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7.2 Erik Koch

1 Many-electron states

One of the great surprises of quantum mechanics is the existence of indistinguishable objects.
Classically this is not possible: objects can always be distinguished at least by their position
in space, meaning that indistinguishable objects must be identical. This is Leibniz’ Principle
of the Identity of Indiscernibles [1]. For quantum objects, however, the uncertainty principle
makes the distinction of particles by their position impossible. This allows for the existence
of elementary particles. They form the basic units of all matter. So, quite remarkably, all the
different objects we know are made of indistinguishable building blocks.
In the formalism of quantum mechanics, indistinguishability means that no observable lets us
distinguish one of these particles from the other. This means that every observable for, e.g.,
electrons, must treat each electron in the same way. Thus, in principle, observables must act on
all electrons in the universe. In practice we can, of course, distinguish electrons localized on the
moon from those in our lab to an excellent approximation. Thus, for all practical purposes, we
can restrict our description to the electrons in the system under consideration, assuming that the
differential overlap with all other electrons vanishes. Any observable M(x1, . . . , xN) for the N
electrons in our system must then be symmetric under permutations of the variables xi.
The consequences are straightforward: An observable M(x) acting on a single-particle degree
of freedom x must act on all indistinguishable particles in the same way, i.e.,

∑
iM(xi). Like-

wise, a two-body observable M(x, x′) must act on all pairs in the same way,
∑

i,jM(xi, xj)

with M(x, x′) = M(x′, x). We can thus write any observable in the form

M(x) = M (0) +
∑
i

M (1)(xi) +
1

2!

∑
i 6=j

M (2)(xi, xj) +
1

3!

∑
i 6=j 6=k

M (3)(xi, xj, xk) + · · · (1)

= M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · , (2)

where the summations can be restricted since the operators must be symmetric in their argu-
ments, while for two or more identical coordinates the operator is really one of lower order:
M (2)(xi, xi), e.g., only acts on a single coordinate and should be included in M (1).
For the many-body wave functions Ψ(x1, x2, · · · ) the situation is slightly more complex. Since
the probability density |Ψ(x1, x2, · · · )|2 is an observable, the wave function should transform
as one-dimensional (irreducible) representations of the permutation group. Which irreducible
representation applies to a given type of elementary particle is determined by the spin-statistics
theorem [2, 3]: The wave functions of particles with integer spin are symmetric, those of parti-
cles with half-integer spin change sign when two arguments are exchanged. From an arbitrary
N -particle wave function we thus obtain a many-electron wavefunction by antisymmetrizing

AΨ(x1, . . . , xN) :=
1√
N !

∑
P

(−1)PΨ
(
xp(1), . . . , xp(N)

)
, (3)

where (−1)P is the parity of the permutation P that maps n→ p(n). Since there areN ! different
permutations, this can easily become an extremely costly operation. Remarkably, a product of
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N single-electron states ϕα can be antisymmetrized much more efficiently (in O(N3) steps) by
writing it in the form of a determinant

Φα1,...,αN (x1, . . . , xN) := Aϕα1(x1) · · ·ϕαN (xN)=
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
.

(4)
For N=1 the Slater determinant is simply the one-electron orbital Φα(x) = ϕα(x) while for
N=2 we get the familiar expression Φα,α′(x, x′) =

(
ϕα(x)ϕα′(x

′)−ϕα′(x)ϕα(x′)
)
/
√

2 for the
two-electron Slater determinant.
Slater determinants are important because they can be used to build a basis of the many-electron
Hilbert space. To see how, we consider a complete set of orthonormal single-electron states∑

n

ϕn(x)ϕn(x′) = δ(x− x′) (complete)
∫
dxϕn(x)ϕm(x) = δn,m (orthonormal) . (5)

To expand an arbitrary N -particle function a(x1, . . . , xN), we start by considering it as a func-
tion of x1 with x2, . . . , xN kept fixed. We can then expand it in the complete set {ϕn} as

a(x1, . . . , xN) =
∑
n1

an1(x2, . . . , xN)ϕn1(x1)

with expansion coefficients that depend on the remaining coordinates

an1(x2, . . . , xN) =

∫
dx1 ϕn1(x1) a(x1, x2, . . . , xN) .

These, in turn, can be expanded as a functions of x2

an1(x2, . . . , xN) =
∑
n2

an1,n2(x3, . . . , xN)ϕn2(x2) .

Repeating this, we obtain the expansion of a in product states

a(x1, . . . , xN) =
∑

n1,...,nN

an1,...,nN ϕn1(x1) · · ·ϕnN (xN) .

When the N -particle function is antisymmetric, applying the antisymmetrizer (3) will leave
it unchanged, i.e., the expansion coefficients will be antisymmetric under permutation of the
indices: anp(1),...,np(N)

= (−1)Pan1,...,nN . Fixing some particular order of the indices, e.g., n1 <

n2 < . . . < nN , we thus get an expansion in Slater determinants

Ψ(x1, . . . , xN) =
∑

n1<...<nN

an1,...,nN

√
N !Φn1,...,nN (x1, . . . , xN) .

Since we can write any antisymmetric function as such a configuration-interaction expansion,
the set of Slater determinants{

Φn1,...,nN (x1, . . . , xN)
∣∣∣ n1 < n2 < · · · < nN

}
(6)
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forms a basis of the N -electron Hilbert space. Since the overlap of two Slater determinants∫
dx Φα1,...,αN (x)Φβ1,...,βN (x) =

1

N !

∑
P,P ′

(−1)P+P ′
∏
n

∫
dxn ϕαp(n)

(xn)ϕαp′(n)
(xn)

=

∣∣∣∣∣∣∣
〈ϕα1|ϕβ1〉 · · · 〈ϕα1|ϕβN 〉

... . . . ...
〈ϕαN |ϕβ1〉 · · · 〈ϕαN |ϕβN 〉

∣∣∣∣∣∣∣ (7)

is the determinant of the overlap of the constituent orbitals, the Slater determinants (6) form
a complete orthonormal basis of the N -electron Hilbert space when the orbitals ϕn(x) are a
complete orthonormal basis of the one-electron Hilbert space.
While we use a set of N one-electron orbitals ϕn(x) to define an N -electron Slater determi-
nant Φα1,...,αN (x), this representation is not unique: Any unitary transformation among the N
occupied orbitals will not change the determinant. Thus, strictly, a Slater determinant is not
determined by the set of indices we usually give, but, up to a phase, by the N -dimensional sub-
space spanned by the orbitals ϕ1, . . . , ϕN in the single-electron Hilbert space. The projector to
this space is the one-body density matrix

Γ (1)(x, x′) = N

∫
dx2 · · · dxN Φ(x, x2, . . . , xN)Φ(x′, x2, . . . , xN) . (8)

To see this, we expand the Slater determinant along its first row

Φα1···αN (x1, . . . , xN) =
1√
N

N∑
n=1

(−1)1+n ϕαn(x1)Φαi 6=n(x2, . . . , xN) , (9)

where Φαi 6=n(x2, . . . , xN) is the determinant with the first row and the n-th column removed,
which can be written as N−1-electron Slater determinants with orbital αn removed. Inserting
this into (8) we find

Γ
(1)
Φ (x, x′) =

N∑
n=1

ϕαn(x)ϕαn(x′) , (10)

which is the expansion of the one-body density matrix in eigenfunctions (natural orbitals), with
eigenvalues (natural occupation numbers) either one or zero. Any many-electron wave function
Ψ(x) with the same one-body density matrix Γ (1)

Φ equals the Slater determinant Φ(x) up to a
phase, i.e., |〈Ψ |Φ〉| = 1.
We can generalize this procedure and calculate higher order density matrices by introducing the
generalized Laplace expansion

Φα1···αN (x) =
1√(
N
p

) ∑
n1<···<np

(−1)1+
∑
i ni Φαn1 ···αnp (x1, . . . , xp)Φαi6∈{n1,...,np}

(xp+1, . . . , xN),

which is obtained by writing the permutation of all N indices as a permutation of N −p indices
and the remaining p indices separately summing over all distinct sets of p indices. This allows
us to evaluate arbitrary matrix elements and higher order density matrices [4]. But as can be
seen from the above expansion, the expressions very quickly get quite cumbersome. Fortunately
there is a representation that is much better suited to handling antisymmetric wave functions. It
is called second quantization.
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2 Second quantization

While originally introduced for quantizing the electromagnetic field, we can use the formalism
of second quantization just as a convenient way of handling antisymmetric wave functions [5,6].
The idea behind this approach is remarkably simple: When writing Slater determinants in the
form (4) we are working in a real-space basis. It is, however, often simpler to consider abstract
states: Instead of a wave function ϕα(x), we write a Dirac state |α〉. Second quantization allows
us to do the same for Slater determinants.
Let us consider a Slater determinant for two electrons, one in state ϕα(x), the other in state
ϕβ(x). It is simply the antisymmetrized product of the two states

Φαβ(x1, x2) =
1√
2

(
ϕα(x1)ϕβ(x2)− ϕβ(x1)ϕα(x2)

)
. (11)

This expression is quite cumbersome because we explicitly specify the coordinates. We can try
to get rid of the coordinates by defining a two-particle Dirac state

|α, β〉 :=
1√
2

(
|α〉|β〉 − |β〉|α〉

)
.

