Path Integral Methods for Continuum
Quantum Systems
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e Imaginary time path integrals
e Path integrals for bosons
e Restricted path integral method for fermions
e Exchange of localized particles
e Examples:
— Liquid “He and 3He: superfluids
- Solid 4He and 3He : supersolid & magnetic order



Liquid helium
the prototypic quantum fluid
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e A helium atom is an elementary _
particle. A weakly interacting
hard sphere. First electronic
excitation is 230,000 K.

e Interatomic potential is known S\
more accurately than any other P =

: 5 4Jl..5

atom because electronic -
eXCitati O n S a re SO h ig h . FIG. 1. The semiempirical pair potential between two helium

atoms: solid line, Aziz et al. (1992); dashed line, Lennard-
Jones 6-12 potential with € = 10.22 K and o = 2.556 A.
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eTwo isotopes:
¢ 3He (fermion: antisymmetric trial function, spin 1/2)
e 4He (boson: symmetric trial function, spin zero)



Helium phase diagram

eBecause interaction is so weak
helium does not crystallize at low
temperatures. Quantum exchange
effects are important

eBoth isotopes are quantum fluids
and become superfluids below a
critical temperature.

*One of the goals of computer
simulation is to understand these
states, and see how they differ from
classical liquids starting from non-
relativistic Hamiltonian:
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FIG. 2. The phase diagram of *He.



Imaginary Time Path Integrals

PHYSICAL REVIEW

oA journal of experimental and theoretical physics established by E. L. Nichols in 1893
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Atomic Theory of the a Transition in Helium
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It is shown from first principles that, in spitc of the large interatomic forces, liquid He* should exhibit a
traasition aralogous to the transition in an ideal Bose-Einstein gas. The exact partition function is written
as an integral over trajectories, using the space-time approach to quantum mechanics. It is next argued
that the motion of one atom through the others is not opposed by a potential barriee because the others
may move out of the way. This just increases the cffective inertia of the moving atom. This permits a
simpler form to be written for the partition function. A rough analysis of this form shows the existence of a
transition, but of the tkird ordcr. Tt is possible that a more complete analysis would show that the transiiion
impliad by the simblitied partstion iunction is actually like the experimental one.



The thermal density matrix

Find exact many-body
eigenstates of H.

Probability of
occupying state a is

exp(-BE,)

All equilibrium
properties can be
calculated in terms of
thermal o-d density
matrix

Convolution theorem
relates high
temperature to lower
temperature.

H¢ =E. ¢
P(R; ) = E\qﬁ (R)| e p=1/kr

p, =e’" operator notation

off-diagonal density matrix:

P(R.R;B) =Y 4, (R, (R)e™""

O(R,R'", ) =0 (without statistics)
IO(RlﬂRz;/))I + /3)2) =
:de'/O(RlaR';ﬁl)p(R'aRz;/))Z)

or with operators; ¢ /1" = At g7 PH



Notation

Hamiltonian [:[ — f + I}
Total potential energy I} — V(R) — ZV(V;])

N i<J
Kinetic energy _/’LZ V2 where 1 = 2h_2
l m
i=1

Individual coordinate of a particle r.
All 3N coordinates R= (ry,r5, .... Iy)



PIMC Simulations

e We do Classical Monte Carlo simulations to evaluate
averages such as:

_ 1 -BV(R)
<V>=- [dRV (R)e

p =1/(k,T)
e Quantum mechanically for T>0, we need both to

generate the distribution and do the average:
1
=— [dRV(R)p(R;
<V>=— [dRV( )p(R: )
0 (R; /3) = diagonal density matrix

e Simulation is possible since the density matrix is
positive.



