
1 Correlated Electrons: Why we need Models

to Understand Real Materials?

Alexander Lichtenstein

I. Institut für Theoretische Physik

Universität Hamburg, 20355 Hamburg, Germany

Contents

1 Introduction 2

2 Functional approach: Route to fluctuations 4

3 Local correlations and beyond 7

4 Solving multiorbital quantum impurity problems 12

5 From models to real materials 16

6 Summary and outlook 19

E. Pavarini, E. Koch, F. Anders, and M. Jarrell
Correlated Electrons: From Models to Materials
Modeling and Simulation Vol. 2
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1 Introduction

The technical inventions of the last century are closely related with the design of silicon based

materials for the semiconductor industry. The theoretical development of the last fifty years and

the associated success in describing electronic properties of such weakly correlated materials

started with the conception of the density functional theory (DFT), which was initiated by sem-

inal works of Walter Kohn, Pierre Hohenberg, and Lu Sham [1, 2]. This is the first-principles

scheme based on the exact theorem, stating that the ground state of interacting electron systems

can be found by minimizing an universal functional of the density in some additional external

field. The main problem of DFT is related with the fact, that this functional is not known in

general and can be calculated numerically with a reasonable accuracy only for the simple case

of the homogeneous electron gas. These calculations, which have been proven to be very useful

for the DFT scheme, have been done by David Ceperley and Berni Alder [3] using the two-step

quantum Monte Carlo procedure starting from the “fixed-node” approximation followed by a

“released-node” calculation. Nevertheless the accuracy of such scheme is still limited and is

very sensitive to the computational details [4]. The main restriction of the density functional

scheme is the fact that it only gives ground state properties, while spectral information can be

found only in the time-dependent DFT scheme [5]. While the structural relaxation of com-

plex materials can be carried out very efficiently in the generalized gradient approximation of

the DFT, due to almost spherical properties of the exchange-correlation hole [6], the quality

of spectral properties crucially depends on systems in question. The TDFT scheme has more

problems than the static DFT approach, since there are no suitable time-dependent reference

systems to find an exchange correlation kernel.

The enormous progress of the last three decades in designing completely new materials for

high-Tc superconductivity, giant and colossal magnetoresistance, or artificially created two-

dimensional lattices brings new importance to the theory of transition-metal systems. It turns

out that even the ground state properties of antiferromagnetic oxides or orbitally ordered com-
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Fig. 1: Schematic view of angular-resolved photoemission spectra (ARPES) for normal (left)

and correlated electron materials (right).
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Fig. 2: Schematic representation of spin (as well as charge or orbital) fluctuations in correlated

electron systems.

pounds are not described well in the DFT scheme [7]. The accurate angle-resolved photoemis-

sion study of the cuprate superconductors clearly shows, that the spectral properties of such

systems, with strong electron-electron interactions in the 3d-shell of transition metals has well

pronounced incoherent features [8]. We present in Fig. 1 the qualitative difference between

the spectral function of normal metals with well-defined quasiparticle peaks at all momenta k

and the strongly correlated case with an incoherent part and a non-quasiparticle spectrum in the

Brillouin zone.

The main source of complex correlated behavior of electronic systems, related with strong

fluctuations between different low-energy fermionic configurations, is shown schematically in

Fig. 2. For example, if the free energy of an electronic system has only one well defined

minimum at zero local moment (the dashed curve) then one can expect small electron fluctu-

ations and normal paramagnetic quasiparticle behavior. In the case of two low-lying minima

corresponding to singlet and triplet excitations (solid curve) one can expect strong many-body

fluctuations and possibly non-quasiparticle behavior related with local so-called Hund’s rule

physics [9]. In order to treat the system with such effective energy profiles, we need to use

the path-integral approach and calculate the corresponding correlation functions using compli-

cated quantum Monte Carlo schemes, which can handle many local minima in the free-energy

functional on an equal footing.

In this lecture we review the general functional approach to strongly correlated electron systems,

discuss an elegant way to separate the local and non-local correlations, and show how one

can solve the local correlation problem using the recently developed continuous time Monte

Carlo (CT-QMC) scheme. Finally we show an efficient way to go from the simple model

investigations of strongly correlated systems to realistic investigation of complex electronic

materials.
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2 Functional approach: Route to fluctuations

We introduce a general functional approach which will cover Density Functional (DFT), Dy-

namical Mean-Field (DMFT), and Baym-Kadanoff (BK) Theory [10]. Let us start from the full

many–body Hamiltonian describing electrons moving in the periodic external potential of ions

V (r), with chemical potential µ, and interacting via Coulomb law: U(r − r
′) = 1/|r− r

′|. We

use atomic units ~ = m = e = 1. In the field-operator representation the Hamiltonian takes the

form

H =
∑

σ

∫

dr ψ̂†
σ(r)

(

−
1

2
∇2 + V (r)− µ

)

ψ̂σ(r) (1)

+
1

2

∑

σσ′

∫

dr

∫

dr′ ψ̂†
σ(r)ψ̂

†
σ′(r

′)U(r − r
′) ψ̂σ′(r′)ψ̂σ(r).

