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3d Transition Metals - a problem for single-electron theory

• NiO has rocksalt structure → unit cell contains one Ni-atom ([Ar] 3d8 4s2) and one O-atom (1s2 2s2 2p4)

• Assuming strong ionicity we have O2− and Ni2+ → Ni is [Ar] 3d8
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LDA−bandstructure versus experiment

Experiment: G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2239 (1984).



The reason for the unexpected behaviour: Small radius of the transition metal 3d shell
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Taken from: D. van der Marel and G. A. Sawatzky, Phys. Rev. B 37, 10674 (1988).



The small spatial extent of the 3d shell makes the Coulomb repulsion between electrons very strong
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Up to 10eV increase in energy!

We thus need a detailed understanding of the Coulomb interaction in a partly filled atomic shell



II: Coulomb interaction between electrons in a free atom/ion



• We consider an Ni2+-ion in vacuum - it has electron configuration [Ar] 3d8

• From textbooks of atomic physics we know that d8 has the multiplets (or terms) 3F, 3P, 1G, 1D and 1S

• This is what they look like in experiment (taken from NIST database):

The splitting of the multiplets is caused by the Coulomb interaction between electrons



Coulomb interaction between electrons - Simplest guess

The simplest guess for the energy of dn would be

E[dn] ≈ n · ǫd + U ·
n(n− 1)

2
.

ǫd: Energy of the d-orbital

U: Average Coulomb energy for a pair of electrons

For a nondegenerate orbital we have

|0〉 | ↑〉 | ↓〉 | ↑↓〉

n 0 1 1 2

EC 0 0 0 U

This is equivalent to H = Un↑n↓ - see Hubbard model or Anderson model

However, for a degenerate orbital there are additional aspects.....



Coulomb repulsion between electrons - Classical picture
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→Exchange of angular momentum



Exchange of angular momentum - Quantum mechanical version

m=−2 m=−1 m=0 m=1 m=2

• Electrons in a partially filled shell scatter from each other due to their Coulomb interaction

• This amounts to a redistribution of the electrons within the partially filled shell

• For Lz to be conserved the scattering electrons must ‘move along the m-ladder’ in exactly opposite ways



We take processes like this one

m=−2 m=−1 m=0 m=1 m=2m=−2 m=−1 m=0 m=1 m=2
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But not this one....
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... or this one

m=−2 m=−1 m=0 m=1 m=2m=−2 m=−1 m=0 m=1 m=2
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We take processes like this one

m=−2 m=−1 m=0 m=1 m=2m=−2 m=−1 m=0 m=1 m=2

4s

3d

3p

3s

• The states which are mixed by the Coulomb scattering are degenerate with respect to orbital energy n ǫ3d

• If we consider the orbital energy as H0, the Coulomb interaction as perturbation H1, we have the textbook

situation of degenerate 1st order perturbation theory



The textbook procedure to deal with this is as follows:

• Find all degenerate states |ν〉 of dn

• Set up the secular determinant 〈µ|H1|ν〉 - H1 is the Coulomb interaction

• Diagonalize it to obtain the 1st order energies and wave functions - these are the energies and wave

functions of the multiplets



Basis functions

As basis funtions we use atomic orbitals (x = (r, σ), r → (r,Θ, φ))

ψni,li,mi,σi
(x) = Rni,li(r) Yli,mi

(Θ, φ) δσ,σi

• ni - Principal quantum number (ni = 3 for 3d-shell)

• li - Total orbital angular momentum quantum number (li = 2 for 3d-shell)

• mi - z-component of orbital angular momentum (−li ≤ mi ≤ li)

• σi - z-component of spin σi = ±1
2

We will often use the ‘compound index’ νi

(ni, li,mi, σi) = νi

so that we write for example

ψni,li,mi,σi
(x) → ψνi(x)
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Coulomb interaction in second quantization

We pass to second quantization and introduce Fermionic creation/annihilation operators: c†νi = c†ni,li,mi,σi

The Coulomb Hamiltonian becomes (see e.g. Fetter-Walecka or Negele-Orland)

H1 =
1

2

∑

i,j,k,l

V (νi, νj, νk, νl) c†νi c
†
νj
cνk cνl,

V (ν1, ν2, ν3, ν4) =

∫

dx

∫

dx′ ψ∗
ν1

(x) ψ∗
ν2

(x′) Vc(x, x
′) ψν4(x) ψν3(x

′),

Vc(x, x
′) =

e2

|r − r′|

∫

dx . . . =
∑

σ

∫

dr . . .



We need to calculate

V (ν1, ν2, ν3, ν4) =

∫

dx

∫

dx′ ψ∗
ν1

(x) ψ∗
ν2

(x′)
e2

|r − r′|
ψν4(x) ψν3(x

′)

Now insert

ψ∗
ν1

(x) ψ∗
ν2

(x′) = Rn1,l1(r) Y
∗
l1,m1

(Θ, φ) δσ,σ1
Rn2,l2(r

′) Y ∗
l2,m2

(Θ′, φ′) δσ′,σ2

e2

|r − r′|
=

∞
∑

k=0

k
∑

m=−k

Yk,m (Θ, φ)
4πe2

2k + 1

rk<
rk+1
>

Y ∗
k,m (Θ′, φ′)

ψν4(x) ψν3(x
′) = Rn4,l4(r) Yl4,m4

(Θ, φ) δσ,σ4
Rn3,l3(r

′) Yl3,m3
(Θ′, φ′) δσ′,σ3



We need to calculate

V (ν1, ν2, ν3, ν4) =

∫

dx

∫

dx′ ψ∗
ν1

(x) ψ∗
ν2

(x′)
e2

|r − r′|
ψν4(x) ψν3(x

′)

Now insert

ψ∗
ν1

(x) ψ∗
ν2

(x′) = Rn1,l1(r) Y
∗
l1,m1

(Θ, φ) δσ,σ1
Rn2,l2(r

′) Y ∗
l2,m2

(Θ′, φ′) δσ′,σ2

e2

|r − r′|
=

∞
∑

k=0

k
∑

m=−k

Yk,m (Θ, φ)
4πe2

2k + 1

rk<
rk+1
>

Y ∗
k,m (Θ′, φ′)

ψν4(x) ψν3(x
′) = Rn4,l4(r) Yl4,m4

(Θ, φ) δσ,σ4
Rn3,l3(r

′) Yl3,m3
(Θ′, φ′) δσ′,σ3

Spin-sum over σ
∑

σ

δσ,σ1
δσ,σ4

= δσ1,σ4



We need to calculate

V (ν1, ν2, ν3, ν4) =

∫

dx

∫

dx′ ψ∗
ν1

(x) ψ∗
ν2

(x′)
e2

|r − r′|
ψν4(x) ψν3(x

′)

Now insert

ψ∗
ν1

(x) ψ∗
ν2

(x′) = Rn1,l1(r) Y
∗
l1,m1

(Θ, φ) δσ,σ1
Rn2,l2(r

′) Y ∗
l2,m2

(Θ′, φ′) δσ′,σ2

e2

|r − r′|
=

∞
∑

k=0

k
∑

m=−k

Yk,m (Θ, φ)
4πe2

2k + 1

rk<
rk+1
>

Y ∗
k,m (Θ′, φ′)

