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clean system. The problem is particularly acute in the
case of high-temperature superconductors, where
some researchers claim that disorder effects are mask-
ing phase transitions that are crucial to understanding
the origin of the superconducting behaviour. This dou-
ble difficulty – not being able to make the samples per-
fectly clean, and not knowing theoretically what they
would do if they were – is at the core of much of modern
condensed-matter physics.

Enter cold atoms
The task of predicting the behaviour of the Hubbard
model in two or three dimensions is daunting. The 1D
case is special because in order for two electrons to pass
each other, they must actually pass through each other.
This simplifies the problem in the same way that queu-
ing simplifies the post office: it allows theorists (or post-
office staff) to deal with one interaction event at a time.
This simplification allows theorists to formulate a very
large number of conservation laws, and the solution of
the 1D problem is built on these.

The 2D problem is qualitatively different. It has so
far resisted exact solution, and the approximations that
theorists are forced to make to “solve” it are quite
crude. For example, a common approach is to assume
that “fast” electrons in the material are moving through

a “slow” magnetic background. But in the Hubbard
model there is really only one intrinsic timescale, so it is
difficult to justify these techniques. It is also far from
clear that these methods are sufficient to capture the
essential physics. Conventional computer simulations
also face formidable obstacles, as the complexity of the
problem grows very quickly with the size of the system.
In practice, only a few lattice sites containing a hand-
ful of particles can be simulated directly; even with the
fastest supercomputers, the full Hubbard model (with-
out approximations) can only be simulated in simple
systems like 16 atoms arranged in a 4×4 lattice.

But help may be at hand from an unlikely quarter:
atomic physics. Ultracold atoms trapped in crossed
laser beams (an “optical lattice”) can, under certain
circumstances, also be described by the Hubbard
model. In such cold-atom systems, atoms play the role
of electrons, and the optical lattice supplies the peri-
odic potential in which they move – an “artificial crys-
tal of light”, as atomic physicist Immanuel Bloch of 
the University of Mainz in Germany described it in
Physics World (April 2004 pp25–29). The same quan-
tum-mechanical rules that govern electrons in a metal
also apply to the atoms in the “crystal”. This means that
these atomic systems could in principle be used as a
kind of analogue computer to examine the behaviour of

Those who knew John Hubbard describe him as
a very shy man – to the point that others, who
did not know him so well, may have perceived
him as somewhat aloof. Born on 27 October
1931, Hubbard was educated first at Hampton
Grammar school and then at Imperial College,
London, where he obtained his PhD in 1958
under Stanley Raimes. Unusually for his time
and social context, he lived with his parents in
Teddington throughout his university education.

At the end of his PhD, Hubbard was recruited
to the Atomic Energy Research Establishment in
Harwell, Oxfordshire, by Brian Flowers, who was
then heading the theory division. An anecdote
from this period of Hubbard’s career illustrates
his retiring personality. While at Imperial,
Hubbard had dealt with the project assigned to
him for his PhD fairly quickly, and had then
looked for a more challenging problem. At the
time, quantum-field-theory methods, particularly
Feynman diagrams, were being applied to
problems in many-body theory. However, it was
difficult to bring the same methods to bear on
the many-electron problem – relevant to 
solid-state systems – because the Coulomb
interaction between electrons made quantities
like the total energy diverge.

Hubbard realized that these divergences
could be controlled: the trick was to sum up an
infinite series of a particular class of Feynman
diagrams. When Hubbard arrived in Harwell, he
mentioned this to Flowers, who wanted to see
the paper. Alas, there was no paper, Hubbard
explained, because when he was about to write

it up he saw an article by other researchers who
had introduced a different method to solve the
same problem. Hubbard had found their
method physically appealing, checked privately
that their results coincided with his, and
concluded there was no need for an additional
publication on the topic. Flowers then issued an
explicit order that Hubbard should publish his
groundbreaking work.

Hubbard’s most famous papers are the series
he wrote on his eponymous model, starting in
1963. He was not the only one working on the
strong-correlations problem: some months
earlier, Takeo Izuyama, working at Nagoya
University, and Duk-Joo Kim and Ryogo Kubo, 
at the University of Tokyo, both in Japan, had
argued that a proper description of correlations
in metals with strong electron–electron
interactions could explain the observed 
spin-wave spectrum. Martin Gutzwiller, who was
then working at IBM’s research laboratories in
Zürich, had also produced essentially the same

model. Yet it was Hubbard’s calculations that
showed that the model that now bears his name
could in fact describe both the metallic and
insulating behaviour as two extremes of the
same thing. His application of a Green’s function
technique to the model was a template for many
other works in condensed-matter theory, and his
papers from that time contain many crucial
insights, such as the existence of so-called
Hubbard bands that are a main feature of our
current understanding of Mott insulators.

Eventually, Hubbard became the leader of 
the solid-state theory group at Harwell, and 
Walter Marshall succeeded Flowers as head of
the theory division. Unlike the shy Hubbard,
Marshall, who was also an excellent theorist,
was very proactive in hunting for personnel and
for funding. This was a blessing in disguise for
Hubbard, as Marshall ignored Hubbard’s
reticence completely and kept “parachuting”
postdocs into his group.

Hubbard left the UK for the US in 1976,
following Marshall's promotion to director of the
Atomic Energy Research Establishment and a
subsequent major reform of its facilities in
Harwell. He joined Brown University and the 
IBM Laboratories in San José, California, where
his research focused on the study of critical
phenomena: phase transitions near which
universal behaviour, independent of material-
specific properties, is observed. He died, aged
just 49, in San José on 27 November 1980.
(Main source: Stephen Lovesey, private
communications)

John Hubbard: the man behind the model
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Fig. 1: Schematic view of different models of magnetism: Stoner model for itinerant weakly
correlated electrons, Heisenberg model for localized magnetic moments and Hubbard model
for spin-fluctuations model of correlated electrons.

1 Introduction

We will discuss a realistic approach to magnetism and electronic structure of correlated materi-
als which takes into account a dynamical many-body effects. The scheme combines the feature
of itinerant electron theory (Stoner) of magnetic crystals with localized moment description
(Heisenberg) in the unified spin-fluctuations approach for a generalized multiorbital Hubbard
model. The calculations of the effective exchange interaction parameters based on the realistic
electronic structure of correlated magnetic crystals have been analyzed.

2 From Stoner to Hubbard

We start to discuss the different models of magnetic materials (Fig. 1) with the simplest one-
band Stoner Hamiltonian

Hs =

X

k�

("k + I < n�� >)c+k�ck� (1)

where "k is the energy band spectrum and I is a Stoner interatomic exchange parameter. In
this case the temperature dependent magnetic properties are related with the so-called Stoner
excitations from occupied ”spin-up” band to unoccupied ”spin-down” band, which reduce the
magnitude of the magnetization, so that finally at the Curie point the itinerant system becomes
a nonmagnetic metal.
If we compare the Stoner model with a standard Hubbard approach with the following Hamil-
tonian:

Hh =

X

ij�

tijc
+
i�cj� +

X

i

Uni"ni# (2)
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Fig. 2: Exchange interaction in a two-site quantum model.

where tij are the hopping parameters and U the characteristic Hubbard Coulomb interaction,
then one can easily realize that the Stoner model is just a mean-field approximation to the
Hubbard model. In the weakly correlated case, the only possible magnetic excitations are the
spin-flip ones, and the corresponding energy is of the order I ·M with M =< n"�n# > which
are much larger then realistic Curie temperatures. For the opposite limit of strongly correlated
Hubbard model at the half-filling case [1], one can derive an effective Heisenberg model:

He = �
X

ij

Jij ~Si · ~Sj. (3)

The kinetic exchange interactions Jij = �2tijtji
U

are of the order of magnetic (Neel) transition
temperatures. The Heisenberg model describe well magnetism of localized 4f-materials. In
the case of transition metals where both longitudinal and transverse magnetic fluctuations are
important the most appropriate model is the Hubbard Hamiltonian, Eq. (2).