Trotter’ s formula (1959)

e We can use the effects of operators /3 _ o BT

separately as long as we take small

enough time steps. A : T —1
g p p:hmn%[e T, TV}

n is number of time slices.
T is the “time-step”

e We now have to evaluate the density matrix for potential and
kinetic matrices by themselves:

: A =3/2 () /42
e Do by FT s <7" e—TT I/">:(47Z-2¢T) e (7” V) T

e Vis “diagonal” ~ e
ﬁr e r'> — 5(7‘ - 7")6 )
e FError at finite n comes from commutator

‘L’2
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Using this for the density matrix.

e We sample the distribution:

M M
- E S(R1 ’Ri+1 ;T) - E S(R1 9Ri+1 ;‘L’)
i=1

e’ /| Z where Z=de1...dRMe =

Where the “primitive” link action is:

2
S(R,,R,;1) = —37N1n(47r}w) + (R°4;R1) + %[V(RO) + V(Rl)]
T

e Similar to a classical integrand where each particle
turns into a “polymer.”

- K.E. is spring term holding polymer together.
— P.E. is inter-polymer potential.
e Trace implies R,=R. ., = closed or ring polymers



“Distinguishable” particles

e Each atom is a ring
polymer; an exact
representation of a
quantum wavepacket
in imaginary time.

e Trace picture of 2D .~
helium. The dots =
represent the “start” »
of the path. (but all
points are equivalent)

e The lower the real
temperature, the
longer the “string”
and the more spread
out the wavepacket.
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Main Numerical Issues of PIMC

e How to choose the action. We don’t have to use the
primitive form. Higher order forms cut down on the
number of slices by a factor of 10. We can solve the
2-body problem exactly.

e How to sample the paths and the permutations.
Single slice moves are too slow. We move several
slices at once. Permutation moves are made by
exchanging 2 or more endpoints.

e How to calculate properties. There are often several
ways of calculating properties such as the energy.

If you use the simplest algorithm, your code will run
100s or 1000s of times slower than necessary.

Calculations of 1000 He atoms can be done on a
laptop-- if you are patient.
Details see: RMP 67, 279 1995.



PIMC Sampling considerations

e Metropolis Monte Carlo that moves a
single variable is too slow and will not

generate permutations. & i

e We need to move many time slices
together

e Key concept of sampling is how to
sample a “bridge”: construct a path —
starting at R, and ending at R..

e How do we sample R;,,? GUIDING
RULE. Probability is:
R,)

<RO ‘e—l‘H/z Rt/2><Rt/2 ‘e—tH/Z
(Ryle™™|R,)

e Do an entire path by recursion from

this formula.

e Worm algorithms (sampling in space
of open paths) can be more efficient.

P(R,,) =




How to sample a single slice.

pdf of the midpoint of the
bridge:(a pdf because it is
positive, and integrates to 1)

For free particles this is easy-
a Gaussian distribution

PROVE: product of 2 Gaussians

is a Gaussian.

Interaction reduces P(R) in
regions where spectator
atoms are.

Better is correlated sampling:
we add a bias given by
derivatives of the potential
(for justification see RMP pg
326)

Sampling potential U, is a
smoothed version of the pair
action.

k) <Ro‘e"H/2 Rﬁ2><Rﬂ2 e~ Rt>
2 <RO e RZ>

R, 2(R +R)+7

o =At/2= <77 >

R, (R +R)+ﬂ,tVU( R )+n

=2

o =At/21+(A)PVVU (R (R =(11)
U _(R) =sampling potential




Bisection method

1. Select time slices

2. Select permutation
from possible pairs,
triplets, from:

O(R, PR, 4T)

3. Sample midpoints '<

4. Bisect again, until
lowest level

5. Accept or reject entire
move




Improved Action

oIf we make better actions, we can drastically cut
down on the number of time slices.

eThis saves lots of time, because the number of
variables to integrate over is reduced

ebut also because the correlation time of the walk is
reduced since “polymers” are less entangled

ePossible approaches to better actions:
—Harmonic approximation
—-Semi-classical approximation (WKB)
—Cumulant approximation
—Pair-product approximation

eImproved actions are also used in lattice gauge
theory: the “perfect action.”