ψν4(x) ψν3(x
′) = Rn4,l4(r) Yl4,m4

(Θ, φ) δσ,σ4
Rn3,l3(r

′) Yl3,m3
(Θ′, φ′) δσ′,σ3

Spin-sum over σ′
∑

σ′

δσ′,σ2
δσ′,σ3

= δσ2,σ3



We need to calculate

V (ν1, ν2, ν3, ν4) =

∫

dx

∫

dx′ ψ∗
ν1

(x) ψ∗
ν2

(x′)
e2

|r − r′|
ψν4(x) ψν3(x

′)

Now insert

ψ∗
ν1

(x) ψ∗
ν2

(x′) = Rn1,l1(r) Y
∗
l1,m1

(Θ, φ) δσ,σ1
Rn2,l2(r

′) Y ∗
l2,m2

(Θ′, φ′) δσ′,σ2

e2

|r − r′|
=

∞
∑

k=0

k
∑

m=−k

Yk,m (Θ, φ)
4πe2

2k + 1

rk<
rk+1
>

Y ∗
k,m (Θ′, φ′)

ψν4(x) ψν3(x
′) = Rn4,l4(r) Yl4,m4

(Θ, φ) δσ,σ4
Rn3,l3(r

′) Yl3,m3
(Θ′, φ′) δσ′,σ3

(Θ, φ)-Integration
√

4π

2k + 1

∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m(Θ, φ) Yl4,m4
(Θ, φ)



We need to calculate
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|r − r′|
=

∞
∑

k=0

k
∑

m=−k

Yk,m (Θ, φ)
4πe2
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√

4π
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∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m(Θ, φ) Yl4,m4
(Θ, φ)

(Θ′, φ′)-Integration
√

4π

2k + 1

∫

dΩ′ Y ∗
l2,m2

(Θ′, φ′) Y ∗
k,m(Θ′, φ′) Yl3,m3

(Θ′, φ′)



We need to calculate

V (ν1, ν2, ν3, ν4) =

∫

dx

∫

dx′ ψ∗
ν1

(x) ψ∗
ν2

(x′)
e2

|r − r′|
ψν4(x) ψν3(x

′)

Now insert

ψ∗
ν1

(x) ψ∗
ν2

(x′) = Rn1,l1(r) Y
∗
l1,m1

(Θ, φ) δσ,σ1
Rn2,l2(r

′) Y ∗
l2,m2

(Θ′, φ′) δσ′,σ2

e2

|r − r′|
=

∞
∑

k=0

k
∑

m=−k

Yk,m (Θ, φ)
4πe2

2k + 1

rk<
rk+1
>

Y ∗
k,m (Θ′, φ′)

ψν4(x) ψν3(x
′) = Rn4,l4(r) Yl4,m4

(Θ, φ) δσ,σ4
Rn3,l3(r

′) Yl3,m3
(Θ′, φ′) δσ′,σ3

(r, r′)-Integration

Rk(n1l1, n2l2, n3l3, n4l4) = e2

∫ ∞

0

dr r2

∫ ∞

0

dr′ r′2 Rn1,l1(r) Rn2,l2(r
′)

rk<
rk+1
>

Rn4,l4(r) Rn3,l3(r
′)

Note: Rk does not involve any m and has the dimension of energy

For scattering within a d-shell all (ni, li) are equal



Gaunt coefficients

In calculating the Coulomb matrix elements we had obtained integrals over three spherical harmonics

√

4π

2k + 1

∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m(Θ, φ) Yl4,m4
(Θ, φ)

These are called Gaunt coefficients

We now use the fact that Yl,m(Θ, φ) = Pl,m(Θ) eimφ with Pl,m(Θ) real (e.g.: Landau-Lifshitz)

This gives
∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m(Θ, φ) Yl4,m4
(Θ, φ) ∝

∫ 2π

0

ei(m4+m−m1) φ dφ = 2π δm,m1−m4

This is real and the remaining factor of
∫

dΘ Pl1,m1
(Θ) Pk,m(Θ) Pl4,m4

(Θ) is real as well

→ all Gaunt coefficients are real



Reminder:
∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m(Θ, φ) Yl4,m4
(Θ, φ) ∝

∫ 2π

0

ei(m4+m−m1) φdφ = 2π δm,m1−m4

We introduce a shorthand notation for Gaunt coefficients
√

4π

2k + 1

∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m1−m4
(Θ, φ) Yl4,m4

(Θ, φ) = ck(l1,m1; l4,m4)

→

√

4π

2k + 1

∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m(Θ, φ) Yl4,m4
(Θ, φ) = δm,m1−m4

ck(l1,m1; l4,m4)

The factor from the (Θ′, φ′) integration was
√

4π

2k + 1

∫

dΩ′ Y ∗
l2,m2

(Θ′, φ′) Y ∗
k,m(Θ′, φ′) Yl3,m3

(Θ′, φ′)

=

√

4π

2k + 1

∫

dΩ′ Y ∗
l3,m3

(Θ′, φ′) Yk,m(Θ′, φ′) Yl2,m2
(Θ′, φ′)

= δm,m3−m2
ck(l3,m3; l2,m2)



Collecting everything:

V (ν1, ν2, ν3, ν4) =

∫

dx

∫

dx′ ψ∗
ν1

(x) ψ∗
ν2

(x′)
e2

|r − r′|
ψν4(x) ψν3(x

′)

= δσ1,σ4
δσ2,σ3

∞
∑

k=0

k
∑

m=−k

δm,m1−m4
ck(l1,m1; l4,m4) δm,m3−m2

ck(l3,m3; l2,m2)

Rk(n1l1, n2l2, n3l3, n4l4)

= δσ1,σ4
δσ2,σ3

∞
∑

k=0

δm1+m2,m3+m4
ck(l1,m1; l4,m4) ck(l3,m3; l2,m2) Rk(n1l1, n2l2, n3l3, n4l4)

with

ck(l1,m1; l4,m4) =

√

4π

2k + 1

∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m1−m4
(Θ, φ) Yl4,m4

(Θ, φ)

Rk(n1l1, n2l2, n3l3, n4l4) = e2

∫ ∞

0

dr r2

∫ ∞

0

dr′ r′2 Rn1,l1(r) Rn2,l2(r
′)

rk<
rk+1
>

Rn4,l4(r) Rn3,l3(r
′)



Reminder:

m=−2 m=−1 m=0 m=1 m=2



Collecting everything:

V (ν1, ν2, ν3, ν4) =

∫

dx

∫

dx′ ψ∗
ν1

(x) ψ∗
ν2

(x′)
e2

|r − r′|
ψν4(x) ψν3(x

′)

= δσ1,σ4
δσ2,σ3

∞
∑

k=0

k
∑

m=−k

δm,m1−m4
ck(l1,m1; l4,m4) δm,m3−m2

ck(l3,m3; l2,m2)

Rk(n1l1, n2l2, n3l3, n4l4)

= δσ1,σ4
δσ2,σ3

∞
∑

k=0

δm1+m2,m3+m4
ck(l1,m1; l4,m4) ck(l3,m3; l2,m2) Rk(n1l1, n2l2, n3l3, n4l4)

with

ck(l1,m1; l4,m4) =

√

4π

2k + 1

∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m1−m4
(Θ, φ) Yl4,m4

(Θ, φ)

Rk(n1l1, n2l2, n3l3, n4l4) = e2

∫ ∞

0

dr r2

∫ ∞

0

dr′ r′2 Rn1,l1(r) Rn2,l2(r
′)

rk<
rk+1
>

Rn4,l4(r) Rn3,l3(r
′)



Conditions on nonvanishing Gaunt coefficients I: Triangular condition

It can be shown that Gaunt coefficients are proportional to Clebsch-Gordan coefficients:

√

4π

2k + 1

∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m(Θ, φ) Yl4,m4
(Θ, φ) ∝ 〈l1,m1|k,m, l4,m4〉

The three angular momenta in a Clebsch-Gordan coefficient have to obey the triangular condition: l1 ≤ l2 + l3

- otherwise the coefficient is zero

It follows that

I =

√

4π

2k + 1

∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m(Θ, φ) Yl4,m4
(Θ, φ)

is different from zero only if k ≤ l1 + l4 For Coulomb scattering in a d-shell this means k ≤ 4, for Coulomb

scattering in a p-shell this means k ≤ 2 etc.



