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1 Introduction

In 1961 Luttinger and Ward (LW) published a seminal paper [1] which became the foundation
of many important developments in the quantum theory of many particle systems. In particular,
they gave an explicit expression for the grand canonical potential Ω of an interacting Fermion
system. A key step thereby was the construction of the Luttinger-Ward functional, a functional
of the Green function which essentially describes the deviation of Ω from a non-interacting
system. The expression for Ω became the basis for the derivation of the famous Luttinger
theorem [2], which states that interactions between electrons do not change the volume of the
Fermi surface. Subsequently, Baym and Kadanoff [3] investigated the question, under which
conditions approximate response functions for systems of interacting particles comply with
certain conservation laws, i.e., what is the criterion for the construction of conserving approxi-
mations. Baym showed [4] that the Luttinger-Ward functional thereby plays a key role in that a
self-energy derived from an approximate Luttinger-Ward functional always gives rise to a con-
serving approximation. It is the purpose of the present notes to give an introduction to Green
functions and the self-energy, derive the LW expression for Ω and briefly discuss the ideas of
Baym regarding conserving approximations.

2 Green function, self-energy, and their analytical properties

In this section we discuss Green functions, their properties and use. Thereby we will also refer
to the representation of Green functions in terms of Feynman diagrams but we will not give a
derivation of these. Excellent introductions to this subject can be found in various textbooks [5–
7]. In the present notes we try to be consistent with Fetter-Walecka (FW) [6].
We consider a system of interacting fermions and assume that there is some complete basis of
single-electron states. Each state is labeled by a set of quantum numbers, α, we denote the
number of different sets α as nα. Introducing Fermionic creation/annihilation operators c†α/cα
for electrons in these states, the Hamiltonian, assumed to be time-independent, can be written
as H = H0 +H1 with

H0 =
∑
α,β

tα,β c
†
αcβ , (1)

H1 =
1

2

∑
α,β,γ,δ

Vα,β,δ,γ c
†
αc
†
βcγcδ . (2)

Note the factor of 1/2 and the ‘inverted’ order of indices on the interaction matrix element V
in (2) which follows from the prescription for second quantization [5–7]. H commutes with the
operator N̂ of particle number, which means that eigenstates of H have a fixed particle number.
In all that follows we consider a grand canonical ensemble with inverse temperature β = 1/kBT

and chemical potential µ. Introducing K = H−µN the thermal average of any operator Ô is

〈Ô〉th =
1

Z
Tr
(
e−βKÔ

)
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with the grand partition function
Z = Tr

(
e−βK

)
. (3)

For any operator Ô the imaginary time Heisenberg operator is Ô(τ) = eτK/~ Ô e−τK/~. Now
let Â and B̂ be any two operators and nB = [N̂ , B̂], nA = [N̂ , Â]. The imaginary time Green
function then is GA,B(τ, τ ′) = −

〈
T [Â(τ)B̂(τ ′)]

〉
th

where T is the time-ordering operator. It is
easy to see that GA,B is a function of τ − τ ′ only and setting τ ′ = 0 we find the more explicit
expression (with ξB = (−1)nB )

GA,B(τ) = −Θ(τ)
〈
Â(τ) B̂

〉
th
− ξB Θ(−τ)

〈
B̂ Â(τ)

〉
th

(4)

=
1

Z

(
−Θ(τ)

∑
i,j

e−βKi e
τ
~ (Ki−Kj) 〈i|Â|j〉〈j|B̂|i〉

− ξB Θ(−τ)
∑
i,j

e−βKi e
τ
~ (Kj−Ki) 〈i|B̂ |j〉〈j|Â|i〉

)
, (5)

Here |i〉 are the exact eigenstates of H and Ki = Ei− µNi the corresponding eigenvalues of K
with energy Ei and particle number Ni. It is obvious from (5) that G can be different from zero

only if nA = −nB. The τ -dependence of both terms in (5) is e
(
−β+ |τ |~

)
Ki e−

|τ |
~ Kj . Since the Ki

are bounded from below (namely by theK for the ground state with the given µ) but unbounded
from above in the thermodynamical limit, G is well-defined only for τ ∈ [−β~, β~] [8]. Using
the cyclic property of the trace one can show that for τ ∈ [−β~, 0] one has G(τ+β~) =

