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14.2 David M. Ceperley

This lecture gives a brief overview of the path integral picture of degenerate quantum systems.

The path integral method is explicitly formulated at non-zero temperature. Including effects of

temperature in calculations is important because many, if not most, measurements and practical

applications involve significant thermal effects. One might think that to do calculations at a

non-zero temperature, we would have to explicitly sum over excited states. Such a summation

would be difficult to accomplish once the temperature is above the energy gap because there

are so many possible excitations in a many-body system. As we will see, path integral methods

do not require an explicit sum over excitations. As an added bonus, they provide an interesting

and enlightening window through which to view quantum systems. For fermion systems we

encounter, however, the sign problem. The fixed-node approximation can be used to solve it.

We first start by introducing imaginary time path integrals for distinguishable particles, i.e.,

particles without Bose or Fermi statistics. We then discuss the generalization to Bose and

Fermi statistics, and consider how this applies to superfluid bosonic systems and to exchange

in quantum crystals (solid 3He and super-solid 4He). I am only going to discuss the continuum

models; many other authors have discussed the equivalent methods for lattice models. Much

of the material comes from a chapter in the book Interacting Electrons to be published by

Cambridge University Press [1].

1 The path integral formalism

To introduce path integrals, we first review properties of the thermal N-body density matrix.

The coordinate space representation is defined in terms of the exact N-body eigenstates Φi(R)

and energies Ei

ρ(R,R′; β) =
∑

i

Φ∗
i (R)e−βEiΦi(R

′). (1)

Here R = {r1, . . . rN} is the 3N dimensional vector of particle coordinates. In addition to the

inverse temperature β = 1/(kBT ), the N-body density matrix depends on two sets of N-body

coordinates, R and R′. It is “off-diagonal” if R 6= R′. The partition function is its trace, the

integral over the diagonal density matrix1

Z(β) =

∫

dRρ(R,R; β) =
∑

i

e−βEi. (2)

Thermodynamic properties are obtained as

〈O〉 = 1

Z(β)

∫

dRdR′ 〈R|O|R′〉ρ(R′, R; β) (3)

or by differentiating the partition function.

The operator identity exp(−βH) = [exp(−∆τH)]M where ∆τ = β/M , relates the density

matrix at a temperature kB/∆τ to the density matrix at a temperature M times lower. Writing

1This can include tracing over spin or particle number depending on the ensemble.
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this identity in the coordinate representation gives

ρ(R0, RM , β) =

∫

dR1 . . . dRM−1

M
∏

t=1

ρ(Rt−1, Rt;∆τ). (4)

The sequence of intermediate points {R1, R2, . . . , RM−1} is the path, and ∆τ is the time step.

Trotter’s formula [2] is a rigorous mathematical result that underpins quantum Monte Carlo:

Consider two operators, T̂ and V̂ . Under general conditions2 Trotter’s formula holds

e−β(T̂+V̂ ) = lim
n→∞

(

e−βT̂ /ne−βV̂ /n
)n

. (5)

An intuitive justification of this formula is to note that the corrections to an individual term are

proportional to the commutator [T̂ /n, V̂ /n] which scales as O(1/n2). The error of the right

hand side of Eq. (5) will contain n such corrections so the total error is O(1/n) and vanishes

as n → ∞. Now take V̂ and T̂ to be the potential and kinetic3 operators and evaluate them in

coordinate space

〈R|e−∆τV̂ |R′〉 = exp(−∆τV (R)) δ(R−R′) (6)

〈R|e−∆τT̂ |R′〉 = (4λπ∆τ)−3N/2 exp
(

−(R− R′)2/(4λ∆τ)
)

. (7)

Note that we have set ∆τ = β/n and λ ≡ ~
2/2m. Putting Eq. (6) and (7) together and

integrating over the intermediate coordinate4 we obtain the so-called “primitive approximation”

to the action

SP (R,R′;∆τ) = − ln ρ(R,R′;∆τ) ≈ 3N

2
ln(4πλ∆τ) +

(R− R′)2

4λ∆τ
+∆τV (R′) . (8)

Substituting the action, Eq. (8), into the path integral expression, Eq. (4), the partition function

is given by

ZD(β) = lim
M→∞

∫

dR1 . . . dRM exp

[

−
M
∑

t=1

SP (Rt−1, Rt; β/M)

]

(9)

with the condition R0 = RM to obtain the trace. In this formula, Boltzmann or distinguishable

particle statistics are assumed and its partition function is written as ZD. We will consider Bose

and Fermi statistics in the next section.

