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1 Introduction

If one wants to apply density functional theory (DFT) to study the electronic structure of mate-
rials locally perturbed by defect atoms or more generally of disordered dilute and concentrated
alloys, the standard approach is to use band structure methods developed for periodic systems.
The defect atoms are periodically repeated so that a periodic crystal with a large unit cell (su-
percell) is obtained. The supercell must be large to minimize spurious interactions between
the defect atoms in adjacent supercells. Supercells with a few hundred atoms can be treated
routinely today and sophisticated corrections for some of the unwanted interactions have been
developed. The situation was considerably different in the 1970s and 1980s when the comput-
ing power was orders of magnitude smaller than today. Then Green function methods were
mandatory to investigate the electronic structure of defect atoms more efficiently. The advan-
tage of Green function methods is that the potential must be determined self-consistently only
in the region where it noticeably differs from the one of the unperturbed host crystal. As a con-
sequence Green function methods correctly describe the embedding of the local environment of
the defect atoms in the otherwise unperturbed surrounding perfect crystal. It is the aim of this
chapter to give an introduction into the concept of Green function methods for studying locally
perturbed crystals. For illustration of the concept and its advantages some key results will be
presented. These results were mainly obtained by a Green function (GF) technique which is
based on the Korringa-Kohn-Rostoker (KKR) band structure method [1, 2] and which was de-
veloped in Jülich over the last decades. This technique, the KKR-GF method, is particularly
suited for metallic systems, but can be applied also for semiconductors and insulators.

2 Green function of the Kohn-Sham equation

The basic quantity in density functional theory [3, 4] is the electronic density. The density can
be determined, if the Kohn-Sham single-particle equations[

−∇2
r + veff(r)

]
ϕi(r) = εiϕi(r) (1)

are solved.1 The normalized Kohn-Sham wavefunctions ϕi(r) can then be used to calculate the
density by

n(r) = 2
∑
i

|ϕi(r)|2 (2)

where for a system with N electrons the sum is over the N/2 orbitals with the lowest values of
εi. The εi are the eigenvalues of the Hamiltonian H = −∇2

r + veff(r). The factor two accounts
for the assumed spin degeneracy. Alternatively to (2), the density can be calculated from the
Green function of the Kohn-Sham system. This Green function is defined as the solution of[

−∇2
r + veff(r)− ε

]
G(r, r′; ε) = −δ(r− r′) . (3)

1To simplify the notation, Rydberg atomic units ~2/2m = 1 are used throughout this chapter and usually the
equations are given only for non-spin-polarized systems. The generalization to spin-polarized (magnetic) systems
is straightforward.
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Here the boundary condition G(r, r′; ε) → 0 for |r − r′| → ∞ is assumed and the symbol ε
denotes a continuous complex variable in contrast to the real discrete variables εi. The result
for the density is

n(r) = − 2

π
Im

∫ EF

−∞
G(r, r; ε)dε (4)

where the integral is understood as an integral in the complex ε plane on a contour infinitesi-
mally above the real ε axis. The Fermi level EF is obtained by the condition that the density
n(r) integrated over all space gives the correct number of electrons. For instance, in neutral
systems, this number is determined by the sum of the nuclear charges. The result (4) can be
derived as follows. In operator notation (3) can be written as

[H− ε]G = −I (5)

whereH is the Hamiltonian and I the unity operator. In terms of eigenvalues εi and eigenfunc-
tions ϕi(r) the HamiltonianH can be expressed as

H =
∑
i

εiϕi(r)ϕ
?
i (r
′) . (6)

This is true because the right hand of this equation acting on ϕi(r) leads to εiϕi(r) which is the
required result forHϕi(r). This follows from∑

j

εjϕj(r)

∫
dr′ϕ?j(r

′)ϕi(r
′) =

∑
j

εjϕj(r)δij = εiϕi(r) (7)

where the orthonormality constraint
∫
dr′ϕ?j(r

′)ϕi(r
′) = δij for the eigenfunctions was used.

By using that G is the inverse operator of ε−H the so called spectral representation

G(r, r′; ε) =
∑
i

ϕi(r)ϕ
?
i (r
′)

ε− εi
(8)

for the Green function is obtained. If this representation is inserted in (4) and the identity

lim
y→0+

1

x+ iy
= P

1

x
− iπδ(x) (9)

is applied to evaluate the imaginary part of (8), a delta function δ(ε − εi) appears which then
can be used to perform the integration in (4). The upper integration limit EF restricts the sum
to eigenfunctions with εi ≤ EF and the equivalence of (2) and (4) is demonstrated.
Equation (8) shows that the Green function has poles on the real ε axis at discrete values εi.
These values represent the discrete part of the eigenvalue spectrum. In general, also a continu-
ous part of the eigenvalue spectrum is possible. For instance in free space, with veff(r) = 0, the
eigenfunctions are plane waves eikr with eigenvalues given by k2. These eigenvalues continu-
ously cover the non-negative part of the real ε axis. Then (8) must be generalized into

G(r, r′; ε) =
∑
i

ϕi(r)ϕ
?
i (r
′)

ε− εi
+

∫ ∞
−∞

ϕ(r; ε′)ϕ?(r′; ε′)

ε− ε′
dε′ (10)
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Fig. 1: Density of states for Ni (here only for majority electrons) and the corresponding quantity
along paths parallel to the real axis with distance 0.5, 1.8 and 4.7 eV. The picture is taken from
Ref. [8]. It illustrates the increasing smoothness of the integrand with increasing distance from
the real axis.

where the integral is over the continuous part of the spectrum. In periodic crystals the continu-
ous part of the spectrum is realized by bands, for instance by the valence and conduction bands
in semiconductors. For the numerical evaluation of (4) it is important that the Green function is
an analytical function2 of ε except for the singularities on the real axis. This means that the in-
tegration (4) can be performed on a contour in the complex ε plane where the integrand is much
smoother than just above the real axis as illustrated in Fig. 1. This procedure was suggested in a
number of papers [6–9] and leads to considerable savings of computing time. Usually 30 to 40
points in the complex ε plane are enough for accurate evaluations of (4) provided that the points
are chosen dense enough near EF , where the contour necessarily approaches the real axis.
An important quantity, which is often used to provide an understanding of the electronic struc-
ture of materials in a single-particle picture, is the local density of states within in a volume V.
It is defined as

nV (ε) = 2
∑
i

δ(εi − ε)
∫
V

dr |ϕi(r)|2 (11)

and gives the distribution of occupied and unoccupied electronic states within the volume V ,
for instance the local volume corresponding to one atom in the system. In terms of the Green
function the local density of states is given by

nV (ε) = −
2

π
Im

∫
V

drG(r, r; ε) (12)

as can be verified by using the spectral representation (8). The total density of states is obtained
if the integrals in (11) or (12) are done over all space.