We can discuss the different approaches to estimate the effective Heisenberg interactions, pre-
sented in Fig. 2, Fig. 3, and Fig. 4. In Fig. 2 a simple two-site spin-model for the Heisenberg
interaction with the singlet and triplet states is compared with so-called Slater one-electron
model for antiferromagnetic states, which results in an additional factor of two in the defini-
tion of the effective exchange interaction. In Fig. 3 the solution of two-site Hubbard model for
the many-body sector with one spin-up and one spin-down electron is shown, which results in
famous Anderson kinetic exchange interaction [1]. Finally, one can show that the mean-field so-
lution of the Hubbard model with band energies modified via infinitesimal spin-rotations results
in the same effective exchange interactions of a classical Heisenberg model (Fig. 4).
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Electrons in solids: 
 
   -Effective potential 
   -Bloch states 
   -Pauli principle  

Density Functional Theory (DFT) 
Effective one-particle states 
Local Density Approximation (LDA) 

From Atom to Solids 



DFT: KS-equation (1965) 
Effective one-electron Schrödinger-like equation: 

Hartree potential: 

Energy Functional: 

Effective potential: 
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This paper deals with the ground state of an interacting electron gas in an external potential v(r). It is
proved that there exists a universal functional of the density, Ft I(r) g, independent of v(r), such that the ex-
pression E—=fs(r)n (r)dr+Ft I(r)j has as its minimum value the correct ground-state energy associated with
s(r). The functional FLn(r)j is then discussed for two situations: (1) n(r) @san(r), 8/ao((1, and
(2) a(r) = q (r/ra) with p arbitrary and 1'p ~~.In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of
these methods are presented.

INTRODUCTION
' '
&~IJRING the last decade there has been considerable

progress in understanding the properties of a
homogeneous interacting electron gas. ' The point of
view has been, in general, to regard the electrons as
similar to a collection of noninteracting particles
with the important additional concept of collective
excitations.
On the other hand, there has been in existence since

the 7920's a different approach, represented by the
Thomas-Fermi method' and its re6nements, in which
the electronic density n(r) plays a central role and in
which the system of electrons is pictured more like a
classical liquid. This approach has been useful, up to
now, for simple though crude descriptions of inhomo-
geneous systems like atoms and impurities in nietals.
Lately there have been also some important advances

along this second line of approach, such as the work of
Kompaneets and Pavlovskii, ' Kirzhnits, ' Lewis, ' Baraff
and Borowitz, ' Bara6, ' and DuBois and Kivelson. ' The
present paper represents a contribution in the same area.
In Part I, we develop an exact formal variational

principle for the ground-state energy, in which the den-
sity tz(r) is the variable function. Into this principle
enters a universal functional PLtr(r)), which applies to
all electronic systems in their ground state no matter
what the external potential is. The main objective of
*Supported in part by the U. S. Once of Naval Research.
f NATO Post Doctoral Fellow.
f Guggenheim Fellow.' For a review see, for example, D. Pines, Elementary E'.'xci tati ons

in Solids (W. A. Benjamin Inc. , New York, 1963).' For a review of work up to 1956, see N. H. March, Advan.
Phys. 6, 1 (1957).

A. S. Kompaneets and E. S. Pavlovskii, Zh. Eksperim. i.
Teor. Fiz. 51, 427 (1956) [English transl. : Soviet Phys.—JETP
4, 328 (1957)j.
D. A. Kirzhnits, Zh. Eksperim. i. Teor. Fiz. 32, 115 (1957)

I English transl. : Soviet Phys.—JETP 5, 64 (1957)j.' H. W. Lewis, Phys. Rev. 111, 1554 (1958).' G. A. 13araff and S. Borowitz, Phys. Rev. 121, 1704 (1961).
7 G. A. BaraG, Phys. Rev. 123, 2087 (1961).'D. F. Du Bois and M. G. Kivelson, Phys. Rev. 127, 1182

(1962).

theoretical considerations is a description of this
functional. Once known, it is relatively easy to deter-
mine the ground-state energy in a given external
potential.
In Part II, we obtain an expression for FLnj when tr

deviates only slightly from uniformity, i.e., n(r)=1'cp
+ts(r), with ts/tss —& 0; In this case FLej is entirely
expressible in terms of the exact ground-state energy
and the exact electronic polarizability n(g) of a uniform
electron gas. This procedure will describe correctly
the long-range Friedel charge oscillations' set up by
a localized perturbation. All previous refinements of the
Thomas-Fermi method have failed to include these.
In Part III we consider the case of a slowly varying,

but +of necessarily almost constant density, tr (r)= p(r/rs), rs —&oo. For this case we derive an expansion
of F)trj in successive orders of rs ' or, equivalently of
the gradient operator V acting on e(r). The expansion
coeKcients are again expressible in terms of the exact
ground-state energy and the exact linear, quadratic,
etc. , electric response functions of a uniform electron
gas to an external potential w(r). In this way we recover,
quite simply, all previously developed refinements of
the Thomas-Fermi method and are able to carry them
somewhat further. Comparison of this case with the
nearly uniform one, discussed in Part II, ,also reveals
why the gradient expansion is intrinsically incapable
of properly describing the Friedel oscillations or the
radial oscillations of the electronic density in an atom
which reQect the electronic shell structure. A partial
summation of the gradient expansion can be carried
out (Sec. III.4), but its usefulness has not yet been
tested.

I. EXACT GENERAL FORMULATION

I. The Density as Basic Variable
Ke shall be considering a collection of an arbitrary

number of electrons, enclosed in a large box and moving
' J. Friedel, Phil. Nag. 45, 155 (1952).
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under the influence of an external potential v(r) and
the mutual Coulomb repulsion. The Hamiltonian has
the form

H= T+V+U,
where'0

where Pfn] is a universal functional, valid for any
number of particles" and any external potential. This
functional plays a central role in the present paper.
With its aid we define, for a given potential v(r), the

energy functional

~~i*(r)~~i (r)dr,
2

(2) E„gn]=— v (r)I(r)dr+ FLN]. (10)

V= v(r)i(*(r)P(r)dr,

P*(r)P*(r')f(r')P (r)drdr'

Clearly, for the correct is(r), E„ge] equals the ground-
state energy E.
We shall now show that E,ge] assumes its minimum

value for the correct n(r), if, the admissible functions
are restricted by the condition

We shall in all that follows assume for simplicity that
we are only dealing with situations in which the ground
state is nondegenerate. We denote the electronic density
in the ground state 0' by

which is clearly a functional of v(r).
We shall now show that conversely v(r) is a unique

functional of N(r), apart from a trivial additive constant.
The proof proceeds by reductio ad absurdum'. As-

sume that another potential v'(r), with ground state
4' gives rise to the same density N(r). Now clearly
(unless v'(r) —v(r)=const] 0' cannot be equal to 4
since they satisfy different Schrodinger equations.
Hence, if we denote the Hamiltonian and ground-state
energies associated with 0' and 0' by H, B' and E, E',
we have by the minimal property of the ground state,
E'= (@',H'+') & (+,H'+) = (+, (H+ V' V)%'), —

so that

E'&E+ $v'(r) —v(r)]e(r)dr.

