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 Quantum lattice models: Models for strongly correlated quantum many-body systems

Quantum lattice models

 Ubiquitous in condensed-matter context and for cold atoms in optical lattices



 Manifesto :) of lecture

Many natural quantum lattice models have ground states that are little, in 
fact very little, entangled in a precise sense. This shows that `nature is 
lurking in some small corner of Hilbert space', one that can be essentially 
efficiently parametrized. This basic yet fundamental insight allows for a 
plethora of new methods for the numerical simulation of quantum lattice 
models using tensor network states, as well as a novel toolbox to 
analytically study such systems

 This lecture: Find out what that means

 Is "double" with subsequent lecture by Uli Schollwoeck

 On slides, will avoid all references (sincere apologies!): For script and references, see
   

  http://arxiv.org/abs/1308.3318

Manifesto of lecture



Correlations in quantum many-body systems



 Quantum lattice models: Some lattice                      , with quantum degree of freedom 
  per vertex: Bosonic, fermionic, spin degree of freedom

G = (V,E)

Quantum lattice models



Quantum lattice models

 Distance in lattice: dist(A,B)

A

B

 Quantum lattice models: Some lattice                      , with quantum degree of freedom 
  per vertex: Bosonic, fermionic, spin degree of freedom

G = (V,E)



 Local Hamiltonian                      , with each     supported only on finite neighboring

   sites, reflecting finite-ranged interactions

Local Hamiltonians

H =
X

j2V

hj hj

hj



Local Hamiltonians

 Example: XY model

H = �1
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hj,ki
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Z(j),

 Pauli operators on site    called X(j), Y (j), Z(j)j

 External field    , anisotropy parameter    : Easily exactly solvable in 1d� �



Ground states and spectral gaps

�E = inf
| i2H\G

h |H| i � E0

 Ground space     spanned by vectors minimising h |H| iG

 Spectral gap:

 One-dimensional: Unique, otherwise degenerate

E0

�E



Clustering of correlations in gapped models

A

B

 In fact, they decay, "cluster", exponentially fast

 For

   where

  Here,                         , is the correlation length

�E > 0

|hOAOBi � hOAihOBi|  Ce�dist(A,B)�E/(2v)kOAk kOBk

C, v > 0

⇠ :=
2v

�E
> 0

 Gapped models have short-ranged correlations



Entanglement entropies

 Gapless models have algebraically decaying correlations (conformal field theory)

 Locality of interactions inherited by something much stronger?

  Yes, by entanglement qualifiers!



Entanglement



A

 Think of some region     of sites, and consider reduced state

   where                   is complement of region  

A ⇢A = trB(⇢)

B = V \A
 All local expectation values in    can be computed using      onlyA ⇢A

Entanglement entropies

 Assume the entire system is in pure state

 In general,       will be a mixed state, even if     is pure!⇢A ⇢



Entanglement entropies

 Entropy of       ,                                            will be non-vanishing, even if 

A

⇢A S(⇢A) = �tr(⇢A log ⇢A) S(⇢) = 0

 Can be computed from eigenvalues of reduced state as S(⇢A) = �
X

k

�k log �k

 How does the (von-Neumann)-entropy scale with the size of      ?

 Like its volume, as an extensive quantity?

A

 Reflects entanglement of     with respect to complement: "Unique" measure of 
   entanglement for pure states

A



Area laws for the entanglement entropy

A @A

 Nope: Entanglement entropies of gapped models generalically scale like the
  boundary area of the region 

S(⇢A) = O(|@A|)

 Entanglement is boundary effect: Much (!) less entanglement than there could be



Area laws for the entanglement entropy

 Nope: Entanglement entropies of gapped models generalically scale like the
  boundary area of the region 

S(⇢A) = O(|@A|)

 Entanglement is boundary effect: Much (!) less entanglement than there could be

 Proven instances of area laws

 1d gapped models 

 Gapped free bosonic and fermionic models in any dimension

 For graph states, projected entangled pair states, matrix-product states, see later

 Any Hamiltonian that is in the same gapped phase as a free model

 Evidence that gapped models satisfy area laws



Violation of area laws

 Critical models in 1d are known to violate area laws, but only logarithmically

S(⇢A) = ⇥(log(|A|))

 Conformal field theory, conformal charge   , suggests S(⇢A) = (c/3) log(l/a) + Cc

 Critical higher-dimensional free models: scaling is different for bosons and fermions: 
  Bosons satisfy an area law, while fermions violate it

S(⇢A) = ⇥(LD�1
logL)



Lesson

 Possible entanglement

 Actual entanglement



Other measures of entanglement

 Replace for pure states von-Neumann entropy by Renyi entropies, ↵ > 0

 For mixed states such as thermal states, use mutual information or negativity

 Entanglement spectra heavily studied (but not here :) )

S↵(⇢A) =
1

1� ↵
log2 tr(⇢

↵
A)



Hilbert space is a fiction!