2For an elementary introduction to classical Green functions and their analytical properties the textbook of
Economou [5] is a good source.
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3 Green function method for impurities

Historically the Green function method is attributed to Koster and Slater [10] who expanded the
Green function in terms of Wannier functions. Because of the difficult construction of Wannier
functions at that time the capabilities of this approach were rather limited. At the end of the
1970s Green function methods for the calculation of the electronic structure of impurities in
solids received new attention. Inspired by the success of DFT calculations for periodic solids,
several groups invested a considerable amount of work into the development of Green function
methods for impurity calculations. They used a number of different techniques to calculate the
the Green function of the periodic host crystal which is needed for the subsequent impurity
calculations. The LCAO-GF method [11,12] was based on an expansion in linear combinations
atomic orbitals, the LCGO-GF method [13] on an expansion in linear combination of Gaussian
orbitals, the LMTO-GF method [14,15] on the linear muffin-tin orbital method and the KKR-GF
method [16, 17] on the Korringa-Kohn-Rostoker band structure method.
In the beginning the Green functions were calculated mostly by using the spectral representa-
tion (8). This is easy for the imaginary part of the Green function because according to (9) the
imaginary part of the denominator ε−εi leads to a delta function so that only εi values contribute
which are in the ε range for which the Green function is needed. From the imaginary part the
real part was then obtained by the Kramers-Kronig relation

ReG(r, r′; ε) = − 1

π
P

∫ ∞
−∞

dε′
1

ε− ε′
ImG(r, r′; ε′) . (13)

Here in principle, the imaginary part is needed along the entire real ε axis. In practice, ap-
proximations were used, either the imaginary part in the integrand was neglected for higher ε
values or it was replaced by an analytical approximation [18]. Another possibility is to use basis
functions in a finite Hilbert space [15].
The problem that an infinite number of eigenstates contributes in (8) can be avoided if the host
Green function is directly calculated by Brillouin zone integrations. This technique, which di-
rectly calculates the Green function for a given energy, is used in the KKR coherent potential
approximation (KKR-CPA) [19, 20] and has been implemented also in the KKR-GF method.
This procedure is perhaps most easily understood in terms of reference Green functions. In-
stead of using the defining differential equation (3) or the spectral representation (8), the Green
function is calculated from the integral equation

G(r, r′; ε) = Gr(r, r′; ε) +

∫
dr′′Gr(r, r′′; ε)∆v(r′′)G(r′′, r′; ε) . (14)

Here Gr is the Green function of a suitably chosen reference system with reference potential
vr(r) and ∆v(r) = veff(r)− vr(r) is the perturbation of the potential given by the difference of
the Kohn-Sham potential and the reference potential. The Green function Gr is determined by[

−∇2
r + vr(r)− ε

]
Gr(r, r′; ε) = −δ(r− r′) . (15)

The calculation of Green functions by using reference systems is a powerful concept for the
calculation of the electronic structure for systems with a complicated geometric structure. An
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Fig. 2: Illustration for the geometry of one impurity atom in an atomic chain which consists of
other atoms than the otherwise periodically repeated chains at the step edges of a vicinal (711)
surface of an fcc crystal.

example for such a system, shown in Fig. 2, is a vicinal (711) surface of a face-centered-cubic
crystal decorated with adatoms at step edges and within step edges. The Green function for this
system can be constructed by the successive calculation of Green functions of simpler systems.
i) Starting from free space the Green function for the bulk crystal is calculated treating the full
bulk potential as perturbation using periodicity in three dimensions. ii) Several layers of the bulk
crystal are removed, the removed potential is treated as perturbation using the two-dimensional
surface periodicity. As a consequence of the fact the electrons cannot tunnel through several
empty layers one obtains a slab which is decoupled from the rest of the bulk crystal. iii) Atomic
chains are added at step edges. The potential perturbation is periodic in two dimension, but
locally restricted to the vicinity of the step edges. iv) A chain of different atoms is inserted,
only one-dimensional periodicity along the considered step edge is preserved, but the potential
perturbation is confined to the vicinity of the considered chain. v) Finally, an impurity atom is
inserted, periodicity is fully lost, but the potential perturbation is essentially confined to atoms
in the vicinity of the impurity.

During this successive construction, periodicity can be used in the dimensions where it exists
while in the remaining dimensions the potential perturbation is localized in the vicinity of the
replaced atoms. In each successive step the integral equation must be solved only within a
region of space where the potential differs non-negligibly from the one of the reference system.
Once the Green function has been obtained for r and r′ in this region, the Green function in all
space can be obtained simply by multiplications and integrations. This represents an enormous
advantage of Green function methods over supercell methods because the size of the region
for which the integral equation must be solved is determined by the extent of the potential
perturbation and not by the usually much larger extent of the perturbed wavefunctions or Green
functions.
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Fig. 3: Partitioning of space and illustration for the definition of Rn and Rn′
, which define the

positions of the cell centers, and r and r′, which are vectors within the cells.

