Exact Diagonalization and Lanczos Method

Erik Koch
Jülich Supercomputer Centre

$$
\begin{array}{ll}
c_{\alpha}|0\rangle=0 \quad\left\{c_{\alpha}, c_{\beta}\right\}=0=\left\{c_{\alpha}^{\dagger}, c_{\beta}^{\dagger}\right\} \\
\langle 0 \mid 0\rangle=1 \quad\left\{c_{\alpha}, c_{\beta}^{\dagger}\right\}=\langle\alpha \mid \beta\rangle \quad \frac{\delta E[\psi]}{\delta\langle\psi|}=\frac{H|\psi\rangle-E[\psi]|\psi\rangle}{-\langle\psi \mid \psi\rangle}=\left|\psi_{a}\right\rangle \\
& \mathcal{K}^{L}\left(\left|v_{0}\right\rangle\right)=\operatorname{span}\left(\left|v_{0}\right\rangle_{, 2} H\left|v_{0}\right\rangle, H^{2}\left|v_{0}\right\rangle, \ldots, H^{N}\left|v_{0}\right\rangle\right) \\
G_{k}(\omega)=\frac{1}{\omega-a_{0}-\frac{b_{0}^{2}}{\omega-a_{1}-\frac{b_{1}^{2}}{\omega-a_{2}-\frac{b_{3}^{2}}{\omega-a_{3}-\cdots}}}}
\end{array}
$$

The Theory of Everything

R. B. Laughlin* and David Pines ${ }^{\ddagger \ddagger \S}$
*Department of Physics, Stanford University, Stanford, CA 94305; ${ }^{\dagger}$ Institute for Complex Adaptive Matter, University of California Office of the President, Oakland, CA 94607; *Science and Technology Center for Superconductivity, University of Illinois, Urbana, IL 61801; and ${ }^{\text {§Los }}$ Alamos Neutron Science Center Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Contributed by David Pines, November 18, 1999

We discuss recent developments in our understanding of matter, broadly construed, and their implications for contemporary research in fundamental physics.

The Theory of Everything is a term for the ultimate theory of the universe-a set of equations capable of describing all phenomena that have been observed, or that will ever be observed (1). It is the modern incarnation of the reductionist ideal of the ancient Greeks, an approach to the natural world that has been fabulously successful in bettering the lot of mankind and continues in many people's minds to be the central paradigm of physics. A special case of this idea, and also a beautiful instance of it, is the equation of conventional nonrelativistic quantum mechanics, which describes the everyday world of human beings-air, water, rocks, fire, people, and so forth. The details of this equation are less important than the fact that it can be written down simply and is completely specified by a handful of known quantities: the charge and mass of the electron, the charges and masses of the atomic nuclei, and Planck's constant. For experts we write

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|\Psi>=\mathscr{H}| \Psi> \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
\mathscr{H}= & -\sum_{j}^{N_{e}} \frac{\hbar^{2}}{2 m} \nabla_{j}^{2}-\sum_{\alpha}^{N_{i}} \frac{\hbar^{2}}{2 M_{\alpha}} \nabla_{\alpha}^{2} \\
& -\sum_{j}^{N_{e}} \sum_{\alpha}^{N_{i}} \frac{Z_{\alpha} e^{2}}{\left|\vec{r}_{j}-\vec{R}_{\alpha}\right|}+\sum_{j \ll k}^{N_{e}} \frac{e^{2}}{\left|\vec{r}_{j}-\vec{r}_{k}\right|}+\sum_{\alpha \ll \beta}^{N_{j}} \frac{Z_{\alpha} Z_{\beta} e^{2}}{\left|\vec{R}_{\alpha}-\vec{r}_{\beta}\right|} . \tag{2}
\end{align*}
$$

we have learned why atoms have the size they do, why chemical bonds have the length and strength they do, why solid matter has the elastic properties it does, why some things are transparent while others reflect or absorb light (6). With a little more experimental input for guidance it is even possible to predict atomic conformations of small molecules, simple chemical reaction rates, structural phase transitions, ferromagnetism, and sometimes even superconducting transition temperatures (7). But the schemes for approximating are not first-principles deductions but are rather art keyed to experiment, and thus tend to be the least reliable precisely when reliability is most needed, i.e., when experimental information is scarce, the physical behavior has no precedent, and the key questions have not yet been identified. There are many notorious failures of alleged ab initio computation methods, including the phase diagram of liquid ${ }^{3} \mathrm{He}$ and the entire phenomenonology of high-temperature superconductors (8-10). Predicting protein functionality or the behavior of the human brain from these equations is patently absurd. So the triumph of the reductionism of the Greeks is a pyrrhic victory: We have succeeded in reducing all of ordinary physical behavior to a simple, correct Theory of Everything only to discover that it has revealed exactly nothing about many things of great importance.

In light of this fact it strikes a thinking person as odd that the parameters e, \hbar, and m appearing in these equations may be measured accurately in laboratory experiments involving large numbers of particles. The electron charge, for example, may be accurately measured by passing current through an electrochemical cell, plating out metal atoms, and measuring the mass deposited, the separation of the atoms in the crystal being known from x-ray diffraction (11). Simple electrical measurements performed on superconducting rings determine to high accuracy the quantity the quantum of magnetic flux $h c / 2 e(11)$. A version

Theory of Almost Everything

given Hamiltonian

$$
H=-\frac{1}{2} \sum_{j=1}^{N_{e}} \nabla_{j}^{2}+\sum_{j<k}^{N_{e}} \frac{1}{\left|r_{j}-r_{k}\right|}-\sum_{j=1}^{N_{e}} \sum_{\alpha=1}^{N_{i}} \frac{Z_{\alpha}}{\left|r_{j}-R_{\alpha}\right|}+\sum_{\alpha<\beta}^{N_{i}} \frac{Z_{\alpha} Z_{\beta}}{\left|R_{\alpha}-R_{\beta}\right|}
$$

solve eigenvalue problem

$$
H \Psi\left(x_{1}, \ldots, x_{N}\right)=E \Psi\left(x_{1}, \ldots, x_{N}\right) \quad 3 N \text {-dimensional pde }
$$

electrons indistinguishable
no observable $M\left(x_{1}, \ldots, x_{N}\right)$ can distinguish them
i.e. M symmetric under exchange of coordinates
eigenfunction needs to be antisymmetrized
still eigenfunction?

$$
\mathcal{A} \psi\left(x_{1}, \ldots, x_{N}\right):=\frac{1}{\sqrt{N!}} \sum_{P}(-1)^{P} \psi\left(x_{p(1)}, \ldots, x_{p(N)}\right) \quad N!\text { terms }
$$

antisymmetrization

$$
\mathcal{A} \psi\left(x_{1}, \ldots, x_{N}\right):=\frac{1}{\sqrt{N!}} \sum_{P}(-1)^{P} \psi\left(x_{p(1)}, \ldots, x_{p(N)}\right)
$$

N ! terms - hard problem in general easy $O\left(N^{3}\right)$ for product wavefunctions

$$
\mathcal{A} \varphi_{\alpha_{1}}\left(x_{1}\right) \cdots \varphi_{\alpha_{N}}\left(x_{N}\right)=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\varphi_{\alpha_{1}}\left(x_{1}\right) & \varphi_{\alpha_{2}}\left(x_{1}\right) & \cdots & \varphi_{\alpha_{N}}\left(x_{1}\right) \\
\varphi_{\alpha_{1}}\left(x_{2}\right) & \varphi_{\alpha_{2}}\left(x_{2}\right) & \cdots & \varphi_{\alpha_{N}}\left(x_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_{\alpha_{1}}\left(x_{N}\right) & \varphi_{\alpha_{2}}\left(x_{N}\right) & \cdots & \varphi_{\alpha_{N}}\left(x_{N}\right)
\end{array}\right|
$$

