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Quantum lattice models

« Quantum lattice models: Models for strongly correlated quantum many-body systems

 Ubiquitous in condensed-matter context and for cold atoms in optical lattices



Manifesto of lecture

« Manifesto :) of lecture

Many natural quantum lattice models have ground states that are little, in
fact very little, entangled in a precise sense. This shows that "nature is
lurking in some small corner of Hilbert space’, one that can be essentially
efficiently parametrized. This basic yet fundamental insight allows for a
plethora of new methods for the numerical simulation of quantum lattice
models using tensor network states, as well as a novel toolbox to
analytically study such systems

« This lecture: Find out what that means

o Is "double" with subsequent lecture by Uli Schollwoeck

« On slides, will avoid all references (sincere apologies!): For script and references, see
http://arxiv.org/abs/1308.3318



Correlations in quantum many-body systems



Quantum lattice models

. Quantum lattice models: Some lattice G = (V, ') , with quantum degree of freedom
per vertex: Bosonic, fermionic, spin degree of freedom



Quantum lattice models

. Quantum lattice models: Some lattice G = (V, ') , with quantum degree of freedom
per vertex: Bosonic, fermionic, spin degree of freedom

. Distance in lattice: dist(A4, B)
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L ocal Hamiltonians

o Local Hamiltonian H = Z h;, with each h;supported only on finite neighboring
jeVv
sites, reflecting finite-ranged interactions
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L ocal Hamiltonians

« Example: XY model

1 L+ ¢ 1 — v (s A -
H=-—=- - T x () x(k) g y@y k) | - 2 7(J7)
2 (5 : P
(J,k) jeEV

« Pauli operators on site J called X(j), Y(j), 7

. External field A, anisotropy parameter ~ : Easily exactly solvable in 1d



Ground states and spectral gaps

. Ground space G spanned by vectors minimising (| H |))

« One-dimensional: Unique, otherwise degenerate

« Spectral gap: AEF = iInf H — F
p gap MEH\QM ) — Eq

AFE



Clustering of correlations in gapped models

« Gapped models have short-ranged correlations

. In fact, they decay, "cluster", exponentially fast
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. Here, & := —— > 0, is the correlation length
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Entanglement entropies

« Gapless models have algebraically decaying correlations (conformal field theory)

« Locality of interactions inherited by something much stronger?

» Yes, by entanglement qualifiers!



Entanglement



Entanglement entropies

 Assume the entire system is in pure state

. Think of some region A of sites, and consider reduced state p4 = trg(p)

where B = V'\ A is complement of region

o All local expectation values in A can be computed using p 4 only

. In general, p4 will be a mixed state, even if p is pure!



Entanglement entropies

o Entropy of pa ,S(pa) = —tr(pa log pa) will be non-vanishing, even if S(p) = 0
. Can be computed from eigenvalues of reduced state as S(p ) Z Ak log \p

. Reflects entanglement of A with respect to complement: "Unique" measure of
entanglement for pure states

4 )

« How does the (von-Neumann)-entropy scale with the size of A ?

o Like its volume, as an extensive quantity?
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Area laws for the entanglement entropy

4 D
« Nope: Entanglement entropies of gapped models generalically scale like the

boundary area of the region

S(pa) = O(|0A])

« Entanglement is boundary effect: Much (!) less entanglement than there could be
\_ J
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Area laws for the entanglement entropy

(" )
« Nope: Entanglement entropies of gapped models generalically scale like the

boundary area of the region
S(pa) = O(|0A])

« Entanglement is boundary effect: Much (!) less entanglement than there could be
\. J

« Proven instances of area laws

. 1d gapped models
« Gapped free bosonic and fermionic models in any dimension
« For graph states, projected entangled pair states, matrix-product states, see later

« Any Hamiltonian that is in the same gapped phase as a free model

« Evidence that gapped models satisfy area laws



Violation of area laws

« Critical models in 1d are known to violate area laws, but only logarithmically

S(pa) = ©(log(|Al))
. Conformal field theory, conformal chargec, suggests S(pa) = (¢/3)log(l/a) + C

o Critical higher-dimensional free models: scaling is different for bosons and fermions:
Bosons satisfy an area law, while fermions violate it

S(pa) = ©(LP " log L)



| esson

-

S N
; &

—
-

Q" R

~N

« Actual entanglement

AAKR
~ y

{ » Possible entanglement ]




Other measures of entanglement

. Replace for pure states von-Neumann entropy by Renyi entropies,o > 0

1
1l — «

Salpa) = log, tr(p%)

» For mixed states such as thermal states, use mutual information or negativity

- Entanglement spectra heavily studied (but not here :) )



Hilbert space is a fiction!