ξB G(τ). Accordingly, G can be expanded in a Fourier series

G(τ) =
1

β~

∞∑
ν=−∞

e−iωντ G(iων),

G(iων) =

∫ β~

0

dτ eiωντ G(τ), (6)

with ων = νπ
β~ and integer ν. The ων are called Matsubara frequencies and for even nB (odd nB)

only even ν (odd ν) contribute in the Fourier expansion. Using (5) one finds

GA,B(iων) =
1

Z

∑
i,j

e−βKi − ξB e−βKj
iων + 1

~(Ki−Kj)
〈i|Â|j〉 〈j|B̂|i〉. (7)

Next, we consider the retarded real-time Green function. The real-time Heisenberg operator is
Ô(τ) = eitK/~ Ô e−itK/~ and the retarded real-time Green function is

GR
A,B(t) = −iΘ(t)

(
〈 Â(t)B̂ 〉th − ξB 〈B̂Â(t) 〉th

)
. (8)

It is straightforward to write down the expression of GR
A,B(t) corresponding to (5), and using

the theorem in Appendix A one finds its Fourier transform

GR
A,B(ω) =

1

Z
lim
η→0+

∑
i,j

e−βKi − ξB e−βKj
ω + iη + 1

~(Ki−Kj)
〈i|Â|j〉 〈j|B̂|i〉. (9)
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Comparing with (7) it is obvious that GR
A,B(ω) can be obtained from GA,B(iων) by replacing

iων → ω + i0+. In other words, there is one function GA,B(z) of the complex variable z
– usually called ‘the’ Green function – which gives GA,B(iων) when it is evaluated for the
Matsubara frequencies, and GR

A,B(ω) when it is evaluated along a line infinitesimally above the
real axis. Equation (7) is the Lehmann representation of the Green function. The existence of
‘the’ Green function is the very reason why the imaginary time Green function is so useful. In
principle, the quantity of physical interest is the real-time Green function. For example one can
show that if a system is acted upon by a time dependent perturbation of the form Hp = f(t)B̂

(with B̂ some Hermitean operator and f(t) a real function), the change of the expectation value
of some operator Â which is linear in f(t) is given by (see FW (32.2))

δ 〈Â〉(t) =
1

~

∫ ∞
−∞

dt′ GR
AB(t−t′)f(t′).

On the other hand, the imaginary-time Green function can be evaluated approximately by using
the powerful technique of expansion in Feynman diagrams [5–7], which is not possible for the
real-time Green functions. The standard way to obtain the real-time Green function, which is
used over and over again in the literature, is to first obtain an approximate GA,B(iων) by doing
an expansion in Feynman diagrams and then continue this analytically to a line infinitesimally
above the real axis to obtain the real-time Green function of physical interest.
We now specialize to the single-particle Green function which corresponds to Â = cα, B̂ = c†β
(so that ξB = −1). It may be viewed as a matrix of dimension nα×nα, denoted by G, and we
can write it

Gα,β(z) =
1

Z

∑
i,j

e−βKi

[
〈i|c†β|j〉〈j|cα|i〉
z − (Ki−Kj)/~

+
〈i|cα|j〉〈j|c†β|i〉
z − (Kj−Ki)/~

]
, (10)

=

∫ ∞
−∞

dω
ρ
(−)
α,β(ω)

z − ω
+

∫ ∞
−∞

dω
ρ
(+)
α,β(ω)

z − ω
(11)

ρ
(−)
α,β(ω) =

1

Z

∑
i,j

e−βKi 〈i|c†β|j〉〈j|cα|i〉 δ
(
ω − (Ki−Kj)/~

)
, (12)