Slater determinants $\Phi_{\alpha_{1}, \ldots, \alpha_{N}}\left(x_{1}, \ldots, x_{N}\right)$

basis of Slater determinants

complete set of single-electron orbitals

$$
\sum_{n} \overline{\varphi_{n}\left(x^{\prime}\right)} \varphi_{n}(x)=\delta\left(x^{\prime}-x\right)
$$

expand N-electron function in 1st variable

$$
a\left(x_{1}, \ldots, x_{N}\right)=\sum_{n_{1}} \int d x_{1}^{\prime} \underbrace{a\left(x_{1}^{\prime}, \ldots, x_{N}\right) \overline{\varphi_{n_{1}}\left(x_{1}^{\prime}\right)}}_{=: a_{n_{1}}\left(x_{2}, \ldots, x_{N}\right)} \varphi_{n_{1}}\left(x_{1}\right)
$$

and repeat to obtain expansion in product states
antisymmetric: states with $n_{i}=n_{j}$ vanish, $n_{i} \leftrightarrow n_{j}$ only differ by sign
basis of Slater determinants

$$
\left\{\Phi_{n_{1}, \ldots, n_{N}}\left(x_{1}, \ldots, x_{N}\right) \mid n_{1}<n_{2}<\cdots<n_{N}\right\}
$$

second quantization: motivation

get rid of coordinates and their permutations: Dirac states

Slater determinant $\quad \phi_{\alpha \beta}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\varphi_{\alpha}\left(x_{1}\right) \varphi_{\beta}\left(x_{2}\right)-\varphi_{\beta}\left(x_{1}\right) \varphi_{\alpha}\left(x_{2}\right)\right)$
corresponding Dirac state $\quad|\alpha, \beta\rangle=\frac{1}{\sqrt{2}}(|\alpha\rangle|\beta\rangle-|\beta\rangle|\alpha\rangle)$
use operators

$$
|\alpha, \beta\rangle=c_{\beta}^{\dagger} c_{\alpha}^{\dagger}|0\rangle
$$

position of operators encodes signs

$$
c_{\beta}^{\dagger} c_{\alpha}^{\dagger}|0\rangle=|\alpha, \beta\rangle=-|\beta, \alpha\rangle=-c_{\alpha}^{\dagger} c_{\beta}^{\dagger}|0\rangle
$$

product of operators changes sign under commutation: anti-commutation anti-commutator

$$
\{A, B\}:=A B+B A
$$

second quantization: motivation

specify N-electron states using operators

$N=0: \quad|0\rangle \quad$ (vacuum state) normalization: $\langle 0 \mid 0\rangle=1$
$N=1: \quad|\alpha\rangle=c_{\alpha}^{\dagger}|0\rangle \quad$ (creation operator adds one electron)
normalization: $\quad\langle\alpha \mid \alpha\rangle=\langle 0| c_{\alpha} c_{\alpha}^{\dagger}|0\rangle$
overlap:

$$
\langle\alpha \mid \beta\rangle=\langle 0| c_{\alpha} c_{\beta}^{\dagger}|0\rangle
$$

adjoint of creation operator must remove one electron: annihilation operator

$$
c_{\alpha}|0\rangle=0 \text { and } c_{\alpha} c_{\beta}^{\dagger}= \pm c_{\beta}^{\dagger} c_{\alpha}+\langle\alpha \mid \beta\rangle
$$

$N=2: \quad|\alpha, \beta\rangle=c_{\beta}^{\dagger} c_{\alpha}^{\dagger}|0\rangle$
antisymmetry: $\quad c_{\alpha}^{\dagger} c_{\mathcal{B}}^{\dagger}=-c_{\beta}^{\dagger} c_{\alpha}^{\dagger}$

second quantization: formalism

vacuum state $|0\rangle$
and
set of operators c_{α} related to single-electron states $\varphi_{\alpha}(x)$
defined by:

$$
\begin{array}{ll}
c_{\alpha}|0\rangle=0 & \left\{c_{\alpha}, c_{\beta}\right\}=0=\left\{c_{\alpha}^{\dagger}, c_{\beta}^{\dagger}\right\} \\
\langle 0 \mid 0\rangle=1 & \left\{c_{\alpha}, c_{\beta}^{\dagger}\right\}=\langle\alpha \mid \beta\rangle
\end{array}
$$

creators/annihilators operate in Fock space transform like orbitals!

second quantization: field operators

how to express coordinates? creation/annihilation operators in real-space basis
$\hat{\psi}^{\dagger}(x)$ with $x=(r, \sigma) \quad$ creates electron of spin σ at position r

$$
\text { then } c_{\alpha}^{\dagger}=\int d x \varphi_{\alpha}(x) \hat{\psi}^{\dagger}(x)
$$

$\left\{\varphi_{\alpha_{n}}(x)\right\}$ complete set: $\hat{\psi}^{\dagger}(x)=\sum_{n} \overline{\varphi_{\alpha_{n}}(x)} c_{\alpha_{n}}^{\dagger}$
they fulfill the standard anti-commutation relations

$$
\begin{aligned}
& \left\{\hat{\psi}(x), \hat{\psi}\left(x^{\prime}\right)\right\}=0=\left\{\hat{\Psi}^{\dagger}(x), \hat{\Psi}^{\dagger}\left(x^{\prime}\right)\right\} \\
& \left\{\hat{\psi}(x), \hat{\psi}^{\dagger}\left(x^{\prime}\right)\right\}=\delta\left(x-x^{\prime}\right)
\end{aligned}
$$

second quantization: Slater determinants

$\phi_{\alpha_{1} \alpha_{2} \ldots \alpha_{N}}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{1}{\sqrt{N!}}\langle 0| \hat{\psi}\left(x_{1}\right) \hat{\psi}\left(x_{2}\right) \ldots \hat{\psi}\left(x_{N}\right) c_{\alpha_{N}}^{\dagger} \ldots c_{\alpha_{2}}^{\dagger} c_{\alpha_{1}}^{\dagger}|0\rangle$
proof by induction

$$
\begin{aligned}
N=1: \quad\langle 0| \hat{\psi}\left(x_{1}\right) c_{\alpha_{1}}^{\dagger}|0\rangle=\langle 0| \varphi_{\alpha_{1}}\left(x_{1}\right)-c_{\alpha_{1}}^{\dagger} \hat{\psi}\left(x_{1}\right)|0\rangle=\varphi_{\alpha_{1}}\left(x_{1}\right) \\
\text { using } \quad\left\{\hat{\psi}(x), c_{\alpha}^{\dagger}\right\}=\int d x^{\prime} \varphi_{\alpha}\left(x^{\prime}\right)\left\{\hat{\psi}(x), \hat{\psi}^{\dagger}\left(x^{\prime}\right)\right\}=\varphi_{\alpha}(x)
\end{aligned}
$$

$$
\begin{aligned}
N=2: \quad\langle 0| & \hat{\psi}\left(x_{1}\right) \hat{\psi}\left(x_{2}\right) c_{\alpha_{2}}^{\dagger} c_{\alpha_{1}}^{\dagger}|0\rangle \\
& =\langle 0| \hat{\psi}\left(x_{1}\right)\left(\varphi_{\alpha_{2}}\left(x_{2}\right)-c_{\alpha_{2}}^{\dagger} \hat{\psi}\left(x_{2}\right)\right) c_{\alpha_{1}}^{\dagger}|0\rangle \\
& =\langle 0| \hat{\psi}\left(x_{1}\right) c_{\alpha_{1}}^{\dagger}|0\rangle \varphi_{\alpha_{2}}\left(x_{2}\right)-\langle 0| \hat{\psi}\left(x_{1}\right) c_{\alpha_{2}}^{\dagger} \hat{\psi}\left(x_{2}\right) c_{\alpha_{1}}^{\dagger}|0\rangle \\
& =\varphi_{\alpha_{1}}\left(x_{1}\right) \varphi_{\alpha_{2}}\left(x_{2}\right)-\varphi_{\alpha_{2}}\left(x_{1}\right) \varphi_{\alpha_{1}}\left(x_{2}\right)
\end{aligned}
$$