Conditions on nonvanishing Gaunt coefficients II: Parity

I =

√

4π

2k + 1

∫

dΩ Y ∗
l1,m1

(Θ, φ) Yk,m(Θ, φ) Yl4,m4
(Θ, φ)

• The parity of Yl,m is (−1)l (e.g.: Landau-Lifshitz)

• For I 6= 0 the integrand must have even parity

• It follows that l1 + k + l4 must be even

• For Coulomb scattering in a d-shell we have l1 = l4 = 2 → k must be even



Taken from: J. C. Slater,

Quantum Theory of Atomic Structure

(McGraw-Hill, New York, 1960)

Reminder:

k ≤ l1 + l2 (Triangular condition)

l1 + l2 + k even (Parity)



For Coulomb scattering in a d-shell our final result thus reads

V (ν1, ν2, ν3, ν4) = δσ1,σ4
δσ2,σ3

∑

k∈{0,2,4}

δm1+m2,m3+m4
ck(l1,m1; l4,m4) c

k(l3,m3; l2,m2) R
k(n1l1, n2l2, n3l3, n4l4)

• The radial wave function R3,2(r) enters only via the three integrals R0, R2 and R4

• These may be viewed as ‘Hubbard-U for k-pole interaction’

• In many applications they are computed from Hartree-Fock wave functions for free atoms/ions

• The nonvanishing ck(l1,m1; l4,m4) are few in number and tabulated in textbooks



The textbook procedure to deal with this is as follows:

• Find all degenerate states |ν〉 of dn

• Set up the secular determinant 〈µ|H1|ν〉 - H1 is the Coulomb interaction

• Diagonalize it to obtain the 1st order energies and wave functions - these are the energies and wave

functions of the multiplets



Basis states and Fermi statistics

We define the basis states for dn ( Reminder: νi = (ni, li,mi, σi) )

|ν1, ν2 . . . νn〉 = c†ν1c
†
ν2
. . . c†νn|0〉.

For a 3d-shell: all ni = 3, all li = 2, only mi and σi vary

Ordering convention (absolutely necessary!)

m1 ≤ m2 ≤ m3 ≤ · · · ≤ mn

If two m are equal the corresponding σ must be ↑ and ↓

Then we order them as

. . . c†3,2,m↓ c
†
3,2,m↑ . . . |0〉

Every state with n electrons in the d-shell is included exactly once in this basis



We consider the matrix element

〈µ1, µ2 . . . µn| V (λ1, λ2, λ3, λ4) c
†
λ1
c†λ2
cλ3
cλ4

|ν1, ν2 . . . νn〉

= 〈0|cµn
. . . cµ1

V (λ1, λ2, λ3, λ4) c
†
λ1
c†λ2
cλ3
cλ4

c†ν1c
†
ν2
. . . c†µn

|0〉

For this to be nonzero, λ3 and λ4 must appear amongst the νi - then we have a product like

cλ3
cλ4

c†ν1c
†
ν2
. . . c

†

λ3
. . . c

†

λ4
. . . c†µn

|0〉 = (−1)n3+n4 c†ν1c
†
ν2
. . .cλ3

c
†

λ3
. . .cλ4

c
†

λ4
. . . c†µn

|0〉

Next we use Fermion commutation relations to write cλ3
c†λ3

= 1 − c†λ3
cλ3

- the second term vanishes

Doing the same with c†λ1
c†λ2

we obtain the total matrix element

(−1)n1+n2+n3+n4 V (λ1, λ2, λ3, λ4)

The Fermi sign (−1)n1+n2+n3+n4 must be computed by keeping track of all interchanges of Fermion operators

It is absolutely necessary to obtain correct results!



Solution of the Coulomb problem by exact diagonalization

Number of basis states with n electrons

nc =
10!

(10 − n)! n!
≈ 100...500

These can be coded as integers

−2 −1 0 1 2m=

459 = 0 1 1 1 0 0 1 0 1 1

0 1 1 1 0 0 1 0 1 1

−2 −1 0 1 2m=

0 0 1 1 1 1 1 0 1 0= 250

〈250|H1|459〉 = (−1)n1+n2+n3+n4 δσ1,σ4
δσ2,σ3

∑

k∈{0,2,4}

δm1+m2,m3+m4
ck(l1,m1; l4,m4) ck(l3,m3; l2,m2) Rk



Resulting eigenenergies for d8 and d7

(R2 = 10.479 eV , R4 = 7.5726 eV for d8 and R2 = 9.7860 eV , R4 = 7.0308 eV for d7)

E S L n Term E S L n Term

0.0000 1 3 21 3F 0.0000 3/2 3 28 4F

1.8420 0 2 5 1D 1.8000 3/2 1 12 4P

1.9200 1 1 9 3P 2.1540 1/2 4 18 2G

2.7380 0 4 9 1G 2.7540 1/2 5 22 2H

13.2440 0 0 1 1S 2.7540 1/2 1 8 2P

3.0545 1/2 2 10 2D

4.5540 1/2 3 14 2F

9.9774 1/2 2 10 2D

• High degeneracy of eigenvalues - all degenerate eigenstates must have the same

〈S2〉 = S(S + 1) and 〈L2〉 = L(L + 1)

• Ground states are consistent with the first two Hund’s rules

• Multiplet spectrum has a width of several eV - comparable to bandwidth in solids



Comparison to experiment for Ni2+

E S L n Term Eexp

0.0000 1 3 21 3F 0.0000

1.8420 0 2 5 1D 1.7396

1.9200 1 1 9 3P 2.0829

2.7380 0 4 9 1G 2.8649

13.2440 0 0 1 1S 6.5129

→ Relative error ≤ 10% (except for 1S)



The diagonal sum-rule

Let H be a Hermitean matrix. Then the sum of the eigenvalues Ei of H is equal to its trace

trace(H) =
n

∑

i=1

Hi,i

=

n
∑

i,j=1

Hi,j δj,i

=
n

∑

i,j,l=1

Hi,j (U−1
j,l Ul,i)

=

n
∑

l=1

n
∑

i,j=1

Ul,i Hi,j U−1
j,l

=
n

∑

l=1

(U−1HU)l,l

=

n
∑

l=1

El

Here U is the unitary matrix which transforms to the basis of eigenstates of H



Diagonal matrix elments of the Coulomb interaction

We want to calculate the diagonal matrix element 〈0|cν2cν1 H1 c
†
ν1
c†ν2|0〉 with the two-electron state c†ν1c

†
ν2
|0〉

We rewrite the Coulomb interaction

H1 =
1

2

∑

i,j,k,l

V (νi, νj, νk, νl) c†νi c
†
νj
cνk cνl

=
1

2
( V (ν1, ν2, ν1, ν2) c†ν1c

†
ν2
cν1cν2 + V (ν1, ν2, ν2, ν1) c†ν1c

†
ν2
cν2cν1

+ V (ν2, ν1, ν1, ν2) c†ν2c
†
ν1
cν1cν2 + V (ν2, ν1, ν2, ν1) c†ν2c

†
ν1
cν2cν1 ) + . . .