 Hilbert space dimension of spin models: dim(H) = O(dn)

 Tiny subset occupied by natural states 
   of local Hamiltonian models

 Not even a quantum computer could
   prepare a large set of states

 Hilbert space is a fiction: We only need to 
   capture natural states: Tensor network states



Tensors and graphical notation



Tensors and graphical notation

 Tensor: Multi-dimensional array of complex numbers

 Dimensionality of array is order of tensor

 Extensive use of graphical notation: Tensors are boxes, order: number of edges



 This is how a scalar looks like

Tensors and graphical notation



 Vectors and dual vectors

Tensors and graphical notation



 Matrices

 Contraction of edge: Summation

 E.g. matrix product C↵,� =
NX

�=1

A↵,�B�,�

Tensors and graphical notation



 Trace

 Partial trace

 Scalar product

 An uncontracted index is open index

Tensors and graphical notation



 Contraction of a tensor network: Contraction of all edges not open

Tensors and graphical notation



Matrix-product states



 Arbitrary state vector

Arbitrary state vectors

| i 2 (Cd)⌦n

  graphically

  "Physical edges"

| i =
dX

j1,...,jn=1

cj1,...,jn |j1, . . . , jni



 Matrix-product state (MPS) vector of "bond dimension" 

Matrix-product states

  graphically

cj1,...,jn =
DX

↵,�,...,!=1

A(1)
↵,�;j1

A(2)
�,�;i2

. . . A(n)
!,↵;jn

= tr(A(1)
j1

A(2)
j2

. . . A(n)
jn

)

  where

| i =
dX

j1,...,jn=1

cj1,...,jn |j1, . . . , jni

D



 Matrix-product state (MPS) vector of "bond dimension" 

Matrix-product states

  graphically

cj1,...,jn =
DX

↵,�,...,!=1

A(1)
↵,�;j1

A(2)
�,�;i2

. . . A(n)
!,↵;jn

= tr(A(1)
j1

A(2)
j2

. . . A(n)
jn

)

  where

| i =
dX

j1,...,jn=1

cj1,...,jn |j1, . . . , jni

D

 Each tensor



Bond dimensions

 What is     ? A refinement parameterD

 How many parameters for arbitrary pure state?

O(dn)

 How many parameters for MPS?

O(ndD2)

 Linear in    , not exponential!n

 The larger     , the larger the set of states that can be representedD

 Gutzwiller mean field            , all states can be represented for exponentially largeD = 1 D



Area laws and approximations with area laws

 Ground states of local Hamiltonians

 MPS with bond dimension 2, 3, 4, ...



Area laws and approximations with area laws

 Easy to see: For each subset     of consecutive sites, A

S(⇢A) = O(log(D))

 MPS satisfy area laws

 But the converse is also true!

 1d states satisfying area laws can be well approximated by MPS

 Fine print: If for a family of state vectors         there exist constants   
such that for all                   the Renyi entropies of the reduced state of any 
subsystem     of the one-dimensional system satisfy

then it can be efficiently approximated by an MPS (the bond dimension will 
have to grow polynomially with   , the system size, and        , where 
is the approximation error)

| ni c, C > 0
0 < ↵ < 1

A

S↵(⇢A)  c log(n) + C

n 1/✏ ✏ > 0



Projected entangled pair state (PEPS) picture of MPS

 Start from maximally entangled states in 'virtual space' |!i =
DX

j=1

|j, ji

P (j) =
dX

k=1

DX

↵,�=1

A(j)
↵,�;k|kih↵,�|

| i = (P (1) ⌦ · · ·⌦ P (n))|!i⌦(n�1)

P (j�1)
P (j�2)

 Generates MPS

 Two more ways of generating MPS: Sequential generation and successive SVD



Translationally invariant MPS

 Take for periodic boundary conditions A
(j)
↵,�;k = A↵,�;k

 Make a lot of sense in analytical considerations, specifically in thermodynamic limit

 Numerically, advisable to break symmetry, see Uli's lecture



Computation of expectation values



Computation of expectation values

 We want to compute               for local observables    h |O| i O

 Reasons to get worried: Fact that MPS is described by poly many parameters alone 
   does not mean that we can efficiently compute it (permanents in #P)

 In fact: In a naive way, we need exponentially many steps

 But we can do better!