Calculating properties

e Procedure is simple: write down observable:

dedR'<R O R'><R‘e'ﬁﬁ ‘R'>

<0 >= Z
e Expand density matrix into a “path”:

R >>
path average

<0 >= <<O(Rk)>> for "diagonal operators

path average

<O>=<<Ré

e Density, density-density, .... the potential
energy are diagonal operators. Just take
average values as you would classically.

e All time slices are the same - can use all for
averages.



Calculation of Energy

e Thermodynamic estimator' differentiate partition function

b _dZ de [dS] <dS>
ZdB 7 dp| \dr/,,

dS du 3N_(R—R')
dr dr 2t 4T
Potential n*NI-KE spring energy

Problem: variance diverges as small time step.
e Virial Estimator: differentiate in “internal coordinates”
does not diverge at small time steps (Herman, Berne)

virial — dU 3N (R C) V U
dt 2/3’ 27
/ t

Potential NI-KE deviation from centroid .force



Quantum statistics

For qguantum many-body problems, not all states are allowed: allowed
are totally symmetric or antisymmetric. Statistics are the origin of
BEC, superfluidity, lambda transition.

Use permutation operator to project out the correct states:

Pf(R)= 2 Lf(PR)

M
-> SR, R

Z = ZN,de dR e =

Means the path closes on itself with a permutation. R;=PR,,,
Too many permutations to sum over; we must sample them.

PIMC task: sample path { Ry,R,,...Ry and P} with Metropolis Monte
Carlo (MCMC) using “action”, S, to accept/reject.

1+1)



Exchange picture

Average by
sampling over all
paths and over
connections.

Trial moves involve
reconnecting paths
differently.

At the superfluid
transition a
“macroscopic”
permutation
appears.

This is reflection of
bose condensation
within PIMC.
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Path Integral explanation of Boson
superfluidity

Exchange can occur when thermal wavelength is greater
than interparticle spacin
P P d kB T Sh2 IOZ/d /m

Localization in a solid or glass can prevent exchange.

Macroscopic exchange (long permutation cycles) is the
underlying phenomena leading to:

- Phase transition: bump in specific heat: entropy of
long cycles

— Superfluidity winding paths

— Offdiagonal long range order--momentum
condensation separation of cut ends

- Absence of excitations (gaps)

Some systems exhibit some but not all of these
features.

Helium is not the only superfluid. (2001 Nobel Prize for
BEC)



ENERGY SPECIFIC HEAT

Bose statistics have a small e Characteristic A shape
effect on the energy when permutations
Below 1.5K “He is in the become macroscopic

ground state.

e Finite size effects cause
rounding above transition
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Kinetic term becomes smaller because N N. Springs stretched more.

<
cycle



Superfluidity and PIMC

rotating disks:
Andronikashvili’ s expt (1946)

“He

o We define superfluidity as a linear response to a velocity perturbation
(the energy to rotate the system) Landau definition.

Jo, I dF —
s —]1—— = + =
0 IC da)z o pS pN p
e To evaluate with Path Integrals, we use the Hamiltonian in rotating
frame: A A A
H =H,—owL

1 /" : : @ 3
L P far L™ L, efH°>
p Ic 0

o, 2m (Al)
0 - B Al A = signed area of imaginary-time paths




Winding numbers in
periodic boundary conditions

Distort annulus

. YO dr ()
The area becomes the winding W = Efdt ’
(average center of mass velocity) =10 dt
The superfluid density is now estimated as: 2
p. (")
0  2ABN

Exact linear response formula. Analogous to relation between
X ~<M2> for the Ising model.

Relates topological property of paths to dynamical response.
Explains why superfluid is “protected.”

Imaginary time dynamics is related to real time response.

How the paths are connected is more important than static
correlations.



Bose condensation

BEC is the macroscopic occupation of a single quantum state
(e.g. momentum distribution in the bulk liquid).

n, = f 20V exp(—ik(r —))n(r,s)

The one particle density matrix is defined in terms of open
paths: %4 ‘
n(r,s) =—[dr,..dr, <r, r..ry e
o)

We cannot calculate n(r,s) on the diagonal. We need one
open path, which can then exchange with others.