Interchanging primed and unprimed quantities, we find
in exactly the same way that

E&E'+ $v (r)—v' (r)]ti (r)dr.

Addition of (6) and (7) leads to the inconsistency

E+E~&E+E~
Thus v (r) is (to within a constant) a unique functional

of e(r); since, in turn, v(r) fixes H we see that the full
many-particle ground state is a unique functional of
rs(r).

Ãfm] —= n (r)dr =cV.

It is v ell known that for a system of Eparticles, the
energy functional of 4'

(12)

has a minimum at the correct ground state 4, relative
to arbitrary variations of 0' in which the number of
particles is kept constant. In particular, let 4' be the
ground state associated with a diferent external po-
tential v'(r). Then, by (12) and (9)

B„L@']= v (r)I'(r) dr+Fc ri'],

)8,$+]= v(r)e(r)dr+FLri].

Thus the minimal property of (10) is established rela-
tive to all density functions I'(r) associated with some
other external potential v'(r). "
If F(1) were a known and sufFiciently simple func-

tional of n, the problem of determining the ground-state
energy and density in a given external potential would
be rather easy since it requires merely the minimization
of a functional of the three-dimensional density func-
tion. The major part of the complexities of the many-
electron problems are associated with the determination
of the universal functional FLn].

3. Transformation of the Functional P/n]
Because of the long range of the Coulomb interaction,

it is for most purposes convenient to separate out from

2. The Variational Principle

Since 4 is a functional of n(r), so is evidently the
kinetic and interaction energy. We therefore define

ro At, oDllc url'its are- use

'~ This is obvious since the number of particles is itself a simple
functional of n(r).~ We cannot prove whether an arbitrary positive density distri-
bution a'(r), which satisaes the condition J'e'(r)dr=integer, can
be realized by some external potential v'(r}. Clearly, to first order
in R(r), any distribution oi the form n'(r) =no+n(r) can be so
realized and we believe that in fact g,ll, except some patbologicaf
distributions, can be realized,
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Metal-Insulator Transition 
1.14 Dieter Vollhardt

Fig. 6: Evolution of the spectral function (“density of states”) of the Hubbard model in the
paramagnetic phase at half filling. a) non-interacting case, b) for weak interactions there is only
little transfer of spectral weight away from the Fermi energy, c) for strong interactions a typical
three-peak structure consisting of coherent quasiparticle excitations close to the Fermi energy
and incoherent lower and upper Hubbard bands is clearly seen, d) above a critical interaction
the quasiparticle peak vanishes and the system is insulating, with two well-separated Hubbard
bands remaining; after Ref. [30].

5.1 The characteristic structure of the spectral function

The Mott-Hubbard MIT is monitored by the spectral function A(ω) = − 1
π
ImG(ω + i0+) of

the correlated electrons;7 here we follow the discussion of Refs. [55, 30]. The change of A(ω)
obtained within the DMFT for the one-band Hubbard model (4) at T = 0 and half filling
(n = 1) as a function of the Coulomb repulsion U (measured in units of the bandwidth W

of non-interacting electrons) is shown in Figs. 6 and 7. While Fig. 6 is a schematic picture of
the evolution of the spectrum when the interaction is increased, Fig. 7 shows actual numeri-
cal results obtained by the NRG [39, 56]. Here magnetic order is assumed to be suppressed
(“frustrated”).
While at smallU the system can be described by coherent quasiparticles whose DOS still resem-
bles that of the free electrons, the spectrum in the Mott insulator state consists of two separate
incoherent “Hubbard bands” whose centers are separated approximately by the energy U . The
latter originate from atomic-like excitations at the energies ±U/2 broadened by the hopping
of electrons away from the atom. At intermediate values of U the spectrum then has a char-
acteristic three-peak structure as in the single-impurity Anderson model, which includes both
the atomic features (i.e., Hubbard bands) and the narrow quasiparticle peak at low excitation
energies, near ω = 0. This corresponds to a strongly correlated metal. The structure of the

7In the following we only consider the paramagnetic phase.
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Fig. 9: Mott-Hubbard MIT phase diagram showing the metallic phase and the insulating phase,
respectively, at temperatures below the critical end point, as well as a coexistence region; from
Ref. [54].

than linearly with the temperature, the difference∆S = Smet−Sins eventually becomes positive,
whereby the slope also becomes positive at lower temperatures;8 this is indeed observed in
cluster DMFT calculations [60]. Since ∆S = 0 at T = 0 the phase boundary must terminate at
T = 0 with infinite slope.
At half filling and for bipartite lattices in dimensions d > 2 (in d = 2 only at T = 0), the
paramagnetic phase is unstable against antiferromagnetic long-range order. The metal-insulator
transition is then completely hidden by the antiferromagnetic insulating phase, as shown in
Fig. 10.

6 Electronic correlations in materials

6.1 LDA+DMFT

Although the Hubbard model is able to explain basic features of the phase diagram of correlated
electrons it cannot explain the physics of real materials in any detail. Clearly, realistic theories
must take into account the explicit electronic and lattice structure of the systems.
Until recently the electronic properties of solids were investigated by two essentially separate
communities, one using model Hamiltonians in conjunction with many-body techniques, the
other employing density functional theory (DFT) [62, 63]. DFT and its local density approxi-
mation (LDA) have the advantage of being ab initio approaches which do not require empirical

8Here we assume for simplicity that the metal remains a Fermi liquid, and the insulator stays paramagnetic,
down to the lowest temperatures. In fact, a Cooper pair instability will eventually occur in the metal, and the insu-
lator will become long-range ordered, too. In this case the slope dU/dT can change sign several times depending
on the value of the entropy of the two phases across the phase transition.
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Fig. 10: On bipartite lattices and for half filling (n = 1) the paramagnetic phase is unstable
against antiferromagnetism. The metal-insulator transition is then completely hidden by the
antiferromagnetic insulating phase; from Ref. [61].

parameters as input. Indeed, they are highly successful techniques for the calculation of the
electronic structure of real materials [64]. However, in practice DFT/LDA is seriously restricted
in its ability to describe strongly correlated materials where the on-site Coulomb interaction is
comparable with the band width. Here, the model Hamiltonian approach is more general and
powerful since there exist systematic theoretical techniques to investigate the many-electron
problem with increasing accuracy. Nevertheless, the uncertainty in the choice of the model
parameters and the technical complexity of the correlation problem itself prevent the model
Hamiltonian approach from being a flexible or reliable enough tool for studying real materials.
The two approaches are therefore complementary. In view of the individual power of DFT/LDA
and the model Hamiltonian approach, respectively, it had always been clear that a combination
of these techniques would be highly desirable for ab initio investigations of real materials, in-
cluding, e.g., f -electron systems and Mott insulators. One of the first successful attempts in this
direction was the LDA+U method [65, 66], which combines LDA with a basically static, i.e.,
Hartree-Fock-like, mean-field approximation for a multi-band Anderson lattice model (with in-
teracting and non-interacting orbitals). This method proved to be a very useful tool in the study
of long-range ordered, insulating states of transition metals and rare-earth compounds. How-
ever, the paramagnetic metallic phase of correlated electron systems such as high-temperature
superconductors and heavy-fermion systems clearly requires a treatment that goes beyond a
static mean-field approximation and includes dynamical effects, e.g., the frequency dependence
of the self-energy.