An effective way to solve the integral equation (14) is provided by the KKR-GF method which
does not rely on the determination of eigenvalues and eigenfunctions with their orthonormality
constraints, but uses ideas of multiple-scattering theory. In this theory space is divided into
non-overlapping regions, for instance cells around each atom, and the calculation of the Green
function is broken up into two parts. First, single-scattering quantities, which depend only on
the potential in a single cell, are determined. Second, the multiple-scattering problem is solved
to obtain the correct combination of all single-scattering events.
The mathematical basis for the KKR-GF method is the fact that the Green function for free
space, which is given by

G0(r, r′; ε) = − 1

4π

exp(i
√
ε|r− r′|)

|r− r′|
, (16)

can be written in cell-centered coordinates as

G0(r+Rn, r′ +Rn′
; ε) = δnn′G0(r, r′; ε) +

∑
LL′

JL(r; ε)G
0,nn′

LL′ (ε)JL′(r′; ε) (17)

with analytically known Green function matrix elements G0,nn′

LL′ (ε) which do not depend on the
radial coordinates r or r′. Here Rn and Rn′ are the coordinates of the cell centers, usually the
atomic positions, and r and r′ are coordinates within the cells which originate at the cell centers.
An illustration for these coordinates is given in Fig. 3. The functions

JL(r; ε) = jl(r
√
ε)Ylm(r̂) (18)

are products of spherical harmonics Ylm with spherical Bessel functions. Angular variables are
denoted by r̂ = r/r and radial variables by r = |r|. The symbol L is used as compact notation
for the angular momentum indices l and m and sums over L denote double sums over l and
|m| ≤ l.
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If one proceeds as in [21], it is straightforward to show that the solution of (14) is given by

G(r+Rn, r′ +Rn′
; ε) = δnn′Gn

s (r, r
′; ε) +

∑
LL′

Rn
L(r; ε)G

nn′

LL′(ε)Rn′

L′(r′; ε) . (19)

Here Gn
s is the single-site Green function for cell n which satisfies the integral equation

Gn
s (r, r

′; ε) = Gr(r, r′; ε) +

∫
n

dr′′Gr(r, r′′; ε)∆vn(r′′)Gn
s (r
′′, r′; ε) (20)

and Rn
L are the single-site solutions which satisfy the integral equations

Rn
L(r; ε) = JL(r; ε) +

∫
n

dr′Gr(r, r′; ε)∆vn(r′)Rn
L(r
′; ε) . (21)

In (20-21) the integration is only over the volume of cell n and ∆vn(r) = ∆v(r + Rn) is the
potential perturbation in this cell n. The Green function matrix elements Gnn′

LL′ used in (19)
satisfy the matrix equation

Gnn′

LL′(ε) = Gr,nn′

LL′ (ε) +
∑
n′′

∑
L′′L′′′

Gr,nn′′

LL′′ (ε)∆t
n′′

L′′L′′′(ε)Gn′′n′

L′′′L′(ε) (22)

which computationally represents a linear algebra problem. The difference ∆tn of the so-called
single-site t matrices is given by

∆tnLL′(ε) =

∫
n

dr JL(r; ε)∆v
n(r)Rn

L′(r; ε) . (23)

Together (19-23) provide a computationally convenient solution of the integral equation (14)
without the need to determine eigenvalues and eigenfunctions. The only real approximation
which must be made is the truncation of the infinite sums over L to a finite number of terms.
This determines the angular momentum cutoff lmax used in the KKR-GF method. Usually
lmax = 3 or lmax = 4 is sufficient for accurate results.
If the density of states integrated over all space is needed, for instance for the total energy
calculations, it is important that the integration in (12) can be performed analytically if the
volume V extends over all space. This is the essence of Lloyd’s formula [22] which gives the
difference of the integrated density of states

∆N(ε) =

∫ ε

dε′∆n(ε′) (24)

of the perturbed and unperturbed systems by logarithms of determinants. The formula can be
written as

∆N(ε) =
1

π
Im
∑
n

∆ ln det |αnLL′(ε)| −
1

π
Im ln det |δnn′

LL′ −
∑
L′

Gr,nn′

LL′ (ε)∆t
n′

L′L(ε)| (25)

which is the KKR equivalent of the operator identity (61) derived in the appendix. The matrix
α in (25) is defined by [23]

αnLL′(ε) = δLL′ +

∫
n

drHL(r; ε)v
n(r)Rn

L′(r; ε) (26)

for the potential vn(r) and analogously for the reference potential, where the functions

HL(r; ε) = h
(1)
l (r
√
ε)Ylm(r̂) (27)

are products of spherical harmonics with spherical Hankel functions of the first kind.
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Fig. 4: Local density of states (within the impurity cell) for Mn impurities in Cu and Ag as
function of energy (in eV) relative to the Fermi level. The minority spin density of states is
plotted downwards so that it does not overlap with the majority one. The dotted curves show
the integrated density of states. The picture is taken from Ref. [25].

3.1 Density of states

Although the single-particle eigenvalues εi and the density of states n(ε) calculated in density
functional theory are only formal mathematical quantities, they often agree qualitatively with
experiment and even more often they are used to provide a single-particle understanding of the
chemical and physical mechanisms which lead to the observed behaviour of materials. Among
the first systems studied by the KKR-GF method were 3d transition metal impurity atoms in
noble metals which are the classical systems considered by Anderson in his famous paper on
the Anderson impurity model [24].
In Fig. 4 the local density of states calculated with the local density approximation (LDA) of
DFT is shown for Mn impurities in Cu and Ag. The differences for the two spin directions
are caused by the fact that transition metal atoms of the Fe series can gain magnetic exchange
energy by spin alignment. Anderson has discussed this behaviour in terms of Lorentzian type
virtual bound states. Fig. 4 shows that these virtual bound states are reproduced in LDA-DFT
calculations. In particular, the minority density of states shows almost Lorentzian type features
with peak positions just above the Fermi level. However, also distortions from the Lorentzian
form are clearly visible. They are caused by band structure effects arising from hybridization of
the 3d-states of the impurity atoms with the host d-states. Interestingly, in 1980 when Ref. [25]
was published, it was seriously doubted that the observed splitting of the peak positions was
the correct density functional answer, because conflicting results with much smaller splitting
existed [26]. One criticism was that the observed spin splitting could be an artifact of the fact
that only a potential perturbation in the impurity cell was used. Later calculations [27], where
potential perturbations were also used in neighboring cells, confirmed the results shown in
Fig. 4. Moreover, measurements [28,29] with various electron-spectroscopy techniques showed
similar spin splittings as calculated. Fully quantitative agreement between calculations and
experiment, of course, cannot be expected because states calculated with LDA are not to be
identified as measurable quantities.
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3.2 Defect formation energies