If the potential energy is real, the integrand of Eq. (9) is non-negative and can thus be interpreted

as a classical system with an effective classical potential given by the sum in its exponent.

This defines an exact mapping of a quantum system onto a classical equilibrium system: the

quantum system of N particles in M time slices becomes an NM-particle classical system. The

classical system is composed of N “polymers” each having M “beads” with harmonic springs

2In particular if T̂ is the non-relativistic kinetic operator and V the Coulomb interaction.
3The kinetic Green’s function has to be modified in periodic boundary conditions to make it periodic, but these

effects are negligible when ∆τ < L2.
4This form is not symmetric with respect to R and R’. One can make better symmetric approximations, but the

“primitive” form defined here is sufficient for convergence.
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Fig. 1: Typical paths of six quantum particles in a 2D periodic square. The large black dots rep-

resent the positions of the particles at the start of their paths. The paths have been smoothed by

zeroing their short wavelength Fourier components since a picture with all Fourier components

would be a space-filling fractal curve, see ref. [3]. The left panel is the identity permutation,

the right panel is a three particle permutation with a path “winding” in the horizontal direction

across the periodic boundaries as indicated by the inner dotted square.

between neighboring beads (the second term in Eq. (8)) and an inter-polymer potential between

different polymers (the third term in Eq. (8)). To calculate the partition function, and most

thermodynamic properties, the polymers must close on themselves. The left panel of Fig. 1

shows a typical example of such paths. A lower temperature means a longer polymer, i.e., with

more beads. Note that an individual polymer does not interact with itself except via the springs,

and the inter-polymer potential (the third term in Eq. (8)) is not like for a real polymer: it only

interacts with beads with the same path integral time-slice “index”.

To evaluate properties of the quantum system, we must perform the 3NM dimensional inte-

gral of Eq. (9) over all paths using either a generalized Metropolis Monte Carlo or molecular

dynamics simulation. To obtain exact results within the statistical sampling error, we must cal-

culate the results for several values of M and extrapolate to M → ∞. In the following we use

the notation for coordinates: Rt = {r1,t, r2,t . . . rN,t}: the first index is the particle index, the

second index is the time-slice index.

For efficient computation, we need to improve the sampling and the action so as to reduce

the needed number of time slices, as described in detail in Ref. [3]. To improve the action, it

is advisable to use the pair action, i.e., the numerical solution to the 2-body problem [3]. For

example, the divergence of the Coulomb potential when two unlike charges approach each other

can wreak havoc on the stability of the algorithm since paths can fall into the region at small

rij and never escape. A simple approach is to cut off the potential for rij < ∆τ
1

2 , however, it

is much better to use the exact two-body density matrix since it does not diverge as the charges

approach each other, and its derivative obeys the cusp condition.
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To compute the internal energy there are several approaches [3]. Differentiating the partition

function with respect to temperature gives the thermodynamic form. The kinetic energy estima-

tor is

K =
3N

2∆τ
−
∑

i,t

〈

(ri,t − rr,t−1)
2

4λ∆τ 2

〉

. (10)

The second term is the negative spring energy of the classical polymer system but has the

disadvantage that it diverges at small ∆τ as ∆τ−2, causing loss of efficiency if the time-step is

extrapolated to zero. A form that has the same average value, the virial [4] estimator

K =
3NkBT

2
− 1

2

〈

N
∑

i=1

(ri,t − r̄i) · Fi,t

〉

(11)

does not have this problem. Here r̄i is the centroid position5 of particle i and Fi,t is the classical

force on particle i at time t. Note that the first term is simply the classical kinetic energy.

Quantum corrections are given in the second term and will vanish at high temperature since

|ri,t − r̄i| → 0.

To perform an efficient sampling of Eq. (9) with Metropolis Monte Carlo, one needs to use

collective moves [3] because single bead moves will make the whole procedure slow, i.e., re-

quire many steps to converge to the equilibrium distribution. For details on the path integral

molecular dynamics approach, see [5].