= ( V (ν1, ν2, ν2, ν1) − V (ν1, ν2, ν1, ν2) ) c†ν1c
†
ν2
cν2cν1 + . . .

Here we have used V (ν1, ν2, ν3, ν4) = V (ν2, ν1, ν4, ν3) which follows from the definition

V (ν1, ν2, ν3, ν4) =

∫

dx

∫

dx′ ψ∗
ν1

(x) ψ∗
ν2

(x′) Vc(x, x
′) ψν4(x) ψν3(x

′)

by exchanging x↔ x′

It follows that 〈0|cν2cν1 H1 c
†
ν1
c†ν2|0〉 = V (ν1, ν2, ν2, ν1) − V (ν1, ν2, ν1, ν2).



We had 〈0|cν2cν1 H1 c
†
ν1
c†ν2|0〉 = V (ν1, ν2, ν2, ν1) − V (ν1, ν2, ν1, ν2) with

V (ν1, ν2, ν3, ν4) = δσ1,σ4
δσ2,σ3

∑

k∈{0,2,4}

δm1+m2,m3+m4
ck(l1,m1; l4,m4) c

k(l3,m3; l2,m2) R
k(n1l1, n2l2, n3l3, n4l4)

This gives

V (ν1, ν2, ν2, ν1) =
∞

∑

k=0

ck(l1m1; l1,m1) c
k(l2m2; l2,m2) R

k(n1l1, n2l2, n2l2, n1l1),

V (ν1, ν2, ν1, ν2) = δσ1σ2

∞
∑

k=0

ck(l1m1; l2,m2) c
k(l1m1; l2,m2) R

k(n1l1, n2l2, n1l1, n2l2).

We introduce some abbreviations

ak(lm; l′m′) = ck(lm; lm) ck(l′m′; l′m′)

bk(lm; l′m′) = ck(lm; l′m′) ck(lm; l′m′)

F k(nl;n′l′) = Rk(nl, n′l′, n′l′, nl)

Gk(nl;n′l′) = Rk(nl, n′l′, nl, n′l′)

Then we obtain the diagonal matrix element

〈0|cν2cν1 H1 c
†
ν1
c†ν2|0〉 =

∑

k

(

ak(l1m1, l2,m2) F
k − δσ1σ2

bk(l1m1, l2,m2) G
k
)



We had 〈0|cν2cν1 H1 c
†
ν1
c†ν2|0〉 = V (ν1, ν2, ν2, ν1) − V (ν1, ν2, ν1, ν2) with

V (ν1, ν2, ν3, ν4) = δσ1,σ4
δσ2,σ3

∑

k∈{0,2,4}

δm1+m2,m3+m4
ck(l1,m1; l4,m4) c

k(l3,m3; l2,m2) R
k(n1l1, n2l2, n3l3, n4l4)

This gives

V (ν1, ν2, ν2, ν1) =
∞

∑

k=0

ck(l1m1; l1,m1) c
k(l2m2; l2,m2) R

k(n1l1, n2l2, n2l2, n1l1),

V (ν1, ν2, ν1, ν2) = δσ1σ2

∞
∑

k=0

ck(l1m1; l2,m2) c
k(l1m1; l2,m2) R

k(n1l1, n2l2, n1l1, n2l2).

We introduce some abbreviations

ak(lm; l′m′) = ck(lm; lm) ck(l′m′; l′m′)

bk(lm; l′m′) = ck(lm; l′m′) ck(lm; l′m′)

F k(nl;n′l′) = Rk(nl, n′l′, n′l′, nl)

Gk(nl;n′l′) = Rk(nl, n′l′, nl, n′l′)

Then we obtain the diagonal matrix element

〈0|cν2cν1 H1 c
†
ν1
c†ν2|0〉 =

∑

k

(

ak(l1m1, l2,m2) F
k − δσ1σ2

bk(l1m1, l2,m2) G
k
)



We had 〈0|cν2cν1 H1 c
†
ν1
c†ν2|0〉 = V (ν1, ν2, ν2, ν1) − V (ν1, ν2, ν1, ν2) with

V (ν1, ν2, ν3, ν4) = δσ1,σ4
δσ2,σ3

∑

k∈{0,2,4}

δm1+m2,m3+m4
ck(l1,m1; l4,m4) c

k(l3,m3; l2,m2) R
k(n1l1, n2l2, n3l3, n4l4)

This gives

V (ν1, ν2, ν2, ν1) =
∞

∑

k=0

ck(l1m1; l1,m1) c
k(l2m2; l2,m2) R

k(n1l1, n2l2, n2l2, n1l1),

V (ν1, ν2, ν1, ν2) = δσ1σ2

∞
∑

k=0

ck(l1m1; l2,m2) c
k(l1m1; l2,m2) R

k(n1l1, n2l2, n1l1, n2l2).

We introduce some abbreviations

ak(lm; l′m′) = ck(lm; lm) ck(l′m′; l′m′)

bk(lm; l′m′) = ck(lm; l′m′) ck(lm; l′m′)

F k(nl;n′l′) = Rk(nl, n′l′, n′l′, nl)

Gk(nl;n′l′) = Rk(nl, n′l′, nl, n′l′)

Then we obtain the diagonal matrix element

〈0|cν2cν1 H1 c
†
ν1
c†ν2|0〉 =

∑

k

(

ak(l1m1, l2,m2) F
k − δσ1σ2

bk(l1m1, l2,m2) G
k
)



For a state with more than 2 electrons we obtain

〈0|cνn . . . cν2cν1 H1 c†ν1c
†
ν2
. . . c†νn|0〉 =

∑

i<j

∑

k

(

ak(limi, lj,mj) F
k − δσiσj

bk(limi, lj,mj) G
k
)

i.e. a sum over pairs of electrons

The ak and bk aretabulated for example in Slater’s textbook

For scattering within a single shell (where all ni and all li are equal) we moreover have Gk = F k



Multiplets of p2 - calculation by the diagonal sum-rule

m m′ a0 25a2 b0 25b2

±1 ±1 1 1 1 1

±1 0 1 −2 0 3

0 0 1 4 1 4

±1 ∓1 1 1 0 6

The diagonal elements were

〈ν|H1|ν〉 =
∑

i<j

∑

k∈{0,2}

(

ak(limi, lj,mj) F
k − δσiσj

bk(limi, lj,mj) F
k
)

We write operators as c†l,m,σ - the principal quantum number n is omitted

We consider states with Sz = 1 → the highest possible Lz is Lz = 1

This is realized for a single state: c†1,0,↑ c†1,1,↑|0〉 - this state belongs to 3P

In the sector Sz = 1, Lz = 1 the Hamiltonian is 1×1 so that the energy of 3P is just the single diagonal element



Multiplets of p2 - calculation by the diagonal sum-rule

m m′ a0 25a2 b0 25b2

±1 ±1 1 1 1 1

±1 0 1 −2 0 3

0 0 1 4 1 4

±1 ∓1 1 1 0 6

The diagonal elements were

〈ν|H1|ν〉 =
∑

i<j

∑

k∈{0,2}

(

ak(limi, lj,mj) F
k − δσiσj

bk(limi, lj,mj) F
k
)