ρ
(+)
α,β(ω) =

1

Z

∑
i,j

e−βKi 〈i|cα|j〉〈j|c†β|i〉 δ
(
ω − (Kj−Ki)/~

)
. (13)

Since Kj−Ki is real, G(z) has a number of poles on the real axis. For both, ρ(−) and ρ(+),
one has ρ∗α,β(ω) = ρβ,α(ω) i.e., the ω-dependent matrix ρ(ω) is Hermitean. Moreover, for any
vector v of length nα we have∑

α,β

v∗α ρ
(−)
α,β(ω) vβ =

1

Z

∑
i,j

e−βKi |〈j|cv|i〉|2 δ
(
ω − (Ki−Kj)/~

)
> 0

with cv =
∑

vαcα so that ρ are positive definite. It follows from the Hermiticity of ρ that
[G(z)]+ = G(z∗) which shows that, for complex z, G(z) is not Hermitean.
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Fig. 1: Top: Graphical representation of the Dyson equation. Middle: Self-energy diagrams
have two open ends. Bottom: The convention for the representation of the Green function
implies the labeling of the open ends of the self-energy.

We now assume that the range of ω where the elements of ρ(±) are different from zero is finite,
which means that the change in energy upon adding or removing an electron is bounded. Then
we consider the limit |z| → ∞ and expand

1

z ± (Kj−Ki)/~
→ 1

z
∓ Kj−Ki

~z2
+O

(
1

z3

)
.

Inserting this into (10) and using (Kj−Ki)〈j|cα|i〉 = 〈j|[K, cα]|i〉 we find

Gα,β(z) → δα,β
z

+

〈{
c†β, [cα, K]

}〉
th

~z2
+O

(
1

z3

)
.

Using the Hamiltonian (1) and (2) one finds〈{
c†β, [cα, K]

}〉
th

= tα,β − µ δα,β +
∑
γ,δ

(Vα,γ,β,δ − Vα,γ,δ,β)
〈
c†γcδ

〉
th
. (14)

The term involving V ‘looks like’ the Hartree-Fock potential V (HF )
α,β , however, whereas for the

true Hartree-Fock potential the thermal average has to be taken using the Hartree-Fock wave
functions and energies, the thermal average in (14) has to be taken using the fully interacting
eigenstates and energies. Keeping this subtle difference in mind we still call the third term the
Hartree-Fock potential V (HF )

α,β so that

G(z) → 1

z
+

t− µ+ V(HF )

~z2
+O

(
1

z3

)
. (15)
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As already mentioned the imaginary-time Green function can be expanded in Feynman dia-
grams and the self-energy Σ(iων) be introduced in the standard way see Figure 1. The self-
energy can be expanded in diagrams which have two ‘entry points’ an incoming and an outgo-
ing one. Following FW [6] we represent the Green function Gαβ and also the noninteracting
Green function G0

αβ by a directed line with an arrow running β → α (the reason is, that it is the
creation operator which has the index β, see (10)). In the Dyson equation the matrix indices
of the Green function and the self-energy must take the form of consecutive matrix products,
e.g., G0

δαΣαβG
0
βγ – otherwise the summation of the geometric series would not be possible. It

follows that the element Σαβ must have the label α on the outgoing entry and the label β on the
incoming one, see Figure 1. The diagrammatic expansion shows [5–7] that the Green function
obeys the Dyson equation (

iων −
1

~
(t− µ)−Σ(iων)

)
G(iων) = 1(

−∂τ −
1

~
(t− µ)

)
G(τ)−

∫ β~

0

Σ(τ − τ ′) G(τ ′) dτ ′ = δ(τ), (16)

where the second equation is the Fourier-transform of the first and FW (25.21) was used. The
inverse of the Green function thus is

G−1(z) = z − 1

~
(t− µ)−Σ(z)

On the other hand, from (15 ) we find

G−1(z)→ z − t− µ
~
− V(HF )

~
+O

(
1

z

)
⇒ Σ(z)→ V(HF )

~
+O

(
1

z

)
.