2 Quantum statistics with path integrals

The most interesting consequences of quantum physics, e.g., superfluidity, Bose condensa-

tion, superconductivity, Fermi liquid behavior, come from the Fermi or Bose statistics of the

particles. In the previous section, we did not consider particle statistics. The way to treat

statistics is quite simple: we ignore the identities of particles so that when we close the paths

in imaginary time, they can close on a permutation of themselves, i.e., RM = P̂R0 where

P̂R ≡ {rP1
, rP2

, . . . rPN
, } is a relabeling of the coordinates. To understand this pictorially,

compare the left and right panels of Fig. 1.

To show that this procedure is correct, we first note that the wavefunctions of fermions (bosons)

are antisymmetric (symmetric): their density matrix is defined by summing only over antisym-

metric (symmetric) states6 in Eq. (1). In the following, we will denote the statistics of the par-

ticles by subscripts: ρF will denote the fermion density matrix,ρB the boson density matrix, ρD
the Boltzmann (distinguishable particle) density matrix.The relabeling operator 1

N !

∑

P(±1)PP̂
projects out the states of correct symmetry. Here the upper sign (+1) is for bosons, and the

lower sign (−1) is for fermions, where (−1)P stands for the signature of the permutation: If a

permutation is made of an odd number of pair exchanges it is negative, otherwise it is positive.

5The centroid is the center of mass of a given polymer, r̄i ≡ β−1
∫ β

0
dt ri,t. See [3] for the generalization to

identical particles.
6A similar procedure can be used for other symmetries such as momentum or spin.
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We use this operator to construct the path integral expression for bosons or fermions in terms of

the Boltzmann density matrix

ρB/F (R,R′; β) =
1

N !

∑

P

(±1)PρD(P̂R,R′; β). (12)

Note that we could apply this relabeling operator to the first argument, the last argument or both;

since the particles are identical the resulting density matrix would be the same. The connection

between the Boltzmann density matrix and the bosonic or fermionic density matrix is important

because it is the Boltzmann density matrix that arises naturally from paths. Including statistics,

the path integral expression of the partition function becomes

ZB/F (β) =
1

N !

∑

P

(±1)P
∫

dR1 . . . dRM exp

(

−
M
∑

t=1

S(Rt−1, Rt;∆τ)

)

(13)

with R0 = P̂RM .

2.1 Bosons

For bosons, the integrand in Eq. (13) is positive, but for large N it is very difficult to evaluate

directly the permutation sum since it has N ! terms. However, we can enlarge the space to be

sampled in the Monte Carlo random walk by including how the paths are connected, i.e., P .

One such connection is shown on the right panel of Fig. 1. With Monte Carlo techniques, this

extra sampling does not necessarily slow down the calculation, but we need to include moves

that are ergodic in the combined space of paths and connections as discussed in Ref. [3].

A macroscopic “percolation” of the polymers (i.e., a network of connected polymers spanning

a macroscopic volume) is directly related to superfluidity [6]. Recall that any permutation can

be decomposed into permutation cycles, i.e., into 2-, 3-, ... N-body exchange cycles. Superfluid

behavior results when exchange cycles extending across a macroscopic distance appear at low

temperature as we discuss now.

One of the fundamental properties of a Bose condensed system is superfluidity: a superfluid can

flow without viscosity similiar to how a superconductor can carry a current without resistance.

The superfluid density is defined experimentally as follows: suppose the walls of a container

are moved with a small velocity V and the momentum acquired by the enclosed system in equi-

librium is measured. In a normal liquid or solid, the enclosed system will move with the walls

so that the acquired momentum will equal MV with M its total mass. However, a superfluid

can shield itself from the walls. The superfluid fraction is defined in terms of the mass not

contributing to the momentum:

ρs
ρ

= 1− P

MV
7→ 〈W2〉

2λβM
. (14)

The expression on the right is how we calculate the superfluid fraction with imaginary-time path

integrals in periodic boundary conditions [7]. In this expression we use “‘the winding number”
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of a given path defined as

W =
N
∑

i=1

1

~

∫ β

0

dtmi
dri,t
dt

. (15)

It is the number of times a path wraps around the periodic boundaries in the x, y, or z directions.