second quantization: Slater determinants

general N : commute $\Psi\left(x_{N}\right)$ to the right

$$
\begin{aligned}
& \langle 0| \hat{\psi}\left(x_{1}\right) \ldots \hat{\psi}\left(x_{N-1}\right) \hat{\psi}\left(x_{N}\right) c_{\alpha_{N}}^{\dagger} c_{\alpha_{N-1}}^{\dagger} \ldots c_{\alpha_{1}}^{\dagger}|0\rangle= \\
& +\quad\langle 0| \hat{\psi}\left(x_{1}\right) \ldots \hat{\psi}\left(x_{N-1}\right) c_{\alpha_{N-1}}^{\dagger} \ldots c_{\alpha_{1}}^{\dagger}|0\rangle \varphi_{\alpha_{N}}\left(x_{N}\right) \\
& \quad-\quad\langle 0| \hat{\psi}\left(x_{1}\right) \ldots \hat{\psi}\left(x_{N-1}\right) \prod_{n \neq N-1} c_{\alpha_{n}}^{\dagger}|0\rangle \varphi_{\alpha_{N-1}}\left(x_{N}\right) \\
& \quad \vdots \\
& (-1)^{N-1}\langle 0| \hat{\psi}\left(x_{1}\right) \ldots \hat{\psi}\left(x_{N-1}\right) c_{\alpha_{N}}^{\dagger} \ldots c_{\alpha_{2}}^{\dagger}|0\rangle \varphi_{\alpha_{1}}\left(x_{N}\right)
\end{aligned}
$$

Laplace expansion in terms of $\mathrm{N}-1$ dim determinants wrt last line of

$$
=\left|\begin{array}{cccc}
\varphi_{\alpha_{1}}\left(x_{1}\right) & \varphi_{\alpha_{2}}\left(x_{1}\right) & \cdots & \varphi_{\alpha_{N}}\left(x_{1}\right) \\
\varphi_{\alpha_{1}}\left(x_{2}\right) & \varphi_{\alpha_{2}}\left(x_{2}\right) & \cdots & \varphi_{\alpha_{N}}\left(x_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_{\alpha_{1}}\left(x_{N}\right) & \varphi_{\alpha_{2}}\left(x_{N}\right) & \cdots & \varphi_{\alpha_{N}}\left(x_{N}\right)
\end{array}\right|
$$

second quantization: Dirac notation

separate coordinates from orbitals
$\phi_{\alpha_{1} \alpha_{2} \ldots \alpha_{N}}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{1}{\sqrt{N!}}\langle 0| \hat{\psi}\left(x_{1}\right) \hat{\psi}\left(x_{2}\right) \cdots \hat{\psi}\left(x_{N}\right) c_{\alpha_{N}}^{\dagger} \cdots c_{\alpha_{2}}^{\dagger} c_{\alpha_{1}}^{\dagger}|0\rangle$
analogous to Dirac notation

$$
\varphi_{\alpha}(x)=\langle x \mid \alpha\rangle
$$

product states $\prod_{n=1}^{N} c_{\alpha_{n}}^{\dagger}|0\rangle$ are many-body generalization of Dirac states
evaluate matrix elements ...

second quantization: expectation values

expectation value of N -body operator wrt N -electron Slater determinants

$$
\begin{aligned}
& \int d x_{1} \cdots d x_{N} \overline{\Phi_{\beta_{1} \cdots \beta_{N}}\left(x_{1}, \cdots, x_{N}\right)} M\left(x_{1}, \cdots, x_{N}\right) \Phi_{\alpha_{1} \cdots \alpha_{N}}\left(x_{1}, \cdots, x_{N}\right) \\
& =\int d x \frac{1}{\sqrt{N!}}\langle 0| \prod c_{\beta_{i}} \prod \hat{\psi}^{\dagger}\left(x_{n}\right)|0\rangle M(x) \frac{1}{\sqrt{N!}}\langle 0| \prod \hat{\psi}\left(x_{n}\right) \prod c_{\alpha_{j}}^{\dagger}|0\rangle \\
& =\langle 0| \prod c_{\beta_{i}} \underbrace{\frac{1}{N!} \int d x \prod \hat{\psi}^{\dagger}\left(x_{n}\right) M(x) \prod \hat{\psi}\left(x_{n}\right)}_{=: \hat{M}} \prod c_{\alpha_{j}}^{\dagger}|0\rangle \\
& |0\rangle\langle 0|=1 \text { on 0-electron space }
\end{aligned}
$$

$\hat{M}=\frac{1}{N!} \int d x_{1} \cdots d x_{N} \hat{\psi}^{\dagger}\left(x_{N}\right) \cdots \hat{\psi}^{\dagger}\left(x_{1}\right) M\left(x_{1}, \cdots, x_{N}\right) \hat{\psi}\left(x_{1}\right) \cdots \hat{\psi}\left(x_{N}\right)$
only valid for N -electron states!

second quantization: zero-body operator

zero-body operator $M_{0}\left(x_{1}, \ldots x_{N}\right)=1$ independent of particle coordinates
second quantized form for operating on N -electron states:

$$
\begin{aligned}
& \hat{M}_{0}=\frac{1}{N!} \int d x_{1} d x_{2} \cdots x_{N} \hat{\psi}^{\dagger}\left(x_{N}\right) \cdots \hat{\psi}^{\dagger}\left(x_{2}\right) \hat{\psi}^{\dagger}\left(x_{1}\right) \hat{\psi}\left(x_{1}\right) \hat{\psi}\left(x_{2}\right) \cdots \hat{\psi}\left(x_{N}\right) \\
& =\frac{1}{N!} \int \quad d x_{2} \cdots x_{N} \hat{\psi}^{\dagger}\left(x_{N}\right) \cdots \hat{\psi}^{\dagger}\left(x_{2}\right) \quad \hat{N} \quad \hat{\psi}\left(x_{2}\right) \cdots \hat{\psi}\left(x_{N}\right) \\
& =\frac{1}{N!} \int \quad d x_{2} \cdots x_{N} \hat{\psi}^{\dagger}\left(x_{N}\right) \cdots \hat{\psi}^{\dagger}\left(x_{2}\right) \quad 1 \quad \hat{\psi}\left(x_{2}\right) \cdots \hat{\psi}\left(x_{N}\right) \\
& \text { only(!) when operating on } \mathrm{N} \text {-electron state } \\
& =\frac{1}{N!} 1 \cdot 2 \cdots N=1 \\
& \text { using } \hat{N}:=\int d x \hat{\psi}^{\dagger}(x) \hat{\psi}(x) \text { with }\left[\hat{N}, c_{n}^{\dagger}\right]=c_{n}^{\dagger}
\end{aligned}
$$

result independent of N
overlap of Slater determinants

$$
\int d x \overline{\Phi_{\alpha_{n}}(x)} \Phi_{\beta_{m}}(x)=\langle 0| c_{\alpha_{1}} \cdots c_{\alpha_{N}} c_{\beta_{N}}^{\dagger} \cdots c_{\beta_{1}}^{\dagger}|0\rangle
$$

second quantization: one-body operators

one-body operator $M\left(x_{1}, \ldots, x_{N}\right)=\sum_{j} M_{1}\left(x_{j}\right)$