While the expression is somewhat simpler, we still have to keep track of the order of the particles
by specifying the position of the kets. The idea of second quantization is to specify the states
using operators

|α, β〉 = c†βc
†
α|0〉. (12)

Now the order of the particles is specified by the order of the operators. To ensure the antisym-
metry of the wave function the operators have to change sign when they are reordered

|α, β〉 = c†βc
†
α|0〉 = −c†αc

†
β|0〉 = −|β, α〉 . (13)

2.1 Creation and annihilation operators

To arrive at the formalism of second quantization we postulate a set of operators that have
certain reasonable properties. We then verify that we can use these operators to represent Slater
determinants. But first we consider a few simple states to motivate what properties the new
operators ought to have.
To be able to construct many-electron states, we start from the simplest such state: |0〉 the
vacuum state with no electron, which we assume to be normalized 〈0|0〉 = 1. Next we introduce
for each single-electron state |α〉 an operator c†α such that c†α|0〉 = |α〉. We call them creation
operators since they add an electron (in state α) to the state that they act on: in c†α|0〉 the creation
operator adds an electron to the vacuum state (N=0), resulting in a single-electron state (N=1).
Applying another creation operator produces a two-electron state c†βc

†
α|0〉, (N=2). To ensure

the antisymmetry of the two electron state, the product of creation operators has to change sign
when they are reordered: c†αc

†
β = −c†βc†α. This is more conveniently written as {c†α, c

†
β} = 0 by

introducing the anti-commutator

{A, B} := AB +BA . (14)
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As we have seen, the simplest state we can produce with the creation operators is the single-
electron state |α〉 = c†α|0〉. When we want to calculate its norm, we have to consider the adjoint
of c†α|0〉, formally obtaining 〈α|α〉 = 〈0|cαc†α|0〉, or, more generally, 〈α|β〉 = 〈0|cαc

†
β|0〉. This

implies that cα, the adjoint of a creation operator, must remove an electron from the state,
otherwise the overlap of cαc

†
β|0〉 with the vacuum state 〈0| would vanish. We therefore call the

adjoint of the creation operator an annihilation operator. We certainly cannot take an electron
out of the vacuum state, so cα|0〉 = 0. To obtain the overlap of one-electron states we postulate
the anticommutation relation {cα, c

†
β} = 〈α|β〉, giving 〈0|cαc

†
β|0〉 = 〈0|{cα, c†β} − c

†
βcα|0〉 =

〈α|β〉. For completeness, taking the adjoint of the anticommutation relation for the creation
operators, we obtain the corresponding anticommutator of the annihilators: {cα, cβ} = 0.
Thus, we are led to define the vacuum state |0〉 and the set of operators cα related to single-
electron states |α〉 with the properties

cα|0〉 = 0
{
cα, cβ

}
= 0 =

{
c†α, c

†
β

}
〈0|0〉 = 1

{
cα, c

†
β

}
= 〈α|β〉

(15)

As a direct consequence we obtain the Pauli principle in the form cαcα = 0 = c†αc
†
α.

We note that the creators transform in the same way as the single-electron states they represent

|α̃i〉 =
∑
µ

|αµ〉Uµi ; c̃†α̃i |0〉 =
∑
µ

c†αµ |0〉Uµi =

(∑
µ

c†αµUµi

)
|0〉. (16)

The creators and annihilators are clearly not operators in a Hilbert space, but transfer states
from an N -electron to an N±1-electron Hilbert space, i.e., they are operators defined on Fock
space. It is also remarkable that the mixed anti-commutator is the only place where the orbitals
that distinguish different operators enter.
To make contact with the notation of first quantization, we introduce the field operators Ψ̂ †(x),
with x = (r, σ), that create an electron of spin σ at position r, i.e., in state |x〉 = |r, σ〉. Given a
complete, orthonormal set of orbitals {ϕn}, we can expand |x〉

Ψ̂ †(x)|0〉 = |x〉 =
∑
n

|ϕn〉〈ϕn|x〉 =
∑
n

c†ϕn|0〉〈ϕn|x〉 (17)

from which we obtain

Ψ̂ †(x) =
∑
n

〈x|ϕn〉 c†ϕn =
∑
n

ϕn(x) c†ϕn . (18)

The anticommutators then follow from (15) for an orthonormal and complete set, e.g.,{
Ψ̂(x), Ψ̂ †(x′)

}
=
∑
n,m

〈x|ϕn〉
{
cϕn , c

†
ϕm

}︸ ︷︷ ︸
=δn,m

〈ϕm|x′〉 =
∑
n

〈x|ϕn〉〈ϕn|x′〉 = 〈x|x′〉 = δ(x− x′),

resulting in the anticommutation relations for the field operators{
Ψ̂(x), Ψ̂(x′)

}
= 0 =

{
Ψ̂ †(x), Ψ̂ †(x′)

}
and

{
Ψ̂(x), Ψ̂ †(x′)

}
= 〈x|x′〉. (19)
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We can, of course, expand the field operators also in a non-orthogonal set of orbitals {|χi〉}, as
long as it is complete,

∑
i,j |χi〉(S−1)ij〈χj| = 1, where Sij = 〈χi|χj〉 is the overlap matrix,

Ψ̂ †(x) =
∑
i,j

c†i (S−1)ij 〈χj|x〉. (20)

Conversely, given any single-electron wave functions in real space ϕ(x), we can express the
corresponding creation operator in terms of the field operators

c†ϕ =

∫
dxϕ(x) Ψ̂ †(x). (21)

Its anticommutator with the field annihilator just gives back the single-electron wave function{
Ψ̂(x), c†ϕ

}
=

∫
dx′ ϕ(x′)

{
Ψ̂(x), Ψ̂ †(x′)

}
= ϕ(x) . (22)

2.2 Representation of Slater determinants

We have now all the tools in place to write the Slater determinant (4) in second quantization,
using the creation operators to specify the occupied orbitals and the field operators to give the
coordinates for the real-space representation:

Φα1α2...αN (x1, x2, . . . , xN) =
1√
N !

〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) . . . Ψ̂(xN) c†αN . . . c

†
α2
c†α1

∣∣0〉. (23)

Note how writing the Slater determinant as an expectation value of annihilation and creation
operators nicely separates the coordinates on the left from the orbitals on the right. This is just
the desired generalization of the Dirac notation ϕ(x) = 〈x|ϕ〉.
Not surprisingly, the proof of (23) is by induction. As a warm-up we consider the case of a
single-electron wave function (N=1). Using the anticommutation relation (22), we see that〈

0
∣∣ Ψ̂(x1) c†α1

∣∣0〉 =
〈
0
∣∣ϕα1(x1)− c†α1

Ψ̂(x1)
∣∣0〉 = ϕα1(x1) . (24)

For the two-electron state N = 2, we anticommute Ψ̂(x2) in two steps to the right〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) c†α2

c†α1

∣∣0〉 =
〈
0
∣∣ Ψ̂(x1)

(
ϕα2(x2)− c†α2

Ψ̂(x2)
)
c†α1

∣∣0〉
=

〈
0
∣∣ Ψ̂(x1)c†α1

∣∣0〉ϕα2(x2)−
〈
0
∣∣ Ψ̂(x1)c†α2

Ψ̂(x2)c†α1

∣∣0〉
= ϕα1(x1)ϕα2(x2)− ϕα2(x1)ϕα1(x2) . (25)

We see how anticommuting automatically produces the appropriate signs for the antisymmetric
wave function. Dividing by

√
2, we obtain the desired two-electron Slater determinant.