This remarkable formula relates the real-time linear response of moving the boundaries (or an

impurity) to a topological property of imaginary-time path integrals. Since the size of a path

of a single atom is its thermal de Broglie wavelength ~
√
mkBT , which is always microscopic

even at very low temperatures, the only way to have winding paths for a macroscopic cell, and,

hence a non-zero superfluid density, is to have a permutation cycle that includes on the order

of N2/3 atoms (in 3D) such that the atoms, if linked together, can stretch across a macroscopic

distance. There are interesting connections between the exchange of electrons in an insulator

and the exchanges of bosonic paths which we will touch upon in the next section.

Bose condensation is another key property of superfluids that can be interpreted with path inte-

grals. In a superfluid, a certain fraction of the particles will condense into the zero momentum

state, or in a inhomogeneous system, into a single natural orbital. To determine the single par-

ticle density matrix, we need to sample paths where one particle does not close on itself; the

two ends of an open “polymer” are free to move around the system. The single particle density

matrix is defined as

n(r, r′; β) =
1

Z

∫

dr2 . . . drN ρ(r, r2, . . . , rN , r
′, r2, . . . , rN ; β). (16)

For a homogeneous system the momentum distribution is its Fourier transform:

nk(β) =
1

(2π)3

∫

dr dr′ e−ik(r−r
′)n(r, r′; β) . (17)

For a normal, i.e., not Bose condensed, system the two ends in the single particle density matrix

remain within a thermal de Broglie wavelength, implying that its Fourier transform, the momen-

tum distribution is also localized. However, once macroscopic exchanges in the path can occur,

the two ends can separate by a macroscopic distance so that lim|r−r′|→∞ n(r, r′) → n0 > 0

implying that nk = n0 δ(k) where n0 is the condensate fraction, the number of atoms with

precisely zero momentum. The macroscopic exchange of particles is how the phase of the

wavefunction is communicated.

Using Path-Integral Montecarlo (PIMC) one can calculate equilibrium properties of many-body
4He at all temperatures both in the liquid phase above and below the superfluid transition, and

in the solid phase. For details on the path integral theory of Bose superfluids and the PIMC

calculations see ref. [3]. The worm algorithm [8] allows the sampling of a superfluid phase

to be done more efficiently, particularly for systems with more than a few hundred bosons. It

works in the grand canonical ensemble and can compute also unequal-time correlation functions

such as the one particle Green’s function in imaginary time.
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Fig. 2: Left panel: The ratio of superfluid density to total density: solid line, measured value

for bulk 4He at saturated vapour pressure; open circles, PIMC calculations with 64 atoms in

PBC; solid circles, calculations for a droplet of 64 4He atoms. Right panel: The single-particle

density matrix of 4He above and below the lambda transition at temperatures 1.18, 2.22 and 4

K (from top to bottom) .

2.2 Fermions

Suppose we do a path integral calculation of a fermion system by summing over permutations

just as for bosonic systems but including the factor (−1)P as a weight in the numerator and de-

nominator of any expectation value. If one performs an integration over a function having both

positive and negative regions with Monte Carlo, the signal-to-noise-ratio, i.e., the efficiency,

is much reduced. Doing a direct sampling of the boson paths and permutations and using the

permutational sign to estimate properties of the fermion system leads [9] to a computational

efficiency of the fermion system (ξF ) that scales as

ξF = ξBe
−2Nβ(µF−µB) , (18)

where µF (µB) is the free energy per particle of the fermion (boson) system and ξB the efficiency

of the boson system. The direct fermion method, while exact, becomes exceedingly inefficient

as Nβ = N/kBT increases – precisely when the physics becomes interesting.