$$
\begin{aligned}
\hat{M}_{1} & =\frac{1}{N!} \int d x_{1} \cdots d x_{N} \hat{\psi}^{\dagger}\left(x_{N}\right) \cdots \hat{\psi}^{\dagger}\left(x_{1}\right) \sum_{j} M_{1}\left(x_{j}\right) \hat{\psi}\left(x_{1}\right) \cdots \hat{\psi}\left(x_{N}\right) \\
& =\frac{1}{N!} \sum_{j} \int d x_{j} \hat{\psi}^{\dagger}\left(x_{j}\right) M_{1}\left(x_{j}\right)(N-1)!\hat{\psi}\left(x_{j}\right) \\
& =\frac{1}{N} \sum_{j} \int d x_{j} \hat{\psi}^{\dagger}\left(x_{j}\right) M_{1}\left(x_{j}\right) \hat{\psi}\left(x_{j}\right) \\
& =\int d x \hat{\psi}^{\dagger}(x) M_{1}(x) \hat{\psi}(x) \quad \text { result independent of } N
\end{aligned}
$$

expand in complete orthonormal set of orbitals

$$
\hat{M}_{1}=\sum_{n, m} \int d x \overline{\varphi_{\alpha_{n}}(x)} M(x) \varphi_{\alpha_{m}}(x) c_{\alpha_{n}}^{\dagger} c_{\alpha_{m}}=\sum_{n, m}\left\langle\alpha_{n}\right| M_{1}\left|\alpha_{m}\right\rangle c_{\alpha_{n}}^{\dagger} c_{\alpha_{m}}
$$

second quantization: two-body operators

two-body operator $\quad M\left(x_{1}, \ldots, x_{N}\right)=\sum_{i<j} M_{2}\left(x_{i}, x_{j}\right)$

$$
\begin{aligned}
& \hat{M}_{2}=\frac{1}{N!} \int d x_{1} \cdots d x_{N} \hat{\psi}^{\dagger}\left(x_{N}\right) \cdots \hat{\psi}^{\dagger}\left(x_{1}\right) \sum_{i<j} M_{2}\left(x_{i}, x_{j}\right) \hat{\psi}\left(x_{1}\right) \cdots \hat{\psi}\left(x_{N}\right) \\
&=\frac{1}{N!} \sum_{i<j} \int d x_{i} d x_{j} \hat{\psi}^{\dagger}\left(x_{j}\right) \hat{\psi}^{\dagger}\left(x_{i}\right) M_{2}\left(x_{i}, x_{j}\right)(N-2)!\hat{\psi}\left(x_{i}\right) \hat{\psi}\left(x_{j}\right) \\
&=\frac{1}{N(N-1)} \sum_{i<j} \int d x_{i} d x_{j} \hat{\psi}^{\dagger}\left(x_{j}\right) \hat{\Psi}^{\dagger}\left(x_{i}\right) M_{2}\left(x_{i}, x_{j}\right) \hat{\psi}\left(x_{i}\right) \hat{\psi}\left(x_{j}\right) \\
&=\quad \frac{1}{2} \int d x d x^{\prime} \hat{\psi}^{\dagger}\left(x^{\prime}\right) \hat{\psi}^{\dagger}(x) M_{2}\left(x, x^{\prime}\right) \hat{\psi}(x) \hat{\psi}\left(x^{\prime}\right) \\
& \text { result independent of } N
\end{aligned}
$$

expand in complete orthonormal set of orbitals

$$
\begin{array}{rlr}
\hat{M}_{2} & =\frac{1}{2} \sum_{n, n^{\prime}, m, m^{\prime}} \int d x d x^{\prime} \overline{\varphi_{\alpha_{n^{\prime}}}\left(x^{\prime}\right) \varphi_{\alpha_{n}}(x)} M_{2}\left(x, x^{\prime}\right) \varphi_{\alpha_{m}}(x) \varphi_{\alpha_{m^{\prime}}}\left(x^{\prime}\right) c_{\alpha_{n^{\prime}}}^{\dagger} c_{\alpha_{n}}^{\dagger} c_{\alpha_{m}} c_{\alpha_{m^{\prime}}} \\
& =\frac{1}{2} \sum_{n, n^{\prime}, m, m^{\prime}} & c_{\alpha_{n^{\prime}}}^{\dagger} c_{\alpha_{n}}^{\dagger} c_{\alpha_{m}} c_{\alpha_{m^{\prime}}}
\end{array}
$$

2-body matrix

$$
\hat{M}_{2}=\frac{1}{2} \sum_{n, n^{\prime}, m, m^{\prime}} \underbrace{\left\langle\alpha_{n} \alpha_{n^{\prime}}\right| M_{2}\left|\alpha_{m} \alpha_{m^{\prime}}\right\rangle}_{=: M_{n n^{\prime}, m m^{\prime}}} c_{\begin{array}{c}
\text { no contribution for } \\
\text { 4-index tensor }
\end{array}}^{c_{\alpha_{n^{\prime}}}^{\dagger} c_{\alpha_{n}}^{\dagger} c_{\alpha_{m}} c_{\alpha^{\prime}} c_{\alpha^{\prime}}} \begin{gathered}
\text { sign-change for } \\
n \leftrightarrow n^{\prime} \text { or } m \leftrightarrow m^{\prime}
\end{gathered}
$$

collect terms with same operator content

$$
\hat{M}_{2}=\sum_{n<n^{\prime}, m<m^{\prime}}(\underbrace{M_{n n^{\prime}, m m^{\prime}}-M_{n n^{\prime}, m^{\prime} m}}_{\begin{array}{c}
=: \breve{M}_{n n^{\prime}, m m^{\prime}} \\
\text { two-body matrix } \\
\text { of dim } N_{\text {orb }}\left(N_{\text {orb }}-1\right) / 2
\end{array}}) c_{\alpha_{n^{\prime}}}^{\dagger} c_{\alpha_{n}}^{\dagger} c_{\alpha_{m}} c_{\alpha_{m^{\prime}}}
$$

together with $N_{\text {orb }}{ }^{2}$ hopping terms completely specifies Hamiltonian

Exact Diagonalization

variational principle and Schrödinger equation

$$
\text { energy expectation value } E[\psi]=\frac{\langle\psi| H|\psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

variation

$$
\begin{gathered}
E[\Psi+\delta \Psi]=E[\Psi]+\frac{\langle\delta \Psi| H|\Psi\rangle+\langle\Psi| H|\delta \Psi\rangle}{\langle\Psi \mid \Psi\rangle}-\langle\Psi| H|\Psi\rangle \frac{\langle\delta \Psi \mid \Psi\rangle+\langle\Psi \mid \delta \Psi\rangle}{\langle\Psi \mid \Psi\rangle^{2}}+\mathcal{O}^{2} \\
\text { variational equation: } 0=\frac{\delta E[\Psi]}{\delta \Psi}=\frac{H|\Psi\rangle-\overbrace{\langle\Psi| H|\Psi\rangle}^{=E[\Psi]}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}+\text { H.c. }
\end{gathered}
$$

equivalent to time-independent Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

variational principle

expand $|\Psi\rangle \neq 0$ in eigenfunctions
$E[\Psi]=\frac{\sum\left\langle\psi \mid \Psi_{m}\right\rangle\left\langle\Psi_{m}\right| H\left|\Psi_{n}\right\rangle\left\langle\Psi_{n} \mid \Psi\right\rangle}{\sum\left\langle\Psi \mid \Psi_{m}\right\rangle\left\langle\Psi_{m} \mid \Psi_{n}\right\rangle\left\langle\Psi_{n} \mid \Psi\right\rangle}=\frac{\sum E_{n}\left|\left\langle\Psi_{n} \mid \Psi\right\rangle\right|^{2}}{\sum\left|\left\langle\Psi_{n} \mid \Psi\right\rangle\right|^{2}} \geq \frac{\sum E_{0}\left|\left\langle\Psi_{n} \mid \Psi\right\rangle\right|^{2}}{\sum\left|\left\langle\Psi_{n} \mid \Psi\right\rangle\right|^{2}}=E_{0}$
assume eigenvalues sorted $E_{0} \leq E_{1} \leq \ldots$