We can always use a single-particle orthonormal basis set φn(r), for example Wannier orbitals,

with a full set of quantum numbers, e.g., site, orbital and spin index: n = (imσ) and expand

the fields in creation and annihilation operators

ψ̂(r) =
∑

n

φn(r)ĉn (2)

ψ̂†(r) =
∑

n

φ∗
n(r)ĉ

†
n

Going from fermionic operators to the Grassmann variables {c∗n, cn}, we can write the func-

tional integral representation of the partition function of the many-body Hamiltonian in the

imaginary time domain using the Euclidean action S

Z =

∫

D[c∗, c]e−S (3)

S =
∑

12

c∗1 (∂τ + t12) c2 +
1

4

∑

1234

c∗1c
∗
2 U1234 c4c3 , (4)

where the one- and two-electron matrix elements are defined as

t12 =

∫

drφ∗
1(r)

(

−
1

2
▽2 + V (r)− µ

)

φ2(r) (5)

U1234 =

∫

dr

∫

dr′ φ∗
1(r)φ

∗
2(r

′)U(r− r
′)φ3(r)φ4(r

′).

and we use the following short definition of the sum:

∑

1

... ≡
∑

im

∫

dτ... (6)

The one-electron Green function is defined via a simplest non-zero correlation function

G12 = −〈c1c
∗
2〉S = −

1

Z

∫

D[c∗, c] c1c
∗
2 e

−S (7)
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Fig. 3: Representation of the full two-particle Green function in terms single-particle Green

functions and the full vertex function Γ .

The main problems of strongly interacting electronic systems are related to the fact that the

higher order correlation functions do not separate into a product of lower order correlation

functions. For example the two-particle Green function or generalized susceptibilities, χ, are

defined in the following form [11]

χ1234 = 〈c1c2c
∗
3c

∗
4〉S =

1

Z

∫

D[c∗, c] c1c2c
∗
3c

∗
4 e

−S , (8)

and can be expressed graphically through Green functions and the full vertex function Γ1234 [12]

as shown in Fig. 3

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 (9)

In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
∑

ij

c∗iJijcj . (10)

The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field

Z[J ] = e−F [J ] =

∫

D[c∗, c] e−S[J ] . (11)

Variation of this source function gives all correlation functions, for example the Green function

G12 =
1

Z[J ]

δZ[J ]

δJ12

∣

∣

∣

∣

J=0

=
δF [J ]

δJ12

∣

∣

∣

∣

J=0

. (12)

Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).
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The Baym–Kadanoff functional can be obtained by Legendre transforming from J to G

F [G] = F [J ]− Tr(JG), (13)

We can use the standard decomposition of the free energy F into the single particle part and the

correlated part

F [G] = Tr lnG− Tr (ΣG) + Φ[G], (14)

were Σ12 is single particle self-energy and Φ[G] is a correlated part of the Baym–Kadanoff

functional and is equal to the sum of all two-particle irreducible diagrams. At its stationary

point this functional gives the free energy of the system. One can use a different Legendre

transform and obtain functionals of the self-energy Σ [14], or complicated functionals of two

variables G and Γ [15], or a more simple functional of G and screened Coulomb interactions

W [10] which is useful in GW theory.

In practice, Φ[G] is not known for interacting electron systems, which is similar to the problem

of the unknown universal functional in density functional theory. Moreover, this general func-

tional approach reduces to the DFT theory, if one only uses the diagonal part in the space-time

representation of the Green function, which corresponds to the one-electron density

n1 = G12δ12 = 〈c∗1c1〉S, (15)

with the Kohn-Sham potential VKS = Vext+VH +Vxc playing the role of the“constrained field”

J . In this case we lose information about the non equal-time Green’s function, which gives the

single-particle excitation spectrum as well as the k-dependence of the spectral function, and we

restrict ourselves to only the ground state energy of the many-electron system. Moreover, we

also lose information about all collective excitations in solids, such as plasmons or magnons,

which can be obtained from a generalized susceptibility or from the second variation of the free

energy.