Here the recently developed LDA+DMFTmethod— a new computational scheme whichmerges
electronic band structure calculations and the dynamical mean-field theory [67–76, 30] — has
proved to be a breakthrough. Starting from conventional band structure calculations in the local
density approximation (LDA) the correlations are taken into account by the Hubbard interaction
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Table 1: Comparison of LDA and realistic DMFT schemes

LDA LDA+DMFT

Density functional Baym-Kadanoff functional

Density ⇢(r) Green-Function G(r, r0,!)

Potential Vxc(r) Self-energy ⌃i(!)

Etot = Esp � Edc ⌦ = ⌦sp �⌦dc

Esp =
P

k<kF
"k ⌦sp = �Tr ln[�G�1

]

Edc = EH +

R
⇢Vxcdr� Exc ⌦dc = Tr⌃G� �LW

structure of solids.

In principle, there are two ways to include them into DFT calculations. The first one is the use of
time-dependent DFT formalism which can guarantee, in principle, an opportunity to calculate
exact response functions [21], in the same sense as the Hohenberg-Kohn theorem guarantees
the total energy in usual “static” DFT [5]. However, all the expressions for this time-dependent
non-local DFT in real calculations are based on RPA-like approximations which describes not
satisfactory the really highly correlated systems. They are excellent for investigation the plas-
mon spectrum of aluminum, but not for understanding the nature of high-Tc superconductivity
or the heavy fermion behavior. Another way is to use an “alternative” many-body theory devel-
oped in the 50-th by Gell-Mann and Brueckner, Galitskii and Migdal, Beliaev and many others
in terms of the Green functions rather than of the electron density [22]. We try to formulate such
computational approach as a generalization of LDA+U scheme, the so-called “LDA+DMFT”
method. The main difference between the LDA+DMFT approach and the LDA+U method
is that in the former dynamical fluctuations, or the real correlation effects, are accounted for
described by local but energy dependent self-energy ⌃(!).

The comparison of the standard DFT theory in the local density approximation (LDA) and
LDA+DMFT approach is represented in the table I. First of all the LDA theory is based on the
Hohenberg - Kohn theorem that the total energy Etot is a functional of charge and spin densi-
ties, while the LDA+DMFT scheme considers the thermodynamic potential ⌦ as a functional of
exact one-particle Green functions. This approach in many-particle theory has been introduced
in the works by Luttinger and Ward [23] and Baym and Kadanoff [24]. The Green function in
LDA+DMFT theory plays the same role as the density matrix in LDA formalism. We stress the
dynamical nature of the correlation effects which are taken into account in the LDA+DMFT ap-
proach since the density in the LDA is just the static limit of the local Green function. Further,
the self energy ⌃ is analogous to the exchange-correlation potential; local approximation for ⌃,
which is assumed to be energy-dependent but not momentum-dependent corresponds to the lo-
cal approximation for Vxc. In both formalisms the thermodynamic potential can be represented
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� , correspondingly. We represent the expression for ⌦ as a difference of ”single particle” (sp)
and ”double counted” (dc) terms as it is usual in the density functional theory. When neglect-
ing the quasiparticle damping, ⌦sp will be nothing but the thermodynamic potential of ”free”
fermions but with exact quasiparticle energies. Suppose we change the external potential, for
example, by small spin rotations. Then the variation of the thermodynamic potential can be
written as

�⌦ = �⇤⌦sp + �1⌦sp � �⌦dc (45)

where �⇤ is the variation without taking into account the change of the ”self-consistent poten-
tial” (i.e. self energy) and �1 is the variation due to this change of ⌃. To avoid a possible
misunderstanding, note that we consider the variation of ⌦ in the general “non-equilibrium”
case when the torques acting on spins are nonzero and therefore �⌦ 6= 0. In order to study
the response of the system to general spin rotations one can consider either variations of the
spin directions at the fixed effective fields or, vice versa, rotations of the effective fields, i.e.
variations of ⌃, at the fixed magnetic moments. We use the second way. Taking into account
the variational property of � one can be easily shown (cf. Ref. [23]) that

�1⌦sp = �⌦dc = TrG�⌃ (46)

and hence
�⌦ = �⇤⌦sp = ��⇤Tr ln

⇥
⌃ �G�1

0

⇤
(47)

which is an analog of the ”local force theorem” in the density functional theory [57].
In the LDA+DMFT scheme, the self energy is local, i.e. is diagonal in site indices. Let us write
the spin-matrix structure of the self energy and Green function in the following form

⌃i = ⌃c
i +⌃⌃⌃s

i��� , Gij = Gc
ij +Gs

ij��� (48)

where ⌃(c,s)
i =

1
2

⇣
⌃"

i ±⌃#
i

⌘
, ⌃s

i = ⌃s
i ei, with ei being the unit vector in the direction of ef-

fective spin-dependent potential on site i, ��� = (�x, �y, �z) are Pauli matrices, Gc
ij =

1
2Tr�(Gij)

and Gs
ij =

1
2Tr�(Gijœ). We assume that the bare Green function G0 does not depend on spin

directions and all the spin-dependent terms including the Hartree-Fock terms are incorporated
in the self energy. Spin excitations with low energies are connected with the rotations of vectors
ei:

�ei = �'''i ⇥ ei (49)

According to the ”local force theorem” (47) the corresponding variation of the thermodynamic
potential can be written as

�⌦ = �⇤⌦sp = Vi�'''i (50)

where the torque indextorque is equal to

Vi = 2Tr!L [⌃⌃⌃
s
i ⇥Gs

ii] (51)
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Non-collinear excitation: 

5.20 Alexander Lichtenstein

Using the spinor structure of the Dyson equation one can write the Green function in this expres-
sion in terms of pair contributions. As a result, we represent the total thermodynamic potential
of spin rotations or the effective Hamiltonian in the form [38]
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one can show by direct calculations that

�⌦spin

�'''i

�

G=const

= Vi (53)

This means that ⌦spin {ei} is the effective spin Hamiltonian. The last term in Eq.(52) is nothing
but Dzialoshinskii- Moriya interaction term. It is non-zero only in relativistic case where⌃⌃⌃s

j and
Gs

ji can be, generally speaking, “non-parallel” and Gij 6= Gji for the crystals without inversion
center.
In the nonrelativistic case one can rewrite the spin Hamiltonian for small spin deviations near
collinear magnetic structures in the following form