$$
E\left[\Psi_{\perp_{n}}\right] \geq E_{n} \quad \text { if }\left\langle\Psi_{i} \mid \Psi_{\perp_{n}}\right\rangle=0 \text { for } i=0, \ldots, n-1
$$

variational principle for excited states
in practice only useful when orthogonality to (unknown) states ensured, e.g., by symmetry

expand in Slater basis

rewrite $\quad H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$
choose (orthonormal) orbital basis $\left\{\varphi_{k} \mid k\right\}$ and corresponding basis of Slater determinants $\left\{\phi_{k 1, \ldots, k N} \mid k_{1}<\ldots<k_{N}\right\}$

$$
|\Psi\rangle=\sum_{k_{1}<\cdots<k_{N}} a_{k_{1}, \ldots, k_{N}}\left|\Phi_{k_{1}, \ldots, k_{N}}\right\rangle=\sum_{i} a_{i}\left|\Phi_{i}\right\rangle=|\boldsymbol{\Phi}\rangle \boldsymbol{a}
$$

expand Schrödinger equation in Slater basis

$$
E\left\langle\Phi_{i} \mid \Psi\right\rangle=\left\langle\Phi_{i}\right| H|\Psi\rangle=\sum_{j}\left\langle\Phi_{i}\right| H\left|\Phi_{j}\right\rangle\left\langle\Phi_{j} \mid \Psi\right\rangle
$$

matrix eigenvalue problem
$\boldsymbol{H} \boldsymbol{a}=\langle\boldsymbol{\Phi}| \hat{H}|\boldsymbol{\Phi}\rangle \boldsymbol{a}=\left(\begin{array}{ccc}\left\langle\Phi_{1}\right| \hat{H}\left|\Phi_{1}\right\rangle\left\langle\Phi_{1}\right| \hat{H}\left|\Phi_{2}\right\rangle & \cdots \\ \left\langle\Phi_{2}\right| \hat{H}\left|\Phi_{1}\right\rangle\left\langle\Phi_{2}\right| \hat{H}\left|\Phi_{2}\right\rangle & \cdots \\ \vdots & \vdots & \ddots\end{array}\right)\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots\end{array}\right)=E\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots\end{array}\right)=E \boldsymbol{a}$

variational principle

restrict to finite Slater basis $|\tilde{\Phi}\rangle:=\left(\left|\Phi_{1}\right\rangle, \ldots,\left|\Phi_{\tilde{L}}\right\rangle\right)$

$$
\langle\tilde{\boldsymbol{\Phi}}| \hat{H}|\tilde{\boldsymbol{\Phi}}\rangle \tilde{\boldsymbol{a}}_{n}=\tilde{\boldsymbol{H}} \tilde{\boldsymbol{a}}_{n}=\tilde{E}_{n} \tilde{\boldsymbol{a}}_{n} \quad \rightsquigarrow \quad\left|\tilde{\Psi}_{n}\right\rangle:=|\tilde{\boldsymbol{\Phi}}\rangle \tilde{\boldsymbol{a}}_{n}
$$

solve with LAPACK
variational principle: $E_{n} \leq \tilde{E}_{n}$ for $n \in\{0, \ldots, \tilde{L}-1\}$

$$
\begin{gathered}
\text { construct }|\tilde{\Psi}\rangle=\sum_{i=0}^{n} c_{i}\left|\tilde{\Psi}_{i}\right\rangle \neq 0 \text { with }\left\langle\Psi_{i} \mid \tilde{\Psi}\right\rangle=0 \text { for } i=1, \ldots, n-1 \\
\rightsquigarrow \tilde{E}_{n} \geq E[\tilde{\Psi}] \geq E_{n}
\end{gathered}
$$

art: systematically increase basis to achieve convergence
nesting of eigenvalues
consider problem with basis size L as exact problem variational principle for $-H:-E_{L-i} \leq-\tilde{E}_{\tilde{L}-i}$ for $i \in\{1, \ldots, \tilde{L}\}$

$$
E_{n} \leq \tilde{E}_{n} \leq E_{n+(L-\tilde{L})} \quad \text { for } n \in\{0, \ldots, \tilde{L}-1\}
$$

representation of basis

$$
\left|n_{K-1}, \ldots, n_{0}\right\rangle:=\prod_{k=0}^{K-1}\left(c_{k}^{\dagger}\right)^{n_{k}}|0\rangle \quad \text { occupation number representation }
$$

i	$\left(n_{3}, n_{2}, n_{1}, n_{0}\right)$	state	1	bit-representation of basis states
0	0000			
1	0001			
2	0010			
3	0011	$c_{1}^{\dagger} c_{0}^{\dagger}\|0\rangle=\left\|\Phi_{1}\right\rangle$	1	
4	0100			>>> for i in range(2**4):
5	0101	$c_{2}^{\dagger} c_{0}^{\dagger}\|0\rangle=\left\|\Phi_{2}\right\rangle$	2	if bin(i).count(1) ==2: print(format(i, "04b"))
6	0110	$c_{2}^{\dagger} c_{1}^{\dagger}\|0\rangle=\left\|\Phi_{3}\right\rangle$	3	
7	0111			0011
8	1000			0101
9	1001	$C_{3}^{\dagger} c_{0}^{\dagger}\|0\rangle=\left\|\Phi_{4}\right\rangle$	4	0110
10	1010	$c_{3}^{\dagger} c_{1}^{\dagger}\|0\rangle=\left\|\Phi_{5}\right\rangle$	5	1010
11	1011			1100
12	1100	$c_{3}^{\dagger} c_{2}^{\dagger}\|0\rangle=\left\|\Phi_{6}\right\rangle$	6	
13	1101			
14	1110			
15	1111			

matrix elements: Fermi signs

$$
\begin{aligned}
&\left\langle\Phi_{I}\right| \hat{H}\left|\Phi_{l^{\prime}}\right\rangle=\sum_{n, m} T_{n m}\langle 0| c_{l_{1}} \cdots c_{l_{N}} c_{n}^{\dagger} c_{m} c_{l_{N}^{\prime}}^{\dagger} \cdots c_{l_{1}}^{\dagger}|0\rangle \\
&+\sum_{\substack{n^{\prime}>n \\
m^{\prime}>m}} \breve{U}_{n n^{\prime}, m m^{\prime}}\langle 0| c_{l_{1}} \cdots c_{l_{N}} c_{n^{\prime}}^{\dagger} c_{n}^{\dagger} c_{m} c_{m^{\prime}} c_{l_{N}^{\prime}}^{\dagger} \cdots c_{l_{1}}^{\dagger}|0\rangle \\
& \text { normal-order and evaluate overlap (determinant) }
\end{aligned}
$$

orthonormal basis:

$$
\begin{aligned}
c_{6}^{\dagger} c_{2}\left|\Phi_{I(181)}\right\rangle & =c_{6}^{\dagger} c_{2} c_{7}^{\dagger} c_{5}^{\dagger} c_{4}^{\dagger} c_{2}^{\dagger} c_{0}^{\dagger}|0\rangle \\
& =(-1)^{3} c_{6}^{\dagger} c_{7}^{\dagger} c_{5}^{\dagger} c_{4}^{\dagger} c_{2} c_{2}^{\dagger} c_{0}^{\dagger}|0\rangle \\
& =(-1)^{3} c_{6}^{\dagger} c_{7}^{\dagger} c_{5}^{\dagger} c_{4}^{\dagger}\left(1-c_{2}^{\dagger} c_{2}\right) c_{0}^{\dagger}|0\rangle \\
& =(-1)^{3} c_{6}^{\dagger} c_{7}^{\dagger} c_{5}^{\dagger} c_{4}^{\dagger} \cdot c_{0}^{\dagger}|0\rangle \\
=+\left|\Phi_{I(241)}\right\rangle & =(-1)^{2} c_{7}^{\dagger} c_{6}^{\dagger} c_{5}^{\dagger} c_{4}^{\dagger} \cdot c_{0}^{\dagger}|0\rangle
\end{aligned}
$$

count set bits: popent
$10110101=(-1)^{c} 11110001$

many-body problem

dimension of Hilbert space
ways of putting N electrons in K orbitals: $K(K-1)(K-2) \cdots(K-(N-1))=K!/(K-N)$! order in which electrons are put does not matter: N !