One can probably find the Baym-Kadanoff interacting potential Φ[G] for simple lattice models

using quantum Monte Carlo (QMC). Unfortunately, due to the sign problem in lattice simu-

lations, this numerically exact solution of electronic correlation problem is not possible. On

the other hand, one can obtain the solution of local interacting quantum problem in a general

fermionic bath, using a QMC scheme, which has no sign problem if it is diagonal in spin and

orbital space. Therefore, a reasonable approach to strongly correlated systems is to keep only a

local part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one

can obtain numerically the correlated part of the local functional. In this scheme we only use

the local part of the many-electron vertex and obtain, in a self-consistent way, an effective func-

tional of the local Green function. In the following section we discuss the general dual-fermion

(DF) transformations [16] which will help us to separate the local fluctuations in many-body

system and show a perturbative way to go beyond the DMFT approximations.
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3 Local correlations and beyond

We will only consider the local, but multiobital, interaction vertex U i
mm′m′′m′′′ . Sometimes we

will omit all orbital indices for simplicity. All equations will be written in matrix form, giving

the idea of how to generalize a dual-fermion (DF) scheme to the multi-orbital case [17,18]. The

general strategy to separate the local and non-local correlations effects is associated with the

introduction of auxiliary fermionic fields which will couple separated local correlated impurities

models back to the lattice [16]. In order to include the smaller non-local part of the Coulomb

interactions one can use a more general approach using auxiliary fermionic and bosonic fields

[19].

We rewrite corresponding original action, Eq. (3), in Matsubara space as a sum of the non-local

one-electron contribution with t12 and the local interaction part U

S[c∗, c] = −
∑

ωkσmm′

c∗ωkσm

[

(iω + µ)1− tmm′

kσ

]

cωkσm′ +
∑

i

SU[c
∗
i , ci]. (16)

The index i labels the lattice sites, m refers to different orbitals, σ is the spin projection and

the k-vectors are quasi-momenta. In order to keep the notation simple, it is useful to introduce

the combined index α ≡ {m, σ}. Translational invariance is assumed for simplicity in the

following, although a real space formulation is straightforward. The local part of the action, SU,

may contain any type of local multi-orbital interaction.

In order to formulate an expansion around the best possible auxiliary local action, a quantum

impurity problem is introduced

Sloc[c
∗, c] = −

∑

ω αβ

c∗ωα
[

(iω + µ)1−∆αβ
ω

]

cωβ + SU[c
∗, c], (17)

where ∆ω is the effective hybridization matrix describing the coupling of the impurity to an

auxiliary fermionic bath. The main motivation for rewriting the lattice action in terms of a

quantum impurity model is that such a reference system can be solved numerically exactly for

an arbitrary hybridization function using the CT-QMC methods [20]. Using the locality of the

hybridization function ∆ω, the lattice action (16) can be rewritten exactly in terms of individual

impurity models and the effective one-electron coupling (tij−∆ω) between different impurities

S[c∗, c] =
∑

i

Sloc[c
∗
i , ci] +

∑

ωkαβ

c∗ωkα

(

tαβ
k

−∆αβ
ω

)

cωkβ. (18)

We will find the condition for the optimal choice of the hybridization function later. Although

we can solve the individual impurity model exactly, the effect of spatial correlations due to

the second term in Eq. (18) is very hard to treat, even perturbatively, since the impurity ac-

tion is non-Gaussian and one cannot use the Wick theorem. The main idea of a dual-fermion

transformation is the change of variables from (c∗, c) to weakly correlated Grassmann fields

(f ∗, f) in the path integral representation of the partition function, Eq. (3), followed by a sim-

ple perturbative treatment. The new variables are introduced through the Hubbard-Stratonovich
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Fig. 4: From the lattice model (left) via real-space DMFT (middle) to the non-local dual-

fermion perturbation (right).

transformation

exp
(

c∗αbα(M
−1)αβbβcβ

)

=
1

detM

∫

D[f ∗, f ] exp
(

−f ∗
αMαβfβ − c∗αbαfα − f ∗

βbβcβ
)

. (19)

In order to transform the exponential of the bilinear term in (18), we choose the matrices Mαβ ,

and scaling function bα (if we assume for simplicity that the local Green’s function is diagonal

in orbital and spin space) in accordance with Refs. [16] as

M = g−1
ω (∆ω − tk)

−1 g−1
ω , b = g−1

ω , (20)

where gω is the local, interacting Green function of the impurity problem

g12 = −〈c1c
∗
2〉loc = −

1

Zloc

∫

D[c∗, c]c1c
∗
2 exp

(

− Sloc[c
∗, c]

)

. (21)

With this choice, the lattice action transforms to

S[c∗, c, f ∗, f ] =
∑

i

Si
site +

∑

ωkαβ

f ∗
ωkα[g

−1
ω (∆ω − tk)

−1 g−1
ω ]αβfωkβ. (22)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions

Si
site[c

∗
i , ci, f

∗
i , fi] = Sloc[c

∗
i , ci] +

∑

αβ

f ∗
ωiα g

−1
ω αβcωiβ + c∗ωiα g

−1
ω αβfωiβ. (23)

Since gω is local, the sum over all states labeled by k can be replaced by a summation over

all sites by a change of basis in the second term. The crucial point is that the coupling to the

auxiliary fermions is purely local and Ssite decomposes into a sum of local terms. The lattice

fermions can therefore be integrated-out from Ssite for each site i separately. This completes the

change of variables

∫

D[c∗, c] exp (−Ssite[c
∗
i , ci, f

∗
i , fi]) = Zloc exp

(

−
∑

ω αβ

f ∗
ωiα g

−1
ω αβfωiβ − Vi[f

∗
i , fi]

)

. (24)
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Fig. 5: Diagrams contributing to the dual self-energy Σ̃.

