>Si Sj = _Z<E>q0j
i,j i,j

W(C) = EW(C,G) - EA(C,G)V(G)

A(C.G) W(C)
I1:I g 1- (J/4) At
: ; 1 1 1+ (J/4) At
; 0 0 0
| V(G‘) -4 A | (JI2) At

(A= B/ M)

 Two spins are frozen, if there is any freezing graph along the world line
We recover the Swendsen Wang algorithm: probability for no freezing

P

no freezing

= lim(1-(8/M)J 12)" = exp(-p1 12) = exp(-2f yusict)



The continuous time limit UMMERIW

« Systematic error due to finite value of At (“Trotter error”)
— Need to perform an extrapolation to At — 0 from simulations with different

values of At (or Trotter number M) (At =B/ M)

 The limit At — 0 can be taken in the construction of the algorithm!
(Prokof'ev , Svistunov, Tupitsyn, 1996; Beard, Wiese, 1996()J

B B
— Number of changes A A

NMA_‘E]H
2 2

stays finite as
At —0

imaginary time
imaginary time

0

space direction space direction

« Different computational approach:
— Discrete time:  store configuration at all time steps
— Continuous time: store times at which configuration changes (kinks)



Local updates in continuous time

o Shift a kink

* Insert or remove two kinks (kink-antikink pair creation process)

P=1 P=(AtJ/2)>—0
~ Vanishing acceptance rate: P = min[l,(A7 J/2)’]— 0
— Solution: Integrate over all possible insertion within a finite time window
AA 2 72
P, =ff(J/2)2a’r2a’7:1 LAY

07

=0




Cluster updates in the continuum limit /¥ .

» How do we deal with the vanishing Az terms in clor}tinuogs time?

* First example: the exchange process I I
[
— Possible graph connections: D X
— Graph weights: = Lo e
P gnts. 2 2
— Probability to pick graph: J, Jo =Y,
(divide weight by sum) T, J,

* The infinitesimal At terms cancel out

— Randomly pick one of the graphs (with appropriate probabilities) for each
exchange process (kink)



Cluster updates in the continuum limi

* How do we deal with the vanishing Az terms in continuous time?

A

vy

« Second example: the “decay” process

"
v

A

\ 4

— Possible graph connections: I:I D

J, J
— Graph weights: -7 A7 AT
— Probability to pick graph: J Jo g
(divide weight by sum) -—Ar 2 7

 The infinitesimal Az terms remain
— How can we deal with them?
— Infinitesimal acceptance rate at infinitely many time steps?



Cluster updates in the continuum limit T EEEEE

L ) L ‘

« How do we deal with the vanishing A7 terms in continuous time?

I:I I—LAT
2
O Ia
. 2

* Solution: reinterpret the:_j graph as a ‘““decay process”

with a decay constant J_/2

— Graph is] ] except at certain “decay times™ determined like in
the radioactive decay by

an exponential distribution

using ) : / D

T= —J—ln(l —7) with
) r&[0,1]

* Probabllities:




Loop updates in continuum time

RWTHAACHEN
UNIVERSITY

1. Define “breakups” (graphs) for exchange processes

2. Insert “decay” graphs

3. Build and flip one or more loops

"1




Path integral representation

Based on the perturbation expansion of the path integral

Exact quantum Monte Carlo process for the statistics of
discrete systems

N. V. Prokof'ev, B. V. Svistunov, and |. S. Tupitsyn

Kurchatov Institute Russian Science Center, 123182 Moscow, Russia

(Submitted 20 November 1996)
Pis’ma Zh. Eksp. Teor. Fiz. 64, No. 12, 853—858 (25 December 1996)

We propose an exact Monte Carlo approach for the statistics of discrete
quantum systems that does not employ the standard partition of the
imaginary time into a mesh and does not contain small parameters. The
method operates with discrete objects — kinks, describing virtual tran-
sitions at different moments in time. The global statistics of the kinks is
reproduced by exact local procedures, the main one being based on the
known solution for an asymmetric two-level system. © /996 Ameri-
can Institute of Physics. [S0021-3640(96)00824-9]

PACS numbers: 46.10.+2, 0270.Lq, 03.20.+i

Equivalent to continuous time representation

Discrete local objects (kinks, changes in word-line configuration)
Local updates of kinks using Metropolis

Improved update scheme using worm update (Prokofev et al., 1997)




Path integral representation me\/;\é\gg.w

Perturbation expansion:
H=H+V, Hy=YJSS; =N hS;, V=" J7(S'S;+S'S))

i

<i,j> <i,]>

Z =Tr(e™) = Tr(e‘ﬁHOTe_jOﬁ dTV(T)), V(r)=e" Ve ™
p p 72

Z =Tr(e" (1 —fd?:V(r) +fd7:2fdz'1V(7:2)V(7:1) +...))