$$
\operatorname{dim} \mathcal{H}_{K}^{(N)}=\frac{K!}{N!(K-N)!}=\binom{K}{N}
$$

use symmetry to reduce dimension e.g., spin conserved

$$
\operatorname{dim} \mathcal{H}_{2 K}^{\left(N_{\uparrow}, N_{\downarrow}\right)}=\binom{K}{N_{\uparrow}} \times\binom{ K}{N_{\downarrow}}
$$

M	N_{\uparrow}	N_{\downarrow}	dimension of Hilbert space
2	1	1	4
4	2	2	36
6	3	3	400
8	4	4	4900
10	5	5	63504
12	6	6	853776
14	7	7	11778624
16	8	8	165636900
18	9	9	2363904400
20	10	10	34134779536
22	11	11	497634306624
24	12	12	7312459672336

sparseness

$$
\begin{aligned}
\left\langle\Phi_{l}\right| \hat{H}\left|\Phi_{l^{\prime}}\right\rangle & =\sum_{n, m} T_{n m}\langle 0| c_{l_{1}} \cdots c_{l_{N}} c_{n}^{\dagger} c_{m} c_{l_{N}^{\prime}}^{\dagger} \cdots c_{l_{1}^{\prime}}^{\dagger}|0\rangle \\
& +\sum_{\substack{n^{\prime}>n \\
m^{\prime}>m}} \breve{U}_{n n^{\prime}, m m^{\prime}}\langle 0| c_{l_{1}} \cdots c_{l_{N}} c_{n^{\prime}}^{\dagger} c_{n}^{\dagger} c_{m} c_{m^{\prime}} c_{l_{N}^{\prime}}^{\dagger} \cdots c_{l_{1}^{\prime}}^{\dagger}|0\rangle
\end{aligned}
$$

almost all matrix elements are zero, except diagonal elements 1011001010 single hop 1011100010 pair-hop 1001100011

$$
\begin{aligned}
& N \quad \times(K-N) \\
& N(N-1) / 2 \times(K-N)(K-N-1) / 2
\end{aligned}
$$

even more sparse for TB (short-range hopping) and local Coulomb (Hubbard) interaction
matrix-vector products are very fast

Lanczos method

minimal eigenvalue: steepest descent

energy functional

$$
E[\psi]=\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle}
$$

direction (in Hilbert space) of steepest ascent

$$
\frac{\delta E[\psi]}{\delta\langle\psi|}=\frac{H|\psi\rangle-E[\psi]|\psi\rangle}{\langle\psi \mid \psi\rangle}=\left|\psi_{a}\right\rangle \in \operatorname{span}(|\psi\rangle, H|\psi\rangle)
$$

$$
\text { minimize energy in span }(|\Psi\rangle, H|\psi\rangle)
$$

steepest descent minimization in high-dimensional space local minima?

minimal eigenvalue: steepest descent

minimize energy in span $(|\psi\rangle, H|\psi\rangle)$
construct orthonormal basis

$$
\begin{gathered}
\left|v_{0}\right\rangle \quad=\quad|\psi\rangle / \sqrt{\langle\psi \mid \psi\rangle} \\
b_{1}\left|v_{1}\right\rangle=\left|\tilde{v}_{1}\right\rangle=H\left|v_{0}\right\rangle-\left|v_{0}\right\rangle\left\langle v_{0}\right| H\left|v_{0}\right\rangle \\
\text { define: } \quad a_{n}:=\left\langle v_{n}\right| H\left|v_{n}\right\rangle \quad b_{1}:=\sqrt{\left\langle\tilde{v}_{1} \mid \tilde{v}_{1}\right\rangle} \\
H\left|v_{0}\right\rangle=b_{1}\left|v_{1}\right\rangle+a_{0}\left|v_{0}\right\rangle \\
H_{\text {span }(|\psi\rangle, H|\psi\rangle)}=\left(\begin{array}{cc}
a_{0} & b_{1} \\
b_{1} & a_{1}
\end{array}\right)
\end{gathered}
$$

diagonalize to find lowest eigenvector

convergence

10-site Hubbard-chain, half-filling; dim=63,504

Lanczos idea

minimize on span $\left(\left|\psi_{0}\right\rangle, H\left|\Psi_{0}\right\rangle\right)$ to obtain $\left|\psi_{1}\right\rangle$
minimize on $\operatorname{span}\left(\left|\psi_{1}\right\rangle, H\left|\psi_{1}\right\rangle\right) \in \operatorname{span}\left(\left|\psi_{0}\right\rangle, H\left|\psi_{0}\right\rangle, H^{2}\left|\psi_{0}\right\rangle\right)$
minimize on $\left.\operatorname{span}\left(\left|\psi_{2}\right\rangle, H\left|\psi_{2}\right\rangle\right) \in \operatorname{span}\left(\left|\psi_{0}\right\rangle, H\left|\psi_{0}\right\rangle, H^{2}\left|\psi_{0}, H^{3}\right| \psi_{0}\right\rangle\right)$
etc.
instead of L-fold iterative minimization on two-dimensional subspaces minimize energy on $L+1$ dimensional Krylov space

$$
\left.\mathcal{K}^{L}\left(\psi_{0}\right\rangle\right)=\operatorname{span}\left(\left|\psi_{0}\right\rangle, H\left|\psi_{0}\right\rangle, H^{2}\left|\psi_{0}\right\rangle, \ldots, H^{L}\left|\psi_{0}\right\rangle\right)
$$

more variational degrees of freedom \Rightarrow even faster convergence

convergence to ground state

10-site Hubbard-chain, half-filling; dim=63,504

Lanczos iteration

construct orthonormal basis in Krylov space

$$
\begin{gathered}
b_{n+1}\left|v_{n+1}\right\rangle=\left|\tilde{v}_{n+1}\right\rangle=H\left|v_{n}\right\rangle-\sum_{i=0}^{n}\left|v_{i}\right\rangle\left\langle v_{i}\right| H\left|v_{n}\right\rangle \\
\text { define: } a_{n}:=\left\langle v_{n}\right| H\left|v_{n}\right\rangle \quad b_{n}:=\sqrt{\left\langle\tilde{v}_{n} \mid \tilde{v}_{n}\right\rangle} \\
\left\langle v_{m}\right|: \quad b_{n+1} \delta_{m, n+1}=\left\langle v_{m}\right| H\left|v_{n}\right\rangle-\sum_{i=0}^{n}\left\langle v_{m}\right| H\left|v_{n}\right\rangle \delta_{m, i} \\
\left\langle v_{m}\right| H \left\lvert\, v_{n}\left\langle=\left\{\begin{array}{cl}
\left\langle v_{m}\right| H\left|v_{n}\right\rangle & \text { for } m<n \\
a_{n} & \text { for } m=n \\
b_{n+1} & \text { for } m=n+1 \\
0 & \text { for } m>n+1
\end{array} \quad H=\left(\begin{array}{cccc}
a_{0} & ? & ? & \cdots
\end{array} ?\right.\right.\right.\right. \\
b_{1} \\
a_{1}
\end{gathered} \quad ?
$$