The above equation may be viewed as the defining equation for the dual potential V [f ∗, f ].

The choice of matrices (20) ensures a particularly simple form of this potential. An explicit

expression is found by expanding both sides of Eq. (24) and equating the resulting expressions

order by order. Formally this can be done to all orders and in this sense the transformation to

the dual-fermions is exact. For most applications, the dual potential is approximated by the first

non-trivial interaction vertex

V [f ∗, f ] =
1

4
γ1234 f

∗
1 f

∗
2 f4f3, (25)

where the combined index 1 ≡ {ωα} comprises frequency, spin and orbital degrees of freedom.

γ is the exact, fully antisymmetric, reducible two-particle vertex of the local quantum impurity

problem. It is given by

γ1234 = g−1
11′g

−1
22′

[

χ1′2′3′4′ − χ0
1′2′3′4′

]

g−1
3′3g

−1
4′4, (26)

with the two-particle Green function of the impurity being defined as

χ1234 = 〈c1c2c
∗
3c

∗
4〉loc =

1

Zloc

∫

D[c∗, c] c1c2c
∗
3c

∗
4 e

−Sloc[c
∗,c] . (27)

The disconnected part reads

χ0
1234 = g14g23 − g13g24 . (28)

The single- and two-particle Green functions can be calculated using the CT-QMC [20]. After

integrating-out the lattice fermions, the dual action depends only on the new variables

S̃[f ∗, f ] = −
∑

ωkαβ

f ∗
ωkα[G̃

0
ω(k)]

−1
αβfωkβ +

∑

i

Vi[f
∗
i , fi]. (29)

and the bare dual Green function involves the local Green function gω of the impurity model

G̃0
ω(k) =

[

g−1
ω +∆ω − tk

]−1
− gω . (30)

Up to now, Eqs. (29) and (30) are mere reformulations of the original problem. In practice,

approximate solutions are constructed by treating the dual problem perturbatively. Several di-

agrams contributing to the dual self-energy are shown in Fig. 5. These are constructed from

the impurity vertices and dual Green functions. The first diagram is purely local, while higher
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orders contain nonlocal contributions, e.g., the second diagram in Fig. 5. In practice, approx-

imations to the self-energy are constructed in terms of skeleton diagrams. The lines shown in

Fig. 5 are therefore understood to be fully dressed propagators. The use of skeleton diagrams

is necessary to ensure that the resulting theory is conserving in the Baym-Kadanoff sense [13],

i.e., it fulfills the basic conservation laws for energy, momentum, spin, and particle number. The

most useful property of such dual perturbation theory is good convergence both in the weak-

coupling limit, when the local vertex is small and in the strong-coupling limit, when the dual

Green’s function is small [21].

The hybridization function ∆, which so far has not been specified, allows to optimize the start-

ing point of the perturbation theory and should be chosen in an optimal way. The condition

of the first diagram (Fig. 5) as well as all local diagrams with higher-order correlation func-

tions in the expansion of the dual self-energy to be equal to zero at all frequencies, fixes the

hybridization. This eliminates the leading-order diagrammatic correction to the self-energy and

establishes a connection to DMFT, which can be seen as follows: Since the γ vertex is local,

this condition amounts to demanding that the local part of the dual Green function be zero

∑

k

G̃ω(k) = 0. (31)

The simplest nontrivial approximation is obtained by taking the leading-order correction, the

first diagram in Fig. 5, evaluated with the bare dual propagator (30). Using the expression for

the DMFT Green function [22]

GDMFT
ω (k) =

[

g−1
ω +∆ω − tk

]−1
, (32)

it immediately follows that (31) evaluated with the bare dual Green function is exactly equiva-

lent to the DMFT self-consistency condition for ∆ω

1

Nk

∑

k

GDMFT
ω (k) = gω . (33)

In the limit of infinitely large lattice connectivity the DMFT scheme becomes exact with the

local self-energy [23]. The DMFT approximation for real lattice models appears to be one of the

most successful many body schemes for realistic multi orbital systems [10]. Since it involves

the exact solution of the many-body multi-orbital impurity model Eq. (21) all local quantum

fluctuations of different orbitals, spins, and charges (Fig. 6) are included in this scheme.

In the DMFT approach one can study paramagnetic correlated phases of complex crystals

with strong spin and orbital fluctuations above transition temperatures of the spin- and orbital-

ordered states [24].