⌦spin = �
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Jijei · ej (54)

where
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are the effective exchange parameters. This formula generalize the LDA expressions of [57] to
the case of correlated systems.
Spin wave indexspin wave spectrum in ferromagnets can be considered both directly from the
exchange parameters or by the consideration of the energy of corresponding spiral structure (cf.
Ref. [57]). In nonrelativistic case when the anisotropy is absent one has

!q =

4

M

X

j

J0j
�
1� cosqRj

�
⌘ 4

M
[J(0)� J(q)] (56)

where M is the magnetic moment (in Bohr magnetons) per magnetic ion.
It should be noted that the expression for spin stiffness tensor D↵� defined by the relation !q =

D↵�q↵q� (q ! 0) in terms of exchange parameters has to be exact as the consequence of phe-
nomenological Landau- Lifshitz equations which are definitely correct in the long-wavelength
limit. Direct calculation basing on variation of the total energy under spiral spin rotations (cf.
Ref. [57]) leads to the following expression

D↵� = � 2

M
Tr!L

X

k

✓
⌃s@G

"
(k)

@k↵
⌃s@G

#
(k)

@k�

◆
(57)

were k is the quasimomentum and the summation is over the Brillouin zone. The expressions
Eqs.(55) and (56) are reminiscent of usual RKKY indirect exchange interactions in the s-d
exchange model (with ⌃s instead of the s-d exchange integral).
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Exchange interactions and Band structure 
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LDA+Disordered Local Moments 
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Orbital order:  KCuF3 

hole density of the same symmetry 

                          A.L. V. Anisimov and J. Zaanen, Phys. Rev.B 52, R5467 (1995) 

In KCuF3 Cu+2 ion has  
d9 configuration 

with a single hole in eg doubly degenerate subshell. 

Experimental crystal structure 

antiferro-orbital order 

LDA+U calculations for undistorted  
perovskite structure 



1d-AFM in KCuF3 

Quadrupolar distortion in KCuF3 

Superexchange interaction 
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Exchange in Iron: LSDA++ 
Magnetism 5.25
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Fig. 13: The spin-wave spectrum for ferromagnetic iron in the LDA and LDA+⌃ approxima-
tions compared with different experiments (circles [16], squares [17], and diamonds [18]) (a);
The corresponding spin-wave spectrum from LDA+⌃ scheme in the (110) plane (b).

Stoner renormalizations, which should gives in principle the same spin-wave stiffness as our
LDA calculations. Our LDA spin-wave spectrum agree well with the results of frozen magnon
calculations [70, 71].
At the lower-energy, where the present adiabatic theory is reliable, the LDA+DMFT spin-waves
spectrum agree better with the experiments then the result of the LDA calculations. Experi-
mental value of the spin-wave stiffness D=280 meV/A2 [67] agrees well with the theoretical
LDA+DMFT estimations of 260 meV/A2 [38].
Self-consistent LDA+DMFT results for the local spectral function for iron and nickel are shown
in Figs.14 and 15, respectively. The LDA+DMFT approach describes well all the qualitative
features of the density of states (DOS), which is especially non-trivial for nickel. Our QMC
results reproduce well the three main correlation effects on the one particle spectra below TC

[74–76]: the presence of a famous 6 eV satellite, the 30% narrowing of the occupied part of
d-band and the 50% decrease of exchange splittings compared to the LDA results. Note that



Quantum Impurity Solver 
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11.4 A.I. Lichtenstein and H. Hafermann

and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,
which defines the local self-energy matrix for our 2× 2 super-site:

ΣI,J (iω) =




Σ0 Σx Σxy Σy

Σx Σ0 Σy Σxy

Σxy Σy Σ0 Σx

Σy Σxy Σx Σ0




For a generalN ×N super-site impurity model (simp) the partition function can be written as a
functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗

and c :
Z =

∫
D[c∗, c]e−Ssimp , (6)

where

Ssimp = −
N∑

I,J=0

∫ β

0

dτ

∫ β

0

dτ ′ c∗Iσ(τ)
[
G−1
σ (τ − τ ′)

]
IJ

cJσ(τ
′)

+
N∑

I=1

∫ β

0

dτUnI,↑(τ)nI,↓(τ),

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.
The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to
obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space
GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular
DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following
prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the
standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.
Next we can write the matrix equation for the bath Green function matrix G, which describes the
effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,
which allowed us to account for double-counting corrections for the local self-energy matrix:
the bath Green function is not supposed to have any local self-energy contribution, since it
comes later from the solution of the effective super-impurity problem (7). Therefore one needs
to subtract the local self-energy contribution, which is equivalent to a solution of the following
impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the
”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).
We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity

What is a best scheme? 
Quantum Monte Carlo ! 



Continuous Time Quantum Monte Carlo 

Partition function: 

Continuous Time Quantum Monte Carlo (CT-QMC) 

E. Gull, A. Millis, A.L., A. Rubtsov, M. Troyer, Ph. Werner, Rev. Mod. Phys. 83, 349 (2011) 



 Weak coupling QMC: CT-INT 

A. Rubtsov, 2004 



Random walks in the k-space 
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Strong-Coupling Expansion CT-HYB 

P. Werner, 2006 



Strong-Coupling Expansion CT-HYB 

P. Werner, 2006 



Comparison of  different CT-QMC 
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Magnetism vs. Kondo resonance 
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Equilateral and Isosceles Trimers 
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Hybridization function Co on/in Cu(111) 

•  Hybridization of Co in bulk twice 
stronger than on surface 

•  Hybridization in energy range of Cu-d 
orbitals more anisotropic on surface 

•  Co-d occupancy: n= 7-8 
B. Surer, et al PRB (2012)  



Orbitally resolved Co DOS from QMC 

Orbitally resolved DOS of  the Co impurities in bulk Cu and on Co (111) obtained from QMC simulations at 
temperature.  T = 0.025 eV and chemical potential μ = 27 eV and μ = 28 eV, respectively. 