Condensate fraction is probability of the ends being widely
separated versus localized. ODLRO (off-diagonal long range
order) (The FT of a constant is a delta function.)

The condensate fraction gives the linear response of the
system to another superfluid.

s,rz...rN>



Single particle density matrix

n(r)
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“Direct” Fermion Path Integrals

e Path integrals map quantum mechanics into a system of cross-

linking closed “polymers. 4 quantum paths

E S(RI R1+1 )

N!
Z = “>de dR e 7 g—R

p=
Ro= PRM, P permutation,

S(R;, R, ,) is “boltzmannon action”

e Bosons are easy: simply sample P.
e Fermions: sample the “action” and carry (-1)? as a weight.
e Observable is even P - odd P. scales exponentially in N and T-1!

CPUtime o g 2e?NFr=Tel/ksT



Fermion variance

Compute a fermion observable by sampling the boson
probability and takinggthe sign as a weight

o(P)O(R P
(0), 2P0, o(p) - (-1

(o(P)),
The variance of O for this choice can be separated into
a bosonic and fermionic contribution.

0,(0) =1, (0) [Z—]

ZF

The fermion efficiency is

2 2
E= & _ M, -M_ — o BN (up-tig)
Z, M

Big problem once N becomes large OR temperature
becomes low-precisely when fermi statistics matter.



The Sign Problem

The expression for Fermi particles, such as He?, is also easily written down.
However, in the case of liquid He?, the effect of the potential is very hard to evaluate
quantitatively in an accurate manner. The reason for this is that the contribution of a
cycle to the sum over permutations is either positive or negative depending on
whether the cycle has an odd or even number of atoms in its length L. At very low
temperature, the contributions of cycles such as L=51 and L=52 are very nearly
equal but opposite in sign, and therefore they very nearly cancel. It is necessary to
compute the difference between such terms, and this requires very careful
calculation of each term separately. It is very difficult to sum an alternating series of
large terms which are decreasing slowly in magnitude when a precise analytic
formula for each term is not available. Progress could be made in this problem if it
were possible to arrange the mathematics describing a Fermi system in a way that
corresponds to a sum of positive terms. Some such schemes have been tried, but the
resulting terms appear to be much too hard to evaluate even qualitatively.

The (explanation) of the superconducting state was first answered in a convincing
way by Bardeen, Cooper, and Schrieffer. The path integral approach played no part
in their analysis, and in fact has never proved useful for degenerate Fermi systems.

Feynman and Hibbs,1965.



Fixed-Node method with PIMC

e Get rid of negative walks by canceling them with positive
walks. We can do this if we know where the density matrix

changes sign. Restrict walks to those that stay on the
same side of the node.

e Fixed-node identity. Gives exact solution if we know the
places where the density matrix changes sign: the nodes.

| :
Pr(Ry, R f) =— E (-D" f the_S(R(t)) with R,=PR,
N! P O (R ,R;t)>0
e C(Classical correspondence exists!!

e Problem: fermion density matrix appears on both sides of
the equation. We need nodes to find the density matrix.

e But still useful approach. (In classical world we don’t know
V(R).)



Proof of the fixed node method

The density matrix satisfies the Bloch
equation with initial conditions.
1

00(R,t P

PR, )=/1V2p(R,t)-V(R)p(R,t) ,O(R,O)=—E(—1) S(R-PR,)
ot N! 4%

One can use more general boundary

conditions, not only initial conditions,

because solution at the interior is uniquely

determined by the exterior-just like the

equivalent electrostatic problem.

Suppose someone told us the surfaces where

the density matrix vanishes (the nodes). Use
them as boundary conditions.

Putting an infinite repulsive potential at the
barrier will enforce the boundary condition.

Returning to PI's, any walk trying to cross
the nodes will be killed.