An important problem in the study of defects is the calculation of total energy differences which
are the basic quantities necessary for understanding the microscopic origin of the formation of
alloys and many other physical processes such as diffusion, short-range ordering, segregation.
This is particularly true for vacancy formation and migration energies, which are difficult to
measure, but important quantities to understand the thermodynamic and kinetic behaviour of
metals and semiconductors. In supercell methods these numbers are difficult to calculate as
expressed, for instance, in the following sentences taken from Puska et al. [30], who used su-
percells with up to 216 atoms. These authors write in the introduction The vacancy in Si can
be considered as the simplest example of a point defect in a semiconductor lattice and in the
conclusions The convergence of the results is shown to be very slow and If the supercell is not
large enough the long-range ionic relaxation pattern, especially in the [110] zigzag direction,
may not be properly described. Since then the vacancy in Si has been reinvestigated several
times by supercell calculations, where due to the ever increasing computer power the supercell
size has gradually increased. However, the convergence problem remains as stated in one of the
most recent articles by Corsetti and Mostofi [31]. These authors who used supercells with up to
1000 atoms write in the conclusions Our calculations confirm the slow finite size convergence
of defect formation energies and transition levels, ... They also argue that future increase of
supercell sizes can reduce the spurious interactions between the vacancies in different cells, but
that then another problem must be considered seriously. The problem is that total energy differ-
ences due to defect atoms are not calculated directly, but are obtained by numerical subtraction
of supercell energies with and without defect. With increasing supercell size the numbers to be
subtracted become larger which puts heavy demands on the numerical precision.

In contrast to supercell methods, Green function calculations are not plagued by these problems.
The formation energy is calculated directly, not by energy differences, spurious interactions
do not exist, and the region in space where the self-consistent calculations must be done is
determined by the range of the potential perturbation and not by the usually much larger range
of wavefunctions or Green function perturbations. Actually, the Si vacancy was considered
as one of the earliest systems in Green function impurity calculations [11, 12]. At that time,
however, it was not possible to calculate accurate total energies. Green function methods using
basis sets suffered from insufficiently accurate basis functions and the KKR-GF method from
the spherical approximation for the potential used in each cell. Only at the beginning of the
1990s accurate total energy calculations became possible, both due to the increased computing
power and even more so because of the development of advanced numerical techniques. Results
for some vacancy formation energies calculated by the KKR-GF method [32] are shown in
Table 1. Compared to the original publication [33] the values for Cu and Ni contain corrections
of about -0.04 and -0.08 eV which are energy gains obtained if the atoms relax to the correct
equilibrium positions.

For the calculation of defect formation energies it is very important that Lloyd’s formula is used
to obtain the single-particle contribution. Within density functional theory the total energy con-
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Table 1: Calculated and experimental values for the vacancy formation energy of selected
transition metals (in eV). The calculations for Cu and Ni include the effect of lattice relaxations.

Cu Ag Ni Pd
Theory 1.37 1.20 1.68 1.57
Experiment 1.28 1.11 1.79, 1.63 1.85, 1.54

Table 2: Solution energy (in eV) for a V impurity in Cu calculated using potential perturbations
in the vanadium cell and in different numbers of shells of surrounding Cu neighbors.

shells 0 1 2 3 4
cells 1 13 19 43 55
ELloyd 1.44 0.73 0.73 0.73 0.73
Elocal 1.60 1.93 1.38 0.75 0.52

sists of a sum of the kinetic energy T [n(r)], the electrostatic Hartree energy and the exchange
correlation energy. The kinetic energy is usually evaluated as

T [n(r)] =
∑
i

εi −
∫

drn(r)veff(r) =

∫ EF

dε ε n(ε)−
∫

drn(r)veff(r) (28)

= EFN(EF )−
∫ EF

dεN(ε)−
∫

drn(r)veff(r)

by using the single-particle energies εi, where the last result is obtained from integration by parts
over ε. If the density of states n(ε) or the integrated density of states N(ε) is calculated from
the Green function by (11) and (24), an explicit summation over all cells of the infinite crystal
is required. This problem is avoided if Lloyd’s formula (25) is used which already contains the
integration over all space.
The different behaviour of the shell convergence of energies calculated with and without Lloyd’s
formula is illustrated in Table 2 where results for the solution energy for a vanadium impurity
in copper are shown. While the use of Lloyd’s formula leads to a converged result already for
13 cells, the use of (11) with summation over cells only gives poor results. This behaviour
reflects the fact that wavefunction or Green function perturbations are much longer ranged than
the potential perturbation. Density changes, which contribute, for instance, in the last term of
(28) and in other parts of the energy functional, exist outside of the perturbed potential region,
but these changes are unimportant because of the variational properties of the energy functional.

3.3 Forces and lattice relaxations

Substitutional impurities, in general, have a different size than the host atoms. This causes dis-
placements of the neighboring atoms away from their ideal positions which they occupy in the
unperturbed host crystal. In metals, because of the high coordination number, the displacements
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are rather small and can be neglected in the calculations of many physical properties. However,
sometimes the displacements have significant effects and their size and direction should be
calculated. In electronic structure methods displacements are calculated usually from the con-
dition that the forces on the atoms should vanish and the forces are determined usually by the
Hellmann-Feynman theorem

Fn = − ∂E

∂Rn

∣∣∣∣
n(r;Rn)

−
∫

dr
δE

δn(r)

∂n(r;Rn)

∂Rn
(29)

which means that the force Fn on atom n is determined by the derivative of the total energy E
with respect to the coordinate Rn of atom n. Here the first term, evaluated at constant density
n(r;Rn), is the Hellmann-Feynman (HF) force and the second term is necessary if approxima-
tions are made in the solution of the Kohn-Sham equations. The second term vanishes in an
exact treatment, because then δE