0 0 0

Each term represented by a world line configuration

T L%,
1



RWTHAACHEN

Stochastic series expansion (SSE)

 Based on a high temperature series expansion of the partition function

PHYSICAL REVIEW B VOLUME 43, NUMBER 7 1 MARCH 1991

Quantum Monte Carlo simulation method for spin systems

Anders W. Sandvik* and Juhani Kurkijarvi
Department of Physics, Abo Akademi, Porthansgatan 3-5, SF-20500 Abo, Finland
(Received 29 June 1990)

A quantum Monte Carlo simulation scheme for spin systems is presented. The method is a gen-
eralization of Handscomb’s method but applicable to any length of the spin, i.e., when the spin
traces cannot be evaluated analytically. The Monte Carlo sampling is extended to the space of spin
vectors in addition to the usual operator-index sequences. An important technical point is that the
index sequences are augmented with the aid of unit operators to a constant, self-consistently deter-
mined length. The scheme is applied to the one-dimensional antiferromagnetic spin-S Heisenberg
model. Results at low temperatures are reported for S=1 and S = 1 and system sizes up to N=64.
The computed magnetic structure factor in the S=1 chain is in agreement with earlier ground-state
calculations. For § =§ we find the exponent ¥ =0.491+0.04 for the divergence of the antiferromag-
netic structure factor. Further, the susceptibility as a function of the wave number is computed.
For S=1 the staggered susceptibility y(#) at T7=0 is found to take the value 20.0+ 1.5 in units such
that y(¢)— T " at high temperatures (with the temperature scale defined by ks =1). For § =3 we
obtain the exponent ¥ = 1.45+0.05 for the divergence of the staggered susceptibility.

* Original formulation based on local updates using Metropolis
 Cluster updates using the operator loop update (Sandvik 1999)
 Improved updates using directed loops

(Syljuasen and Sandvik 2002; Alet, Wessel, Troyer 2005)



Hamiltonian decomposition UNNERIW

 Break up the Hamiltonian into offdiagonal and diagonal bond terms
H=YNH’

« Example: Heisenberg antiferromagnet

J
Hyyy =— (S S +35; S )"‘J S S h S| convert site terms

2 .
into bond terms
J \
- 28T +SS)+J§S SZ--% 87 +S7)

QHO J) <ZH(Z 7 4/sp|itinto diagonal and
offdiagonal bond terms

with  H = (S ST +S8787)

HY =755 "5 4s)

(i,)) z™
J ]Z



High temperature series expansion Wi

« Expansion in inverse temperature

Z =Tr(e™) = i P ' Tr(-H")
n=0 -

o n
"2 g & L

 Using the bond Hamiltonians
d 0
H, EH{H iy <z',j>}
L,]



Ensuring positive weights

» SSE expansion:

_\ g

i 20%(192@) ! <
2 ), (Bye.ab, )
a) (bob,)

 Negative matrix elements are the bond weights

— Need to make all matrix elements non-positive

— Diagonal matrix elements: subtract an energy shift
 Does not change the physics

(i,]) g

h
HS, =JSS" —Z(Sf +85)-C

RWTHA/

CZJ—

+|h



Positivity of off-diagonal bond weights RWIN

Energy shift will not help with off-diagonal matrix elements

HO

ny + O- - QO+
i = (S +57S))

Ferromagnet (/,, < 0)
— no problem on any lattice(!)

Antiferromagnet on a bipartite lattice

— no problem as well: need an EVEN number of exchange terms to recover
starting state: sign of allowed configurations is positive!

Frustrated antiferromagnet:
— we have a sign problem, similar to the world-line approach!