All Co d-orbitals contribute to LDOS peak near EF=0 

B. Surer, et al, PRB (2012). 



Magnetic susceptibility:  nanosystems 

Bethe-Salpeter 
Equation: 
Susceptibility:  

Local correlated nano-system: 

U 



   Spin and Charge susceptibility near impurity 

K. Patton, H. Hafermann,et.al 
PRB (2009) 



From Atom to Solid 
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Spectral Function Fe: ARPES vs. DMFT 

SP-ARPES (BESY) 
J. Sánchez-Barriga,  
et al, PRL (2010) 
 



Magnetism of  metals: LDA+DMFT 

A. L., M. Katsnelson and G. Kotliar, PRL87, 067205 (2001) 
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Non-local Coulomb interactions 
General non-local action for solids: 

Atomic action with local Hubbard-like interaction 

Bosonic charge and spin variables:  

A. Rubtsov et al, Annals of Physics 327, 1320 (2012) 



Efficient DB-perturbation theory 

Separate local and non-local effective actions: 

Imuprity action with fermionic and bosonic bathes (CT-QMC) 
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Dual Boson: General Idea 
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DB-diagrammatic scheme 
Bosonic Selfenergy Fermionic Selfenergy 

Renormalized vertex: 

Fermionic and Bosonic  Green Functions  

A. Rubtsov, M.I. Katsnelson, A. L., Annals of  Phys. 327, 1320 (2012)   

Dual boson approach to collective excitations in correlated fermionic systems

A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein

PACS numbers:

I. FORMULAS

S =

X

r

Sat[c
†
r, cr] +

X

r,R 6=0,!,�

tRc
†
r!�cr+R!� +

X

r,R 6=0,⌦

VR⌦⇢
⇤
r⌦⇢r+R⌦ (1)

Sat = �
X

!�

(i! + µ)c†!�c!� +

Z �

0
Uc†"c"c

†
#c#d⌧ (2)

Gr⌧ = � < cr⌧ c
†
r=0,⌧=0 > (3)

Xr⌧ = � < ⇢r⌧⇢
⇤
r=0,⌧=0 > (4)

Simp = Sat +

X

!

�!c
†
!c! +

X

⌦

⇤⌦⇢
⇤
⌦⇢⌦ (5)

S =

X

r

Simp[c
†
r, cr] +

X

!,k,�

(tk ��!�) c
†
!k�c!k� +

X

⌦,k

(V⌦k � ⇤⌦) ⇢
⇤
⌦k⇢⌦k (6)

˜S = �
X

!k

˜G�1
!k f

†
!kf!k �

X

⌦k

˜X�1
⌦k ⌘

⇤
⌦k⌘⌦k +

X

i

˜U [⌘i, fi, f
†
i ] (7)

˜Gk⌫ = (g�1
⌫ +�⌫ � tk)

�1 � g⌫ (8)

˜Xq! = (��1
! + ⇤! � Vk)

�1 � �! (9)

˜U [⌘, f, f†
] =

X

⌫!

⇣
�⌫
!⌘

⇤
!f

†
⌫+!f⌫ + �⌫⇤

⌦ ⌘!f
†
⌫ f⌫+!

⌘
+

1

4

X

⌫⌫0⌦

�!
⌫⌫0f†

⌫+!f
†
⌫0�!f⌫f⌫0

+ ... (10)

�!!0⌦ =

< c!+⌦c!0�⌦c†!c
†
!0 >imp �g!g!0

(�⌦+!�!0 � �⌦)

g!+⌦g!0�⌦g!g!0
(11)

�⌫
! =

� < c⌫+!c⌫a†⇢! >imp � < ⇢ >imp g⌫�!
g⌫g⌫+!�!

(12)

�⌫
! = ��1

!

 
1�

X

⌫0��0

���0

⌫⌫0!g
�
⌫0s��0g�

0

⌫0�!

!
(13)

Gk⌫ = [(g⌫ + g⌫ ˜⌃k⌫g⌫)�1
+�⌫ � tk]�1

Xq! = [(�! + �!
˜

⇧q!�!)
�1

+ ⇤! � Vk]
�1

(14)

SCF-condition 

2

Gk⌫ = [(g⌫ + g⌫ ˜⌃k⌫g⌫)�1
+�⌫ � tk]�1

Xq! = [(�! + �!
˜

⇧q!�!)
�1

+ ⇤! � Vk]
�1

(14)

X

k

Gk⌫ = g⌫ (15)

X

q

Xq! = �! (16)

2

Gk⌫ = [(g⌫ + g⌫ ˜⌃k⌫g⌫)�1
+�⌫ � tk]�1

Xq! = [(�! + �!
˜

⇧q!�!)
�1

+ ⇤! � Vk]
�1

(14)

X

k

Gk⌫ = g⌫ (15)

X

q

Xq! = �! (16)

2

Gk⌫ = [(g⌫ + g⌫ ˜⌃k⌫g⌫)�1
+�⌫ � tk]�1

Xq! = [(�! + �!
˜

⇧q!�!)
�1

+ ⇤! � Vk]
�1

(14)

X

k

Gk⌫ = g⌫ (15)

X

q

Xq! = �! (16)

2

Gk⌫ = [(g⌫ + g⌫ ˜⌃k⌫g⌫)�1
+�⌫ � tk]�1

Xq! = [(�! + �!
˜

⇧q!�!)
�1

+ ⇤! � Vk]
�1

(14)

X

k

Gk⌫ = g⌫ (15)

X

q

Xq! = �! (16)



Simple Test: Hubbard lattice 
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Figure A.5. A bosonic dual self-energy in the lowest-order approximation.

Figure A.6. A fermionic dual self-energy in the lowest-order approximation.

...

Figure A.7. Bosoinc dual self-energy in the ladder approximation. A triangle represents the ⇥ vertex and square represents the � vertex
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can be used, and four-point vertex obeys the form �⌅⌅⌅⌅⌅⌅ . Hybridization can introduce its own slow timescale ⌅�, so
that � does depend only on ⌅ � ⌅⌅. In frequency domain, it means

� = �⇤, (25)

and at small frequencies �⇤ ⇤ ⌅�U2. Since � carry a large factor, we can keep only irreducible term in the expressions
for ⇥ and ⇧. Note that this is completely opposite to the case considered in the previous Section.

First, we obtain from Eq. (12) ignoring the small trivial terms proportional to gg the following relation:

⇧⇤ = ⇧
(0)
⇤
�⇤⇧

(0)
⇤
. (26)

In the above equation we introduced a “bare susceptibility” of the impurity problem

⇧(0)
⇤
⇥ �

�

⌃⇤

g⌃g⇤+⌃. (27)

Next, we use the relation (14) and keep only the large factor �:

⇥⇤ = (⇧(0)
⇤

)�1. (28)

Note that in the present approximation ⇥, like �, has only single frequency argument.
Let us consider a half-filled Hubbard lattice with the nearest-neighbour hopping t, at large U. A low-frequency

behaviour of this system is essentially a dynamics of Heisenberg model. An e⌅ective-medium description of spin
waves in this case should result in the expression

⇧⇤ =
�

k

1
⇧�1
⇤
+ �⇤ � Jk

, (29)

with Ji j =
t2

U for nearest neighbors. Despite this expression is rather simple (in our notation, it just ⇥⌅ = Jk), it was not
reproduced by any DMFT-like approximation so far. Exchange interaction containig t2 can easily be obtained from a
single loop of the fermionic lines. But the RPA and GW+EDMFT denominators contain an inverse of this quantity
(see the previous Section), so the structure of formulas is drastically di⌅erent.