The general case of an N -electron state works just the same. Anti-commuting Ψ̂(xN) all the
way to the right produces N−1 terms with alternating sign〈

0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)Ψ̂(xN) c†αN c

†
αN−1

· · · c†α1

∣∣0〉 =

+
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN−1

· · · c†α1

∣∣0〉 ϕαN (xN)

−
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)

∏
n6=N−1 c

†
αn

∣∣0〉 ϕαN−1
(xN)

...
(−1)N−1

〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN · · · c

†
α2

∣∣0〉 ϕα1 (xN) .
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Using (23) for the N−1-electron states, this is nothing but the Laplace expansion of

D =

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
along the N th row. Dividing by

√
N ! we see that we have shown (23) for N -electron states,

completing the proof by induction.
Given this representation of Slater determinants it is easy to eliminate the coordinates so we can
work with N -electron states rather than N -electron wave functions—just as in Dirac notation.
In particular we can rewrite the basis of Slater determinants (6) into a basis of product states{

c†nN · · · c
†
n1
|0〉
∣∣ n1 < · · · < nN

}
, (26)

which allows us to express any N -electron state as

|Ψ〉 =
∑

n1<···<nN

an1,...,nN c
†
nN
· · · c†n1

|0〉. (27)

2.3 Representation of n-body operators

To work with N -electron states rather than Slater determinants, we also have to rewrite the
N -electron operators M(x) appropriately. This is easily done by incorporating the coordinates
that we have separated from the Slater determinants into the operators such that the expectation
values remain unchanged. This is, again, analogous to the Dirac formalism:∫

dxϕn(x)M(x)ϕm(x) = 〈ϕn|
∫
dx |x〉M(x)〈x|︸ ︷︷ ︸

=:M̂

ϕm〉 = 〈ϕn|M̂ |ϕm〉. (28)

For N -electron Slater determinants this becomes∫
dx1 · · · dxN Φβ1···βN (x1, · · · , xN)M(x1, . . . , xN)Φα1···αN (x1, · · · , xN)

=

∫
dx1· · · dxN〈0|cβ1

· · · cβN Ψ̂
†(xN)· · · Ψ̂ †(x1)|0〉M(x1, . . . , xN)〈0|Ψ̂(x1)· · · Ψ̂(xN)c†αN· · · c

†
α1
|0〉

=
〈
0
∣∣ cβ1
· · · cβN M̂ c†αN · · · c

†
α1

∣∣0〉
with the representation of the n-body operator in terms of field operators

M̂ :=
1

N !

∫
dx1 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x1)M(x1, · · · , xN) Ψ̂(x1) · · · Ψ̂(xN) . (29)

Note that this particular form of the operator is only valid when applied to N -electron states,
since we have used that the N annihilation operators bring us to the zero-electron space, where
|0〉〈0| = 1. Keeping this in mind, we can work entirely in terms of our algebra (15).
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To see what (29) means, we look, in turn, at the different n-body parts of M(x), (2):

M(x) = M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · (30)

We start with the simplest case, the zero-body operator, which, up to a trivial prefactor, is
M (0) = 1. Operating on an N -electron wave function, it gives

M̂ (0) =
1

N !

∫
dx1dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2)Ψ̂ †(x1) Ψ̂(x1)Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2) N̂ Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2) 1 Ψ̂(x2) · · · Ψ̂(xN)

...

=
1

N !
1 · 2 · · · N = 1 , (31)

where we have used that the operator∫
dx Ψ̂ †(x)Ψ̂(x) = N̂

counts the number of electrons: Applied to the vacuum state it gives N̂ |0〉 = 0, while its
commutator with any creation operator produces that operator

[N̂ , c†n] =

∫
dx [Ψ̂ †(x)Ψ̂(x), c†n] =

∫
dx Ψ̂ †(x) {Ψ̂(x), c†n} =

∫
dx Ψ̂ †(x)ϕn(x) = c†n. (32)

where we have used the simple relation [AB, C] = A{B, C} − {A, C}B. Commuting with
an annihilator we pick up a minus sign [N̂ , Ψ̂(x′)] = −Ψ̂(x′). Thus, commuting N̂ through a
general product state, we obtain for each creation operator that we encounter a copy of the state,
while for each annihilator we obtain minus that state, giving in total the original state times the
difference in the number of creation and annihilation operators.

Remarkably, while we started from an operator acting on N -electron states, the resulting opera-
tor in second quantized form is independent of the number of electrons. We will see that this is
an important general feature of operators in second quantization which makes working in Fock
spaces amazingly simple.

We note that (31) just means that the overlap of two Slater determinants (7) is equal to that of
the corresponding product states∫

dx Φα1,...,αN (x)Φβ1,...,βN (x) =
〈
0
∣∣ cα1
· · · cαN c†βN · · · c

†
β1

∣∣0〉. (33)
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2.3.1 One-body operators

Next we consider one-body operators
∑

jM
(1)(xj)

M̂ (1) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
j

M (1)(xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) (N−1)! Ψ̂(xj)

=
1

N

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) Ψ̂(xj)

=

∫
dx Ψ̂ †(x) M (1)(x) Ψ̂(x) (34)

Here we have first anticommuted Ψ̂ †(xj) all the way to the left and Ψ̂(xj) to the right. Since
these take the same numbers of anticommutations, there is no sign involved. In between these
field operators we are left with a zero-body operator for N−1 electrons, producing, when M̂ (1)

acts on an N -electron state, a factor of (N−1)!. Again we notice that we obtain an operator that
no longer depends on the number of electrons, i.e., that is valid in the entire Fock space.
Expanding the field-operators in a complete orthonormal set Ψ̂(x) =

∑
n ϕn(x) cn gives

M̂ (1) =
∑
n,m

∫
dxϕn(x)M(x)ϕm(x) c†ncm =

∑
n,m

〈ϕn|M (1)|ϕm〉 c†ncm =
∑
n,m

c†nM
(1)
nm cm. (35)

The matrix elementsM (1)
nm = 〈ϕn|M (1)|ϕm〉 transform like a single-electron matrixM (1): From

(16) and writing the annihilation operators as a column vector c we see that

M̂ (1) = c†M (1) c = c†U † UM (1)U † Uc = c̃† M̃ (1) c̃ . (36)

Once we have arrived at the representation in terms of orbitals, we can restrict the orbital basis
to a non-complete set. This simply gives the operator in the variational (Fock) subspace spanned
by the orbitals.
We note that the expression (35) not only works for local operators but also for differential
operators like the momentum or kinetic energy: we have taken care not to exchange the order
of M (1) and one of its field operators. We can write truly non-local operators in a similar way.
As an example, the one-body density operator is given by

Γ̂ (1)(x;x′) = Ψ̂ †(x)Ψ̂(x′) (37)

so that one coordinate is not integrated over, rather setting it to x in the bra and x′ in the ket. In
an orthonormal basis it becomes

Γ̂ (1)(x;x′) =
∑
n,m

ϕn(x)ϕm(x′) c†ncm . (38)
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2.3.2 Two-body operators

For the two-body operators
∑

i<jM
(2)(xi, xj) we proceed in the familiar way, anti-commuting

first the operators with the coordinates involved in M (2) all the way to the left and right, respec-
tively. This time we are left with a zero-body operator for N−2 electrons:

M̂ (2) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
i<j

M (2)(xi, xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) (N−2)! Ψ̂(xi)Ψ̂(xj)

=
1

N(N−1)

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) Ψ̂(xi)Ψ̂(xj)

=
1

2

∫
dx dx′ Ψ̂ †(x′) Ψ̂ †(x) M (2)(x, x′) Ψ̂(x) Ψ̂(x′)

Expanding in an orthonormal basis, we get

M̂ (2) =
1

2

∑
n,n′,m,m′

∫
dxdx′ ϕn′(x′)ϕn(x)M (2)(x, x′)ϕm(x)ϕm′(x

′) c†n′c
†
ncmcm′

=
1

2

∑
n,n′,m,m′

〈ϕnϕn′ |M (2)|ϕmϕm′〉 c†n′c
†
ncmcm′ (39)

where the exchange of the indices in the second line is a consequence of the way the Dirac
state for two electrons is usually written: first index for the first coordinate, second index
for the second, while taking the adjoint of the operators changes their order. Mnn′,mm′ =

〈ϕnϕn′ |M (2)|ϕmϕm′〉 transforms like a fourth-order tensor: Transforming to a different basis
(16) gives

M̃
(2)
νν′,µµ′ =

∑
n,n′,m,m′

U †νnU
†
ν′n′Mnn′,mm′UmµUm′µ′ . (40)

Form the symmetry of the two-body operator M (2)(x, x′) = M (2)(x′, x) follows Mnn′,mm′ =

Mn′n,m′m. Moreover, Mnn,mm′ will not contribute to M̂ (2) since c†nc
†
n = {c†n, c†n}/2 = 0, and

likewise for Mnn′,mm.
Note that the representation (39) is not quite as efficient as it could be: The terms with n and n′

and/orm andm′ exchanged connect the same basis states. Collecting these terms by introducing
an ordering of the operators and using the symmetry of the matrix elements we obtain

M̂ (2) =
∑

n′>n, m′>m

c†n′c
†
n

(
M

(2)
nn′,mm′ −M

(2)
n′n,mm′

)
︸ ︷︷ ︸

=:M̆
(2)

nn′,mm′

cmcm′ . (41)

Since the states {c†n′c†n|0〉 |n′ > n} form a basis of the two-electron Hilbert space, considering
nn′ as the index of a basis state, the M̆ (2)

nn′,mm′ form a two-electron matrix M̆ (2).
The procedure of rewriting operators in second quantization obviously generalizes to observ-
ables acting on more than two electrons in the natural way. We note that, while we started from
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a form of the operators (30) that was explicitly formulated in an N -electron Hilbert space, the
results (31), (35), and (39) are of the same form no matter what value N takes. Thus these op-
erators are valid not just on some N -electron Hilbert space, but on the entire Fock space. This
is a particular strength of the second-quantized formalism.