Hence DMFT appears as the zero-order approximation in this approach and corrections to

DMFT are included perturbatively. A formal relation to DMFT can be established using the

Feynman variational functional approach. In this context, DMFT appears as the optimal ap-

proximation to a Gaussian ensemble of dual fermions [25].

When diagrammatic corrections are taken into account and the first diagram is evaluated with

the dressed propagator G̃, the condition (31) will in general be violated. It can be reinforced
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Fig. 6: Schematic representations of initial lattice model (left) and the local DMFT approach

with orbital and spin fluctuations (right).

by adjusting the hybridization function iteratively. This corresponds to eliminating an infinite

partial series of all local diagrams, starting from the first term in Fig. 5. These contributions are

effectively absorbed into the impurity problem. Note that such an expansion is not one around

DMFT, but rather around an optimized impurity problem.

The only difference between a DMFT and a DF calculation are the diagrammatic corrections

which are included into the dual Green function. To this end, the local impurity vertex γ has to

be calculated in addition to the Green function in the impurity solver step.

It is an important consequence of the exact transformation (19) that for a theory, which is con-

serving in terms of dual fermions, the result is also conserving in terms of lattice fermions [25].

This allows to construct general conserving approximations within the dual fermion approach.

Numerically, the self-energy is obtained in terms of skeleton diagrams by performing a self-

consistent renormalization as described below. Once an approximate dual self-energy is found,

the result may be transformed back to a physical result in terms of lattice fermions using exact

relations.

The action (29) allows for a Feynman-type diagrammatic expansion in powers of the dual po-

tential V . The rules are similar to those of the antisymmetrized diagrammatic technique [26].

Extension of these rules to include generic n-particle interaction vertices is straightforward.

Due to the use of an antisymmetrized interaction, the diagrams acquire a combinatorial prefac-

tor. For a tuple of n equivalent lines, the expression has to be multiplied by a factor 1/n!. As

simplest example we can write schematically the first self-energy correction of the diagram in

Fig. 5, which contains a single closed loop

Σ̃
(1)
12 = −T

∑

34

γ1324 G̃
loc
43 (34)

where G̃loc = (1/Nk)
∑

k
G̃(k) denotes the local part of the dual Green function. The second-

order contribution represented in Fig. 5 contains two equivalent lines and one closed loop, and
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hence is k-dependent

Σ̃
(2)
12 (k) = −

1

2

(

T

Nk

)2
∑

k1k2

∑

345678

γ1345 G̃57(k1) G̃83(k2) G̃46(k+ k2 − k1) γ6728 . (35)

In practice, it is more efficient to evaluate the lowest-order diagrams in real space and transform

back to reciprocal space using the fast Fourier transform. After calculating the best possible

series for the self-energy Σ̃ in the dual space one can calculate the renormalized Green function

matrix for the original fermions using the following simple transformations [19]

Gω(k) =

[

(

gω + gωΣ̃ω(k)gω

)−1

+∆ω − tk

]−1

(36)

which is a useful generalization of the DMFT Green’s function (see Eq. (32)) to include non-

local correlation effects.

The progress of the DMFT approach strongly depends on the development of efficient numerical

solvers for an effective quantum impurity model.

4 Solving multiorbital quantum impurity problems

Even though DMFT reduces the extended lattice problem to a single-site problem, the solution

of the underlying Anderson impurity model remains a formidable quantum many-body problem,

which requires accurate solvers. Recently a new class of solvers has emerged, the continuous-

time quantum impurity solvers. These are based on stochastic Monte-Carlo methods and mainly

come in two different flavors: The weak and strong-coupling approach.

The weak-coupling or interaction expansion continuous-time (CT-INT) quantum Monte Carlo

algorithm for fermions was originally introduced by Aleksei Rubtsov [27]. There are two main

previous attempts: the first work by Nikolay Prokof’ev et. al [29], who devised a continuous-

time scheme to sample the infinite series of Feynman diagrams for bosons, and a second work

by Natalie Jachowicz and co-workers [30], who developed a continous-time lattice Monte Carlo

algorithm using the Hubbard-Stratonovich decomposition. The power of new CT-QMC scheme

is that it represents just the integration of the complex path integral without any transformation

to effective non-interacting models and can be used for any compacted electron-electron vertex.

We introduce the algorithm in the path integral formulation for the single-orbital Anderson im-

purity problem with a Hubbard-type interaction Un↑n↓. The generalization to the multiorbital

case can be found in Ref. [20]. First, the action of the Anderson impurity model is divided into

a Gaussian part S0 and an interaction part SU as follows:

S0 =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′c∗σ(τ) [∂τ − µ+∆(τ − τ ′) + Uα−σ(τ)δ(τ − τ ′)] cσ(τ
′) , (37)

SU = U

∫ β

0

dτ [c∗↑(τ)c↑(τ)− α↑(τ)] [c
∗
↓(τ)c↓(τ)− α↓(τ)] . (38)
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Fig. 7: The four contributions to the partition function for k = 2. The interaction vertices are

depicted by squares, bare Green functions as lines.