-

of local Hamiltonian models

» Tiny subset occupied by natural states

~N

r

« Not even a quantum computer could
prepare a large set of states

~N

r

» Hilbert space is a fiction: We only need to
capture natural states: Tensor network states

J

[. Hilbert space dimension of spin models: dim(H) = O(d") ]




Tensors and graphical notation



ensors and graphical notation

« Tensor: Multi-dimensional array of complex numbers

« Dimensionality of array is order of tensor

« Extensive use of graphical notation: Tensors are boxes, order: number of edges



Tensors and graphical notation

o This is how a scalar looks like

.



Tensors and graphical notation

« Vectors and dual vectors

e



Tensors and graphical notation

o Matrices

)

» Contraction of edge: Summation

N
o E.g. matrix product Cy, g = Z Al 155

vy=1



Tensors and graphical notation

o Trace

)

« Partial trace D
. Scalar product D D

« An uncontracted index is open index



Tensors and graphical notation

. Contraction of a tensor network: Contraction of all edges not open

U
Hal



Matrix-product states



Arbitrary state vectors

. Arbitrary state vector [1)) € (C%)®"

Yy = D, Cirdaldls---

graphically
Tl D R

7]n>
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"Physical edges"



Matrix-product states

 Matrix-product state (MPS) vector of "bond dimension" D

d
e T [ B
Filyeeniro=i]
graphically
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Matrix-product states

 Matrix-product state (MPS) vector of "bond dimension" D

d
e T [ B
|
graphically
IR s <

« Each tensor

=

N

2 (1) (2)
Ciryeesiin = Z A ,5;j1A5N;i2 Tl @ 15,
, 3




Bond dimensions

« What is D ? A refinement parameter

i « How many parameters for arbitrary pure state? )
O(d")
« How many parameters for MPS?
O(ndD?)
N y

o Linear in n, not exponential!
. The larger D , the larger the set of states that can be represented

« Gutzwiller mean field D = 1, all states can be represented for exponentially large D



Area laws and approximations with area laws

[ o Ground states of local Hamiltonians ]

{ « MPS with bond dimension 2, 3, 4, ... ]




Area laws and approximations with area laws

. Easy to see: For each subset A of consecutive sites,
S(pa) = O(log(D))
« MPS satisfy area laws

o But the converse is also true!

[ o 1d states satisfying area laws can be well approximated by MPS ]

» Fine print: If for a family of state vectors |1),,) there exist constants ¢, C' > 0
such that for all 0 < a@ < 1the Renyi entropies of the reduced state of any
subsystem A of the one-dimensional system satisfy

Sa(pa) < clog(n) +C

then it can be efficiently approximated by an MPS (the bond dimension will

have to grow polynomially withn, the system size, and 1 /€ , where € > 0
is the approximation error)



Projected entangled pair state (PEPS) picture of MPS

D
o Start from maximally entangled states in 'virtual space' w) = Z 7,9)
....... j=1
- @@ 10 @& 10 @: .
d D
pi—2) pl-1) pU) — Z Z Ag,)@,k’@ (, B]
k=1 a,B=1
. - .

o Generates MPS

» Two more ways of generating MPS: Sequential generation and successive SVD



Translationally invariant MPS

« Take for periodic boundary conditions Afjfﬁ;k = A, Bk

'”[i][i}

« Make a lot of sense in analytical considerations, specifically in thermodynamic limit

« Numerically, advisable to break symmetry, see Uli's lecture



Computation of expectation values



Computation of expectation values

« We want to compute (¢|O|¥) for local observables O

 Reasons to get worried: Fact that MPS is described by poly many parameters alone
does not mean that we can efficiently compute it (permanents in #P)

. In fact: In a naive way, we need exponentially many steps

« But we can do better!



