Exercise Sheet 6 due 5 December

1. harmonic oscillator

Rewrite the relations for the ladder operators from last week's exercise in the Dirac formalism as $\langle a\varphi|\psi\rangle = \langle \varphi|a^{\dagger}\psi\rangle$ and $\langle a^{\dagger}\varphi|\psi\rangle = \langle \varphi|a\psi\rangle$. Use this to show that for the norm (defined by $\|\psi\|^2 = \langle \psi|\psi\rangle$) we have $\|a\varphi\|^2 = \langle \varphi|a^{\dagger}a\varphi\rangle$ and $\|a^{\dagger}\varphi\|^2 = \langle \varphi|aa^{\dagger}\varphi\rangle$. Given an eigenstate $|\varphi_n\rangle$ with $a^{\dagger}a|\varphi_n\rangle = n|\varphi_n\rangle$ show that

- i. $a^{\dagger}|\varphi_n\rangle$ is an eigenvector of $a^{\dagger}a$ with eigenvalue n+1 and norm $\sqrt{n+1}$,
- ii. $a|\varphi_n\rangle$ is an eigenvector of $a^{\dagger}a$ with eigenvalue n-1 and norm \sqrt{n} .

2. expectation values

Consider the normalized eigenstates $|n\rangle$ of a harmonic oscillator with $H|n\rangle = \hbar\omega(n+1/2)|n\rangle$ and $\langle n|m\rangle = \delta_{n,m}$. Calculate the expectation values of the momentum ($\langle n|p|n\rangle$) and its square ($\langle n|p^2|n\rangle$), where $p = -i\hbar\frac{d}{dx}$.

- 3. momentum and translations
 - i. Show that the momentum operator $\hat{\rho}=-i\hbar\frac{d}{dx}$ is Hermitian
 - ii. Calculate $e^{i\hat{\rho}\Delta x/\hbar}\varphi(x)$ for an arbitrary wave function $\varphi(x)$ and displacement Δx by expanding the exponential in a power series and resumming the resulting power series.