The parameters α are introduced to control the sign problem. A formal series expansion for the

partition function is obtained by expanding the exponential in the interaction term,

Z =

∫

D[c∗, c] e−S0[c∗,c]

∞
∑

k=0

(−1)k

k!
Uk

∫ β

0

dτ1 . . .

∫ β

0

dτk [c
∗
↑(τ1)c↑(τ1)− α↑(τ1)] (39)

×[c∗↓(τ1)c↓(τ1)−−α↓(τ1)] . . . [c
∗
↑(τk)c↑(τk)− α↑(τk)][c

∗
↓(τk)c↓(τk)− α↓(τk)] .

Using the definition of the average over the noninteracting action

〈...〉0 =
1

Z0

∫

D[c∗, c]... exp(−S0), (40)

the partition function can be expressed in the following form

Z = Z0

∞
∑

k=0

∫ β

0

dτ1 . . .

∫ β

τk−1

dτk sgn(Ωk) |Ωk| , (41)

where the integrand is given by

Ωk = (−1)kUk〈[c∗↑(τ1)c↑(τ1)− α↑(τ1)][c
∗
↓(τ1)c↓(τ1)− α↓(τ1)] . . .

. . . [c∗↑(τk)c↑(τk)− α↑(τk)][c
∗
↓(τk)c↓(τk)− α↓(τk)]〉0 . (42)

Note that here the range of time integration has been changed such that time ordering is explicit:

τ1 < . . . < τk−1 < τk. For a given set of times all k! permutations of this sequence contribute

to Eq. (39). These can be brought into the standard sequence by permuting quadruples of

Grassmann numbers, and hence without gaining an additional sign. Since all terms are subject

to time-ordering, their contribution to the integral is identical, so that the factor 1/k! in Eq. (39)

cancels. A configuration can be fully characterized by specifying a perturbation-order k and a

set of k times: Ck = {τ1, . . . , τk}.

The Monte Carlo algorithm performs importance sampling over this configuration space. The

weight of a configuration is thereby taken to be equal to the modulus of the integrand, Eq. (42).

Since S0 is Gaussian, the average over the noninteracting system can be evaluated using Wick’s

theorem. Hence the weight of a configuration is essentially given by a fermionic determinant of

a matrix containing the bare Green functions

Ωk = (−1)kUk
∏

σ

det ĝσ, (43)
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Fig. 8: Diagrammatic representation of the six contributions to the partition function for spin-

less fermions at k = 3. An electron is inserted at the start of a segment (marked by an open

circle) and removed at the segment endpoint. The hybridization function lines∆(τi−τ
′
j) (shown

in red) are connected to the segments in all possible ways. The sign of each diagram is given

on the left. (Reproduced from Ref. [28].)

where the local Green function in the α fields is equal to

(ĝσ)ij = gσ0 (τi − τj)− ασ(τi)δij . (44)

Note that determinants for different spin-orientations factorize, since the Green function is di-

agonal in spin-space.

The hybridization expansion (CT-HYB) or strong-coupling algorithm was initially introduced

by Philipp Werner et al. [28] and has been generalized to multiorbital systems with general

interactions [31, 32]. Here the algorithm is discussed in the segment representation, which

exploits the possibility of a very fast computation of the trace for a density-density type of

interaction. The action is regrouped into the atomic part

Sat =

∫ β

0

dτ
∑

σ

c∗σ(τ) [∂τ − µ] cσ(τ) + U

∫ β

0

dτ c∗↑(τ)c↑(τ)c
∗
↓(τ)c↓(τ) (45)

and the part of the action S∆ which contains the hybridization term

S∆ = −

∫ β

0

dτ ′
∫ β

0

dτ
∑

σ

cσ(τ)∆(τ − τ ′) c∗σ(τ
′) . (46)

Here the sign is taken out by reversing the original order of c and c∗ to avoid an alternating sign

in the expansion. To simplify the notation, consider first the spinless-fermion model, which

is obtained by disregarding the spin sums and interaction in Eqs. (45) and (46). The series

expansion for the partition function is generated by expanding in the hybridization term:

Z =

∫

D[c∗, c] e−Sat

∑

k

1

k!

∫ β

0

dτ ′1

∫ β

0

dτ1 . . .

∫ β

0

dτ ′k

∫ β

0

dτk×

× c(τk)c
∗(τ ′k) . . . c(τ1)c

∗(τ ′1)∆(τ1 − τ ′1) . . .∆(τk − τ ′k). (47)
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Fig. 9: Example single-band CT-HYB in a segment picture: blue dots illustrate a creation oper-

ator, red ones annichilation operators and the black line represents the hybridization function

∆(τi − τ ′j). The green regions represent the time interval at which two electrons are present on

the impurity with the total time ld and the price U has to be paid.