Computation of expectation values

« Assume O is only supported on sites [ and [ + 1

( )

A0 ;1(1)} [AM A®)
o}

o Graphically

J

Pre . Left boundary
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Computation of expectation values

« Assume O is only supported on sites [ and [ + 1

r “
« Graphically A A1 A(l)} E@(lﬂ] A(n)
O
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Computation of expectation values

« Assume O is only supported on sites [ and [ + 1

e
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Computation of expectation values

« Assume O is only supported on sites [

o Graphically Zl(’)} Ea(url]
wHe

and [+ 1

(

.

o Right boundary

d
_ (n) x(n)
Ra,p = Z A48
j=1




Computation of expectation values

« Assume O is only supported on sites [ and [ + 1

a+1)

S

e

o Can be efficiently computed!

o There are yet smarter ways, see Uli's lecture

A



Decay of correlations

» Stick for simplicity to infinite translationally invariant MPS

d

» Transfer operator Ey = Z(Aj ® A;), graphically
j=1
d
and Ep , = Z (k|Oal|7)(A; ® Ag) , graphically
jyk=1

« Correlation function

tr(EOA E]?ist(A,B)—1E]?—dist(A,B)_1
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B
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Decay of correlations

e Interested in n — o0

D2
Find Bf = |r) (L] + Y M), s0 (040B) = (1| Eo, BY ™ P ™ Eg , |r1)
=2

becomes i
(0405) = (l1|Eo, |r1) (11| EBog 1) + 3 AT N0 Eo , 1r) (1| Eoy 1)
j=2

= (04)(OB)

e S0|(040B) — (O4)(Op)| decays exponentially in the distance and correlation
length is given by ratio of the second largest A3 to the largest A\ = 1 (taken to
be unity) eigenvalue of E7

¢ = —log| Az



Placeholder

« Powerful numerical techniques, matrix-product operators, time-evolution:

See next lecture



Matrix-product states as ground states



Exact MPS ground states

o Are there any Hamiltonians models that have exact MPS ground states?

» Take physical dimensiond = 3, a spin-1 model, and bond dimension D = 2

o In the PEPS picture take P = [Ig—1 (I ® 1Y) , where IIg—1 is projection onto
the spin-1 subspace of two sites

» Surely gives rise to valid MPS W>

S=0
CHRCL
Sedheed et S9@moast L aoonnoe
orthogonal to S=2 P <
- -
h

e Now hj = Ilg—o , then hj|1)) = 0



Exact MPS ground states

. But all h; are positive, so (| H|Y) = (Y] Z hilv) >0
J

. That is, |1) must be a ground state vector!

----------------

(| N 1 (]
@ @ '@ @
] 1 ]

] 4 . 4
--------------

e Now hj = Ilg—o , then hj|1)) = 0



Exact MPS ground states

. But all h; are positive, so (| H|Y) = (Y] Z hilv) >0
J

. That is, |1) must be a ground state vector!

« Famous AKLT-model (Affleck, Kennedy, Lieb, Tasaki)

1 . . 1 . | 1
PG IR D) SR A () GG 280 S
« Resembles Spin-1 Heisenberg model
. -



Gauge freedom in MPS

« An MPS is uniquely defined by the matrices defining it, but the converse is not true

AR ARHL) _ 4(k) 5oy —1 g (k+1)
Jk

Py | Jk+1

forevery X € GI(D,C)

(k) A (k+1 - (k) — il 4 (k+1)
=

« Hence, can pick a suitable gauge in which matrices take simple form

(k) (ARt
k—1 k
Z(Aj )TA( )Aj — AF)
J A p@l g
where each A¥) € CP>*Pior |k = 1,...,n — 1 is diagonal, positive, has full rank

and unit trace



Applications in quantum information theory
and quantum state tomography



Matrix-product states in metrology

« Matrix-product states can be used in metrology, say, the GHZ-state
¥) = (|0,...,0) +1,...,1))/v2
is MPS with D = 2 and A; = |0)(0| and Ay = |1)(1]

o Other MPS are better suited under noise



MPS in measurement-based quantum computing

« Quantum computing based on measurements only
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MPS in measurement-based quantum computing

« One-dimensional cluster states

o Start from




MPS in measurement-based quantum computing

« One-dimensional cluster states

o Start from

 Apply phase gates to neighbors

3, k) = |3, k(1)1 0



MPS in measurement-based quantum computing

« One-dimensional cluster states

o Is MPS - and this picture explains how the principle works!