We write operators as c†l,m,σ - the principal quantum number n is omitted

We consider states with Sz = 1 → the highest possible Lz is Lz = 1

This is realized for a single state: c†1,0,↑ c†1,1,↑|0〉 - this state belongs to 3P

In the sector Sz = 1, Lz = 1 the Hamiltonian is 1 × 1 so that the energy of 3P is just the diagonal element

The diagonal element of c†1,0,↑ c†1,1,↑|0〉 is

1 F 0 −
2

25
F 2 −

3

25
F 2 = F 0 −

5

25
F 2

→ E[3P ] = F 0 −
5

25
F 2



Multiplets of p2 - calculation by the diagonal sum-rule

m m′ a0 25a2 b0 25b2

±1 ±1 1 1 1 1

±1 0 1 −2 0 3

0 0 1 4 1 4

±1 ∓1 1 1 0 6

The diagonal elements were

〈ν|H1|ν〉 =
∑

i<j

∑

k∈{0,2}

(

ak(limi, lj,mj) F
k − δσiσj

bk(limi, lj,mj) F
k
)

We write operators as c†l,m,σ - the principal quantum number n is omitted

We consider states with Sz = 0 → the highest possible Lz is Lz = 2

This is realized for a single state: c†1,1,↓ c†1,1,↑|0〉 - this state belongs to 1D

In the sector Sz = 0, Lz = 2 the Hamiltonian is 1 × 1 so that the energy of 1D is just the diagonal element

The diagonal element of c†1,1,↓ c†1,1,↑|0〉 is

→ E[1D] = F 0 +
1

25
F 2

E[3P ] = F 0 −
5

25
F 2



Multiplets of p2 - calculation by the diagonal sum-rule

m m′ a0 25a2 b0 25b2

±1 ±1 1 1 1 1

±1 0 1 −2 0 3

0 0 1 4 1 4

±1 ∓1 1 1 0 6

The diagonal elements were

〈ν|H1|ν〉 =
∑

i<j

∑

k∈{0,2}

(

ak(limi, lj,mj) F
k − δσiσj

bk(limi, lj,mj) F
k
)

The total number of states of p2 is 6·5
2 = 15

So far we found the multiplets 3P and 1D which together have 3 · 3 + 1 · 5 = 14 states

→ only one state is missing which must form a multiplet of its own and can only be 1S

To find the energy of 1S we need to consider the sector Sz = 0 and Lz = 0

Note: 3P and 1D each also have one member in this sector!

There are three states in this sector:

|1〉 = c†1,0,↓ c†1,0,↑|0〉,

|2〉 = c†1,−1,↑ c†1,1,↓|0〉,

|3〉 = c†1,−1,↓ c†1,1,↑||0〉



Multiplets of p2 - calculation by the diagonal sum-rule

m m′ a0 25a2 b0 25b2

±1 ±1 1 1 1 1

±1 0 1 −2 0 3

0 0 1 4 1 4

±1 ∓1 1 1 0 6

The diagonal elements were

〈ν|H1|ν〉 =
∑

i<j

∑

k∈{0,2}

(

ak(limi, lj,mj) F
k − δσiσj

bk(limi, lj,mj) F
k
)

We considered the sector Sz = 0 and Lz = 0 - 3P and 1D each also have one member in this sector!

There are three states in this sector |1〉 = c†1,0,↓ c†1,0,↑|0〉, |2〉 = c†1,−1,↑ c†1,1,↓|0〉 and |3〉 = c†1,−1,↓ c†1,1,↑|0〉

The diagonal sum-rule then tells us

E(3P ) + E(1D) + E(1S) =
3

∑

i=1

〈i|H1|i〉

F 0 −
5

25
F 2 + F 0 +

1

25
F 2 + E(1S) =

∑

k∈{0,2}

(ak(1, 0; 1, 0) + 2 ak(1,−1; 1, 1)) F k

E(1S) + 2 F 0 −
4

25
F 2 = 3 F 0 + (

4

25
+ 2

1

25
) F 0

→ E(1S) = F 0 +
10

25
F 2



Multiplets of p2 - calculation by the diagonal sum-rule

All in all we found the multiplets and their energies

E[3P ] = F 0 −
5

25
F 2

E[1D] = F 0 +
1

25
F 2

E[1S] = F 0 +
10

25
F 2

A simple cross-check

r =
E(1S) − E(1D)

E(1D) − E(3P )
=

3

2

The values of F 0 and F 2 have dropped out in r

This should be obeyed by all atoms/ions with p2 or - by particle-hole symmetry - with p4 configuration!



Multiplet energies can be obtained from databases e.g. at NIST

Example: Multiplets of O2+

r =
E(1S) − E(1D)

E(1D) − E(3P )
=

3

2

p2 C N+ O2+ Si P+ S2+

1.124 1.134 1.130 1.444 1.430 1.399

p4 O F+ S Cl+

1.130 1.152 1.401 1.392



Example for a d-shell: V2+ corresponding to d3

The diagonal sum-rule gives

4F 3F 0 − 135
441 F

2 − 72
441 F

4

4P 3F 0 − 147
441 F

4

2G 3F 0 − 99
441

F 2 − 13
441

F 4

2H 3F 0 − 54
441

F 2 − 12
441

F 4

2P 3F 0 − 54
441 F

2 − 12
441 F

4

2F 3F 0 + 81
441

F 2 − 97
441

F 4
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Summary so far

• The Coulomb interaction in a partially filled 3d-shell is particularly strong

• The Coulomb interaction in a free atom/ion leads to the formation of multiplets

• The matrix elements of the Coulomb interaction can be expressed in terms of Gaunt oefficients (angular

integrals over three spherical harmonics) and Slater-Condon parameters (double radial integrals of the

radial wave functions)

• Reasonable agreement with experiment can be obtained

• The energy of dn versus n looks approximately like this

ε dE(n) = n + A 
n (n−1)

2

E
ne

rg
y

Multiplet
splitting

d−shell occupation
d
7

d
9

d
8



III: The transition metal ion in a solid



So far we considered an atom/ion in vacuum

In solid state physics we are interested in an atom/ion in a solid

Will the results for the free atom retain any significance in this case?

Probably yes....

VShell

VWigner−Seitz

‘Nuclear charge’

4f

5f

3d

4d

VWigner−Seitz

VShell



Effect of the immediate environment in the solid: adding ligands

Ni
ONi

• To study the effect of embedding a TM ion in a solid we study a cluster comprising a single TM ion and

its nearest neighbors in the solid, the so-called ligands. Adding ligands has a twofold effect:

• Since the ligands usually are charged (e.g. O2−) they produce a static electric field -

the crystalline electric field (CEF)

• This lowers the symmetry → lifting of degeneracies

• In addition there may be charge transfer e.g. in NiO: Ni 3d8 O 2p6 → Ni 3d9 O 2p5

• This is strongly opposed by the Coulomb interaction in the 3d-shell!