The important observation now is that, at any order, the diagrams can be collected into a deter-

minant of hybridization functions. The partition function then takes the form

Z = Zat

∑

k

∫ β

0

dτ ′1

∫ β

τ ′
1

dτ1 . . .

∫ β

τk−1

dτ ′k

∫ ◦τ ′
k

τ ′
k

dτk 〈c(τk)c
∗(τ ′k) . . . c(τ1)c

∗(τ ′1)〉at det ∆̂
(k), (48)

where the average is over the states of the atomic problem described by Sat. Here det ∆̂(k)

denotes the determinant of the matrix of hybridizations ∆̂ij = ∆(τi − τ ′j). The diagrams con-

tributing to the partition function for k = 3 are shown in Fig. 8. A diagram is depicted by a

collection of segments, where a segment is symbolic for the time interval where the impurity

is occupied. The collection of diagrams obtained by connecting the hybridization lines in all

possible ways corresponds to the determinant. Collecting the diagrams into a determinant is

essential to alleviate, or completely suppress the sign problem. Note that the imaginary-time

interval in Eq. (48) is viewed as a circle denoted by ◦τ ′k. The trajectories in the path integral are

subject to antiperiodic boundary conditions which is accommodated by an additional sign if a

segment winds around the circle.

For the single-orbital Anderson impurity model with Hubbard interaction the segment picture

still holds and gives a very intuitive picture of the imaginary time dynamics. A configuration is

visualized by two separate timelines, one for each spin. The additional sum over spins,
∑

σ1...σk
,

which enters in the first line of Eq. (48), generates contributions such as the one shown in Fig. 9.

The only difference to the spinless-fermion model is, that when the impurity is doubly occupied,

the energy U has to be paid and the trace is eµ(l↑+l↓)−Uld , where lσ is the time spent on the

impurity for an electron with spin σ and ld is the time the impurity is doubly occupied.

In the Fig. 10 shows the comparison of CT-INT and CT-HYB for the strong-coupling case

U ≥ W of single-band model. The perfect agreement of these two complementary CT-QMC

schemes gives evidence for the possibility of a numerically exact solution of the quantum im-

purity problem.
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Fig. 10: Comparison of the weak- (CT-INT) and strong-coupling (CT-HYB) CT-QMC impurity

solvers for a one-band, semicircular model with U ≥W . The insert shows the density of states

obtained with maximum entropy scheme.

5 From models to real materials

In order to investigate real correlated systems with the local DMFT scheme, we need to have

an efficient way of partitioning the spacial and orbital degrees of freedom. For example in

the high-temperature superconducting oxide YBa2Cu3O7, the strongly correlated electrons are

Cu-3d, and, moreover, there is only one per non-equivalent copper dx2−y2 band which crosses

the Fermi level with strong many-body fluctuations. Just a few percent of the total number of

electronic states need to be included in the DMFT calculations. Therefore the simplest realistic

correlated scheme would be a DFT+DMFT approach [33, 34] with partitioning of the orbital

space into normal band electrons |K〉 described by the DFT Bloch basis and correlated local

orbitals |L〉 described by some optimal Wannier basis (see Fig. 11 for illustration).

The treatment of correlated electron systems requires the calculation of Green functions and

hybridization functions in terms of local orbitals. This is readily achieved when using a basis set,

which is localized in real space, such as linear (or N-th order) muffin-tin orbitals (NMTO) [35]

or Gaussian basis sets [37]. However, many implementations of the density functional theory

use a delocalized plane-wave basis set. This has the advantage, that the basis set is simple,

universal, and its convergence is controlled in principle by a single parameter, the energy cutoff.

The projector augmented wave method (PAW) [38], being a representative of a plane-wave

based methods, can be used as a simple example of the general projection scheme from the

Bloch to the local basis: 〈K|L〉.

Following the general projection scheme of Ref. [36,37], the desired quantity for an implemen-

tation of a DFT+DMFT method is a projection PC =
∑

L |L〉〈L| of the full DFT Kohn-Sham



Correlated Electrons 1.17
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Fig. 11: Schematic representation of the projection from a Bloch basis to a local Wannier

correlated subset.