H has upper Hessenberg form symmetric/hermitian \Rightarrow tridiagonal

Lanczos iteration

orthonormal basis in Krylov space

$$
\begin{aligned}
&\left|v_{0}\right\rangle \\
& b_{1}\left|v_{1}\right\rangle=H\left|v_{0}\right\rangle-a_{0}\left|v_{0}\right\rangle \\
& b_{2}\left|v_{2}\right\rangle=H\left|v_{1}\right\rangle-a_{1}\left|v_{1}\right\rangle-b_{1}\left|v_{0}\right\rangle \\
& b_{3}\left|v_{3}\right\rangle=H\left|v_{2}\right\rangle-a_{2}\left|v_{2}\right\rangle-b_{2}\left|v_{1}\right\rangle \\
& \ldots \\
& H\left|v_{n}\right\rangle= b_{n}\left|v_{n-1}\right\rangle+a_{n}\left|v_{n}\right\rangle+b_{n+1}\left|v_{n+1}\right\rangle \\
& H_{\mathcal{K}^{L}\left(\left|v_{0}\right\rangle\right)}=\left(\begin{array}{ccccccc}
a_{0} & b_{1} & 0 & 0 & & 0 & 0 \\
b_{1} & a_{1} & b_{2} & 0 & \cdots & 0 & 0 \\
0 & b_{2} & a_{2} & b_{3} & & 0 & 0 \\
0 & 0 & b_{3} & a_{3} & & 0 & 0 \\
& \vdots & & & \ddots & \vdots & \\
0 & 0 & 0 & 0 & & a_{L-1} & b_{L} \\
0 & 0 & 0 & 0 & \cdots & b_{L} & a_{L}
\end{array}\right)
\end{aligned}
$$

Lanczos algorithm

```
\(\mathrm{v}=\) init
b0=norm2 (v)
\(\operatorname{scal}(1 / b 0, v)\)
\(\mathrm{W}=0\)
\(\mathrm{w}=\mathrm{w}+\mathrm{H} * \mathrm{v}\)
\(\mathrm{a}[0]=\operatorname{dot}(\mathrm{v}, \mathrm{w})\)
\(\operatorname{axpy}(-\mathrm{a}[0], \mathrm{v}, \mathrm{w})\)
b[1]=norm2 ( w )
for \(n=1,2, \ldots\)
    if \(\mathrm{abs}(\mathrm{b}[\mathrm{n}])<e \mathrm{ps}\) then exit
    scal (1/b[n],w)
    scal ( -b[n],v)
    \(\operatorname{swap}(v, w)\)
    \(\mathrm{w}=\mathrm{w}+\mathrm{H} * \mathrm{v}\)
    \(\mathrm{a}[\mathrm{n}]=\operatorname{dot}(\mathrm{v}, \mathrm{w})\)
    \(\operatorname{axpy}(-\mathrm{a}[\mathrm{n}], \mathrm{v}, \mathrm{w})\)
    \(\mathrm{b}[\mathrm{n}+1]=\operatorname{norm} 2(\mathrm{w})\)
    \(\operatorname{diag}(a[0] . . a[n], b[1] . . b[n])\)
    if converged then exit
end
```

not part of tridiagonal matrix
$\mathrm{v}=\left|\mathrm{v}_{0}\right\rangle$
$\mathrm{w}=H\left|v_{0}\right\rangle$
$\mathrm{w}=\left|\tilde{v}_{1}\right\rangle=H\left|v_{0}\right\rangle-a_{0}\left|v_{0}\right\rangle$
invariant subspace
$\mathrm{w}=\left|v_{n}\right\rangle$
$\mathrm{v}=-b_{n}\left|v_{n-1}\right\rangle$
$\mathrm{w}=H\left|v_{n}\right\rangle-b_{n}\left|v_{n-1}\right\rangle$
$\mathrm{a}[\mathrm{n}]=\left\langle v_{n}\right| H\left|v_{n}\right\rangle-b_{n}\left\langle v_{n} \mid v_{n-1}\right\rangle$
$\mathrm{w}=\left|\tilde{v}_{n+1}\right\rangle$
getting a_{n+1} needs another $H|v\rangle$

spectrum of tridiagonal matrix

toy problem: matrix with eigenvalues $-3,-3,-2.5,-2,-1.99,-1.98, \ldots-0.01,0$

Krylov space cannot contain degenerate states

assume $\left|\varphi_{1}\right\rangle$ and $\left|\varphi_{2}\right\rangle$ are degenerate eigenstates with eigenvalue ε, then their expansion in the orthonormal basis of the Krylov space is

$$
\begin{gathered}
\left\langle v_{0}\right| H^{n}\left|\varphi_{i}\right\rangle=\varepsilon^{n}\left\langle v_{0} \mid \varphi_{i}\right\rangle \\
\Rightarrow\left|\varphi_{1}\right\rangle \text { and }\left|\varphi_{2}\right\rangle \text { are identical up to normalization }
\end{gathered}
$$

loss of orthogonality

toy problem: matrix with eigenvalues $-3,-3,-2.5,-2,-1.99,-1.98, \ldots-0.01,0$

convergence to extremal eigenvalues

toy problem: matrix with eigenvalues $-3,-3,-2.5,-2,-1.99,-1.98, \ldots-0.01,0$

convergence to ground state

10-site Hubbard-chain, half-filling; dim=63,504

$$
\frac{\check{E}_{0}-E_{0}}{E_{N}-E_{0}} \leq\left(\frac{\tan \left(\arccos \left(\left\langle\check{\Psi}_{0} \mid \psi_{0}\right\rangle\right)\right)}{T_{L}\left(1+2 \frac{E_{1}-E_{0}}{E_{N}-E_{1}}\right)}\right)^{2}
$$

construction of eigenvectors

let $\breve{\psi}_{n}=\left(\breve{\psi}_{n, i}\right)$ be the $n^{\text {th }}$ eigenstate of the tridiagonal Lanczos matrix

$$
H_{\mathcal{K}^{L}\left(\left|v_{0}\right\rangle\right)}=\left(\begin{array}{ccccccc}
a_{0} & b_{1} & 0 & 0 & & 0 & 0 \\
b_{1} & a_{1} & b_{2} & 0 & \cdots & 0 & 0 \\
0 & b_{2} & a_{2} & b_{3} & & 0 & 0 \\
0 & 0 & b_{3} & a_{3} & & 0 & 0 \\
& \vdots & & & \ddots & \vdots & \\
0 & 0 & 0 & 0 & & a_{L-1} & b_{L} \\
0 & 0 & 0 & 0 & \cdots & b_{L} & a_{L}
\end{array}\right)
$$

the approximate eigenvector is then given in the Lanczos basis

$$
\left|\check{\psi}_{n}\right\rangle=\sum_{i=0}^{L} \check{\psi}_{n, i}\left|v_{i}\right\rangle
$$

need all Lanczos basis vectors \Rightarrow would require very large memory instead: re-run Lanczos iteration from same |vo \rangle and accumulate eigenvector on the fly

Green function

$$
G_{c}(z)=\left\langle\psi_{c}\right| \frac{1}{z-H}\left|\psi_{c}\right\rangle=\sum_{n=0}^{N} \frac{\left\langle\psi_{c} \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid \psi_{c}\right\rangle}{z-E_{n}}
$$

need entire spectrum !?