This means that we just restrict path
integrals to stay in one region. neg

neg




Ortho-para H, example

In many-body systems it is hard to visualize statistics.

e The simplest example of the effect of statistics is the H,
molecule in electronic ground state.

Protons are fermions-must be antisymmetric.

Spins symmetric (M), spatial wf antisymmetric (ortho) “fermions”
Spins antisymmetric (- M), spatial wf symmetic (para) “bosons”
Non symmetrical case (HD) “boltzmannons”

AII 3 cases appear in nature!
e (o to relative coordinates: r= ry-r,

e Assume the bond length is fixed |r|=a. Paths are on surface of
sphere of radius a.

PIMC task is to integrate over such paths with given symmetries.

For a single molecule there is no potential term, a “ring polymer”
trapped on the surface of a sphere.

WwN = e



Paths on a sphere

. “boltzmannons”Ring
polymers on sphere O(r =r)

. “bosons” 2 types of paths
allowed. O(r =2 r) + O(r = -r)

. fermions” 2 types of paths
allowed O(r = r) - O(r = -r)
Low efficiency as

E = g PUEED)




Restricted paths for ortho H,

Fix origin of path: the reference point.

Only allow points on path with a positive
density matrix. paths staying in the
northern hemisphere: r(t)-r(0)>0

Clearly negative paths are thrown out.

They have cancelled against positive
paths which went south and then came
back north to close.

The symmetrical rule in “t”: r(t)-r(t’ )>0
Is incorrect.

Spherical symmetry is restored by
averaging over the reference point: the
north pole can be anywhere.

Can do many H, the same way.

Ortho H, is much more orientable than
either HD or para H..

S N




Nodal Properties

If we know the sign of the exact density matrix(the nodes), we
can solve the fermion problem with the fixed-node method.

e If p(R) is real, nodes are p(R)=0 where R is the 3N
dimensional vector.

e Nodes are a 3N-1 dimensional surface. (Do not confuse with
single particle orbital nodes!)

e Coincidence points r; = r; are 3N-3 dimensional hyper-planes

e In 1 spatial dimension these “points” exhaust the nodes.
fermion problem is easy to solve in 1D with the “no crossing
rule.”

e Coincidence points (and other symmetries) only constrain
nodes in higher dimensions, they do not determine them.

e The nodal surfaces define nodal volumes. How many nodal
volumes are there? Conjecture: there are typically only 2
different volumes (+ and -) except in 1D. (but only
demonstrated for free particles.)

e At high T, nodes are free particle-like, Vornoi polyhedra.




For a density matrix

2

12

-L/2

o

L/2




RPIMC with approximate nodes

In almost all cases, we do not know the “nodal”
surfaces.

We must make an an ansatz.

This means we get a fermion density matrix (function
with the right symmetry) which satisfies the Bloch
equation at all points except at the node.

That is, it has all the exact “bosonic” correlation

There will be a derivative mismatch across the nodal
surface unless nodes are correct.

In many cases, there is a free energy bound. Proved at
high temperature and at zero temperature and when
energy is always lower.

Maybe one can find the best nodes using the variational
principle. (variational density matrix approach)



Fermion superfluidity

Liquid 3He becomes superfluid at very low temperatures
(T, ~ 1mK).

With the exact nodal restriction this must also happen
within RPIMC, because we can calculate the free

energy.
What happens to the paths at this phase transition?

SPECULATION: there is a “Cooper” pairing of up and
down spin exchanges, similar to a polymer blend

MH
M

Not tried in 3He because of formidable practical
difficulties (length, temperature scale) and lack of
knowledge of nodal topology required.



Thouless theory of magnetic order

At low temperature there are very
few defects, phonons, etc.

The many body wavefunction has
N! peaks, corresponding to possible
electron relabelings.

Expand exact wavefunction in
terms of localized wavefunctions.

System remains in one peak, then
tunnels to another, very rarely.

Dominant tunneling rates are few
particle cyclic exchanges.