2.3 Restricted path integral method

The restricted path identity (19) allows one to keep only “positive” paths at the cost of making an

uncontrolled approximation. It is the generalization of the ground state fixed-node method: the

nodes of the exact fermion density matrix give a rule for deciding which paths can contribute.7

The method is based on the identity

ρF (Rβ, R∗; β) =

∫

dR0 ρF (R0, R∗; 0)

∮

R0→Rβ∈Υ (R∗)

dRt e
−S[Rt] , (19)

7For this we need the path to be continuous. Lattice models or non-local Hamiltonians do not have continuous

trajectories so this method is not as straightforward for those systems.
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Boltzmann

Bose/Fermi

Restricted Fermi

ti
m
e

R

p12R0R0p13R0

<0
<0>0

p231R0

0

Fig. 3: Right panel: Space-time cartoon for proof of the restricted PIMC identity. The horizon-

tal axis represents the spatial coordinates, the vertical axis imaginary time. The usual boundary

conditions are delta functions at t = 0 represented as dots on the horizontal axis; positive val-

ues for even permutations (full circles) and negative values for odd permutations (open circles).

However, it is sufficient to work in the strictly positive domain (shaded), if the nodal domain

is correct. Shown are two allowed paths in this domain, one from the identity permutation,

the other from a 3-body permutation. Left panel: Depiction of path integrals for distinguish-

able ions (top), ortho- and para- hydrogen (middle) and restricted paths for ortho-hydrogen

(bottom); its reference point is the large dot.

where the subscript on the path integration means that we integrate only over paths that start

at R0, end at Rβ and are node-avoiding, i.e., for which ρF (Rt, R∗; t) 6= 0 for all 0 < t < β;

here the “reference point” R∗ defines the nodes. To prove this identity, we note that the fermion

density matrix satisfies the Bloch Equation

∂ρF (R; β)

∂β
= λ

N
∑

i=1

∇2
iρF (R; β)− V (R)ρF (R; β) (20)

with the initial conditions

ρF (R,R∗; 0) =
1

N !

∑

P

(−1)P δ(R− P̂R∗) . (21)

Hence, the path starts at a permutation, P , of the reference point, R0 = P̂R∗ and carries a

weight 1
N !
(−1)P . The solution of the Bloch equation is uniquely specified by its boundary

conditions, just like the Poisson equation in electrostatics [10]. Normally, one uses the values at

zero imaginary time, i.e., infinite temperature, as boundary conditions. We can, however, also

take the nodal surfaces: ρF (R,R∗; β) = 0 as boundary conditions as illustrated in Fig. 3: we
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want the solution of the Bloch equation that vanishes on a preselected nodal surface. We enforce

this solution by putting an infinite repulsive wall on this surface, or, equivalently, restricting the

allowed paths to remain on the interior of a given nodal domain, Υ (R∗). The solution is exact

if the assumed nodes are correct. For the diagonal elements of the density matrix, Rβ = R∗,

the contributions of all paths must be positive, hence, the sum over permutations is restricted to

even permutations.8

Calculations with restricted paths have been done on a variety of simple fermion systems. Re-

cently the energy of the homogenous electron gas throughout its phase diagram has been de-

termined. Earlier calculations have been performed [11] on liquid 3He and hot dense hydro-

gen [12–15].

The restricted path picture is a novel way of analyzing fermion systems [9, 11]. First consider

a Fermi liquid. That a Fermi liquid has exchange paths can be understood by considering

its momentum distribution, nk: By definition a Fermi liquid has a discontinuity in nk at kF .

Using properties of Fourier transforms, this implies ρ(r, r′) ∝ |r − r
′|−3 at large separations.

Such a slow decay can only come from macroscopic exchanges of even permutations. In a

superconductor with Cooper pairs of electrons, there will be paired up-spin and down-spin

macroscopic exchanges [16]. Krüger and Zaanen [17] have interpreted other quantum phase

transitions in terms of the restricted path formalism.

The problem we now face for calculation is that the unknown fermion density matrix appears

on the right-hand side of Eq. (19), since it is used to define the criterion of node-avoiding, as

well as the left-hand side. To apply the formula directly, we would have to self-consistently

determine the nodes. In practical calculations, we make an ansatz for the nodal surfaces, such

as using the nodes of the density matrix from a mean-field theory.

The reference point, R∗ plays a very special role in restricted path integrals since it restricts the

paths as illustrated in the example below. For boson or distinguishable particle path integrals,

all time slices are equivalent, but restricted paths break this time symmetry. For fermions we

can use a “ground-state” restriction that does not depend on the reference point. This can be

achieved by using an antisymmetric trial wavefunction Ψ (R) and requiring that Ψ (Rt) 6= 0

throughout the path.