Green function

$$
\begin{aligned}
& G_{c}(z)=\left\langle\psi_{c}\right| \frac{1}{z-H}\left|\psi_{c}\right\rangle=\sum_{n=0}^{N} \frac{\left\langle\psi_{c} \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid \psi_{c}\right\rangle}{z-E_{n}} \\
& \check{G}_{c}(z)=\left\langle\psi_{c}\right| \frac{1}{z-\breve{H}_{c}}\left|\psi_{c}\right\rangle=\sum_{n=0}^{L} \frac{\left\langle\Psi_{c} \mid \breve{\Psi}_{n}\right\rangle\left\langle\breve{\psi}_{n} \mid \psi_{c}\right\rangle}{z-\check{E}_{n}}
\end{aligned}
$$

run Lanczos starting from $\left|\Psi_{c}\right\rangle$ (normalized!)
$z-\check{H}_{c}=\left(\begin{array}{c|cccccc}z-a_{0} & -b_{1} & 0 & 0 & \cdots & 0 & 0 \\ \hline-b_{1} & z-a_{1} & -b_{2} & 0 & \cdots & 0 & 0 \\ 0 & -b_{2} & z-a_{2} & -b_{3} & \cdots & 0 & 0 \\ 0 & 0 & -b_{3} & z-a_{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & z-a_{L-1} & -b_{L} \\ 0 & 0 & 0 & 0 & \cdots & -b_{L} & z-a_{L}\end{array}\right)$
Green function is 0,0 element of inverse matrix

Green function

$$
z-\check{H}_{c}=\left(\begin{array}{cc}
z-a_{0} & B^{(1)^{T}} \\
B^{(1)} & z-\check{H}_{c}^{(1)}
\end{array}\right)
$$

inversion by partitioning
invert block-2×2 matrix

$$
\begin{aligned}
&\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
\tilde{A} & \tilde{B} \\
\tilde{C} & \tilde{D}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \begin{array}{l}
A \tilde{A}+B \tilde{C}=1 \\
\\
C \tilde{A}+D \tilde{C}=0 \rightsquigarrow \tilde{C}=-D^{-1} C \tilde{A}
\end{array} \\
& {\left[\left(z-\check{H}_{c}\right)^{-1}\right]_{00}=\left(A-B D^{-1} C\right) \tilde{A} } \\
&=\left(z-a_{0}-B^{(1)^{T}}\left(z-\check{H}_{c}^{(1)}\right)^{-1} B^{(1)}\right)^{-1} \\
&=\left(z-a_{0}-b_{1}^{2}\left[\left(z-\check{H}_{c}^{(1)}\right)^{-1}\right]_{00}\right)^{-1} \\
& \text { recursively } \\
& \check{G}_{c}(z)=\left[\left(z-\check{H}_{c}\right)^{-1}\right]_{00}=\frac{1}{z-a_{0}-\frac{b_{1}^{2}}{z-a_{1}-\frac{b_{2}^{2}}{z-a_{2}-\cdots}}}
\end{aligned}
$$

convergence by moments

$\int_{-\infty}^{\infty} d \omega \omega^{m} \check{A}(\omega)=\sum_{n=0}^{L}\left|\check{\psi}_{n, 0}\right|^{2} \check{E}_{n}^{m}=\sum_{n=0}^{L}\left\langle\psi_{c} \mid \check{\psi}_{n}\right\rangle\left\langle\check{\psi}_{n} \mid \psi_{c}\right\rangle \check{E}_{n}^{m}=\left\langle\psi_{c}\right| \check{H}^{m}\left|\psi_{c}\right\rangle$

summary

indistinguishable electrons

$$
\left\lvert\, \begin{array}{cccc}
\varphi_{\alpha_{1}}\left(x_{1}\right) & \varphi_{\alpha_{2}}\left(x_{1}\right) & \cdots & \varphi_{\alpha_{N}}\left(x_{1}\right) \\
\varphi_{\alpha_{1}}\left(x_{2}\right) & \varphi_{\alpha_{2}}\left(x_{2}\right) & \cdots & \varphi_{\alpha_{N}}\left(x_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_{\alpha_{1}}\left(x_{N}\right) & \varphi_{\alpha_{2}}\left(x_{N}\right) & \cdots & \varphi_{\alpha_{N}}\left(x_{N}\right)
\end{array}\right.
$$

(anti)symmetrization is hard Slater determinants to the rescue
second quantization

$$
\begin{gathered}
=\langle 0| \hat{\psi}\left(x_{1}\right) \cdots \hat{\psi}\left(x_{N}\right) c_{\alpha_{N}}^{\dagger} \cdots c_{\alpha_{1}}^{\dagger}|0\rangle \\
\\
\begin{array}{ll}
c_{\alpha}|0\rangle=0 & \left\{c_{\alpha}, c_{\beta}\right\}=0=\left\{c_{\alpha}^{\dagger}, c_{\beta}^{\dagger}\right\} \\
\langle 0 \mid 0\rangle=1 & \left\{c_{\alpha}, c_{\beta}^{\dagger}\right\}=\langle\alpha \mid \beta\rangle
\end{array}
\end{gathered}
$$

occupation number representation

$$
\left|n_{K-1}, \ldots, n_{0}\right\rangle:=\prod\left(c_{k}^{\dagger}\right)^{n_{k}}|0\rangle \quad 10110101=(-1)^{c} 11110001
$$

steepest descent \Rightarrow Krylov space
$\frac{\delta E[\psi]}{\delta\langle\psi|}=\frac{H|\Psi\rangle-E[\psi]|\Psi\rangle}{\langle\psi \mid \Psi\rangle}=\left|\Psi_{a}\right\rangle \in \operatorname{span}(|\psi\rangle, H|\Psi\rangle)$

spectral function: moments

sparse matrix-vector product: OpenMP

$$
w=w+H v \quad H=\sum_{\langle i j\rangle, \sigma} t_{i, j} c_{j, \sigma}^{\dagger} c_{i, \sigma}+U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}
$$

subroutine wpHtruev(U, v,w)
c --- full configurations indexed by $k=(k d n-1)+(k u p-1) * N d n c o n f+1$
! \$omp parallel do private(kdn,k,i,lup,ldn,l,D)
do kup=1,Nupconf
do $k d n=1$, Ndnconf
$\mathrm{k}=(\mathrm{kdn}-1)+(\mathrm{kup}-1) *$ Ndnconf+1
$w(k)=w(k)+U^{*}$ Double(kup,kdn)*v(k)

enddo
do $i=1$,upn(kup)
lup=upi(i,kup)
do $k d n=1$, Ndnconf

$$
k=(k d n-1)+(k u p-1) * N d n c o n f+1
$$

$$
l=(k d n-1)+(l u p-1) * N d n c o n f+1
$$

$$
w(k)=w(k)+u p t(i, k u p) * v(l)
$$

enddo

$$
\sum_{i j\rangle, \sigma=\uparrow} t_{i, j} c_{j, \sigma}^{\dagger} c_{i, \sigma}
$$

enddo
do $k d n=1$, Ndnconf
$\mathrm{k}=(\mathrm{kdn}-1)+(\mathrm{kup}-1) *$ Ndnconf+1
do $i=1, d n n(k d n)$
ldn=dni(i,kdn)
l=(ldn-1)+(kup-1)*Ndnconf+1 $w(k)=w(k)+d n t(i, k d n) * v(l)$
enddo
enddo
enddo
end

OpenMP on Jump

distributed memory

MPI-2: one-sided communication

Hubbard model

$$
H=\sum_{\langle i j\rangle, \sigma} t_{i, j} c_{j, \sigma}^{\dagger} c_{i, \sigma}+U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}
$$

hopping: spin unchanged

interaction diagonal
$\frac{1}{\dagger}-\frac{1}{1}-\frac{1}{i}$

Idea: matrix transpose of $v\left(\mathbf{i}_{\downarrow}, \mathbf{i}_{\uparrow}\right)$

Lanczos-vector as matrix:

$$
v\left(i_{\downarrow}, i_{\uparrow}\right)
$$

before transpose: \downarrow-hops local after transpose: \uparrow-hops local
implementation:
MPI_alltoall $\left(N_{\downarrow}=N_{\uparrow}\right)$
MPI_alltoallv $\left(N_{\downarrow} \neq N_{\uparrow}\right)$

Implementation on IBM BlueGene/P

sites	memory
16	1 GB
18	18 GB
20	254 GB

Adv. Parallel Computing 15, 601 (2008)

performance on full Jugene?

performance on full Jugene!

performance on full Jugene!

mess. size [Bytes]/slices