Exchange frequencies (Jp)
determine the magnetic order.

The resulting Hamiltonian is:

H = thonon - E (_l)p ‘]pj5
p

Unimportant at low temperatures



Solid 3He

Exchanges of 2,3,4,5 and 6 particles are important because of
Metro effect.

Large cancellation of effects of various exchanges leads to a
frustrated broken symmetry ground state (u2d2).

Main problem with MEM: there are too many parameters! But
if they are determined with PIMC, they are no longer
parameters!

We have calculated (Ceperiey & Jacucci PRL 58, 1648, 1987)
exchange frequencies in bcc and hcp 3He for 2 thru 6 particle
exchanges.

PIMC gives convincing support for the empirical multiple
exchange model. (Roger, Delrieu and Hetherington)

Agrees with experiment measurements on magnetic
susceptibility, specific heat, magnetic field effects, ....



Path Integral Method to
determine exchange frequency

We make a path extending from Z to PZ and
evaluate the change in the action. Z=perfect

crystal lattice. ANNSSARIAPAGPSRASY S
We estimate the ratio: NN
0.05) e @003 | gt
f,(B)==" = tanh(J, (/5 - f,)) il ainsenmned I
O (p)

Imaginary time W

0,(B) = <Z‘eﬁ7’ ‘PZ>

X is a “reaction coordinate” for the exchange.
Jp is the imaginary time tunneling rate.

By is the width in imaginary time of the
“instanton.”

How can we calculate a “free energy difference?”:
map paths from exchange to non-exchange
(Bennett’s method) and estimate the slope.



Exchange frequencies in bcc 3He

TABLE I. Calculated exchange frequencies (in pK) in bee *He at two densities with the statistical
error in % next to it. The density (in cc/mole) is shown at the top of the column. The exchange
notation gives the set of p(p — 1)/2 pair distances among the p atoms exchanging, where 1 is a
nearest neighbor, 2 a next-nearest neighbor, etc. The first set of numbers specifies the distances of
adjacent atoms on the cycle, the next set the second neighbors, etc. Thus the planar and folded
exchanges are both nearest-neighbor four-body exchanges, but differ in the distance between the
second and fourth atoms of the exchange.

P Exchange Name 20.07 24.12
2 (11) nmn 13.8 ' 5% 453 35 3%
(22) nnn 1.0 6% 62 ™%
3 (112) : 1.8 6% 182 140 5%
(113) h.3 15%
4 (1%; 23) planar 9.8 ™ 250 300 6%
(1%;22) folded 0.45 10% 32 11%
(1122;31) diamond 6 25%
(1212;11) cight 0.5 45%
(1212;14) para 11 30%
(2%;33) square 1.9 30%
5 (1%2;52341) planar 5.3 15%
6 (1%; 3% 4%) crown 34 22%
(1%;123%417) planar 10 10%

From: DMC, Jacucci PRL 58, 1648(1987)




Supersolid

Will solid 4He be a superfluid if we go to low enough T?

NATURE 2220—3/12/2003—VBICKNELL—89739

Ring exchange frequencies in

Probable observation of a

supersolid helium phase

E. Kim & M. H. W. Chan

Department of Physics, The Pennsylvania State University, University Park, - . . 4

Pennsylvania 16802, USA TABLE II. Calculated exchange frequencies in hcp “He at a
When liquid “He is cooled below 2.176 K, it undergoes a phase molar volume of 21.04 cc. The notation of the exchange is

transition—Bose-Einstein condensation—and becomes a super- from Roger (1 984) .
fluid with zero viscosity'. Once in such a state, it can flow without

fli.ssi.pati'ofl even thro'ugh pores of atomic .dimensi.on% Althm}g.h P Name J ( “K) % error