2.4 Transforming the orbital basis

We noted in (16) that the creators transform in the same way as the orbitals they represent

|βi〉 = U |αi〉 =
∑
j

|βj〉〈αj|αi〉 =
∑
µ

|αµ〉 〈αµ|U |αi〉︸ ︷︷ ︸
=:Uµi

; c†βi =
∑
µ

c†αµ Uµi , (42)

so the “operators” really transform like states. Writing the transformation matrix as U = eM ,
where M is anti-Hermitian, M † = −M when U is unitary, but can be any matrix when U is
merely invertible, we can write the basis transformation in a form appropriate for operators:

c†βi = ec
†Mc c†αµ e

−c†Mc . (43)

To see this, we use the Baker-Campbell-Hausdorff formula in the form

eλAB e−λA = B + λ [A, B] +
λ2

2!

[
A, [A, B]

]
+
λ3

3!

[
A,
[
A, [A, B]

]]
+ · · · , (44)

where the expansion coefficients follow by taking the derivatives of the left hand side at λ = 0,
together with the commutator

[c†αµcαν , c
†
ακ ] = c†αµ δν,κ (45)

from which we obtain for the repeated commutators[∑
µ,ν

Mµνc
†
αµcαν ,

∑
κ

c†ακ
(
Mn
)
κi

]
=
∑
µνκ

c†αµMµν δν,κ
(
Mn
)
κi

=
∑
µ

c†αµ
(
Mn+1

)
µi
. (46)

To keep the derivation simple, we have chosen to transform an operator from the orthonormal
basis that we also used to write the exponential operator. Being linear, the transform works, of
course, the same for an arbitrary creation operator.
Using this form of the basis transformation and noticing that e−c†Mc|0〉 = |0〉, we immediately
see that acting with the exponential of a one-body operator on a product state results in another
product state

ec
†Mc

∏
c†αn
∣∣0〉 =

∏
ec
†Mc c†αne

−c†Mc
∣∣0〉 =

∏
c†βn
∣∣0〉 . (47)

This is, e.g., used when working in the interaction picture. Anticommutators with transformed
operators, (42), are simply

{
cαj , e

−c†Mc c†αi e
−c†Mc

}
= 〈αj|eM |αi〉.

Annihilation operators, being the adjoint of the creators, transform in just the expected way

cβi = e−c
†M†c cαµ e

c†M†c , (48)

which means that for unitary transformations, where M is anti-Hermitian, creators and anni-
hilators transform in the same way. Note that in the imaginary-time formalism the annihilators
are, via analytic continuation, chosen to transform in the same way as the creators, making them
different from the adjoint of the creators.
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3 Exact diagonalization

We have worked, so far, with complete, i.e., infinite bases. This is, of course, not possible
in actual computer simulations, where we have to confine ourselves to finite basis sets. Such
calculations on subspaces are based on the variational principle.

3.1 Variational principles

The variational principle and the Schrödinger equation are equivalent. Consider the energy
expectation value as a wave-function functional

E[Ψ ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

. (49)

Its variation is

E[Ψ + δΨ ] = E[Ψ ] +
〈δΨ |H|Ψ〉+ 〈Ψ |H|δΨ〉

〈Ψ |Ψ〉
− 〈Ψ |H|Ψ〉 〈δΨ |Ψ〉+ 〈Ψ |δΨ〉

〈Ψ |Ψ〉2
+O2. (50)

The first-order term vanishes for H|Ψ〉 = E[Ψ ] |Ψ〉, which is the Schrödinger equation. Since
the eigenfunctions

H|Ψn〉 = En|Ψn〉 , (51)

can be chosen to form an orthonormal basis, we can expand any wavefunction as

|Ψ〉 =
∑
n

|Ψn〉 〈Ψn|Ψ〉 (52)

and determine, as long as 〈Ψ |Ψ〉 6= 0, its energy expectation value

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
m,n〈Ψ |Ψm〉〈Ψm|H|Ψn〉〈Ψn|Ψ〉∑
m,n〈Ψ |Ψm〉〈Ψm|Ψn〉〈Ψn|Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 . (53)

Since by definition no eigenenergy can be lower than the ground state energy E0, we immedi-
ately see that the energy expectation value can never drop below the ground state energy

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 ≥
∑

nE0

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 = E0 . (54)

We can use the same argument to generalize this variational principle: Assume we have ar-
ranged the eigenenergies in ascending order, E0 ≤ E1 ≤ · · · , then the energy expectation value
for a wavefunction that is orthogonal to the n lowest eigenstates, can not drop below En

〈Ψ⊥n|H|Ψ⊥n〉
〈Ψ⊥n|Ψ⊥n〉

≥ En if 〈Ψi|Ψ⊥n〉 = 0 for i = 0, . . . , n−1. (55)

This generalized variational principle is, of course, only of practical use if we know something
about the eigenstates, e.g., when we can use symmetries to ensure orthogonality.
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For an ab-initio Hamiltonian of N electrons in the field of nuclei of charge Zα at positionRα,

H = −1

2

∑
i

∆i −
∑
i,α

Zα
|ri −Rα|

+
∑
i<j

1

|ri − rj|
+
∑
α<β

ZαZβ
|Rα −Rβ|

, (56)

the Schrödinger equation is a partial differential equation. In second quantization it becomes
a linear-algebra problem: We introduce an orbital basis set {ϕk | k}, which for simplicity we
assume here to be orthonormal, from which we construct an orthonormal basis of N -electron
product states, {Φk1,...,kN | k1< · · ·<kN}. To simplify the notation we sort the basis states, e.g.,
lexicographically in the orbital indices k = (k1, . . . , kN) and define the row vector of basis
states |Φ〉 :=

(
|Φ1〉, |Φ2〉, . . .

)
. The expansion of a state |Ψ〉 in this basis can then be written as

|Ψ〉 =
∑

k1<···<kN

ak1,...,kN |Φk1,...,kN 〉 =
∑
i

ai |Φi〉 = |Φ〉a , (57)

where a is the vector of expansion coefficients. Likewise we can write the Schrödinger equation
as a matrix eigenvalue problem

Ha = 〈Φ|Ĥ|Φ〉a =

〈Φ1|Ĥ|Φ1〉 〈Φ1|Ĥ|Φ2〉 · · ·
〈Φ2|Ĥ|Φ1〉 〈Φ2|Ĥ|Φ2〉 · · ·

...
... . . .


a1

a2

...

 = E

a1

a2

...

 = Ea . (58)

From the eigenvectors of the matrixH we easily recover the eigenstates of the Hamiltonian

Han = Enan ; Ĥ|Ψn〉 = En|Ψn〉 with |Ψn〉 = |Φ〉an . (59)

Unfortunately, for an ab-initio Hamiltonian like (56) we need an infinite orbital basis set, so that
the Hamiltonian matrixH is infinite dimensional. A pragmatic approach to allow for computer
simulations is to simply restrict the calculation to a finite basis |Φ̃〉 :=

(
|Φ1〉, . . . , |ΦL̃〉

)
, i.e.,

work with a finite matrix H̃ := 〈Φ̃|Ĥ|Φ̃〉 of dimension L̃. The crucial question is then how the
eigenvectors

H̃ãn = Ẽnãn ; |Ψ̃n〉 := |Φ̃〉 ãn (60)

are related to those of H . The answer is surprisingly simple [7]: The eigenvalues of H̃ , ordered
as Ẽ0 ≤ Ẽ1 ≤ · · · ≤ ẼL̃−1, are variational with respect to those of H:

En ≤ Ẽn for n ∈ {0, . . . , L̃−1} . (61)