δn(r)
= EF is constant and because the total number of electrons

Nel =
∫
drn(r;Rn) does not depend on the atomic positions. Within a full potential KKR

formalism, the Kohn-Sham equations for the valence electrons are solved rather accurately, the
only approximation is the lmax cutoff. This means that the second term usually contains a neg-
ligible contribution from the valence electrons. For the core electrons, however, this term gives
a considerable contribution if the core states are calculated as usual in an atomic fashion using
only the spherical part of the potential. With a spherical ansatz ncore for the core density, the
resulting expression for the force is

Fn = Zn ∂VM(r)

∂r

∣∣∣∣
r=Rn

−
∫
d3r ncore(|r−Rn|) ∂veff(r)

∂r
(30)

whereZn is the nuclear charge, VM(r) the Madelung potential and veff(r) the Kohn-Sham poten-
tial. Due to the vector character of the potential derivatives in (30), only the l = 1 components
of VM and veff are needed. Since these quantities are anyhow calculated in a full-potential KKR
treatment, the calculation of forces is easy. There are also no Pulay corrections [34] required
which arise in basis set methods if the basis functions depend on the atomic positions.
While force calculation are simple, calculations of atomic displacements, which occur if the
impurity atoms are smaller or larger than the host atoms, are more complicated in the KKR
method. The main reason is the site-centered angular momentum expansion used in the Green
function expression (19) which is needed around the displaced sites. While original undisplaced
and new displaced sites can be used together in the calculation of the Green function with appro-
priate artificial zero potentials on non-participating sites, it is numerically simpler to transform
the Green function matrix elements from undisplaced to displaced sites [35, 36]. The reference
Green function matrix elements are transformed by

G̃r,nn′

LL′ (ε) =
∑
L′′L′′′

ULL′′(sn; ε)Gr,nn′

L′′L′′′(ε)UL′L′′′(sn
′
; ε) (31)

where sn is the shift of atom at site Rn to the new site Rn + sn. The transformation matrix is
given by

UL′L(s
n; ε) = 4π

∑
L′′

il
′+l′′−lCLL′L′′jl′′(

√
εsn)YL′′ (̂sn) (32)
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Fig. 5: Displacements of the nearest Cu neighbors around impurities from Ti to Ge in Cu. The
displacements are given in percent of the nearest neighbor distance between the atoms in un-
perturbed Cu. Experimental results obtained by EXAFS measurements are shown by triangles
with error bars. The picture is taken from Ref. [37].

where CLL′L′′ =
∫

4π
dr̂YL(r̂)YL′(r̂)YL′′(r̂) are Gaunt coefficients, jl spherical Bessel functions

and YL spherical harmonics. Together with a similar transformation for the t matrix, the follow-
ing algebraic Dyson equation

G = G̃r + G̃r[t− t̃r]G (33)

must be solved. While the transformation (31) is exact, if the sums over L′′ and L′′′ are extended
over infinite angular momenta, in practical calculations these sums must be truncated. For large
displacements a relatively high lmax value is needed, but lmax = 4 is sufficient for displacements
up to 10 % of the nearest neighbor distance as they occur around the substitutional impurities
considered here.
Fig. 5 shows calculated displacements of nearest neighbor Cu atoms around impurities from
the 3rd series of the periodic table together with experimental data derived from extended x-ray
absorption fine structure (EXAFS) measurements. Most of the impurities lead to an outward
displacement of the Cu neighbors which means that these impurities are bigger than Cu. Only
Ni and Co are smaller with inward displacements. The displacements induced by Fe are very
small and for a Cu impurity they are, of course, zero.
In contrast to metals, lattice relaxations in semiconductors are usually considerably larger be-
cause of more open structures and lower coordination numbers. For the defect pairs shown in
Fig. 6 the displacements reach up to 10 % of the nearest neighbor distance which is about the
limit for the U transformations. The figure shows a comparison of displacements calculated for
donor-acceptor pairs in Si by the full-potential KKR-GF method and a pseudopotential ab-initio
molecular dynamics program applied to a supercell with 64 atoms [38]. The displaced positions
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Fig. 6: Calculated displacements for InSb, InP and InAs defect pairs in Si. The results are given
in percent of the nearest neighbor distance between the bulk Si atoms. Two sets of numbers are
given. The number in parentheses have been calculated by a pseudopotential method, the other
number by the KKR-GF method.

obtained by the two methods are essentially the same, but the KKR-GF method can give more
information, in particular for properties that are determined by the core electrons, like hyperfine
fields or electric field gradients.

The considered defect pairs are electrically and magnetically inactive and experimental infor-
mation about the structure is difficult to obtain. One of the few methods to investigate such
defects are perturbed angular correlation (PAC) experiments which measure the electric field
gradients. The calculated electric field gradients depend sensitively on the lattice relaxations of
the defect complex. While calculations without lattice relaxations give the wrong trend with re-
spect to the atomic numbers of the donor atoms, the agreement greatly improves, if the relaxed
configurations are considered [39], as for instance given in Fig. 6 for donor-acceptor pairs in
Si. Thus a reliable calculation of the relaxations is crucial for understanding the electric field
gradients.

Efficient and accurate force calculations open the possibility to study phonon dispersion rela-
tions. Within a Green function impurity method the calculations can be done in real space by
directly determining the Born-von Karman force constants according to their definition. One
atom is displaced by a finite amount and the induced forces on all atoms are calculated. Fourier
transformation gives the dynamical matrix and phonon frequencies and eigenstates in the Bril-
louin zone are easily obtained. For cubic crystals a single self-consistent calculation is enough
to determine the whole phonon spectrum. Fig. 7 shows the phonon dispersion curves of Al
calculated in this way by the KKR-GF method. As can be seen a calculation including 6th near-
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Fig. 7: Calculated phonon spectrum (continuous lines) of fcc Al and experimental results (full
dots). The central Al atom is shifted by 0.5% and the forces on six shells of neighboring atoms
are calculated self-consistently, yielding force constant parameters for six nearest neighbor
shells. The figure is taken from Ref. [37].

est neighbor interactions reproduces the experimental data quite well. A disadvantage of this
approach is that a relatively big cluster, including many atoms, must be used to account for long
range elastic interactions present for example in semiconductors.

