Exercise Sheet 3 due 7 November

1. finite potential well

Consider a potential well of width L and depth V_0 .

- i. Find all eigenenergies $E_n < 0$ for $V_0 = 8$ eV and L = 15 Å.
- ii. Compare the eigenenergies $E_n + V_0$ measured from the bottom of the well with the eigenenergies for an electron in an infinite potential well of the same width.

2. potential barrier

Consider a potential barrier V(x) with width L = 6 Å and $V_0 = 2$ eV, where

$$V(x) = \begin{cases} V_0, \text{ for } 0 < x < l \\ 0, \text{ otherwise} \end{cases}$$

An electron wave is incident from the left: $\varphi_{in}(x) = e^{ikx}$

- i. find the solution $\varphi_k(x)$ of the Schrödinger equation by matching waves at x = 0 and L
- ii. calculate the transmission probability as a function of the energy of the incoming electron $E_k = \hbar^2 k^2/2m$
- iii. Determine the maximum transmission probability.
- iv. At what energies E_n does the transmission probability have a maximum? Calculate E_n-V_0 . Explain why the barrier becomes transparent at these energies.