To show this, we construct a state in span
(
|Ψ̃0〉, . . . , |Ψ̃n〉

)
, which by construction has an energy

expectation value ≤ Ẽn, that is orthogonal to the exact eigenstates |Ψ0〉, . . . , |Ψn−1〉, so that by
the generalized variational principle its expectation value is ≥ En. Being the non-zero solution
of n−1 linear equations with n variables, such a state certainly exists, hence En ≤ Ẽn.
To get reliable results, we simply have to systematically increase the basis until the change in
the desired eigenvalues becomes smaller than the accuracy required by the physical problem.
The art is, of course, to devise clever basis sets such that this is achieved already for bases of
low dimensions.
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The convergence of the matrix eigenvalues with increasing basis size is surprisingly regular.
Let us extend our original basis of L̃ states by an additional L − L̃ states. Then, repeating the
above argument with the L-dimensional problem taking the role of Ĥ , we obtain (61) with En
being the eigenvalues of the L-dimensional Hamiltonian matrix H . Since H now is finite, we
can use the same argument for −H , obtaining

− EL−i ≤ −ẼL̃−i for i ∈ {1, . . . , L̃}. (62)

Taking the two inequalities together we obtain

En ≤ Ẽn ≤ En+(L−L̃) for n ∈ {0, . . . , L̃−1}. (63)

For the special caseL = L̃+1 of adding a single basis state, this is the Hylleraas-Undheim/Mac-
Donald nesting property for eigenvalues in successive approximations

E1 ≤ Ẽ1 ≤ E2 ≤ Ẽ2 ≤ · · · ≤ ẼL ≤ EL+1 . (64)

3.2 Matrix eigenvalue problem

For practical calculations we have to set up the Hamiltonian matrix H̃ = 〈Φ̃|Ĥ|Φ̃〉 and the
state vectors ã for the chosen basis. This is particularly easy for a basis of Slater determinants
constructed from a basis set of K orbitals

{
ϕk
∣∣ k = 0, . . . , K−1

}
. The basis states are then the

N -electron product states of |Φk1,...,kN 〉 = c†kN · · · c
†
k1
|0〉 with k1 < · · · kN . We can write them

more computer friendly as

|nK−1, . . . , n0〉 =
K−1∏
k=0

(
c†k
)nk |0〉 (65)

which is the occupation number representation with nk ∈ {0, 1} and
∑
nk = N . It is natural to

interpret the vector of occupation numbers as the binary representation of the integer
∑

k 2nk .
This implies a natural ordering of the basis functions |Φl〉. For the simple case of K=4 orbitals
and N=2 electrons we obtain i (n3, n2, n1, n0) state l

0 0000
1 0001
2 0010
3 0011 c†1c

†
0|0〉 = |Φ1〉 1

4 0100
5 0101 c†2c

†
0|0〉 = |Φ2〉 2

6 0110 c†2c
†
1|0〉 = |Φ3〉 3

7 0111
8 1000
9 1001 c†3c

†
0|0〉 = |Φ4〉 4

10 1010 c†3c
†
1|0〉 = |Φ5〉 5

11 1011
12 1100 c†3c

†
2|0〉 = |Φ6〉 6

13 1101
14 1110
15 1111
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The bit representation of the basis states also simplifies setting up the Hamiltonian matrix.
Given the Hamiltonian in second quantization

Ĥ =
∑
n,m

Tnm c
†
ncm +

∑
n′>n,m′>m

(
Unn′,mm′ − Un′n,mm′

)︸ ︷︷ ︸
=Ŭnn′,mm′

c†n′c
†
ncmcm′ (66)

the matrix element 〈Φl|Ĥ|Φ′l〉, with |Φl′〉 = c†l′N
· · · c†l′1|0〉, is given by∑

n,m

Tnm〈0|cl1 · · · clN c
†
ncm c

†
l′N
· · · c†l′1|0〉+

∑
n′>n
m′>m

Ŭnn′,mm′〈0|cl1 · · · clN c
†
n′c
†
ncmcm′ c

†
l′N
· · · c†l′1|0〉.

Anticommuting the operators coming from the Hamiltonian, the matrix elements become over-
laps of N+1 and N+2-electron product states, which, by (33) and (7), are just the determinants
of the overlap matrices of the corresponding orbitals. When Ĥ is written in the same orbitals as
these |Φl〉, the overlap matrices simplify to permutation matrices with determinant ±1. In the
occupation number representation, calculating this Fermi sign reduces to counting set bits. As
an example we consider a simple hopping of an electron:

c†6c2|Φl(181)〉 = c†6c2 c
†
7c
†
5c
†
4c
†
2c
†
0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4c2c

†
2c
†
0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4

(
1− c†2c2

)
c†0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4·c
†
0|0〉

= +|Φl(241)〉 = (−1)2c†7c
†
6c
†
5c
†
4·c
†
0|0〉

In the occupation number representation this becomes
?

10110101 = (−1)c 11110001

where c is the count of set bits between the orbitals of the electron hop. Note that a dedicated
machine instruction, popcnt, for counting set bits is part of the x86 SSE4 instruction set, see
also [8].

3.3 Dimension of the Hilbert space and sparseness

Setting up basis states and Hamiltonian matrix in this way, we can easily solve the many-
body problem on our variational space by using any linear algebra library. This is the ex-
act diagonalization approach. As discussed above, it gives us variational estimates of the
ground and excited states. But there is a serious practical problem: the dimension of the
many-body Hilbert space. For an N -electron problem with a basis set of K orbitals there are
K (K−1) (K−2) · · · (K − (N−1)) ways of picking N occupied orbitals out of K. Since we
only use one specific ordering of these indices, we have to divide by N ! to obtain the number
of such determinants:

dimH(N)
K =

K!

N !(K−N)!
=

(
K

N

)
. (67)
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Using Stirling’s formula we see that for an N -electron problem this increases faster than ex-
ponentially with the size K of the basis set. This is the problem we face when converging the
basis set for a finite system, e.g., a molecule. For solids we usually keep the number of orbitals
per lattice site fixed, but scale to the thermodynamic limit, increasing the system size M while
keeping the electron densityN/M fixed. Also here the Hilbert space increases faster than expo-
nentially. To give an impression of the problem we note that forN = 25 electrons andK = 100

orbitals the dimension already exceeds 1023.
For exact diagonalization the problem gets even worse. Assuming we have a machine with
1 TeraBytes = 240 Bytes of RAM available. Using single precision (4 bytes) for the matrix
elements, storing a matrix of dimension (240/4)1/2 = 524 288 would already use up all memory.
The dimension problem can be somewhat mitigated by exploiting symmetries: When the Hamil-
tonian commutes with the projection of the total spin, the number of up- and down-spin elec-
trons is conserved separately. The N -electron Hamiltonian is then block diagonal in the sectors
with fixed N↑ and N↓. The dimension of these blocks is significantly smaller than that of the
full N -electron Hilbert space. Using the same orbital basis for each spin

dimH(N↑,N↓)
2K =

(
K

N↑

)
×
(
K

N↓

)
. (68)

The Sz symmetry can be very easily implemented using the same ideas as introduced for the
general case: just use bit representations for the up- and down-spin electrons separately. In fact,
when the total spin projection is conserved, we can distinguish electrons of different spin. Still,
the Hilbert space of the single-band, half-filled Hubbard model with just 12 sites has dimension
853 776. Using further symmetries, if they exist, we could bring down the dimension somewhat
further, however at the expense of considerable and problem-specific effort.
The key to going to larger systems is the realization that the vast majority of the elements of the
Hamiltonian matrix is zero. This is quite easy to see. For the ab-initio Hamiltonian (56) with
electron-electron repulsion, matrix elements between configurations that differ in more than
two electron occupations vanish. Thus, for each configuration there may only be the diagonal
element, N × (K−N) hopping terms, and N(N−1)/2 × (K−N)(K−N−1)/2 pair-hopping
terms. Thus the fraction of non-zero matrix elements of H̃ to the total number is(

1 +N

(
1 +

N−1

2

(K−N−1)

2

)
(K−N)

)/(K
N

)
(69)

which, with increasing problem size, rapidly approaches zero. For the example of N = 25

electrons in K = 100 orbitals only 834 376 of the (over 1023) matrix elements per row can be
non-zero. This is the worst case. The sparsity of many-body Hamiltonians is even more pro-
nounced when working in a tight-binding basis with short-ranged hopping and local electron-
electron repulsion. Thus, many-body Hamiltonians are exceedingly sparse and the more so the
larger the problem. They are therefore ideally suited for approaches like the Lanczos method,
that are based on matrix-vector products, which for the sparse matrices scale close to linearly in
the matrix dimension.
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4 Lanczos Method

As we have seen, we can find the ground-state |Ψ0〉 and its energy E0 for a Hamiltonian H from
the variational principle. The wavefunction-functional