Green function GKS(ω) on a set of localized orbitals {|L〉}

GC(ω) = PCGKS(ω)PC. (49)

The subspace C = span({|L〉}) is usually called correlated subspace. It is the subspace of

orbitals in which many-body fluctuations play a major role and where the DMFT corrections

to the DFT will be considered. In plane-wave based calculations, GKS(ω) in Matsubara space

is available in terms of an almost complete set of Bloch states |K〉 that are eigenstates of the

Kohn-Sham Hamiltonian HKS|K〉 = εK |K〉:

GKS(ω) =
∑

K

|K〉〈K|

iω + µ− εK
. (50)

Inserting equation (50) into equation (49) shows that one needs to evaluate projections of the

type 〈L|K〉 in order to access the matrix elements GC
LL′(ω) of the local Green function. In

most cases the correlated orbitals are d- or f -orbitals, which are localized inside the PAW aug-

mentation spheres to a good approximation. For |L〉 within these spheres and given the PAW

decomposition [38] of a Bloch state |K〉 one obtains

〈L|K〉 =
∑

i

〈L|φi〉〈p̃i|K̃〉.

The index i of the augmentation functions |φi〉 includes site s, angular momentum l, and m as

well as an index ν labeling the radial function: i = (s, l,m, ν). |p̃i〉 are the PAW projectors.

In the described projection scheme the |L〉〈L| matrices are not properly normalized for two rea-

sons: (1) the Bloch basis is incomplete since only a limited number of Bloch bands is included

and (2) the PAW augmentation functions are, in general, not orthonormal. The simplest way is

to orthonormalize the projection matrices by the following Wannier-type construction: By defi-

nition, the localized states |L〉 are labeled by site and angular-momentum indices: L = (s, l,m).
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We split the site index s = R +T such that R labels the position within the unit cell and T is

the Bravais lattice vector of the unit cell in which s is located. This allows us to construct the

Bloch transform of the localized states

|Lk〉 =
∑

T

eikT|LT〉, (51)

where k is from the first Brillouin zone and |LT〉 ≡ |L〉 = |s, l,m〉. The sum in equation

(51) runs over the Bravais lattice. Labeling the Bloch states |K〉 = |k, n〉 by their crystal

momentum, k, and band index, n, we normalize our projection matrices PC
Ln(k) = 〈Lk|k, n〉

using the overlap operator

OLL′(k) =
∑

n

PC
Ln(k)P

∗C
L′n(k) (52)

in

P̄C
Ln(k) =

∑

L′

O
−1/2
LL′ (k)P C

L′n(k). (53)

These orthonormalized projection matrices are calculated once at the beginning of any calcula-

tion and can then be used to obtain the local Green function of the correlated orbitals from the

full Bloch Green function GB
nn′

GC
LL′(ω) =

∑

k,nn′

P̄C
Ln(k)G

B
nn′(k, ω)P̄∗C

L′n′(k).

Similarly the hybridization function, ∆(ω), is available. It is related to the local Green function

by

G−1(ω) = iω − ǫd −∆(ω), (54)

where ǫd is the static crystal field. Equation (54) is a matrix equation with G, ∆, and ǫd being

dim C × dim C matrices, in general. To separate the hybridization from the static DFT crystal

field, we numerically evaluate the limit ω → ∞, where ω −G−1(ω) → ǫd.

In a DFT+DMFT calculation the projection matrices P̄C
Ln(k) are used for up- and down-folding

quantities like the Green function and the self-energy in the course of the iterative DMFT pro-

cedure in exactly the same way as shown for the local Green function above. For example,

the self-energy obtained by an impurity solver for the effective impurity model ΣC
LL′(ω) can be

upfolded to the Bloch basis as follows

ΣB
nn′(k, ω) =

∑

LL′

P
∗C

Ln(k) Σ
C
LL′(ω) P

C

L′n′(k) .

Since the self-energy in DMFT is a purely local quantity, the index k on ΣB
nn′(k, ω) reflects

the momentum dependence brought about by the projection matrices. The presented projection

scheme allows for the inclusion of both correlated and uncorrelated states in the procedure.

Therefore, information about the interplay of correlated orbitals with their uncorrelated ligands

can be obtained. As example, we show a realistic DFT+DMFT calculation of the SrVO3 spectral

function in the Fig. 12, were one can see the renormalisation of the valence correlated V-t2g
states as well as broadening of the Bloch O-2p states [39].
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Fig. 12: Momentum resolved impurity spectral function of SrVO3 obtained by DFT+DMFT.

The LDA band-structure of the V-t2g and O-2p Bloch states is shown for comparison.

6 Summary and outlook

We have learnt from simple model investigations how to treat electronic correlations within the

local DMFT scheme. This knowledge can be used in realistic DFT+DMFT calculations for

strongly correlated transition metals and rare earth systems, where the spin, orbital and charge

fluctuations in the d- of f -shell play the crucial role for the photoemission spectrum as well

as magnetic and optical excitations. The numerically exact solution of the quantum impurity

problem gives us an effective local exchange-correlation functional for a given correlation ma-

terial in a specific external field. Moreover, we have shown a direct way to include effects of

non-local fluctuations in terms of a renormalized, locally screened dual perturbation scheme.

The combination with first-principle approaches still offers many challenging problems.
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