Fixed length operator strings RWTHAACHE

« SSE sampling requires variable length » operator strings

7 _ Eﬁ E 041_[< H,)ea) H, EU{ (i) Oz',n}

" a) (byby)

 Extend operator string to fixed length A by adding extra unit operators:
Hj, =-1 n.number of non-unit operators

Z= EE E (A n)/)) ‘H( H )‘ H E{Hd}UU{ (i,))? (OJ)}

n=0|a) (by w...by )

* Ensure A large enough dliring thermalization

— Such that €.g. Minax < EA oax = <7l> X /))V



The SSE configuration space R\IIUINI féﬂjw

« Each SSE configuration is given by a initial state and a fixed length
operator string

33

 Example for a four site problem: confiquration index  operator

A=> o)~ ls) C

=4 |x(4)) (1.2)

"= 4 5.4
<o) 3 1

a)=[ 411 4) o s
0 @ 1 d

SA - (H(ci@)’ (3,4)° 1 9H(3 4y (1 2)) |(0)) Sy

1 2 3 4

* Now we need efficient update schemes



Measurements in SSE

* Some observables are very simple:

— Energy: Pl <H> _ —l<n> configuration index
- al0) =)
— Specific Heat: |al4) °
Co=(w)=(n) =(n) 1) :
— Uniform Susceptibility: :“212)» 2
“ 1

x- /3<<a2 5 a>2> 0

* Some look a bit more involved:
— Equal time diagonal correlations:

1 n
<D1Dz>=<m;dz[p]dl[p]>, where d,[p]=(a(p)|D,|a(p))

— Imaginary time depended diagonal correlations:

Ap

<D1(77)D2 (O)> = <A§O(Anp)(/§) (1 _%) Clz(Ap)>9 C,(Ap) = ﬁ

operator

H1 9
H 3.4
1
H 3.4

H1 2

i d\[p+Apld, [ p]
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Comparing path integrals and SSE

. W%rld lines in path integrals

A

Imaginary time

space direction

» Advantage
— Diagonal terms treated exactly

» Disadvantage
— Continuous imaginary time

 World Iip\es in SSE

-

integer index

1
space direction
» Disadvantage
— Perturbation also in diagonal terms

* Advantage
— Integer index instead of time



Diagonal updates FOR A Y

» Recall the weight of a configuration:

33 Jern e

« Walk through operator string
— Propose to insert diagonal operators instead of unit operators

/o’Nons<a\ )

— Propose to remove diagonal operators

P[H(‘f, adb mir{l N A< ’T +1 >) configuration  index ~ operator
il X 0 HY
«  Changes the expansion order -> 4 F .4
» Does not touch the off-diagonal operators -> 3 01
nor the state vector - 2 Hpy
=) 1 HY,

1 2 3 4



Offdiagonal updates FONTHAAGHEN

 Local changes using Metropolis
‘ H

— Critical slowing down
— No change of magnetization, particle number, winding number

* Problems

e Solutions:

— Loop algorithm
—  Operator loop algorithm
— Directed loop algorithm



The SSE vertex list

* Consider only the non-unity operators
 Each defines a vertex with 4 legs
* All together form a quadruplely-linked list (vertex-list)

— Contains the full configuration information
— Conveniently represented as a vector data-structure

I 1

o

N

 Updates performed using this data structure



Loop update in SSE

» Select breakups for each vertex similar to loop algorithm
« Example: XXZ easy-plane antiferromagnet:

JxZ + — - + z z
2(51. S;+S, Sj)+JZ<ZS,. S (0sJ,<J,)
2y LJ

Hi =

W(C) = EW(C,G) - EA(C,G)V(G)

ACG) | X W(C)
o 1 0 12
oo Z
ERX 0 0 0
tt 4

ot 1 1 J.J2
t1 1t :
WG) | 12 | (T d)2

« Connected spins form a cluster and have to be flipped together
 For the Heisenberg model, the loop construction becomes deterministic ( [ ])!