The Crystalline Electric Field

• We represent the ligands as n point charges of strength Zie at the positions Ri

• We denote the electrostatic field caused by these charges by VCEF (r)

• The corresponding Hamiltonian in second quantization is

HCEF =
∑

i,j

VCEF (νi, νj) c
†
νi
cνj ,

VCEF (ν1, ν2) =

∫

dx ψ∗
ν1

(x) VCEF (r) ψν2(x)

νi = (ni, li,mi, σi)

ψni,li,mi,σi
(x) = Rni,li(r) Yli,mi

(Θ, φ) δσ,σi



The Crystalline Electric Field

• We represent the ligands as n points charges of strength Zie at the positions Ri

• We denote the electrostatic field caused by these charges by VCEF (r)

• Using again the multipole expansion of electrostatics we find

VCEF (r) = −
n

∑

i=1

Zi e
2

|r − Ri|

= −

n
∑

i=1

∞
∑

k=0

k
∑

m=−k

Y ∗
k,m(Θi, φi)

4π Zi e
2

2k + 1

rk

Rk+1
i

Yk,m(Θ, φ)

= −
Zave

2

Rav

∞
∑

k=0

k
∑

m=−k

γk,m

(

r

Rav

)k
√

4π

2k + 1
Yk,m(Θ, φ),

γk,m =

√

4π

2k + 1

n
∑

i=1

Zi
Zav

(

Rav

Ri

)k+1

Y ∗
k,m(Θi, φi).

With Rav and Zav: average distance and charge of the ligands

γk,m depends on the position and strength of the point charges



We now calculate the matrix element

VCEF (ν1, ν2) =

∫

dx ψ∗
ν1

(x) VCEF (r) ψν2(x)

ψ∗
ν1

(x) = Rn1,l1(r) Y ∗
l1,m1

(Θ, φ) δσ,σ1

VCEF (r) = −
Zave

2

Rav

∞
∑

k=0

k
∑

m=−k

γk,m

(

r

Rav

)k
√

4π

2k + 1
Yk,m (Θ, φ)

ψν2(x) = Rn2,l2(r) Yl2,m2
(Θ, φ) δσ,σ2



We now calculate the matrix element

VCEF (ν1, ν2) =

∫

dx ψ∗
ν1

(x) VCEF (r) ψν2(x)

ψ∗
ν1

(x) = Rn1,l1(r) Y ∗
l1,m1

(Θ, φ) δσ,σ1

VCEF (r) = −
Zave

2

Rav

∞
∑

k=0

k
∑

m=−k

γk,m

(

r

Rav

)k
√

4π

2k + 1
Yk,m (Θ, φ)

ψν2(x) = Rn2,l2(r) Yl2,m2
(Θ, φ) δσ,σ2



We now calculate the matrix element

VCEF (ν1, ν2) =

∫

dx ψ∗
ν1

(x) VCEF (r) ψν2(x)

ψ∗
ν1

(x) = Rn1,l1(r) Y ∗
l1,m1

(Θ, φ) δσ,σ1

VCEF (r) = −
Zave

2

Rav

∞
∑

k=0

k
∑

m=−k

γk,m

(

r

Rav

)k
√

4π

2k + 1
Yk,m (Θ, φ)

ψν2(x) = Rn2,l2(r) Yl2,m2
(Θ, φ) δσ,σ2

VCEF (ν1, ν2) =

∞
∑

k=0

k
∑

m=−k

γk,m Ik δm,m1−m2
ck(l1,m1; l2,m2) δσ1,σ2

VCEF (ν1, ν2) = δσ1,σ2

∞
∑

k=0

γk,m1−m2
Ik ck(l1,m1; l2,m2)



For a d-shell we thus find

VCEF (ν1, ν2) = δσ1,σ2

∑

k∈{0,2,4}

γk,m1−m2
Ik ck(l1,m1; l2,m2)

One has Ik ∝
(

r3d
Rav

)k

- since r3d/Rav ≪ 1 we terminate this for the lowest k > 0 where γk,m 6= 0

Reminder:

γk,m =

√

4π

2k + 1

n
∑

i=1

Zi
Zav

(

Rav

Ri

)k+1

Y ∗
k,m(Θi, φi)

For an ideal octahedron of identical charges (Ri = R) and Zi = Z) one finds γk,m = 0 for 0 < k < 4 and

γ4,4 =

√

35

8

γ4,−4 =

√

35

8

γ4,0 =

√

49
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Using the tabulated values of the c4(l,m; l′m′) we thus find

VCEF (ν1, ν2) =
I4
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Using the tabulated values of the c4(l,m; l′m′) we thus find

VCEF (ν1, ν2) =
I4
6
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I4, −
2
3
I4, −

2
3
I4, (1 ± 5)I4

6

I4 (2 times), −2
3
I4 (3 times)

For negatively charged ligands (e.g. O2−) we have I4 > 0

The difference between the eigenvalues is 5
3
I4 - this is often called 10Dq → for the octahedron Dq = I4

6

The eigenfunctions for eigenvalue I4 = 6Dq are the real-valued spherical harmonics dx2−y2 and d3z2−r2

The eigenfunctions for eigenvalue −2I4
3 = −4Dq are the real-valued spherical harmonics dxy, dxz and dyz



The Hamiltonian

HCEF =
∑

i,j

VCEF (νi, νj) c
†
νi
cνj

can now easily be included into the exact diagonalization program (mind the Fermi sign!)

m=−2 m=−1 m=0 m=1 m=2



As an example we show the development of the eigenvalue spectrum as the strength of the CEF increases for

d8 and d7 - a so-called Tanabe-Sugano-diagram
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Charge transfer

• Due to the overlap of the TM 3d wave functions and the atomic orbitals on the ligands there may be

charge transfer, i.e. electrons may tunnel from a ligand orbital into a TM 3d orbital

• We introduce creation/annihilation operators for electrons in the ligand orbitals: l†µ/lµ, with

µ = (i, n, l,m, σ)

• The ‘compound index’ µ for the ligands has an additional entry: i, the number/position of the ligand

Ni O



Charge transfer

• Due to the overlap of the TM 3d wave functions and the atomic orbitals on the ligands there may be

charge transfer, i.e. electrons may tunnel from a ligand orbital into a TM 3d orbital

• We introduce creation/annihilation operators for electrons in the ligand orbitals: l†µ/lµ, with

µ = (i, n, l,m, σ)

• The ‘compound index’ µ for the ligands has an additional entry: i, the number/position of the ligand

• To describe the charge transfer we add the following terms to the Hamiltonian

H =
∑

i,j

(

tνi,µj
c†νi lµj

+H.c.
)

+
∑

j

ǫµj
l†µj
lµj

+
∑

i

ǫνi c
†
νi
cνi.

• The hybridization integrals tνi,µj
may be expressed in terms of relatively few parameters by using the

Slater-Koster tables

• In the presence of hybridization the site-energies ǫµj
and ǫνi become important as well

• Estimates for these parameters can be obtained from LCAO-fits to LDA band structures (recently much

effort has been devoted to obtaining such parameters, see lectures in this school)



Reminder:

H =
∑

i,j

(

tνi,µj
c†νi lµj

+H.c.
)

+
∑

j

ǫµj
l†µj
lµj

+
∑

i

ǫνi c
†
νi
cνi.

In principle this is easily implemented in the exact diagonalization program (mind the Fermi sign!)

m=−2 m=−1 m=0 m=1 m=2
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Reminder:

H =
∑

i,j

(

tνi,µj
c†νi lµj

+H.c.
)

+
∑

j

ǫµj
l†µj
lµj

+
∑

i

ǫνi c
†
νi
cνi.