E[Ψ ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

(70)

is minimized for Ψ = Ψ0, with E[Ψ0] = E0. The functional gradient

δE[Ψ ]

δ〈Ψ |
=
H|Ψ〉 − E[Ψ ]|Ψ〉

〈Ψ |Ψ〉
= |Ψa〉 (71)

gives the direction of steepest-ascent of the functional from the point |Ψ〉. Moving in the
opposite direction will thus result in a wavefunction with lower energy expectation value:
E[Ψ − αΨa] < E[Ψ ] for small, positive α.
To find the optimum value of α, we minimize the quadratic form E[Ψ − αΨa]. For this, it is
convenient to introduce an orthogonal basis in the space spanned by the two vectors |Ψ〉 and
|Ψa〉. From (71) we see that span (|Ψ〉, |Ψa〉) = span (|Ψ〉, H|Ψ〉). As first basis vector, we
normalize |Ψ〉

|v0〉 = |Ψ〉/
√
〈Ψ |Ψ〉 ,

for the second vector we orthogonalize H|v0〉 to |v0〉

|ṽ1〉 = H|v0〉 − |v0〉〈v0|H|v0〉 (72)

and normalize to obtain |v1〉. With an := 〈vn|H|vn〉 and b2
1 := 〈ṽ1|ṽ1〉, eq. (72) becomes

H|v0〉 = b1|v1〉+ a0|v0〉 (73)

from which we see that 〈v1|H|v0〉 = b1.
We can then write any normalized wavefunction in span (|Ψ〉, H|Ψ〉) = span (|v0〉, |v1〉) as

|v〉 = cos(θ)|v0〉+ sin(θ)|v1〉 . (74)

Minimizing the expectation value

〈v|H|v〉 = a0 cos2(θ) + 2b1 sin(θ) cos(θ) + a1 sin2(θ) , (75)

with respect to θ, we obtain, dividing by cos2(θ), the quadratic equation

b1 tan2(θ) + (a0 − a1) tan(θ)− b1 = 0 . (76)

Solving for θ we find the lowest-energy state on the subspace spanned by |v0〉 and H|v0〉. Alter-
natively, we can diagonalize the Hamiltonian matrix on the two-dimensional subspace, which
in the basis |v0〉, |v1〉 is given by

Hspan(|Ψ〉,H|Ψ〉) =

(
a0 b1

b1 a1

)
. (77)
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Fig. 1: Convergence of the residual (filled circles) and the corresponding lowest eigenvalue
(open circles) for a steepest-descent minimization of a Hubbard-chain of 10 sites at half-filling,
starting from a random initial vector.

Naturally, we can use the variational state of lowest energy

|Ψ (2)〉 = cos(θmin)|v0〉+ sin(θmin)|v1〉 (78)

as the starting point for another steepest-descent minimization. Doing this repeatedly, we obtain
a series of vectors with decreasing energy expectation value, which rapidly converge to a min-
imum. For a generic functional such a steepest-descent minimization would usually end up in
a local, not the global minimum, which makes the optimization of high-dimensional functions
such a hard problem. The energy functional (70), however, has only minima for the ground-
states, all other stationary points are saddle points. We can thus expect rapid convergence to the
ground state, examples given in figure 1, except when the starting vector |v0〉 is orthogonal to
the ground state. In this case also 〈Ψ0|H|v0〉 = 0 so that we only converge to the lowest state
that overlaps with |v0〉. Should |v0〉 happen to be an exact eigenvector, H|vn〉 does not add a
new dimension so that the algorithm terminates with b1 = 0.
For checking convergence of this steepest-descent method, introduced by Kantorovich [9] and,
independently, by Hestenes and Karush [10], we can monitor the change in the energy expecta-
tion value or determine when the residual

r[Ψ ] =
∥∥ (H − E[Ψ ])|Ψ〉

∥∥2
= 〈Ψ |H2|Ψ〉 − E[Ψ ]2 , (79)

which measures the quality of the eigenstate, becomes sufficiently small. As shown in Fig. 1,
both are closely related.
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4.1 Krylov space

If we apply the method of steepest-descent L times, starting from a vector |v0〉, the resulting
vector will lie in

KL
(
|v0〉
)

= span
(
|v0〉, H|v0〉, H2|v0〉, . . . , HL|v0〉

)
, (80)

the L+1-dimensional Krylov space [11] of H over |v0〉. Instead of repeatedly minimizing
the energy in two-dimensional subspaces, we could directly find the state of lowest energy
in KL

(
|v0〉
)
. Having more degrees of freedom for the minimization will lead to even faster

convergence.
To implement this idea, we construct an orthonormal basis |vn〉 of the Krylov space. We start
with the normalized vector |v0〉. The second basis vector |v1〉 is constructed as in the steepest-
descent method (72):

b1|v1〉 = |ṽ1〉 = H|v0〉 − a0|v0〉 . (81)

The next basis vector is likewise constructed as H|vn〉 orthogonalized to all previous vectors,
and normalized

b2|v2〉 = |ṽ2〉 = H|v1〉 −
1∑
i=0

|vi〉〈vi|H|v1〉 = H|v1〉 − a1|v1〉 − b1|v0〉 . (82)

where an = 〈vn|H|vn〉 and b2
n = 〈ṽn|ṽn〉. The fourth basis vector is

b3|v3〉 = |ṽ3〉 = H|v2〉 −
2∑
i=0

|vi〉〈vi|H|v2〉 = H|v2〉 − a2|v2〉 − b2|v1〉 . (83)

The last term in the orthogonalization vanishes, because (81) together with the orthogonality of
the already constructed basis vectors for n < 3 implies 〈v2|H|v0〉 = b1〈v2|v1〉+ a0〈v2|v0〉 = 0.
The construction of the further basis vectors follows the same scheme

bn+1|vn+1〉 = |ṽn+1〉 = H|vn〉 −
n∑
i=0

|vi〉〈vi|H|vn〉 = H|vn〉 − an|vn〉 − bn|vn−1〉

with an = 〈vn|H|vn〉 and b2
n = 〈ṽn|ṽn〉. Rearranging shows that H is tridiagonalized

H|vn〉 = bn|vn−1〉+ an|vn〉+ bn+1|vn+1〉

which in turn implies that H|vi〉 is orthogonal to all basis states, except |vi〉 and |vi±1〉. This
tridiagonalization of H is the essence of the Lanczos method [12].
After L steps the Hamiltonian on the L+1-dimensional Krylov space is given by

HKL(|v0〉) =



a0 b1 0 0 0 0

b1 a1 b2 0 · · · 0 0

0 b2 a2 b3 0 0

0 0 b3 a3 0 0
... . . . ...

0 0 0 0 aL−1 bL
0 0 0 0 · · · bL aL


(84)
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v=init
b0=norm2(v) not part of tridiagonal matrix
scal(1/b0,v) v= |v0〉
w=0
w=w+H*v w= H|v0〉
a[0]=dot(v,w)
axpy(-a[0],v,w) w= |ṽ1〉 = H|v0〉 − a0|v0〉
b[1]=norm2(w)
for n=1,2,...

if abs(b[n])<eps then exit invariant subspace
scal(1/b[n],w) w= |vn〉
scal( -b[n],v) v= −bn|vn−1〉
swap(v,w)
w=w+H*v w= H|vn〉 − bn|vn−1〉
a[n]=dot(v,w) a[n]= 〈vn|H|vn〉 − bn〈vn|vn−1〉
axpy(-a[n],v,w) w= |ṽn+1〉
b[n+1]=norm2(w)
diag(a[0]..a[n], b[1]..b[n]) getting an+1 needs another H|v〉
if converged then exit

end

Table 1: The implementation of the Lanczos iteration requires only two N -dimensional vec-
tors for tridiagonalizing H and thus for calculating the ground-state energy. Constructing the
Lanczos-approximation of the ground-state vector requires a second iteration and one addi-
tional N -dimensional vector. The by far most expensive operation is the matrix-vector product,
which requires a problem specific implementation, while the vector operations use the BLAS.

If we do not normalize the basis vectors, we obtain an iteration of the form

|Φn+1 〉 = H |Φn 〉 −
〈Φn|H|Φn〉
〈Φn|Φn〉

|Φn 〉 −
〈Φn|Φn〉
〈Φn−1|Φn−1〉

|Φn−1 〉 (85)

where |Φn 〉 =
∏n

i=1 bi |vn 〉 in terms of which we have

an =
〈Φn|H|Φn〉
〈Φn|Φn〉

, b2
n =

〈Φn|Φn〉
〈Φn−1|Φn−1〉

. (86)

In this unnormalized basis the Hamiltonian appears non-Hermitian

H |Φn 〉 = b2
n |Φn−1 〉+ an |Φn 〉+ |Φn+1 〉 , (87)

but, of course, it actually is

〈Φn+1|H|Φn〉 = 〈Φn+1|Φn+1〉 = b2
n+1 〈Φn|Φn〉 = 〈Φn|H|Φn+1〉 . (88)

The numerical implementation only requires keeping two N -dimensional vectors in memory. It
is shown in table 1.