3 Exchange of localized particles

We now discuss a specialized application of PIMC, namely the computation of exchange fre-

quencies between electrons localized on different lattice sites. First we discuss a simple model:

we confine a single electron to the interior of the union of two spheres as shown in Fig. 4. Be-

cause of mirror symmetry, the quantum states can be classified by parity. The splitting between

8 We have done more than simply restricting the sum over permutations to even permutations. We only take

those even permutations that also stay in the nodal domain. The reason that restriction gives the same result is that

negative paths can be paired with positive paths and canceled. The gradient of the density matrix at the node is the

flux of path and since the gradient is continuous across the node, the positive paths crossing at a given nodal point

will precisely cancel against the negative paths.
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Fig. 4: Left panel: The imaginary time path confined to the interior of two spheres (shown with

dashed lines). Right panel: the same path shown as a function of imaginary time. The electron

stays inside one sphere for a long period, until it finds the duct to the other sphere.

the lowest even and odd parity states defines the exchange frequency, J = (E1 −E0)/2 > 0. A

wavefunction, initially localized in one of the spheres, will oscillate back and forth with a fre-

quency given by J/~. Let us suppose that the splitting energy is much less than the zero-point

energy, so that higher excitations can be neglected.

Here we show how to calculate this frequency using path integrals. In Fig. 4 we show an

example of a world-line diagram of the imaginary-time paths in the double-sphere model. We

see that the electron spends a long time in a single sphere, but occasionally “tunnels”9 over to

the other sphere. The tunneling is rapid, since the wavefunction is squeezed as it passes from

one sphere to the other, costing energy.

Let us denote the coordinates of the centers of the two spheres as Z and P̂Z; the motivation for

this notation will become clear when we discuss the multi-electron generalization. Now define

fP as the ratio of the imaginary-time matrix element connecting Z to P̂Z with that connecting

Z to itself:

fP(β) =
ρD(Z, P̂Z; β)

ρD(Z,Z; β)
. (22)

If we now assume that β is large enough that only the lowest two states contribute to the density

matrix, then:

fP(β) =

{

0 if β < β0 ,

tanh(J(β − β0)) if β > β0 .
(23)

Here β0 = ln(ϕ1(Z)/φ0(Z))/J with ϕ1 and ϕ0 being the eigenstates corresponding to energies

E1 and E0. The rate in imaginary time (in units of ~) for the electron to cross from one sphere

to the other is J . In the polymer (imaginary time path integrals) language, J is related to the

free energy it takes to pull a single end of a “linear polymer” from one sphere to the other and

can be estimated with special techniques [18, 19].

9Tunnels is in quotes because we are in imaginary time, not real time. The imaginary-time transversal of the

barrier is called an “instanton” because it takes place so quickly.
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Now, let us generalize from the two-sphere model to a many-body system. We follow the theory

of Thouless [20], based on the earlier work of Dirac [21] on electronic exchange. Consider a

system of spinless electrons in a perfect crystal when the electrons are localized with a single

electron per unit cell. Because exchange is rare for localized electrons, we can label the posi-

tions of electrons in a crystalline lattice by localized Wannier orbitals: Z denotes the N-body

coordinates resulting in one such assignment of N electrons to N orbitals, P̂Z the effect of ap-

plying the permutation P̂ to that assignment. If there are N electrons and N Wannier functions,

there are N ! such assignments, so there is an N ! degeneracy of the ground state in the absence

of electron exchange. The splitting induced by tunneling between states Z and P̂Z is defined

to be 2JP as in the example above. All of the previous discussion concerning how to calculate

JP with path integrals, Eqs. (22) and (23), then applies.

Following Dirac and Heisenberg, electronic exchange couples the electron spins on different

atoms and for pair exchange results in a Heisenberg spin Hamiltonian

Ĥ = −
∑

P

JP (−1)PP̂σ = −J2

∑

(i,j)

σi · σj , (24)

where in the first summation P ranges over all N ! permutations,10 (−1)P is the sign of the

permutation, and P̂σ permutes spins. With this argument Thouless [20] showed that exchange

of an even number of spins favors antiferromagnetism while exchange of an odd number of

spins favors ferromagnetism. The second equation, the conventional Heisenberg Hamiltonian,

applies if the only exchanges allowed involve two- and three- body permutations. A clear

discussion is given by Roger [22].