Accordingly, the quantity Σ̄ = Σ−V(HF ) vanishes as 1/z for large |z|.
Next, let v be any complex vector of length nα and consider

f(z) =
∑
α,β

v∗α Gα,β(z) vβ =
1

Z

∑
i,j

e−βKi + e−βKj

z + (Ki−Kj)/~
|〈j|c†v|i〉|2, (17)

where c†v =
∑
vαc
†
α and we have used (7). Putting z = x+ iy the imaginary part reads

If(z) = − y
Z

∑
i,j

e−βKi + e−βKj(
x+ (Ki−Kj)/~

)2
+ y2

|〈j|c†v|i〉|2.

This expression cannot be zero unless y = 0. It follows that for z away from the real axis all
eigenvalues of G(z) are different from zero [9], otherwise we might choose v to be either the
right- or left-hand eigenvector for eigenvalue 0 and obtain f(z) = 0 (note that for complex z
G(z) is not Hermitean which means that right- and left-hand eigenvectors will be different). In
fact, this is the very condition that G−1(z) does exist and it follows that for all complex z the
determinant of G(z) is different from zero. Using Cramer’s rule we find the elements of the
inverse Green function

G−1α,β(z) =
(−1)α+β det Mα,β(z)

det G(z)
,
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2C

C1

z

Fig. 2: Integration contours for the proof of the spectral representation of Σ. The dashed line
is the real z′ axis.

where Mα,β(z) is the respective minor of G(z), i.e., the matrix G(z) with row α and column β
discarded. Since for z away from the real axis all elements of G(z) are finite, see Eq. 10,
and the determinant of G(z) different from zero it follows that away from the real axis all
elements of G−1(z) are analytical functions of z. Starting from G−1(z)G(z) = 1, taking the
Hermitean conjugate and using [G(z)]+ = G(z∗) we find [G−1(z)]+ = G−1(z∗). Since both,
(G0)−1(z) = z − (t−µ)/~ and VHF , obey this relation, it follows that Σ̄(z) alone obeys this
relation as well, i.e., Σ̄(z∗) = Σ̄+(z). For real ω, we define the real matrices K(ω) and J(ω)

by

Σ̄(ω + i0+) = K(ω) + iJ(ω) ⇒ Σ̄(ω − i0+) = KT (ω)− iJT (ω). (18)

Next, we define

Σ̄(+)(z) =
1

2

(
Σ̄(z) + Σ̄T (z)

)
⇒ Σ̄(+)(ω ± i0+) = K(+)(ω)± iJ(+)(ω),

Σ̄(−)(z) =
i

2

(
Σ̄(z)− Σ̄T (z)

)
⇒ Σ̄(−)(ω ± i0+) = −J(−)(ω)± iK(−)(ω), (19)

where K(±) = 1
2
(K ±KT ) and J(±) = 1

2
(J ± JT ). Now consider the integration contours in

Figure 2 which consist of lines infinitesimally above and below the real axis and semicircles at
infinity. Since Σ̄ is analytic away from the real axis we have for z in the upper half-plane∮

C1

dz′
Σ̄(±)(z′)

z′ − z
= 0 ⇒

∫ ∞
−∞

dω
K(±)(ω)

ω − z
= i

∫ ∞
−∞

dω
J(±)(ω)

ω − z
.

The second equation follows, because the integrand is ∝ 1/z′2 for large |z′| so that the arc
does not contribute and infinitesimally below the real axis we can use (18). Next we can use
Cauchy’s theorem and write

Σ̄(±)(z) =
1

2πi

∮
C2

dz′
Σ̄(±)(z′)

z′ − z
⇒ Σ̄(±)(z) = ± 1

π

∫ ∞
−∞

dω
J(±)(ω)

ω − z
.
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Reverting (19) and recalling the definition of Σ̄ we finally arrive at the spectral representation
of the self-energy, as derived by Luttinger [10]

Σ(z) = V(HF ) +
1

π

∫ ∞
−∞

dω
σ(ω)