3.4 Long range perturbations

Magnetic impurities in non-magnetic materials induce magnetic polarization oscillations on the
surrounding host atoms. Usually these oscillations are small effects. Typically a Cu atom as
nearest neighbor of an impurity from the 3d series carries an induced moment of about 10−2µB

and the size of the moments decreases with increasing distance from the impurity as the third
power of distance. Despite of this, as discussed in Ref. [40], very nice experimental information
about the magnetization oscillations in Cu exists due to measurements of Knight shift satellites
by the Slichter group. The measured Knight shift satellites can be related to calculated hyperfine
fields as detailed in Ref. [40]. Fig. 8 shows calculated hyperfine fields on twelve shells of
Cu neighbors around a Mn impurity, which means that potentials for 225 atoms have been
calculated self-consistently. The corresponding experimental results derived from the Knight
shift measurement are shown by red squares. Calculation and experiment nicely agree if the
correct assignment of the experimentally observed peaks to the different shells has been made.
While the assignment of calculated hyperfine fields to the different shells is unambiguous, the
assignment of experimental peaks is more difficult. It relies on the symmetry of the shells, on
the intensity of the peaks arising from the number of atoms in the shells and on the magnitude
of the derived hyperfine field according to the rapid decrease with distance.
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Fig. 8: Hyperfine fields of Cu atoms in different shells around a Mn impurity in Cu. The
calculated values (solid curve) were multiplied with (Rn/a)

3, where Rn is the distance from the
Mn nucleus and a the lattice constant of Cu. The numbers indicate the different shells and the
experimental values are shown as red squares. The picture is taken from Ref. [41].

3.5 Parameters for model Hamiltonians

Green function impurity calculations can be used to obtain parameters for model Hamiltoni-
ans if constraints are applied in density functional theory [42]. Constraints are already used
in the formal development of density functional theory, for instance the density is constrained
to give the correct number of electrons and the Kohn-Sham orbitals must be normalized as∑

α(ϕ
α
i , ϕ

α
i ) = 1. Another example is Levy’s [43] explicit definition of the energy by con-

strained minimization over all many-electron wavefunctions which give the same density. The
idea of constrained density-functional theory [42] is the extension to quite arbitrary constraints.
This idea is useful if one wants to calculate total energy differences which depend on a parame-
ter, for instance on NV , the number of electrons inside a volume V . The constraint can be taken
into account by modifying the energy functional E[n(r)] into

Ẽ[n(r)] = E[n(r)] + v

[
NV −

∫
V

n(r)dr

]
(34)

where the constraint is guaranteed by the Lagrange parameter v. The minimization of (34)
with respect to n(r) leads to an additional potential v in the Kohn-Sham equations, which is
constant and only acts in V and is zero elsewhere. This potential must be adjusted such that
the resulting density n(r) gives exactly NV electrons in volume V . Instead of calculating the
energy differences from the functional Ẽ[n(r)] by subtracting the energies for different values
of the parameter NV , it is computationally easier to calculate the difference directly by the
Hellmann-Feynman theorem

dẼ(NV )

dNV

= v ⇒ ∆Ẽ(NV ) =

∫ NV

N0

v(N ′) dN ′ (35)

which only requires the knowledge of the potential v(N ′). Physically, the potential v can be
viewed as the force necessary to constrain the system to the desired state and ∆E as the strain
energy of the system.
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Fig. 9: Constraining field (left) and energy difference (right) as function of the deviation of the
occupation number Nf from its ground state value N0

f . Pictures are taken from Ref. [42].

Instead of varying the total charge it is more interesting to vary partial charges, for instance
the number of d- or f -electrons in the impurity cell. Minimization then leads to a constant
projection potential v(Nd,f ) which acts only on states with l = 2 or l = 3 character in the
considered cell. The energy differences obtained in this way can be related to the screened
Coulomb parameters Ud and Uf (Hubbard U), for instance as

Uf = ∆E(N0
f + 1) +∆E(N0

f − 1) (36)

where N0
f is the number of f -electrons in equilibrium. In the calculation the screening is pro-

vided by the the s- and p-states which can adjust to the changed number of d- or f -electrons.
An early application of constrained density functional theory was the calculation of the Coulomb
parameter Uf for Ce impurities in Ag and Pd [42]. The number Nf of f -electrons was deter-
mined by integrating the local density of states (12) using only l = 3 angular momentum
components for n(ε). The ground state values of Nf were determined as N0

f = 1.18 for Ce in
Pd and as N0

f = 1.25 for Ce in Ag. A constraining projection potential vf was applied within
the muffin-tin sphere around the Ce impurity and the dependence of Nf on vf was determined.
Both the constraining potential and the energy difference are plotted in Fig. 9. The dependence
of vf on Nf is almost linear except for Pd near ∆Nf = −1, where it becomes increasingly
difficult to remove all f -states due to their strong hybridization with d-states of Pd. The en-
ergy differences depend almost quadratically on ∆Nf and the screened Coulomb parameters
according to (36) turned out be 6.6 eV for Ce in Ag and 8.1 eV in Pd.
Another early application of constrained density functional theory was the calculation of in-
teraction energy differences between the ferromagnetic and antiferromagnetic configuration of
impurity pairs in metals [44]. In these calculations the local magnetic moment of one of the
impurities is constrained to an arbitrary value M and the lowest energy compatible with the
constraint is determined by a modified functional

Ẽ[n(r),m(r)] = E[n(r),m(r)] +H

[
M −

∫
V

m(r)dr

]
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Fig. 10: Difference of the magnetic interaction energy difference ∆E(M) and the constraining
magnetic field H(M) as function of the prescribed local impurity moment. The results are for
pairs of Mn and Fe impurities on nearest neighbor sites in a Cu crystal (from Ref. [44]).