PIMC calculations have been used to determine the Heisenberg exchange coefficients in the

Wigner crystals [23, 24] and in solid 3He. The PIMC method to determine the exchange fre-

quencies is much superior to one based on Projector Monte Carlo, i.e., Diffusion Monte Carlo,

since one can determine directly the terms in the underlying spin Hamiltonian and the results

are accurate even if the exchange frequencies are very small. Calculations of the exchange fre-

quencies of the 2D Wigner crystal suggest a frustrated spin liquid phase may be stable [23].

These methods have not yet been applied to realistic electronic materials.

The methods have been applied extensively to solid 3He which forms a bcc crystal. If pair

exchanges dominated, the bipartite lattice structure would order into an antiferromagnetic state.

However, experimentally the ground state is found to be in a symmetry-broken spin state with

8 atoms per unit cell. Using PIMC, we found that this structure results from a competition

between even and odd ring exchanges. As the density of the crystal is lowered near to the

melting density, it is found that long exchanges become probable (cycles of up to 10 atoms

were considered [25]). This suggests a picture for how a metal/insulator transition could occur:

as a localized system gets near the metal-insulator transition, the energy to create a vacancy-

interstitial pair goes to zero, and longer and longer ring exchange cycles become important.

Once the transition occurs, this picture of ring exchanges breaks down.

10One need only consider cyclic permutations of neighboring electrons, otherwise JP will be much smaller.

Hence we need only consider ring exchanges.
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4 PIMC calculations of supersolid helium

Recent torsional-oscillator observations by E. Kim and M.H.W. Chan on solid 4He [26], have

revived interest in the supersolid phase. In this phase, one has both long-range crystalline order

and superfluidity. Using PIMC, we examined [27] whether crystaline hcp helium, assumed to

be free of defects such as impurities and vacancies, could have a supersolid phase. One might

think that there would always be ground state defects, arising from the large quantum zero point

fluctuations. Near melting, the root-mean-square vibration about the lattice site is 30%, so that

at any instant of time, a good fraction of atoms are closer to a neighboring site than to their

home site. However, the absence of an atom from a lattice site is not sufficient for having a

supersolid; if the empty site is always accompanied by a nearby doubly occupied site, there will

be no mass current.

Path integrals give a much cleaner framework for determining whether bulk helium could be

supersolid. They can be used to compute the superfluid density and the momentum distribution

without the assumption of a trial wave function or any other uncontrolled approximation. Using

methods [18,19] developed for solid 3He described above, we calculated the exchange frequen-

cies for solid 4He and estimated how close they were to the critical value for superfluidity. The

frequencies for 2, 3, and 4 atom exchanges were very small [3], e.g., , J2 ∼ 3µK at melting

density. However, small cyclic exchanges are quite different from the long exchanges needed to

get a supersolid. Fig. 5 shows the results of calculations of the frequency of the simplest straight

line winding exchanges in the basal plane of the hcp crystal. We found that the exchange fre-

quencies decreased exponentially with the number of atoms in the exchange. Using a model for

all exchanges we concluded that in solid 4He only localized exchanges will be present and thus

it should not exhibit the property of nonclassical rotational inertia. We also computed the single

particle density matrix from Eq. 16 (see Fig. 5) and found that, since it goes exponentially to

zero at large separation, the condensate fraction will vanish. Thus, based on other PIMC calcu-

lations, we think it unlikely that the observed phenomena of Kim and Chan are due to vacancies

or 3He impurities. Recent experiments have confirmed these computational findings.

5 Lexicon of the quantum-classical isomorphism

As we have mentioned earlier, there is an exact correspondance between quantum statistical

mechanics and the classical statistical mechanics of imaginary time path integrals. There is an

exact, systematic procedure for understanding many properties of quantum systems purely in

terms of classical statistical mechanics. Note that there is a curious shift of vocabulary in going

from the quantum system to the polymer model. Scientists discussing path integrals sometimes

resemble children playing the game of “opposites,” where the child says the opposite of what

is intended (“I do not want a cookie.”) Usually the game quickly degenerates into confusion

because common language is ambiguous and not entirely logical as the opposite of a given

statement is non-unique. Discussions of path integrals should be clearer since path integrals are

based on mathematics, but the translation is complicated by several features.
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Fig. 5: Left panel: The exchange frequencies J in K versus the exchange length Lp for straight

line exchanges in the basal plane that wind around the periodic cell (see inset) [27]. Right

panel: Single particle density matrix in solid helium [28].