Loop updates in SSE FONTHAAGHEN

1. Insert/remove diagonal operators

2. Decide “preakups” at each vertex Similarity to path integrals:

3. Build and flip one or more loops an exact mapping exists




Loop algorithm in a magnetic field me\’}é\%w

* Loop algorithm requires spin inversion symmetry
— Magnetic field implemented by a-posteriori acceptance (flip) rate

» Example: spin dimer at J = h =1

] + ] It
loop —
> > —
Probability I
P = exp(-p/2)
Triplet Singlet
E=J4-h=-3/4 E=-J4=-1/4 E=-3J4 =-3/4

Loop algorithm must go through high energy intermediate state
Exponential slowdown



Worm and operator loop updates R"UINI

* Prokof’ev et al. 1997 (path integrals), Sandvik 1999 (SSE)
* Insert pair of spin rising/lowering operators (world line discontinuities)
— move these operators (worm head/tail) using local moves
— when head and tail meet = have created a loop, update is finished

19

« — Jump ...............................
' ' I detailed balance ... HUFN weevreeeemmneeeennnneeennneeo
at each local move l I
. Y continue until
Insert move head and tail meet
worm worm bounce
head R l

ooooooooooooooooooooooooooooooo

* Worm algorithm performs a guided random walk
—  Change of configuration done in small steps



Operator loop update in SSE ROWTHAACHEN

« Instead of following a pre-chosen path given by graphs we pick randomly
— E.g. using heat bath method

e probability
J
J : VI “straight” J.[4+C
2C+J,,[2+h/z
7 t l J_xy ur ” J /2
Lo t o YR
t l‘ e i1 0 o
I q‘P turn 0
....'-.‘ t t _L_l_ﬁ_'_C ‘ ” _JZ/4+h+C

‘bounce
L 2C+J, [2+hz




Operator loop algorithm in a magnetic field R‘NU“N"\I}@%W

« Example: spin dimer atJ = h =1 o
1. perform diagonal updates H e = I5,55 = h(Sf + Sé]
2. insert “worm”

3. move “worm”
4. annihilate “worm”

Tt Tl
> — > —
— —

Triplet No high energy intermediate state Singlet

E=J4-h=-3/4 Efficient update in presence of a magnetic field  E=-3J/4 =-3/4



Directed loop scheme - idea RWTHA

« Bounces are bad
— since they undo the last change

« |f bounce path can be eliminated = loop algorithm possible
— Loop algorithm as a limit for some models
— Even becomes deterministic for isotropic models

« Bounce path can be minimized
— In models where there is no loop algorithm

 Directed loops scheme
» O.F. Syljuasen and A.W. Sandvik, PRE (2002)
« O.F. Syljuasen, PRE (2003)

— Give worm “head” and “tail”” an operator matrix element

» Minimizes bounces further
» F. Alet, S. Wessel and M. Troyer, PRE (2005)



Directed loop scheme - setup

«  Consider exit leg e, given an incoming leg J at a vertex in configuration c:
— Assign this path a weight W(e fl ) C) _
— The sum over all paths must equal the vertex weight: E w(eli,c) =w(c)

t I w(c) = —J—+ 4 +C
Lt Lt
tl 1 W
w(l|lc) w(2[l,c) w(3|Lc) w(4|1,c¢)

— Choose exit leg e with probability P(e|i,c) =

leading to configuration c,

w(e|i,c)
w(c)
- Consider the reversed path W(i | e,c,) , leading back to ¢

— If w(el|i,c) =w(i|e,c,) isalways fulfilled, then we obtain

Local detailed balance ~ P(e|i,c)w(c) = P(i|e, Ce)W(Ce)



Directed loop scheme - solutions

w(eyw(e,)

w(c,) +w(c,) +w(cs) +w(c,)

Heat-bath solution is always possible: w(e|i,c) =
— However, contains large bounces

Optimize the path weight factors
— eliminate or minimize all bounces | R

— ie.all w(i|i,c) should be zero or small B Y |
Can be done analytically in many cases Y oz |

3

*  Numerically using linear programming SR

«  Obtain large bounce-free regions | ,,ﬂ;f;:;;lfif’iijjjj' 3
h/ (Z y) 1001 L=32 |
: 1 2D Heisenberg
Spin-1/2 XXZ
1/2

ya; ml*:mjj:::
0 1 2 3 Z

1
JJJ

Xy
 Even outside the bounce-free region: reduction of autocorrelation times



Summary: the loop algorithm

 Aqgeneralization of cluster algorithm idea to quantum systems
— Essentially solves problem of critical slowing down