where the Lagrange parameterH is a constraining longitudinal magnetic field, which is constant
in the cell of one impurity with volume V and zero elsewhere. This field is chosen such that the
integral of the magnetization m(r) over the cell gives the desired value of the moment.
Similar to (35) the energy difference is given by

∆E(M) =

∫ M

M0

H(M ′)dM ′

where M0 is the value of M in the reference state. For instance in Fig. 10, the reference state is
the antiferromagnetic configuration, for which the moments for the two impurities have opposite
sign. This state corresponds to the left minima of the ∆E(M) curves in Fig. 10, while the right
minima correspond to the ferromagnetic configuration. Both configurations are stable as the
energy minima with vanishing constraining field H indicate. The energy differences between
different magnetic configurations determine exchange parameters Jij which may be used in a
Heisenberg model

Ĥ = −
∑
i,j

JijŜiŜj ,

which can be treated much faster for large and complex systems than fully self-consistent spin
density functional calculations.

4 Random Alloys and CPA

For real alloys the consideration of one or even two impurities is relevant only for the very di-
lute limit where interactions between impurity clusters can safely be neglected. For increasing
impurity concentration these interactions become more and more important. Instead of calcu-
lating the Green function for a single configuration realized in a particular system, one is then
interested in spatial or configurational averages 〈G〉 of the Green function over many different
possible configurations [45]. For the derivation of expressions for the averaged Green function
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〈G〉 it is convenient to consider first the single-site problem and then the interaction between
the different sites. The single-site problem can be written in operator notation as

Gα = g + gVαGα (37)

where all quantities are considered as integral operators3 and g and Vα are used as shorter
notations for Gr and ∆vn. In order to emphasize that in this section single-site quantities are
integral operators, the sites are labelled here by Greek letters. With the definition tαg = VαGα

the last equation can be solved as
Gα = g + gtαg . (38)

Multiplication with Vα from the left leads to

VαGα = tαg = Vαg + Vαgtαg . (39)

This is valid if tα is determined by

tα = Vα + Vαgtα . (40)

Using spatial variables the last equation can be written as

tα(r, r
′) = Vα(r)δ(r− r′) +

∫
dr′′ Vα(r)g(r, r

′′)tα(r
′′, r′) (41)

where the potential operator is local as characterized by the delta function. By iterating (40) as
tα = Vα + VαgVα + VαgVαgVα . . . one sees that tα is a single-site quantity. It is only needed in
cell α because all terms contain factors Vα on the left and right and Vα is restricted to cell α.
For the multiple-site problem, where the potential perturbation is given by V =

∑
α Vα, it is

convenient to introduce an operator F which connects G and its average 〈G〉 by

G = F 〈G〉 . (42)

If this is used in G = g + gV G, which is (14) in operator notation, the result is

F 〈G〉 = g + gV F 〈G〉 (43)

Averaging gives
〈G〉 = g + g〈V F 〉〈G〉 (44)

where 〈F 〉 = 1 was used which follows from (42). The last equation contains only averaged
quantities and could be solved easily if 〈V F 〉 is known.4

The task is now to derive an equation for 〈V F 〉. Subtraction of (43) and (44) and omitting the
common operator 〈G〉 on both sides of the resulting equation gives

F − 1 = g(V F − 〈V F 〉) . (45)

3Integral operators, for instance g, act on arbitrary functions f(r) as
∫
dr′g(r, r′)f(r′).

4 The quantity 〈V F 〉 is usually called self-energy and labelled by the letter Σ.
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which multiplied with V leads to

V F = V + V g(V F − 〈V F 〉) (46)

This is the basic result used for further considerations. Now the crucial point is that V F can be
written as a sum of single-site terms. For that purpose operators fα are defined by the equation
VαF = tαfα. With V =

∑
α Vα one obtains V F =

∑
α VαF =

∑
α tαfα and (46) can be

written as ∑
α

tαfα =
∑
α

Vα +
∑
α

∑
β

Vαgtβfβ −
∑
α

∑
β

Vαg〈tβfβ〉 . (47)

On the other hand, if (40) is multiplied with fα and summed over α, the result is∑
α

tαfα =
∑
α

Vαfα +
∑
α

Vαgtαfα . (48)

Subtraction of (47) and (48) gives

0 =
∑
α

Vα(fα − 1−
∑
β 6=α

gtβfβ +
∑
β

g〈tβfβ〉) (49)

where the restriction β 6= α arises from the subtraction of the last term of (48). The last equation
is satisfied if fα is determined by the implicit equation

fα = 1 +
∑
β 6=α

gtβfβ −
∑
β

g〈tβfβ〉 . (50)

In general, this equation cannot be solved exactly, but it can be used to obtain approximations.
Iteration of (50) starting with fα = 0 leads to

fα = 1 (51)

+
∑
β 6=α

gtβ −
∑
β

g〈tβ〉

+
∑
β 6=α

∑
γ 6=β

gtβgtγ −
∑
β 6=α

∑
γ

gtβg〈tγ〉 −
∑
β

∑
γ 6=β

g〈tβgtγ〉+
∑
β

∑
γ

g〈tβ〉g〈tγ〉

+ . . .

where terms containing three or more t operators are not shown. In order to obtain approxima-
tions for 〈V F 〉 the last equation is multiplied with tα, summed over α and averaged. This leads
to

〈V F 〉 =
∑
α

〈tα〉 (52)

+
∑
α

∑
β 6=α

〈tαgtβ〉 −
∑
α

∑
β

〈tα〉g〈tβ〉

+
∑
α

∑
β 6=α

∑
γ 6=β

〈tαgtβgtγ〉 −
∑
α

∑
β 6=α

∑
γ

〈tαgtβ〉g〈tγ〉

−
∑
α

∑
β

∑
γ 6=β

〈tα〉g〈tβgtγ〉+
∑
α

∑
β

∑
γ

〈tα〉g〈tβ〉g〈tγ〉+ . . . .
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Here it is important to note that this expression is still exact although only terms up to third
order in tα are written down.
Now approximations can be made. An important approximation, which leads to a considerable
simplification, is the neglect of correlations between different sites. While electronic structure
calculations for alloys nowadays do not necessarily need this approximation, for instance in the
non-local CPA of Rowlands et al. [46, 47], these advanced techniques are difficult to discuss
and will not be considered here. The neglect of correlations means that averages 〈tαgtβ〉 can be
factorized as 〈tα〉〈tβ〉 if the sites α and β are different. This leads to

〈V F 〉 =
∑
α

〈tα〉 −
∑
α

〈tα〉g〈tα〉 (53)

+
∑
α

〈tα〉g〈tα〉g〈tα〉+
∑
α

∑
β 6=α

〈tαg〈tβ〉gtα〉 −
∑
α

∑
β 6=α

〈tα〉g〈tβ〉g〈tα〉 − . . . .