Computation of expectation values

 Assume     is only supported on sites    andO l l + 1

 Graphically

L↵,� :=
dX

j=1

A(1)
↵;jĀ

(1)
�;j

 Left boundary



Computation of expectation values

 Assume     is only supported on sites    andO l l + 1

 Graphically

(E(k)
I )↵,�;�,� =

dX

j=1

A(k)
↵,�;jĀ

(k)
�,�;j

 Transfer operator



Computation of expectation values

 Assume     is only supported on sites    andO l l + 1

 Graphically



Computation of expectation values

 Assume     is only supported on sites    andO l l + 1

 Graphically

R↵,� =
dX

j=1

A(n)
↵;jĀ

(n)
�;j

 Right boundary



Computation of expectation values

 Assume     is only supported on sites    andO l l + 1

 Graphically

 Can be efficiently computed!

 There are yet smarter ways, see Uli's lecture



Decay of correlations

 Stick for simplicity to infinite translationally invariant MPS

EI =
dX

j=1

(Aj ⌦ Āj)

EOA =
dX

j,k=1

hk|OA|ji(Aj ⌦ Āk)

hOAOBi =
tr(EOAE

dist(A,B)�1
I E

n�dist(A,B)�1
I )

tr(En
I )

 Transfer operator                                 , graphically

  and                                                      , graphically

 Correlation function



Decay of correlations

 Interested in 

Ek
I = |r1ihl1|+

D2X

j=2

�k
j |rjihlj |

n ! 1

hOAOBi = hl1|EOAE
dist(A,B)�1
I EOB |r1i

hOAOBi = hl1|EOA |r1ihl1|EOB |l1i+
D2X

j=2

�
dist(A,B)�1
j hl1|EOA |rjihlj |EOB |l1i

hOAihOBi

|hOAOBi � hOAihOBi|

 Find                                                  , so

   becomes

   =

 So                                        decays exponentially in the distance and correlation 
  length is given by  ratio of the second largest     to the largest            (taken to 
  be unity) eigenvalue of      ,

�2 �1 = 1
EI

⇠�1
= � log |�2|



Placeholder

 Powerful numerical techniques, matrix-product operators, time-evolution: 

  See next lecture



Matrix-product states as ground states



Exact MPS ground states

 Are there any Hamiltonians models that have exact MPS ground states?

hj

 Take physical dimension           , a spin-1 model, and bond dimension  d = 3 D = 2

 Now                     , then hj = ⇧S=2 hj | i = 0

 In the PEPS picture take                                   , where           is projection onto
   the spin-1 subspace of two sites

 Surely gives rise to valid MPS

P = ⇧S=1(I⌦ iY ) ⇧S=1

P P

S = 0

| i

Reduced state
orthogonal to S=2



Exact MPS ground states

 But all      are positive, so  

hj

 Now                     , then hj = ⇧S=2 hj | i = 0

P P

hj h |H| i = h |
X

j

hj | i � 0

 That is,       must be a ground state vector!| i



Exact MPS ground states

 But all      are positive, so  

hj

hj h |H| i = h |
X

j

hj | i � 0

 That is,       must be a ground state vector!

 Famous AKLT-model (Affleck, Kennedy, Lieb, Tasaki)

| i

hj =
1

2
S(j) · S(j+1) +

1

6
(S(j) · S(j+1))2 +

1

3

 Resembles Spin-1 Heisenberg model



Gauge freedom in MPS

 An MPS is uniquely defined by the matrices defining it, but the converse is not true

  
  for every

A(k)
jk

A(k+1)
jk+1

= A(k)
jk

XX�1A(k+1)
jk+1

X 2 Gl(D,C)

 Hence, can pick a suitable gauge in which matrices take simple form

   where each                         for                               is diagonal, positive, has full rank
   and unit trace 

X

j

A(k)
j (A(k)

j )† = I

⇤(0) = ⇤(n) = 1

X

j

(A(k)
j )†⇤(k�1)A(k)

j = ⇤(k)