The same word applied to the quantum system and the classical system can mean quite different

things, e.g., it is confusing to refer to the “energy” of the polymer model or its entropy. The en-

tropy of a quantum system decreases with temperature but at low temperature, the correspond-

ing polymer system becomes more disordered. The confusion arises because the “temperature”

of the polymer model is not equal to the quantum temperature. To translate what we mean by

temperature into the polymer model we must find how β appears in the action.11 The lower

the temperature, the more beads are on the polymer. Zero temperature corresponds to infinitely

long chains.

Time is a word that can have at least three different meanings: real time in the quantum system,

the “imaginary time” of the path integrals, or the time related to how the path is moved in the

computer program. If we confuse the first two meanings of time, a word can have exactly the

opposite meaning in the quantum and polymer systems. For example, the “velocity” of a bead

is usefully defined as its displacement from one time slice to the next, divided by τ . But with

this definition atoms that are “fast” correspond to low-energy atoms because they are spread out

and their kinetic energy is small. On the other hand, particles that are trapped in a small region

have a small “velocity” and a high energy. It is possible for a single realization of a path to have

a negative kinetic energy by being spread out more than usual, but the average over all paths

must be positive. The inversion of meaning comes because path integrals are in imaginary time.

Any observable corresponding to a scalar function of coordinates maps trivially from the quan-

tum system into the polymer model. For example, the particle density is simply the average

density of the beads

〈ρ(r)〉 =
〈

N
∑

i=1

δ(r− rim)

〉

. (25)

11It is best not to see how the time step appears in the action because the time step is fixed by requiring that the

action be accurate. Hence the spring constant and the interbead potential should be fixed as temperature varies.

This means that β will be proportional to the number of time slices.
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There are often several different ways of mapping a quantum concept onto the classical system.

A concept such as superfluidity is very general and related to many quantum-mechanical ob-

servables. In a few words, superfluidity is equivalent to the presence of macroscopic polymers

in the classical model.

This aspect of figuring out different ways of calculating quantum properties in some ways re-

sembles experimental physics. The theoretical concept may be perfectly well defined, but it is

up to the ingenuity of the experimentalist to find the best way of doing the measurement. Even

what is meant by “best” is subject to debate. Many important quantities of quantum systems

are really defined as dynamical quantities, while the quantum-classical correspondence is re-

stricted to imaginary time. Often, one can reformulate the quantum property in imaginary time,

but not always. There is still much to be done in learning how to exploit the quantum-classical

correspondence. To conclude, we summarize the relationship between quantum concepts and

the classical polymer language with the following lexicon:

Bose condensation : delocalization of ends of an open polymer

Boson statistics : allowing the possibility that polymers can hook up in any possible way

Cooper pairing : paired fermion (restricted) polymers

degeneracy temperature : a condition in which polymers are dense enough and extended

enough that they touch and can exchange

density : the bead density

exchange energy : logarithm of the fraction of monomers (times kBT )

exchange frequency in a crystal : free energy to link polymers in a polymer crystal

Fermi liquid : winding fermion (restricted) polymers

free energy : free energy of a system of ring polymers

imaginary velocity : bond vector

insulator : localized exchanging polymers

kinetic energy : negative spring energy

moment of inertia : the mean-squared area of ring polymers

momentum correlation function : bond-bond correlation

momentum distribution : Fourier transform of end-end distribution

pair-correlation function : pair-correlation function between beads at the same “time”

Pauli principle : restricted polymers
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particle : ring polymer

potential energy : iso-“time” potential between beads

single particle density matrix : the end-to-end distribution of an open polymer

superfluid density : the mean-squared winding number

superfluid state : a state in which a finite fraction of polymers are hooked together in polymers

of macroscopic size

temperature :

1. inverse polymer length,

2. inverse coupling constant for the inter-polymer potential,

3. spring constant between neighboring beads

thermal wavelength : polymer extension
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