7.22 Erik Koch

10-14

10-12

10-10

10-8 

10-6 

10-4 

10-2 

1

 0  20  40  60  80  100

∆
E t

ot

iteration

U=2t
U=4t
U=6t
U=8t

Fig. 2: Convergence of the lowest eigenvalue for a Lanczos iteration (full circles) compared to
steepest-descent minimization (open circles) of a 10-site Hubbard-chain at half-filling, starting
from a random initial vector. Due to the additional variational degrees of freedom, Lanczos
converges significantly faster. Overall, convergence for the half-filled system gets harder for
larger U , as the distance to the lowest excited states is reduced (∼ t2/U ) and the spectrum
widens (∼ U ). In all cases, convergence is reached after less than L ≈ 100 Lanczos iterations,
to be compared to the dimension N=63 504 of the Hilbert space.

Diagonalizing (84), after a few tens to hundred iterations, the lowest eigenvalue of the tridiag-
onal representation of H on the Krylov space gives an excellent approximation to the ground-
state energy of H in the full Hilbert space (Fig. 2). A formal estimate of the convergence
was given by Kaniel and Paige [13]: For an N+1-dimensional, symmetric matrix H with
eigenvalues En, the lowest eigenvalue Ě0 of the tridiagonal representation of H on the (L+1)-
dimensional Krylov space over |v0〉 fulfills

Ě0 − E0

EN − E0

≤

tan(arccos(〈Ψ̌0|Ψ0〉))

TL

(
1 + 2 E1−E0

EN−E1

)
2

(89)

where TL(x) is the Chebyshev polynomial of order L and 〈Ψ̌0|Ψ0〉 the overlap of the Lanczos
approximation to the ground-state Ψ̌0 with the ground-state of H . Thus, if the initial state |v0〉
is not orthogonal to the non-degenerate ground-state, convergence is exponential with a rate
roughly increasing with the square root of the gap to the first excited state measured in units of
the width of the spectrum.
The approximate ground-state vector is given by the linear combination

|Ψ̌0〉 =
L∑
n=0

ψ̌0,n|vn〉 , (90)

where ψ̌0 is the ground-state vector of the L+1-dimensional tridiagonal matrix (84). Instead
of storing all L+1 basis vectors |vn〉, we can restart the Lanczos iteration from the same |v0〉,
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Fig. 3: Lanczos method for a matrix with eigenvalues −3, −3, −2.5, −2, −1.99, −1.98, . . . ,
−0.01, 0. For clarity the n-th lowest/highest Lanczos eigenvalues are connected by lines. Note
how the eigenvalues of successive steps are nested as described by (64). Because of the gap the
lowest eigenvalue is reached much faster than the highest. For the degenerate eigenspace of
value −3 only the state proportional to the projection of |v0〉 on that space is found. Well after
convergence of the low eigenvalues orthogonality is lost and ghost states appear.

accumulating the sum (90) iteration by iteration. This only requires keeping one additional
N -dimensional vector in memory.
So far we have tacitly assumed that the Krylov vectors Hn|v0〉 are linearly independent. If
not, there will be a vector H|ṽm〉 that vanishes when orthogonalized to the previous states, i.e.,
bn = 0. This means that the Krylov space span (|v0〉, |v1〉, . . . , |vm〉) is invariant under H , i.e.,
we have found an exact eigenspace of H . For a large matrix H it is quite unlikely to be that
lucky. Still, as the Lanczos iteration approaches the ground-state, we encounter a similar situa-
tion: Close to an eigenstate, the functional (70) becomes almost stationary, i.e., the coefficients
bn almost vanish. Normalization of the very short vector |ṽn〉 then amplifies numerical noise in
that vector. This makes the numerical |vn〉, which in theory should automatically be orthogonal
to all |vm〉withm < n−2, actually have finite overlaps with these vectors. This loss of orthogo-
nality manifests itself in the appearance of multiple copies of eigenvectors (ghost states) which
are unrelated to the actual multiplicities of the eigenvalues. This makes the Lanczos method
unpractical for tridiagonalizing dense matrices. For the ground-state the variational principle
prevents severe problem from the loss of orthogonality. An example of the appearance of ghost
states is shown in figure 3.
If we want to reliably obtain excited states, we need to explicitly orthogonalize to the previous
basis states. This leads to the Lanczos method with complete reorthogonalization [13]. A
similar orthogonalization is performed in the Arnoldi method [14], which, however, is devised
for unsymmetric matrices.
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4.2 Spectral functions

The Lanczos method gives excellent approximations to the largest and smallest eigenvalues, but,
as seen in Fig. 3, not for the bulk of the spectrum. It therefore looks ill suited for determining
functions that depend on the excited states, like the Lehmann representation

Gc(z) =

〈
Ψc

∣∣∣∣ 1

z −H

∣∣∣∣Ψc〉 =
N∑
n=0

〈Ψc|Ψn〉 〈Ψn|Ψc〉
z − En

(91)

which, in terms of the eigenstates on the Krylov space KL(|Ψc〉), would be written as

Ǧc(z) =

〈
Ψc

∣∣∣∣ 1

z − Ȟc

∣∣∣∣Ψc〉 =
L∑
n=0

〈Ψc|Ψ̌n〉 〈Ψ̌n|Ψc〉
z − Ěn

. (92)

This is straightforward to calculate: We run L Lanczos iterations, starting from the (normalized)
vector |Ψc〉, to create the tridiagonal Ȟc. The matrix element of the resolvent is the top left
matrix element of the inverse of

z − Ȟc =



z − a0 − b1 0 0 · · · 0 0

−b1 z − a1 − b2 0 · · · 0 0

0 − b2 z − a2 − b3 · · · 0 0

0 0 − b3 z − a3 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · z − aL−1 − bL
0 0 0 0 · · · − bL z − aL


. (93)

This is easily determined, partitioning the matrix as indicated

z − Ȟc =

(
z − a0 B(1)T

B(1) z − Ȟ(1)
c

)
(94)

and inverting the block-matrix, giving, see appendix A.3,[
(z − Ȟc)

−1
]

00
=
(
z − a0 −B(1)T (z − Ȟ(1)

c )−1B(1)
)−1

=
(
z − a0 − b2

1

[
(z − Ȟ(1)

c )−1
]

00

)−1
.

Repeating inversion by partitioning for the submatrices Ȟ(n) we obtain the continued fraction

Ǧc(z) =
[
(z − Ȟc)

−1
]

00
=

1

z − a0 −
b2

1

z − a1 −
b2

2

z − a2 − · · ·

, (95)

which terminates with −b2
L/(z− aL). We find the spectral representation (92) by diagonalizing

the Lanczos matrix Ȟc giving us the L+1 eigenvalues Ěn and eigenvectors ψ̌n. Since

|Ψ̌n〉 =
L∑
l=0

ψ̌n,l|vl〉 (96)
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Fig. 4: Convergence of the spectral function with increasing number of Lanczos steps, L=5,
10, 15, 25, 50, 75, and 100, for a 14-site Hubbard chain with U = 5t at half filling. With
increasing L, more and more moments of the photoemission and inverse photoemission part of
the spectrum are reproduced correctly.

the matrix elements are given by 〈Ψ̌n|Ψc〉 = ψ̌n,0. Thus

Ǧc(z) =
L∑
n=0

|ψ̌n,0|2

z − Ěn
. (97)

The spectral function Ǎ(ω± iη) = ∓ 1
π

Im Ǧ(ω± iη) obtained this way, surprisingly, converges
very quickly. An example is shown in figure 4.
To understand how the L+1 eigenstates of Ȟ can represent the full spectrum so well, we con-
sider the moments of the spectral function∫ ∞

−∞
dω ωmǍ(ω) =

L∑
n=0

|ψ̌n,0|2Ěm
n =

L∑
n=0

〈Ψc|Ψ̌n〉〈Ψ̌n|Ψc〉 Ěm
n = 〈Ψc|Ȟm|Ψc〉. (98)

Since Ȟ is the projection of H onto the Krylov spaceKL(|Ψc〉), we have Ȟm|Ψc〉 = Hm|Ψc〉 for
m ≤ L. Thus the Lanczos representation Ǎ(z) correctly reproduces the first 2L+1 moments of
the spectral function A(z). A further Lanczos step adds one new level to the continued fraction
(95), leaving all previous terms unchanged. b2

m = 0 then implies that the continued fraction
terminates, and all moments are given correctly. A near vanishing b2

m ≈ 0, which gives rise
to the loss of orthogonality of the Lanczos vectors, for the spectral function merely means that
further terms in the continued fraction hardly contribute any more.
So far we have considered diagonal elements of the resolvent. Off-diagonal matrix elements