In principle this is easily implemented in the exact diagonalization program (mind the Fermi sign!)

m=−2 m=−1 m=0 m=1 m=2 µ2 µ3 µ4 µ5µ1

m=−2 m=−1 m=0 m=1 m=2 µ2 µ3 µ4 µ5µ1

For exact diagonalization addition of ligands brings about a problem: they increase the number of basis states

The probem stays mangeable for the case of an ideal octahedron because symmetry allows to reduce the

number of relevant ligand orbitals



Another solid state effect: Screening of Coulomb parameters

++

+

+

−

−

−

−

• Electrons in the TM 3d-shell can induce polarization charges on the surrounding ions

• This will lead to a modification of their Coulomb interaction

• Empirically, for F 2 and F 4 (quadrupole and hexadecupole interaction) this can be taken into account by

a reduction by a factor 0.8 as compared to the Hartree-Fock value for free ions

• For F 0 (monopole interaction or Hubbard U) this is much more complicated - see other lectures in this

school



Summary so far

• Embedding a transition metal ion into a solid gives rise to new effects:

Crystalline electric field and charge transfer

• These can be included easily into the exact diagonalization formalism - the main problem is the increase

of the dimension of the Hilbert space due to ligand orbitals



IV: Applications of multiplet theory in spectroscopy



Valence band photoemission

• In this experiment photons impinge onto the sample which then emits photoelectrons - i.e. the familiar

photoelectric effect

• ‘Valence band photoemission’ means that the photoelectron is emitted from a state ‘near’ the Fermi energy

• What is measured is the photoelectron current I as a function of the kinetic energy of the photoelectrons

Ekin, the direction relative to crystallographic axis of the sample (Θ, φ), and the incoming photon energy

hν and polarization E

hν

Ekin

E

Θ

φ

Solid

Detector



• Often one considers angle-integrated spectra, which are obtained by averaging over (Θ, φ) - or measuring

on a polycrystalline sample in the first place...

• A certain simplification occurs when the photons have X-ray energies

The mechanism of the smoother variation

is the photon energy dependence of the

photoionization cross section 

Photon energy

NiO

Cross

section 2p

3d

Data from Eastman & Freeouf, PRL 34, 395 (1975)



Cluster calculation of XPS spectra

• For photon energies in the X-ray region only the transition metal 3d electron contribute to the spectrum

• This is called an XPS spectrum - X-ray Photoemission Spectrum

• While the theory of photoemission is complicated it can be shown that the angle-integrated XPS-spectrum

is given approximately by the so-called single-particle spectral function

A(ω) = −
1

πZ
ℑ

2
∑

m=−2

∑

µ

e−βEµ 〈Ψµ|c
†
3,2,m,σ

1

ω + (H − Eµ) + i0+
c3,2,m,σ|Ψµ〉

=
1

Z

2
∑

m=−2

∑

µ,ν

e−βEµ|〈Ψν|c3,2,m,σ|Ψµ〉|
2δ(ω + (Eν − Eµ)).

• Here |Ψµ〉 and Eµ are eigenstates and corresponding energy of the solid

• 1
Z
e−βEµ with β = (kBT )−1 is the thermal occupation probablity of |Ψµ〉

• The operator c3,2,m,σ annihilates an electron with Lz = m and Sz = σ from the TM 3d-shell of some

atom in the solid



Reminder:

A(ω) = −
1

πZ
ℑ

2
∑

m=−2

∑

µ

e−βEµ 〈Ψµ|c
†
3,2,m,σ

1

ω + (H − Eµ) + i0+
c2,m,σ|Ψµ〉

=
1

Z

2
∑

m=−2

∑

µ,ν

e−βEµ|〈Ψν|c3,2,m,σ|Ψµ〉|
2δ(ω + (Eν − Eµ)).

Now we use the approximation by Fujimori and Minami and evaluate this expression using the wave functions

|Ψµ〉 and energies Eµ of a cluster comprising a single TM 3d-shell and its nearest neighbors, e.g.

Ni O



The cluster:

Ni O

The Hamiltonian:

H =
1

2

∑

i,j,k,l

V (νi, νj, νk, νl) c†νi c
†
νj
cνk cνl +

∑

i,j

VCEF (νi, νj) c
†
νi
cνj

+
∑

i,j

(

tνi,µj
c†νi lµj

+H.c.
)

+
∑

j

ǫµj
l†µj
lµj

+
∑

i

ǫνi c
†
νi
cνi

This comprises the Coulomb interaction in the TM 3d-shell, the Crystalline electric field, the charge transfer

between TM 3d-shell and ligands, and the orbital energies of transition metal d-orbitals and ligands



Reminder:

A(ω) = −
1

πZ
ℑ

2
∑

m=−2

∑

µ

e−βEµ 〈Ψµ|c
†
3,2,m,σ

1

ω + (H − Eµ) + i0+
c2,m,σ|Ψµ〉

=
1

Z

2
∑

m=−2

∑

µ,ν

e−βEµ|〈Ψν|c3,2,m,σ|Ψµ〉|
2δ(ω + (Eν − Eµ)).

To simulate lifetime-effects and broadening of the ionization states of the cluster into ‘bands’ the δ-Functions

are usually replaced by Loretzians (or i0+ → iη with η > 0)



Cluster calculation of XPS spectra - results for 3d transition metal compounds with rocksalt structure

NiO: A. Fujimori and F. Minami, Phys. Rev. B 30, 957 (1984)

CoO: J. van Elp et al., Phys. Rev. B 44, 6090 (1991)

MnO: A. Fujimori et al., Phys. Rev. B 42, 7580 (1990)



Experimental XPS spectra versus TM 3d-like DOS from LDA calculations
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What determines the shape of the spectrum is not so much the single-particle band structure but the charge

and spin state of the TM ion!



Now the other way round: MnO versus Fe2O3 - Mn2+ versus Fe3+ - d5 versus d5

Fe2O3

MnO

Fe2O3 data from A. Fujimori et al., Phys. Rev. B 34, 7318 (1986)



X-ray absorption spectra (XAS)

• X-rays impinge onto the sample and the absoption coefficient is measured versus photon-energy: κ(hν)

• The X-rays are aborbed due to (mainly) dipole-transitions of an electron from a core level (1s, 2s, 2p....)

to an unoccupied level

• Let E0 < 0 be the energy of the core level relative to the Fermi energy

• For E0 + hν < 0 no dipole transition is possible because no unoccupied final state exists

• As soon as E0 + hν ≥ 0 the absorption will rise sharply - this is called an absorption edge

• In combination with multiplet theory the variation of κ(hν) for energies within 10 − 20 eV above the

absorption edge can give information about the state of the transition metal ion



XAS by cluster calculation

The absorption coefficient is proportional to

κ(ω) = −
1

πZ
ℑ

∑

µ

e−βEµ 〈Ψµ|D(n)
1

ω − (H − Eµ) + i0+
D(n) |Ψµ〉

=
1

Z

∑

µ,ν

e−βEµ|〈Ψν|D(n)|Ψµ〉|
2δ(ω − (Eν − Eµ)).