In our formalism, the desired expression appears from the ladder summation, that is the calculation for the diagram
shown in Fig. (A.7). In this summation, we take into account the “slow” vertex (25) only. Since � depends only on
a single time argument, the calculation is quite simple. The fermionic ladder with coinsiding arguments at each side
(see Fig. (A.7) ) equals to

X̃(0)
⇤K

1 � �⇤X̃(0)
⇤K

, (30)

where
X̃(0)
⇤K ⇥

�

⌃k⇤

G̃⌃kG̃⇤+⌃,K+k (31)

is a “bare susceptibility” of the dual system.
Now, adding the triangle vertices to the both ends of the ladder and using the exact relation (18), we obtain

⇥⌅⇤K =

⇤
⌥⌥⌥⌥⌥⌥⌥⇧

�
↵↵↵↵↵ ⇥
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⌅
�������⌃
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. (32)

Finally, we substitute formulas (26,28) for ⇧ and ⇥. This results in cancellation of � out of the expressions and gives
a simple expression

⇥⌅⇤K = ⇥⇤X̃(0)
⇤K⇥⇤. (33)

where ⇥⇤ from Eq.(28) has a meaning of an e⌅ective local Stoner parameter. Note that ⇧(0)
⇤

obey “fast” dynamics only
and a spin-fluctuation contribution to the non-local self-energy ⇥⌅

⇤K is described by the X̃(0)
⇤K function. To determine
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4

where we explicitly introduced Hermitian and anti-Hermitian parts of ρ = ρ′ + iρ′′. One can see that for η′l, η
′′
l being

interpreted as real and imaginary part of a complex number η, this decoupling becomes an explicit form of the the
second line of (8), written for a particular state l. The integral limits for positive Wll can be chosen along the real
axis, from −∞ to +∞ for both η′l and η′′l .
The key observation is that for Wll having a negative real part, the decoupling (9) still holds, up to the integration

path along imaginary axis, from −i∞ to +i∞ for η′l and in the opposite direction, that is +i∞ to −i∞, for η′′l .
Thus, the integration over D[η∗, η] can be considered as a symbolic notation for the integration over D[η′, η′′] with
η = η′ + iη′′, η = η′ − iη′′ substituted in the integrand. The integration path over each component of vectors η′, η′′ is
explicitly defined for the basis where αWα is diagonal: the integration goes along the real or imaginary axis, respect
to a sign of the real part of diagonal matrix element.
One can check that such a definition of

∫
D[η∗, η] still allows to use standard algebraic manipulations with path

integrals. In particular, to obtain the Green’s function of dual variables G̃ = −i < η ·η∗ > one uses a regular procedure
with a differentiation with respect to αW−1α, as it can be explicitly shown from (9). On the other hand, the statistical
properties of dual variables can be unusual because of the complex integration path. For instance, similarly to the
fermionic dual Green’s function24, < η · η∗ >=< η′ · η′ > + < η′′ · η′′ > is not necessary positive-defined and
consequently ImG̃ is not always-negative.
Let us continue with the derivation of the dual formalism. Hubbard-Stratonovich decoupling in the partition

function with the action (1) gives (in a matrix form)

∫
D[c†c]e−

∑
r Simp[c

†
r,cr ]+c†(∆−ε)c+ρ∗(Λ−V )ρ = det(α−1

f (∆− ε)α−1
f ) det(αb(Λ− V )−1αb)×

×
∫
D[c†c]

∫
D[f†f ]
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D[η∗η]e−

∑
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†
r,cr]+f†αf c+c†αff+ρ∗αbη+η∗αbρ−f†αf (∆−ε)−1αff−η∗αb(Λ−V )−1αbη.

(10)

Integrating out the “localized” fermionic Grassmann variables c†, c, we arrive with the action in dual variables (with
α = g−1

ω for the fermionic and α = χ−1
Ω for the bosonic part):

S = −
∑

ωk G̃
−1
ωk f

†
ωkfωk −

∑
Ωk X̃

−1
Ωk η

∗
ΩkηΩk +

∑
j Ũ [ηj , fj , f

†
j ]

G̃−1
ωk = g−1

ω (εk −∆ω)−1g−1
ω − g−1

ω

X̃−1
Ωk = χ−1

Ω (Vk − ΛΩ)−1χ−1
Ω − χ−1

Ω

Ũ [η, f, f†] =
∑

ωΩ

(
λωΩη∗Ωf

†
ω+Ωfω + λ∗

ωΩηΩf
†
ω fω+Ω

)
+

1

4

∑
ωω′Ω γωω′Ωf

†
ω+Ωf

†
ω′−Ωfωfω′ + ...,

(11)

where γ is a full four-point fermionic vertex of the impurity model

γωω′Ω =
< cω+Ωcω′−Ωc†ωc

†
ω′ >imp −gωgω′(δΩ+ω−ω′ − δΩ)

gω+Ωgω′−Ωgωgω′
(12)

(δ is the Kronecker symbol), and λ is a “mixed” quantity

λωΩ =
− < cω+Ωc†ωρΩ >imp − < ρ> imp gωδΩ

gωgω+ΩχΩ
. (13)

The second term in the nominator typically equals zero as < ρ> imp vanishes.

Values of γ and λ are related, since ρΩ =
∑

ω′ sσσ′c†ω′σcω′−Ω,σ′ ,

λΩω = χ−1
Ω

(
1−

∑

ω′

γω,ω′,Ωgω′gω′−Ωsσσ′

)
(14)

There is an important note that for the Gaussian impurity problem γ vanishes, but λ takes a finite value of χ−1
Ω .

There are exact relations between fermionic and bosonic Green’s functions of original and dual variables:

Gωk = (∆ω − εk)−1g−1
ω G̃ωkg−1

ω (∆ω − εk)−1 + (∆ω − εk)−1;

XΩk = (ΛΩ − Vk)−1χ−1
Ω X̃Ωkχ

−1
Ω (ΛΩ − Vk)−1 + (ΛΩ − Vk)−1;

(15)
Generalization of  Anderson superexchange to frequency-dependent case 
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that gives a large contribution at low frequencies. This simply means that for isolated atoms the magnetic moments
are free and, thus, for almost isolated atoms (when the energy of interatomic effective interactions is much slammer
than intraatomic one) can be considered as almost integrals of motion
To illustrate this statement, let us consider an atomic limit of the single-band Hubbard model. Single-electron

Green’s function of Hubbard atom at the half-filling

gat =
−iω

ω2 + (U/2)2
(24)

has a time-scale about τU ∝ U−1, which we call fast. Contrary, the spin-spin correlator < sτsτ ′ > is independent, as
one can easily check, of time arguments. So, a time-scale for < sτsτ ′ > is the inverse temperature β. It means that
apart from a small domain |τ − τ ′| ≈ U−1, the value of < sτsτ ′ > is determined by its non-Gaussian part, which does
not fall as |τ −τ ′| increases. Much slower dynamics of γ in comparison with g just reflects the fact that rotation of the
spin does not change the energy of the atom, whereas the change of the particle number does. Direct calculation of γ
for the Hubbard atom does support this observation. Finite-temperature expressions27 for γ1234 contain a “singular”
term proportional to βU2δΩ0. So, the first two time arguments of γ in time-domain must coincide, as well as the last
two: γ = γτττ ′τ ′ , but the difference τ − τ ′ can be large.
Properties of the impurity problem are different from the isolated atom. However, for the strong-coupling limit the

hybridisation is small. In this case the fast dynamics stay roughly unchanged, so that atomic Green’s function (24)
can be used, and four-point vertex obeys the form γτττ ′τ ′ . Hybridization can introduce its own slow timescale τΛ, so
that γ does depend only on τ − τ ′. In frequency domain, it means