it is intuitive to associate superflow only with the liquid phase?, it

has been proposed theoretically’~ that superflow can also occur 2 nn 3.2 13%

in the solid phase of *He. Owing to quantum mechanical nn' 3.4 13%

fluctuations, delocalized vacancies and defects are expected to

be present in crystalline solid ‘He, even in the limit of zero 3 T 2.3 : 12%

temperature. These zero-point vacancies can in principle allow T 0.5 13%

the appearance of superfluidity in the solid**. However, in spite of T 2.3 12%
6 < ) . (4]

many attempts®, such a ‘supersolid’ phase has yet to be observed i

in bulk solid *“He. Here we report torsional oscillator measure- 4 K ' 1.4 20%

ments on solid helium confined in a porous medium, a configura-
tion that is likely to be more heavily populated with vacancies
than bulk helium. We find an abrupt drop in the rotational
inertia® of the confined solid below a certain critical temperature.
The most likely interpretation of the inertia drop is entry into the
supersolid phase. If confirmed, our results show that all three
states of matter—gas’, liquid' and solid—can undergo Bose-

Finctoin randoncatian




How can we have a

supersolid? Ps _ lim

We would need: 0O

m

YU h’N 4

Pop <P <Jp

Local loops have no winding
(do not transport mass)

Need frequent long exchange

Seems to require unbound
vacancies and interstitials.

BEC would also require
delocalized paths.

PIMC E, . ~16K
Pederiva et al find E,_. ~10K.

50 — E
40 |-
S
~ 30
<
g
[ES)
a
20
10
[ 1 1 1 1 1 [ (]
0.028 0.03 0.032
p(A-3)

FIG. 1. Vacancy formation energy AFE,,. vs reduced density.
Solid triangles: data from Ref. 3, open squares: variational esti-
mates for the fcc phase; filled squares: for the hcp phase; open
circle: for the bee phase. Stars: formation energy of a static vacancy
[see Eq. (10) in text].



Calculation of density matrix of solid helium
Clark & DMC cond-mat/0512547
Boninsegni, Prokof’ev & Svistunov cond-mat/0512103

n(r) from PIMC gets very
small at large . No BEC

Oscillations are due to " ' ' ' ' T
lattice effects 0 .
Separating 2 ends costs a - ]
constant “energy” per \ )
unit length (string | \ _
tension). 0 B -
If you pull the string too 10 .
hard, you create vacancy- i basal plane —>—"
interstitial pairs.

~

Can you have a superfluid
even if there is no BEC?



Winding

Winding exchanges are much
more probable because they

are straight.

PIMC exchange frequencies in
the basal plane decrease

exponentially

J =J,exp [—aLp] a=27

Consider exchanges with

various angles

Coordination number in hcp
lattice is 12; 11=exp(2.4)
Can this compensate for the
exponential drop?

To find out, we did
calculations of 50 different
exchanges in solid 4He with

4<|L<9.
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Phase diagram of lattice model
DMC & Bernu PRL 93, 155303 (2004): cond mat/0409336

L

Ring exchange model with _aLp_a.E”COS4(8k/2)
parameters from fit, is not J,=Jye =
a supersolid

o | | | | | | |
Probability of long - :
exchanges decreases 8 l
faster than number of a 4He |
polygons increases el ’ -

- / —
Increasing the density © ° [ +B0b ]
. : I ]
makes it worse! - b5k ]
4 - —
_ super | normal .
| | | l | | | l | |
0 2 4
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Dictionary of the Quantum-Classical Isomorphism

Attention: some
words have
opposite meanings.

“fermion
dictionary ”?
1

Quantum

Classical

Bose condensation

Delocalization of ends

Boson statistics

Joining of polymers

Exchange frequency

Free energy to link
polymers

Free energy

Free energy

Imaginary velocity

Bond vector

Kinetic energy

Negative spring energy

Momentum distribution

FT of end-end
distribution

Particle

Ring polymer

Potential energy

Iso-time potential

Superfluid state

Macroscopic polymer

Temperature

Polymer length

Pauli Principle

Restricted Paths

Cooper Pairing

Paired Fermion Paths

Fermi Liquid

Winding restricted paths

Insulator

Nonexchanging paths