 (Generalizations from spin-1/2 case presented
— Higher spin models
— SU(N) models
— Biquadratic interactions
— Long ranged interactions
— Boson and fermion models (1D)

 Implementation choices
— Discrete or continuous time
— Single / multi loop implementations
— SSE or path integrals

RWTHA/



Summary: worm and directed loops ~ TOWNTH

 Relax loop-building rules
— A partial loop (“worm’) performs a random walk on the space-time lattice
— Detailed balance fulfilled at each step
— Once “head” and “tail” meet a loop is finished

* Relationship to loop algorithms

— Can recover loop algorithm if pre-defined path choices (“breakups™)
possible

— Loop algorithm performs a self-avoiding random walk

 |mplementation choices
— Worm algorithm in path integrals
— Directed loop algorithm in SSE



BUT: Frustrated quantum Magnets Rwlw\"}é\%.w

« \We obtain non-positive weights e.g. for the

antiferromagnetic Heisenberg model on non-bipartite
AN/ 57

lattices:

2T YT

« (Can return to starting configuration with an odd
number of spin exchange terms:

| } v
¢/ 4¢_)¢/\_>' \: >




RWTHAACHEN

The sign problem UNIVERSITY

60



The negative sign problem RWTHAACHEN

* |n mapping of quantum to classical system

Tr{dexp(-BH)] 24P

1

Tr[exp(—/)’H)] B E )2

(4)-

» “Sign problem” if some of the p. < 0
— Cannot interpret p;as probabilities
— Appears in simulation of fermions and frustrated magnets

« “Way out”: Perform simulations using |p;| and measure the sign:

EAP EASgnp‘p‘/E‘p ASzgn "

)= E pi yseplel /el (Sign),

— Sampling accordingto £, = E Pi

l



The negative sign problem RWTHA/

* The average sign becomes very small:

1
<Sz’gn>‘p‘ = - E sgn p.

— Both in system size and inverse temperature
— This is the origin of the sign problem!

zZ _ Y

* The error of the sign:

. . 2
ASign =\/<Slg"2>\p\_<&gn>\p\ ~ ) e

<Sign>‘p‘ \/N<Sign> i \/N<Sign> ) JN

7 P
— Need of the order N = exp(28VAf) measurements for sufficient accuracy

— Similar problem occurs for the observables
— Exponential growth! Impossible to treat large systems or low temperatures




How bad is the sign problem? UNNERIW

« The sign problem is basis-dependent .
— Diagonalize the Hamiltonian matrix ~ H ‘ > =

Ji

(A) = Ti[ Aexp(-pH) |/ Tr[exp(-H) | = E<i‘Ai‘i>exp(—/38i) / Eexp(-/jg,.)

— All weights are positive
— But this is an exponentially hard problem since dim(H)=2N!
— Good news: the sign problem is basis-dependent!

 But: the sign problem is still not solved
— Despite decades of attempts

» Reminiscent of the NP-hard problems like traveling salesman etc.
— No proof that they are exponentially hard
— No polynomial solution either



The sign problem is NP-hard

« See: M. Troyer and U. Wiese, Phys. Rev. Lett. (2005)

 Could use solution to the sign problem to obtain polynomial
algorithm for all NP-complete problems (e.g. traveling salesman)

e This is bad news!

* Ornot- if you solve it, you will get both
— The Nobel price (?7)
— Plus additional 1.000.000 $$ from the Clay Foundatlon

http://www.claymath.org
2
\[ } J .




How to deal with the sign problem ? FRWIHAACEEN

 The sign problem is NP-hard (worst-case complexity)
— A general solution is almost certainly impossible

* What can we do?
— Simulate models without a sign problem
 Non-frustrated quantum magnets

« Bosonic models (atomic BEC condensates)
 Hubbard model in 1D

— Brute force-approach
« Live with the exponential scaling of the sign problem and stay on small lattices

— Other exact algorithms
» DMRG, exact diagonalization, or series expansion might be better

— Special solutions for certain models still possible by a clever choice of
the computational basis



The End UNIVERSITY

 Thank You for your attention!

Software project

A0 ;‘!_ = ___._ o 9N

— Applications and
J Libraries for
PR e Physics
alps.comp-phys.org Simulations
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