ω − z
(20)

with σ(ω) = J(+)(ω) + iJ(−)(ω), which shows that σ(ω) is Hermitean. It should be noted that
in deriving (20) we have made use only of the Dyson equation and certain rigorous analytical
properties of the Green function. This is therefore a completely rigorous result. It should also
be noted that we have shown that for any z off the real axis G−1(z) is well-defined. This shows
that there is a unique mapping G(z)→ Σ(z).
We have introduced the self-energy using the diagrammatic expansion of the Green function
but it can also be defined in another way. Using −~∂τ Ô = [Ô,K] and ∂τΘ(±τ) = ±δ(τ) we
find the equation of motion of the imaginary time Green function:

−~∂τGα,β(τ) = ~δα,β δ(τ) +
∑
ν

(tα,ν − µδα,ν)Gν,β(τ)−
∑
ν,κ,λ

Vα,ν,κ,λ
〈
T [(c†νcλcκ)(τ)c†β(0)]

〉
th

The time-ordered product in the last term can be written as G2(λτ, κτ, β0, ντ+) where

G2(λτ1, κτ2, βτ3, ντ4) = (−1)2
〈
T [cλ(τ1)cκ(τ2)c

†
ν(τ4)c

†
β(τ3)]

〉
th

is the two-particle imaginary time Green function (the factor of (−1)2 has to be replaced by
(−i)2 for the real-time Green function—it is always the square of the prefactor of the single-
particle Green function). Comparing with the Dyson equation (16) it is obvious that G2 and Σ
are related as

−
∑
ν,κ,λ

Vα,ν,κ,λG2(λτ, κτ, β0, ντ+) = ~
∫ ~β

0

dτ ′ Σα,γ(τ−τ ′)Gγ,β(τ ′) . (21)

Frequently an approximate Green function is found by expressing G2 as a functional of G. For
example, the Hartree-Fock approximation corresponds to replacing

G2(λτ1, κτ2, βτ3, ντ4) → G(λτ1, βτ3)G(κτ2, ντ4)−G(λτ1, ντ4)G(κτ2, βτ3) .

Inserting this into (21) one obtains

−
∑
ν,κ,λ

Vα,ν,κ,λG2(λτ, κτ, β0, ντ+) =
∑
ν,κ,λ

(Vα,ν,λ,κ − Vα,ν,κ,λ)〈c†νcκ〉Gλ,β(τ)

⇒ Σα,ν(τ) =
1

~
V (HF )
α,ν δ(τ)

which is what one would have expected for the self-energy in Hartree-Fock approximation.
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3 Proof of the theorem by Luttinger and Ward

3.1 Statement of the theorem

In the present section we consider a solid, described by an LCAO-like Hamiltonian. Then
we have α = (i, n, ν, σ) where i ∈ {1, . . . , N} denotes the unit cell, n ∈ {1, . . . , nAtom}
the number of atoms in the basis, ν ∈ {s, px, py, pz, dxy . . . } the type of orbital and σ the z-
component of spin. The number of all orbitals in the unit cell is norb. The Fourier transform of
the Fermion operators is

c†k,β =
1√
N

∑
i

eik·(Ri+rn) c†i,n,ν,σ,

where we have introduced the orbital index β = (n, ν, σ). Since this second compound index
always comes together with either a momentum k or a cell index i, no misunderstanding is
possible. The Hamiltonian now can be written as

H0 =
∑
k

∑
α,β

tα,β(k) c†k,α ck,β, (22)

H1 =
1

2

∑
k,k′,q

∑
α,β,γ,δ

Vα,β,δ,γ(k,k
′,q) c†k+q,α c

†
k′−q,β ck′,γ ck,δ. (23)

Equation (22) defines the 2norb × 2norb matrix t(k), whose eigenvalues En(k) give the nonin-
teracting band structure. This formulation allows H0 to describe magnetic systems or include
spin-orbit coupling.
The grand canonical potential Ω(T, µ) contains all thermodynamical information about a sys-
tem at fixed temperature T and chemical potential µ. It is defined as the logarithm of the grand
partition function