Gc1,c2(z) =

〈
Ψc2

∣∣∣∣ 1

z −H

∣∣∣∣Ψc1〉 (99)

are easily obtained by considering the diagonal elements for the linear combinations〈
Ψc1 ± Ψc2

∣∣∣∣ 1

z −H

∣∣∣∣Ψc1 ± Ψc2〉 = Gc1,c1(z)±Gc1,c2(z)±Gc2,c1(z) +Gc2,c2(z) . (100)
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A Appendices

A.1 Non-orthonormal basis

A general one-electron basis of functions |χn〉 will have an overlap matrix Snm = 〈χn|χm〉 that
is positive definite (and hence invertible) and hermitian. The completeness relation is

1 =
∑

k,l|χk〉(S
−1)kl〈χl| . (101)

With it we can easily write the Schrödinger equation Ĥ|v〉 = ε|v〉 in matrix form∑
k

〈χi|H|χk〉︸ ︷︷ ︸
=:Hik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=:vk

〈χi|Ĥ|v〉 = ε〈χi|v〉 = ε
∑
k

〈χi|χk〉︸ ︷︷ ︸
=Sik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=vk

.

(102)
Collecting all components this becomes the generalized eigenvalue problemHv = εSv. From
the solution v we can easily construct |v〉 =

∑
vk|χk〉 [15]. It is, however, often more conve-

nient to have an orthonormal basis, so that we do not have to deal with the overlap matrices in
the definition of the second quantized operators or the generalized eigenvalue problem.
To orthonormalize the basis {|χn〉}, we need to find a basis transformation T such that

|ϕn〉 :=
∑

m|χm〉Tmn with 〈ϕn|ϕm〉 = δmn . (103)

This implies that T †ST = 1, or equivalently S−1 = TT †. This condition does not uniquely
determine T . In fact there are many orthonormalization techniques, e.g., Gram-Schmidt or-
thonormalization or Cholesky decomposition.
Usually we will have chosen the basis functions |χn〉 for a physical reason, e.g., atomic orbitals,
so that we would like the orthonormal basis functions to be as close to the original basis as
possible, i.e, we ask for the basis transformation T that minimizes∑

n

∥∥|ϕn〉 − |χn〉∥∥2
=
∑
n

∥∥∥∑
m

|χm〉(Tmn − δmn)
∥∥∥2

= Tr (T † − 1)S (T − 1) = Tr (T †ST︸ ︷︷ ︸
=1

−T †S − ST + S) . (104)

Given an orthonormalization T , we can obtain any other orthonormalization T̃ by performing
a unitary transformation, i.e., T̃ = TU . Writing U = exp(iλM ) withM a Hermitian matrix,
we obtain the variational condition

0
!

= Tr (+iMT †S − iSTM) = iTr (T †S − ST )M , (105)

which is fulfilled for ST = T †S, i.e., ST 2 = T †ST = 1. The second variation at T = S−1/2

1

2
Tr (M 2S1/2 + S1/2M 2) > 0 (106)

is positive, since S and the square of the hermitian matrix M are both positive definite. Hence
the Löwdin symmetric orthogonalization [16]

TLöwdin = S−1/2 (107)

minimizes the modification of the basis vectors due to orthogonalization.
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A.2 Useful commutation relations

Expressions of commutators of products of operators can be derived by adding and subtracting
terms that differ only in the position of one operator, e.g.,

[A1A2 · · ·AN , B] = A1A2 · · ·ANB −BA1A2 · · ·AN
= A1A2 · · ·ANB − A1A2 · · ·BAN

+ A1A2 · · ·BAN − A1 · · ·BAN−1AN

+ · · ·
+ A1BA2 · · ·AN −BA1A2 · · ·AN

=
∑
i

A1 · · ·Ai−1 [Ai, B] Ai+1 · · ·AN

The following special cases are particularly useful

[AB, C] = A [B, C] + [A, C]B

= A{B, C} − {A, C}B

[A, BC] = B [A, C] + [A, B]C

= [A, B]C + B [A, C]

= {A, B}C −B{A, C}

[AB, CD] = A [B, C]D + AC [B, D] + [A,C] DB + C [A, D]B

= A{B, C}D − AC{B, D}+ {A,C}DB − C{A, D}B

Important examples are [
c†icj, c

†
γ

]
= 〈j|γ〉 c†i[

c†icj, cγ
]

= −〈i |γ〉 cj

For the commutator of products of creation and annihilation operators appearing in one- and
two-body operators we find[

c†icj, c
†
αcβ
]

=
[
c†icj, c

†
α

]
cβ + c†α

[
c†icj, cβ

]
= 〈j|α〉 c†icβ − 〈β|i〉 c

†
αcj

and [
c†ic
†
jckcl , c

†
αcβ
]

= 〈l|α〉 c†ic
†
jckcβ + 〈k|α〉 c†ic

†
jcβcl − 〈β|j〉 c

†
ic
†
αckcl − 〈β|i〉 c

†
αc
†
jckcl
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A.3 Downfolding

To integrate-out high-energy degrees of freedom, we partition the Hilbert space of the full sys-
tem into states of interest (low-energy states) and ‘other’ states, which will be integrated out.
The Hamiltonian is then written in blocks

H =

(
H00 T01

T10 H11

)
, (108)

where H00 is the Hamiltonian restricted to the states of interest (reduced Hilbert space), H11

the Hamiltonian for the ‘other’ states, and the T matrices describe transitions between the two
subspaces. The resolvent is partitioned likewise

G(ω) = (ω −H)−1 =

(
ω −H00 −T01

−T10 ω −H11

)−1

. (109)

Its elements are easily determined by solving the system of two linear matrix equations(
ω −H00 −T01

−T10 ω −H11

)(
G00 G01

G10 G11

)
=

(
1 O

O 1

)
, (110)

keeping track of the order of the sub-matrix products. The resolvent on the reduced Hilbert
space is thus given by

G00(ω) =

(
ω −

(
H00 + T01(ω −H11)−1 T10︸ ︷︷ ︸

=Heff(ω)

))−1

. (111)

This expression looks just like the resolvent for a Hamiltonian Heff on the reduced Hilbert
space. This effective Hamiltonian describes the physics of the full system, but operates only on
the small reduced Hilbert space: For an eigenvector H|Ψ〉 = E|Ψ〉 on the full Hilbert space

H|Ψ〉 =

(
H00 T01

T10 H11

)(
|Ψ0〉
|Ψ1〉

)
= E

(
|Ψ0〉
|Ψ1〉

)
(112)

its projection |Ψ0〉 onto the reduced Hilbert space is an eigenstate of Heff(E). On the other
hand, we can construct the full eigenstate from a solution Heff(E)|Ψ0〉 = E|Ψ0〉 on the reduced
Hilbert space by upfolding |Ψ〉 ∝ (1+ (E −H11)−1T10)|Ψ0〉.
Of course, this drastic simplification comes at a price: the effective Hamiltonian is energy
dependent. If the hopping matrix elements in T01 are small, and/or the states in the part of the
Hilbert space that has been integrated out are energetically well-separated from the states that
are explicitly considered, this energy dependence can, to a good approximation, be neglected.
We can then replace ω by some characteristic energy ε0 for the states in the reduced Hilbert
space to obtain an energy-independent Hamiltonian

Heff(ω) = H00 + T01(ω −H11)−1 T10 ≈ H00 + T01(ε0 −H11)−1 T10 = Heff(ε0) (113)

that gives a good description of the electrons in the reduced Hilbert space, i.e., the states with
an energy close to ε0. Expanding (ω − H11)−1 about ε0, we can systematically improve the
approximation (linear and higher-order methods).
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[16] P.-O. Löwdin: On the Non-Orthogonality Problem Connected with the Use of Atomic
Wave Functions in the Theory of Molecules and Crystals, J. Chem. Phys. 18, 365 (1950)

http://plato.stanford.edu/entries/identity-indiscernible/



	Many-electron states
	Second quantization
	Creation and annihilation operators
	Representation of Slater determinants
	Representation of n-body operators
	Transforming the orbital basis

	Exact diagonalization
	Variational principles
	Matrix eigenvalue problem
	Dimension of the Hilbert space and sparseness

	Lanczos Method
	Krylov space
	Spectral functions

	Appendices
	Non-orthonormal basis
	Useful commutation relations
	Downfolding