γ = γΩ, (25)

and at small frequencies γΩ ∝ τΛU2. Since γ carry a large factor, we can keep only irreducible term in the expressions
for λ and χ. Note that this is completely opposite to the case considered in the previous Section.
First, we obtain from Eq. (12) ignoring the small trivial terms proportional to gg the following relation:

χΩ = χ(0)
Ω γΩχ

(0)
Ω . (26)

In the above equation we introduced a “bare susceptibility” of the impurity problem

χ(0)
Ω ≡ −

∑

ωσ

gωgΩ+ω. (27)

Next, we use the relation 14 and keep only the large factor γ:

λΩ = (χ(0)
Ω )−1. (28)

Note that in the present approximation λ, like γ, has only single frequency argument.
Let us consider a half-filled Hubbard lattice with the nearest-neighbour hopping t, at large U . A low-frequency

behaviour of this system is essentially a dynamics of Heisenberg model. An effective-medium description of spin waves
in this case should result in the expression

χΩ =
∑

k

1

χ−1
Ω + ΛΩ − Jk

, (29)

with Jij =
t2

U for nearest neighbors. Despite this expression is rather simple (in our notation, it just Π′ = Jk), it was
not reproduced by any DMFT-like approximation so far. Exchange interaction containig t2 can easily be obtained
from a single loop of the fermionic lines. But the RPA and GW+EDMFT denominators contain an inverse of this
quantity (see the previous Section), so the structure of formulas is drastically different.
In our formalism, the desired expression appears from the ladder summation, that is the calculation for the diagram

shown in Fig. (7). In this summation, we take into account the “slow” vertex (25) only. Since γ depends only on a
single time argument, the calculation is quite simple. The fermionic ladder with coinsiding arguments at each side
(see Fig. (7) ) equals to

X̃(0)
ΩK

1− γΩX̃
(0)
ΩK

, (30)

Fermionic Selfenergy 

A. Rubtsov, et al, Annals Phys. 327, 1320 (2012)  
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Plasmon mode in ladder DB Introduction Beyond DMFT Dual Bosons Results

Dual fermion susceptibility: Plasmon mode
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Summary 

�  Magnetism of  correlation systems can be well 
described in the LDA+DMFT scheme 

�  Local correlations efficiently included in                  
CT-QMC impurity solver 

 

	
   



Imaginary Time and Matsubara space 



Constrain GW calculations of  U 

F. Aryasetiawanan et al 
 PRB(2004) 

Polarisation 



Double-Bethe Lattice: exact C-DMFT 

A.  Ruckenstein 
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Self-consistent condition: C-
DMFT 

AF-between plane AF-plane 



Finite temperature phase 
diagram 

•  order-disorder transition at t? / t=p2  for large U 
•  MIT for intermediate U 

H. Hafermann, et al. EPL, 85, 37006 (2009) 



Density of  States: large U 



Slater parametrization of  U 
Multipole expansion:  

Coulomb matrix elements in Ylm basis: 

Slater integrals: 

Angular part – 3j symbols 



CT-HYB: General Interaction 



CT-HYB: Krylov code 



CT-QMC-Krylov: performance 



Satellite structure in Ni 
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FIG. 2. (color online) Spin-resolved d -orbital spectral function of

bulk Ni obtained with UH D 15 eV. The middle panel corresponds

to the full Coulomb vertex, the bottom panel to the truncated vertex.

The atomic d9 ! d8 transitions are displayed at an arbitrary scale

and position in the middle panel for comparison with the shape of

the satellite. The top panel shows the d -orbital occupation in the first

5000 many-body final states corresponding to the cluster Hamiltonian

with the full vertex.

it is thus more than 1 eV too small to be applicable in our case.
The so-called around mean-field form26 of UH, which should
nominally be more accurate in a metallic system like nickel,
provides an even smaller and hence less appropriate value.

The experimentally determined magnetization of the fcc
nickel is approximately 0.6 !B per atom.35 Our calculations
slightly underestimate this quantity even though the cluster
solution, from which the spin-dependent selfenergy is ex-
tracted, displays the maximal polarization characterized by
md D 5 ! nd#.

The number of d electrons cannot be unambiguously defined
in a solid and as such it does not represent a particularly useful
measure of quality of our ground state. The d -band filling in
nickel is often estimated as 9.4 per atom based on the measured
magnetic moment and the assumption of the maximal d -shell
polarization,36 but reliability of this estimate is limited.

B. Valence-band spectrum

We find that one-particle spectra corresponding to the
double-counting potential UH in the range 15:0 ˙ 0:5 eV are
only barely distinguishable. Figure 2 shows the d -orbital spec-
tral function Im

P

m

!

Gm! .E ! i0/
"

=" for UH D 15 eV. The
displayed result is relatively disappointing: the width of the
main band (" 4 eV) as well as the exchange splitting are nearly
identical to those obtained with the spin-polarized LDA, and
thus share the same poor agreement with experiments. The
symmetry-resolved exchange splitting at the Fermi level is
given directly by the selfenergy and reads as

†eg".EF/ ! †eg".EF/ " 0:3 eV, (11)

†t2g".EF/ ! †t2g".EF/ " 0:8 eV. (12)

The d states near the Fermi level have predominantly the t2g

character, which leads to the apparent exchange splitting of
0:6 eV indicated with arrows in Fig. 2.

We identify the spectral features below 4:5 eV as the “6 eV
satellite”. It is strongly spin polarized in agreement with spin-
resolved photoemission experiments.37 In our calculations, the
energy-integrated spectral weight is about three times larger
for the majority spins than for the minority spins. Furthermore,
the minority-spin states are located at reduced binding ener-
gies, which was also observed experimentally.38 The calculated
characteristics of the satellite corroborate its explanation based
on transitions from the spin-polarized d 9 state to the d 8 final
states. An illustration of such atomic spectral lines is added to
Fig. 2 for comparison. The singlet final states 1D, 1G and 1S
exhibit a complete majority-spin polarization and lie deeper,
the triplet states 3F and 3P carry a partial polarization in the
opposite direction and lie shallower.

This simplified description of the satellite should not be
taken too literally, however, at least not within our computa-
tional scheme. We have calculated the d -orbital occupation
nd corresponding to the final states in our discretized impurity
model, the results are aligned with the bulk spectral function
in Fig. 2. Although nd indeed decreases as the binding energy
increases, it is still considerably larger than eight in the satel-
lite region where contributions from states with nd # 8:5 are
not an exception. This enhancement of nd is due to impurity–
bath hybridization as discussed at the end of the Appendix. It
is possible that nd is somewhat overestimated as a result of
compaction of the continuous bath into a few discrete levels.

As mentioned earlier, our calculations are rather insensi-
tive to a particular choice of the potential UH as long as it
exceeds a threshold of approximately 14.5 eV. For smaller UH

the impurity orbitals in the cluster start to depopulate, which
is accompanied with an increased intensity of the satellite.
This result is in accord with experiments alloys of Ni with
electropositive metals.39,40

Finally, we compare spectral functions calculated with two
versions of the Coulomb operator: the full spherically sym-
metric vertex discussed so far, and the diagonal-only vertex
employed in the Hirsch–Fye QMC method.17 Figure 2 shows