Ω = − 1

β
ln(Z) with Z =

∑
i

e−β(Ei−µNi),

where the sum is over all eigenstates of the system with energy Ei and particle number Ni.
The latter can indeed be evaluated for noninteracting particles and in this way one obtains for
example the grand canonical potential of noninteracting Bloch electrons

Ω = − 1

β

2norb∑
n=1

∑
k

ln
(
1 + e−β(En(k)−µ)

)
. (24)

As shown in textbooks of statistical mechanics, expression (24) allows to derive the complete
thermodynamics of metals. However, it is in general not possible to evaluate the grand partition
function for a system of interacting particles of macroscopic size.
Luttinger and Ward, however, derived a relation for the grand canonical potential of interacting
Fermions [1]. More precisely, they considered the following quantity

Ω′ = − lim
η→0+

1

β

∑
k,ν

eiωνη
(

ln det
(
−G−1(k, iων)

)
+Tr (G(k, iων) Σ(k, iων))

)
+Φ[G]. (25)
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Here
∑

ν denotes summation over the Fermionic Matsubara frequencies and Φ[G] is the so-
called Luttinger-Ward functional which is defined as a sum over closed, linked Feynman-
diagrams (the precise definition will be discussed below). The important point here is that a
closed Feynman diagram is simply a number, so that Φ[G] indeed assigns a (real) number to
each possible Green function G. As regards the logarithm of the determinant in (25) we re-
call that the determinant of a matrix is given by the product of its eigenvalues (the matrix need
not be Hermitean for this to be true) so that the logarithm of the determinant is the sum of the
logarithms of the (complex) eigenvalues of −G−1.
In the following we want to show that in fact Ω′ = Ω, the true grand canonical potential, and
thereby follow the original proof by Luttinger and Ward. The basic idea is to multiply the
interaction part of the Hamiltonian, (2), by a scale factor, H1 → λH1, then show Ω′ = Ω for
λ = 0, i.e., the noninteracting limit, and next show that ∂λΩ′ = ∂λΩ. Obviously, this proves
the identity of the two expressions for any λ.

3.2 The case λ = 0

In this limit Σ = 0 and Φ[G] = 0 (the latter property follows because all interaction lines in all
diagrams are zero) so that only the first term in (25) remains and

G−1(k, ω) = ω +
(
µ−t(k)

)
/~ ,

ln det
(
−G−1(k, ω)

)
=

2norb∑
n=1

ln
(
− ω −

(
µ−En(k)

)
/~
)
. (26)

We now replace the sum over Matsubara frequencies by a contour integration, which is a stan-
dard trick used in field theory (see, e.g., section 25 of FW) and obtain

− 1

β

∑
ν

eiωνη ln det(−G−1(k, iων) ) =
~

2πi

∮
C
dω f(ω) eωη ln det(−G−1(k, ω) ) (27)

where

f(ω) =
1

eβ~ω + 1
,

is the Fermi function and the contour C encircles the imaginary axis in counterclockwise fash-
ion, see Figure 3(a). Next we note that the integrals along the two clover-shaped contours
in Figure 3(b) are zero, provided the integrand is analytic in the interior of the two curves.
Since the Fermi function has all of its poles along the imaginary axis, which is outside of the
curves in Figure 3(b), we only need to consider possible singularities of ln det(−G−1(k, ω)).
In principle, the complex logarithm has a branch-cut along the negative real axis which could
be problematic. However, a quick glance at (26) shows, that as long as ω has a nonvanishing
imaginary part, the argument of the logarithm can never be purely real. Singularities of the
logarithm thus occur only on the real axis, which also is exterior to the contours in Figure 3(b).
The integral along the contours in Figure 3(b) therefore is indeed zero. Next, Jordan’s lemma
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(c)(b)(a)

Fig. 3: (a) Integration contour C used in (27). Since the integrals along the two contours in (b)
are zero and the contributions from the circular arcs vanish, the integral along the contour in
(a) is equal to that over the contour C ′ in (c).