⇤(k) 2 CD⇥D k = 1, . . . , n� 1



Applications in quantum information theory 
and quantum state tomography



Matrix-product states in metrology

 Matrix-product states can be used in metrology, say, the GHZ-state

  is MPS with             and                      and

| i = (|0, . . . , 0i+ |1, . . . , 1i)/
p
2

D = 2 A1 = |0ih0| A2 = |1ih1|

 Other MPS are better suited under noise



MPS in measurement-based quantum computing

 Quantum computing based on measurements only



MPS in measurement-based quantum computing

 One-dimensional cluster states

 Start from

|+i |+i |+i |+i |+i |+i |+i |+i |+i
|+i = (|0i+ |1i)/

p
2



MPS in measurement-based quantum computing

 One-dimensional cluster states

 Start from

 Apply phase gates to neighbors

|j, ki 7! |j, ki(�1)�j,1�k,1



MPS in measurement-based quantum computing

 One-dimensional cluster states

 Is MPS - and this picture explains how the principle works!



 Measure unknown quantum state of single spin

 Requires 3 measurement settings

MPS in quantum state tomography

Data
Tomographic 
knowledgeExperiment



 Measure unknown quantum state of 3 spins

 Requires 63 measurement settings

MPS in quantum state tomography

Data
Tomographic 
knowledgeExperiment



 Measure unknown quantum state of 8 spins

 Requires 65535 measurement settings

MPS in quantum state tomography

Data
Tomographic 
knowledgeExperiment



 Measure unknown quantum state of 20 spins

 Requires 1099511627775 measurement settings

 Use matrix-product states (or compressed sensing)

MPS in quantum state tomography

Data
Tomographic 
knowledgeExperiment



Higher-dimensional tensor network states



PEPS in higher dimensions

 For a cubic lattice                for V = LD D = 2

A(k)
↵,�,�,�;j k 2 V

↵,�, �, � = 1, . . . , D

j = 1, . . . , d All tensors                  can be taken differently per site           ,  

  and



PEPS in higher dimensions

 PEPS construction

P (k) =
DX

↵,�,�,�=1

dX

j=1

A(k)
↵,�,�,�;j |jih↵,�, �, �|



Properties of PEPS

 PEPS satisfy an area law: The entanglement entropy is bounded from above by
                       for
   
 Again, if the bond dimension is large enough one can write every state as a PEPS

 Again, one can again have exponentially clustering correlations

 Interestingly, as a difference to MPS, one can construct PEPS that have algebraically
  decaying correlations in 

O(L logD) D = 2

dist(A,B)



PEPS contraction

 Transfer operator 

 Tricky: Can only approximately contract, not exactly!

 Exact contraction is in #P



Exact PEPS

 Cluster states in measurement-based computing

 Toric code Hamiltonian defined on edges (!) of a cubic lattice

    
   where           and            are the star and plaquette operators, defined as

H = �Ja
X

s

As � Jb
X

p

Bp

{As} {Bp}

As =
Y

j2s

X(j)

Bp =
Y

j2p

Z(j)



More general tensor networks

 Checklist

the tensor network should be described by polynomially many parameters,

it should be efficiently contractible, either exactly or approximately, and

the corresponding class of quantum states should be able to grasp the 
natural entanglement or correlation structure



Trees

 Take                , and think of "temporal" layersn = 2T t = 1, . . . , T



Trees

 Take                , and think of "temporal" layersn = 2T t = 1, . . . , T

Isometries

I : Cdj⌦dj ! Cdj+1



Multi-scale entanglement renormalisation

 Take                , and think of "temporal" layersn = 2T t = 1, . . . , T



Multi-scale entanglement renormalisation

 Take                , and think of "temporal" layersn = 2T t = 1, . . . , T

Disentanglers

U 2 U(d2j )



Multi-scale entanglement renormalisation

 Causal cone leads to efficient contraction



Multi-scale entanglement renormalisation

 This idea works in any dimension

 It also works for fermions

 Nice connection to AdS-cft

 Can be proven to be efficiently contractible PEPS



Lessons



Lessons

 Exciting field of research!

 Good for numerical and analytical studies

 For two dimensions, full potential is yet to be explored

Many natural quantum lattice models have ground states that are little, in 
fact very little, entangled in a precise sense. This shows that `nature is 
lurking in some small corner of Hilbert space', one that can be essentially 
efficiently parametrized. This basic yet fundamental insight allows for a 
plethora of new methods for the numerical simulation of quantum lattice 
models using tensor network states, as well as a novel toolbox to 
analytically study such systems

 Again :)



Advertisement