• Here |Ψµ〉 and Eµ again are eigenstates and corresponding energy of the solid

• 1
Z
e−βEµ with β = (kBT )−1 is the thermal occupation probablity of |Ψµ〉

• The operator D(n) is the dipole-operator (with n the photon polarization) - it may be written as

∑

m,m′

∑

σ

(

Dm,m′(n) c†3,2,m,σ c2,1,m′,σ +H.c.
)

• The dipole operator promotes an electron from the 2p-shell to the 3d-shell - and vice versa

• The final states |Ψν〉 therefore have a new new feature: a hole in the 2p-shell

• We therefore need to include two new terms into the Hamiltonian: spin-orbit-coupling in the 2p-shell and

Coulomb interaction between the hole in the 2p-shell and the electrons in the 3d-shell



XAS at the transition metal 2p-edge: spin orbit coupling in the 2p-shell

The Hamiltonian for a single 2p electron reads (with λSOC ≈ 10 eV for 3d transition metals)

HSOC = λSOC L · S

The eigenfunctions have J = 3
2 (4-fold degenerate) and J = 1

2 (2-fold degenerate)

We use J = L + S - square this - and form the expectation value with a state with sharp J , |J〉:

J(J + 1) = L(L + 1) + 2 〈J |L · S|J〉 + S(S + 1)

= 2 〈J |L · S|J〉 +
11

4

〈J |L · S|J〉 =
J(J + 1)

2
−

11

8

We thus find for the difference in energy between the two SOC-levels

EJ=3/2 − EJ=1/2 = λSOC

(

〈
3

2
|L · S|

3

2
〉 − 〈

1

2
|L · S|

1

2
〉

)

= λSOC
1

2

(

3

2
·
5

2
−

1

2
·
3

2

)

=
3

2
λSOC



EJ=3/2 − EJ=1/2 = 3
2 λSOC

E Fermi

λ SOC

L

L

3

2

J=3/2

J=1/2
(3/2)



EJ=3/2 − EJ=1/2 = 3
2 λSOC

E Fermi

λ SOC

L

L

3

2

J=3/2

J=1/2
(3/2)

In experiment: Co-L-edge in La1.5Ca0.5CoO4

(M. Merz, private communication)
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To implement spin-orbit-coupling we must convert HSOC to 2nd quantized form - we write

HSOC = λSOC

n
∑

i=1

li · Si = λSOC

n
∑

i=1

(

lziS
z
i +

1

2
(l+i S

−
i + l−i S

+
i )

)

.

Then, in 2nd quantization we have

H
‖
SOC = λSOC

l
∑

m=−l

m

2
(c†l,m,↑cl,m,↑ − c†l,m,↓cl,m,↓).

For the transverse part we use 〈l,m± 1|l±|l,m〉 =
√

(l ∓m)(l ±m + 1) (Landau-Lifshitz) and find

H⊥
SOC =

λSOC
2

l−1
∑

m=−l

√

(l −m)(l +m + 1) (c†l,m+1,↓cl,m,↑ + c†l,m,↑cl,m+1,↓).

This is easily implemented in exact diagonalization



New feature in XAS: Coulomb scattering between 3d-electrons and 2p electrons

m=−2 m=−1 m=0 m=1 m=2

3d

2p

The Coulomb matrix elements are given by the general formula derived above

V (ν1, ν2, ν3, ν4) = δσ1,σ4
δσ2,σ3

∑

k

δm1+m2,m3+m4
ck(l1,m1; l4,m4) c

k(l3,m3; l2,m2) R
k(n1l1, n2l2, n3l3, n4l4)



Cluster calculation of XAS: Results

LiVO 2

NiO: M. Finazzi et al., Phys. Rev. B 59, 9933 (1999)

LiVO2: H. F. Pen et al., Phys. Rev. B 55, 15500 (1997)



More on LiVO2

• At 500 K LiVO2 undergoes a first order phase transition - this is accompanied by trigonal distortion in the

low temperature phase

• Above the transition, the magnetic susceptibility has Curie-Weiss behaviour, indicating antiferromagnetic

coupling between Vanadium 3d-spins

• Below the transition the magnetic susceptibility is practically zero

• A possible mechanism would be a high spin - low spin transition

• Vanadium is V3+ → d2 in LiVO2

However, the XAS spectra clearly rule this out



LiVO 2



• When combined with multiplet-calculations, XAS-experiments can give detailed information about the

charge and spin state of transition metal ions in solids and molecules

• This is a powerful technique which is nowadays used routinely in research on TM-compounds in physics

and chemistry

• For reviews see

F. M. F. de Groot, Journal of Electron Spectroscopy and Related Phenomena, 67 525 (1994)

F. M. F. de Groot, Coordination Chemistry Reviews, 249 31 (2005)

F. M. F. de Groot and A. Kotani: Core Level Spectroscopy of Solids (Taylor And Francis, 2008)



Core-level photoemission

We had already discussed valence-band photoemission: electrons are ejected after the solid is hit by light

In valence band photoemission the photoelectrons come from states near the Fermi energy

In core level photoemission the photoelectrons come from an inner shell

It we remember the discussion on spin-orbit coupling we might expect a core-level photoemission spectrum to

be rather boring:

E Fermi

λ SOC

L

L

3

2

J=3/2

J=1/2
(3/2)



Core-level photoemission

We had already discussed valence-band photoemission: electrons are ejected after the solid is hit by light

In valence band photoemission the photoelectrons come from states near the Fermi energy

In core level photoemission the photoelectrons come from an inner shell

It we remember the discussion on spin-orbit coupling we might expect a core-level photoemission spectrum to

be rather boring:
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However:

m=−2 m=−1 m=0 m=1 m=2

3d

2p



Core-level photoemission: Experiment vs Cluster spectra

Taken from A. E. Bocquet et al., Phys. Rev. B 46, 3771 (1992)



Summary

• The 3d-shell in iron group elements has a small spatial extent - the small average distance between electrons

in this shell thus results in particularly large matrix elements of the Coulomb interaction (more precisely:

particularly large Slater-Condon parameters F0, F2 and F4)

• The Coulomb interaction in a partially filled atomic shell generates multiplet splitting

• In a solid the multiplet structure of a transition metal ion is modified by the crystalline electric field and

charge transfer to ligands - both effects can be modelled well theoretically

• A wide variety of spectroscopies can be described by multiplet theory, whereby usually quantitative

agreement with experiment can be obtained

• Examples are valence band photoemission, XAS, core-level photoemission but also optical absorption,

electron-spin resonance, inelastic neutron scattering....

• The agreement is in fact so good that the combination of - say - X-ray absorption spectroscopy and

multiplet theory/exact diagonalization allows to pin down the valence and spin state of TM ions in solids

• This all is unambiguous evidence that the multiplet structure of the free ion - modified by CEF and charge

transfer - persists in the solid and is crucial for understanding 3d TM oxides



Simplified Coulomb Hamiltonian

Often one can see in the literature simplified Coulomb Hamiltonians like

H1 = U0





∑

m,m′

∑

σ,σ′

nmσnm′σ′ −
∑

m,σ

nmσ



 − JH
∑

m6=m′

nm,↑nm′,↓

This represents a pure truncation of the true Coulomb interaction for which there is no justification whatsoever

More precisely: the discarded terms of the Coulomb Hamiltonian are of comparable magnitude to those which

are kept



H1 = U0





∑

m,m′

∑

σ,σ′

nmσnm′σ′ −
∑

m,σ

nmσ



 − JH
∑

m6=m′

nm,↑nm′,↓

Still, by adjusting the parameters U0 = F 0 and JH = (F 2 +F 4)/14 and introduce C = (9
7
F 2 − 5

7
F 4) ≤ 1 eV

one can obtain nearly correct values for the ground state energies of dn (M. Haverkort, Ph. D. thesis)



However, as regards agreement with the true Hamiltonian that’s about it.....



However, as regards agreement with the true Hamiltonian that’s about it.....



In summary a Hamiltonian like this one

H1 = U0





∑

m,m′

∑

σ,σ′

nmσnm′σ′ −
∑

m,σ

nmσ



 − JH
∑

m6=m′

nm,↑nm′,↓

cannot be expected to produce - say - photoemission spectra which have much similarity with experiment.

This can be seen in many recent works in the literature....