MPS in quantum state tomography

» Measure unknown quantum state of single spin

« Requires 3 measurement settings

E _j Tomographic

Experiment Data knowledge




MPS in quantum state tomography

« Measure unknown quantum state of 3 spins

« Requires 63 measurement settings

n [ A
E _j Tomographic

Experiment Data knowledge




MPS in quantum state tomography

« Measure unknown quantum state of 8 spins

« Requires 65535 measurement settings

—

Experiment Data

Tomographic
knowledge




MPS in quantum state tomography

« Measure unknown quantum state of 20 spins
« Requires 1099511627775 measurement settings

« Use matrix-product states (or compressed sensing)

Experiment

Tomographic
knowledge




Higher-dimensional tensor network states



PEPS in higher dimensions

. For a cubic lattice V = LP forD = 2

~ N [ = ~ ¥ = M Y ( Y 3
\_ J \_ \_ 4 \_ ) \_ ) \_ ) \_ J
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- N y 4 N s N 4 oy 7 ' 7 ™
\ J \_ \_ J N\ J \_ ) L J \_ i
@ N ~ N 7 Y Y G N B
\: ) 3 ¥ © ) & Y © Y] & )
k) . . .
All tensors A( . can be taken differently persite kK € V,
i a,3,7,0;] Yoals <V
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PEPS in higher dimensions

o PEPS construction

P = Z ZA%MJ o, 8,7,

oY
s
PO/ w)(w]
. % ¢



Properties of PEPS

« PEPS satisfy an area law: The entanglement entropy is bounded from above by

O(Llog D) forD = 2
o Again, if the bond dimension is large enough one can write every state as a PEPS
 Again, one can again have exponentially clustering correlations

» Interestingly, as a difference to MPS, one can construct PEPS that have algebraically
decaying correlations in dist(A, B)



PEPS contraction

. Transfer operator

L/
v

» Tricky: Can only approximately contract, not exactly!

-

o Exact contraction is in #P



Exact PEPS

o Cluster states in measurement-based computing

« Toric code Hamiltonian defined on edges (!) of a cubic lattice
H=-J, Z Ag — Jy Z B,

where{AS }and {Bp} are the star and plaquette operators, defined as

- HX(J')

J1ES

i H 7(7)

JED



More general tensor networks

o Checklist

‘ the tensor network should be described by polynomially many parameters,’

‘ it should be efficiently contractible, either exactly or approximately, and

‘ the corresponding class of quantum states should be able to grasp the

natural entanglement or correlation structure

— ——




Trees

. Take n = 2T, and think of "temporal" layerst = 1, ..., 1"
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Trees

. Take n = 2T, and think of "temporal" layerst = 1, ..., 1"
C
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Multi-scale entanglement renormalisation

. Take N = 2T, and think of "temporal" layerst = 1, ..., 1
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Multi-scale entanglement renormalisation

. Take N = 2T, and think of "temporal" layerst = 1, ..., 1

Disentanglers

C )

U e U(d5)




Multi-scale entanglement renormalisation

« Causal cone leads to efficient contraction




Multi-scale entanglement renormalisation

« This idea works in any dimension
o It also works for fermions

« Nice connection to AdS-cft

 Can be proven to be efficiently contractible PEPS
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» Exciting field of research!
« Good for numerical and analytical studies

. For two dimensions, full potential is yet to be explored

e Again :)

Many natural quantum lattice models have ground states that are little, in
fact very little, entangled in a precise sense. This shows that "nature is
lurking in some small corner of Hilbert space’, one that can be essentially
efficiently parametrized. This basic yet fundamental insight allows for a
plethora of new methods for the numerical simulation of quantum lattice
models using tensor network states, as well as a novel toolbox to
analytically study such systems
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