From this expression a number of approximations can be derived which are far better than the
most simple approximation which replaces 〈V F 〉 by 〈V 〉 =

∑
α〈Vα〉. This approximation

which only uses the averaged potential is called the virtual crystal approximation (VCA). It is
easy to handle because it leads to a real potential, but has serious deficits for describing real dis-
ordered systems. A major improvement on the VCA is to use the first term of (53) or (52). This
approximation is called average tmatrix approximation (ATA) and takes into account all effects
up to first order in the t operator. The ATA has been extensively discussed in the literature, in
particular in connection with multiple-scattering theory [48, 49]. A simple way to go beyond
the ATA is to use all terms of (53) which contain only a single site α. The result can written
as
∑

α(1 + g〈tα〉)−1〈tα〉 and corresponds to the optical potential discussed by Goldberger and
Watson [51]. This method is correct to second order in the t operator, the third order terms not
treated are the last two ones shown in (53). An even better approximation is obtained by real-
izing that the above equations are valid for quite arbitrary Green functions g provided that the
corresponding reference system shows no disorder. In a self-consistent procedure the reference
Green function g is chosen in such a way that as many terms as possible vanish in (53). In prin-
ciple, one could demand 〈tα(r, r′)〉 = 0. In general this is, however, not possible because the
integral operator tα(r, r′) is a complicated function of r and r′. In the multiple-scattering KKR
method the situation is somewhat simpler because it relies on algebraic matrices tn instead of
integral operators tα. Then, as shown by Soven [50] self-consistency can be implemented by
choosing an effective reference medium with the requirement that the scattering of the electrons
averaged over the constituent atoms vanishes in the effective medium. The resulting approxi-
mation called KKR-CPA has been widely applied to study the electronic structure of disordered
alloys.
As an example for extensive KKR-CPA calculations Fig. 11 shows results [52] for the averaged
local magnetic moments in alloys of Fe, Co, and Ni and alloys of these elements with other
transition metals. The diagrams obtained on the left for the experimental results and on the
right for the calculated results are referred to as Slater-Pauling curves. The Slater-Pauling curve
has two main branches with slopes of 45o and -45o which meet in the middle where a maximal
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Fig. 11: Slater-Pauling curve for the averaged magnetic moment per atom as function of the
averaged number of electrons per atom. The picture is taken from Ref. [52].

moment of about 2.4 µB occurs. The left main branch consists of Fe alloys, whereas Co and Ni
alloys form the right main branch and the subbranches. The main reason for the two different
slopes is a different electronic screening behavior. Alloys on the main branch on the right have a
full majority spin band so that the screening of the valence difference introduced by the impurity
atoms is provided by minority spin electrons. This leads to a reduced number of minority d-
electrons which gives increased moments. Alloys on the other branches are characterized by the
occurrence of antiparallel moments of the impurities which lead to reduced averaged moments
with increasing concentration. Here the screening is mainly provided by the majority spin
electrons. Although the agreement between experiment and calculation is not perfect, Fig. 11
shows that spin density functional theory is a powerful tool to understand and explain magnetic
properties of materials.



DFT Green Function Approach 10.23

Appendix

A Useful Green function properties

The Green function G(ε) for a HamiltonianH is defined by the operator equation

G =
1

ε−H
. (54)

For real ε it is necessary to perform a limiting process. Then the real quantity ε is replaced by
a complex quantity ε + iγ and all equations are understood in the sense that the limit γ → 0+

must be performed in the end. The relation

lim
γ→0+

1

ε+ iγ −H
= P

1

ε−H
− iπδ(ε−H) (55)

where P denotes the principal value, establishes the connection between the imaginary part of
the Green function and the density of states n(ε) = δ(ε − H) and also the Kramers-Kronig
relation between the imaginary and the real part of the Green function

ImG(ε) = −πn(ε) , ReG(ε) = − 1

π
P

∫ ∞
−∞

1

ε− ε′
ImG(ε′) dε′ . (56)

where the last equation is a Hilbert transform.
While the above equations in this appendix are valid for real values of ε, complex values of ε
are considered below. Then the last equation can be generalized to

G(ε) = − 1

π

∫ ∞
−∞

1

ε− ε′
ImG(ε′) dε′ . (57)

Another useful relation for the Green function is given by

dG(ε)

dε
=

d

dε

1

ε−H
= − 1

ε−H
1

ε−H
= −G(ε)G(ε) . (58)

The electronic density of states can formally be expressed as

n(ε) = − 1

π
Im TrG (ε) . (59)

The difference between the density of states for two systems characterized by two Green-
function operators G(ε) and g(ε) is given by

∆n(ε) = − 1

π
ImTr[G(ε)−g(ε)] = − 1

π
ImTr[g(ε)V G(ε)] = − 1

π
ImTr

[
g(ε)V

1

1− g(ε)V
g(ε)

]
.

Here and below V denotes the difference between the two potentials. By use of (58) for g(ε)
this can be expressed as

∆n(ε) =
1

π
ImTr

[
dg(ε)

dε
V

1

1− g(ε)V

]
= − 1

π
ImTr

d

dε
ln(1− g(ε)V ) . (60)

The difference between the integrated densities of states is thus given by

∆N(ε) =

∫ ε

dε′∆n(ε′) = − 1

π
ImTr ln(1− g(ε)V ) (61)
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