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Exercise Sheet 5 due 28 November

1. ladder operators

Using the ladder operator a† = (⇠�d/d⇠)/
p
2 we can write the eigenstates of the Hamiltonian
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with eigenenergy "n = n+1/2 as
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where the ground state is given by '0(⇠) = e�⇠
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/
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i. Show using integration by parts that the operators a = (⇠+d/d⇠)/
p
2 and a† are related as
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for arbitrary wave-functions '(⇠) and  (⇠).

ii. Use this to show that for H = a†a + 1/2 we have
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iii. Show that the eigenstates 'n(⇠) are orthonormal, i.e., that
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2. Hermite polynomials

Use (1) and a†+a =
p
2⇠ to verify the recurrence relation for the normalized eigenfunctions
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Given '0(⇠) = e�⇠
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⇡ find '1(⇠) and '2(⇠).

Most textbooks write the normalized eigenfunctions using the Hermite polynomials Hn(⇠) as

'n(⇠) =
Hn(⇠)p
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Insert this expression into (2) to find the recurrence relation for the Hermite polynomials

Hn+1(⇠) = 2⇠Hn(⇠)� 2nHn�1(⇠)