can be invoked to establish that the integral along the large semicircles vanishes. Here the Fermi
function f(ω) guarantees that the contribution from the semicircle with Re(ω) > 0 vanishes,
whereas the factor eωη does the same for the semicircle with Re(ω) < 0. It follows that the
integral along the contour C in Figure 3a is equal to that along the contour C ′ in Figure 3c (note
the inverted direction of the curves in Figure 3c as compared to Figure 3b). Next, we insert

f(ω) = − 1

β~
d

dω
ln
(
1 + e−β~ω

)
(28)

and integrate by parts. Thereby the Fermi function and the factor eηω again make sure that the
contributions from Re(ω) = ±∞ vanish and we obtain

1

β

1

2πi

∮
C′
dω ln

(
1 + e−β~ω

) d

dω

(
eηω

2norb∑
n=1

ln
(
−ω +

(
µ−En(k)

)
/~
))

=
1

β

1

2πi

∮
C′
dω ln(1 + e−β~ω) eηω

2norb∑
n=1

~
~ω + µ− En(k)

+O(η) .

Now we substitute ~ω → z and use the theorem of residues (remembering that C ′ encircles
the poles of the Green function on the real axis in clockwise fashion) and after taking the limit
η → 0 obtain the expression (24), which completes the first step of the proof.

3.3 Calculation of ∂Ω/∂λ

To obtain the derivative of the true grand potentialΩ with respect to λ we start from the formula

λ
∂

∂λ
Ω(λ) = − 1

β
λ
∂

∂λ
ln
(

Tr
(
e−β(H0+λH1)−µN

))
=

1

Z
Tr
(
λH1 e

−β(H0+λH1)−µN
)

= 〈λH1〉λ

where 〈...〉λ denotes the thermal average calculated at interaction strength λ. The last quantity
thus is the expectation value of the interaction Hamiltonian for interaction strength λ. It can be
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computed by making use of the equation of motion of the Green function which is a procedure
found in many textbooks, see e.g. Equation (23.14) of FW. One has

〈λH1〉λ = −1

2
lim
τ→0−

∑
k

Tr

(
~
∂

∂τ
− µ+ t(k)

)
Gλ(k, τ),

where the subscript λ on the Green function implies that this is the exact Green function for
interaction strength λ. Next we recall the Dyson equation (16), which holds for any λ(

−∂τ +
µ

~
− 1

~
t(k)

)
G(k, τ)−

∫ β~

0

Σ(k, τ−τ ′) G(k, τ ′) dτ ′ = δ(τ).

Since δ(τ < 0) = 0 we have limτ→0− δ(τ) = 0 and obtain

λ
∂

∂λ
Ω(λ) =

~
2

lim
τ→0−

∑
k

∫ β~

0

dτ ′ Tr
(
Σλ(k, τ−τ ′)Gλ(k, τ

′)
)

=
1

2β

∑
k,ν

Tr Σλ(k, iων) Gλ(k, iων). (29)

3.4 Definition and properties of the Luttinger-Ward functional

As already mentioned Φ[G] is defined as a sum over infinitely many Feynman diagrams with
certain properties. The diagrams which contribute are closed, which means they have no ex-
ternal lines. They are moreover connected, which means that they cannot be decomposed into
sub-diagrams which are not connected by lines. And finally, only skeleton diagrams are taken
into account in the Luttinger-Ward functional. A skeleton diagram is a diagram where no Green
function line contains a self-energy insertion. In other words, it is impossible to draw a box
around any part of the diagram, so that only two Green function lines cross the box.
At this point we need to discuss an important property of the skeleton diagrams. Let us consider
a self-energy diagram. It contains one Green function line from the entry-point to the exit-point,
and a number of Green function loops. Starting from the entry-point we may follow the Green
function line and draw a circle around each self-energy insertion that we encounter until we
reach the exit point. This procedure will eliminate a number of loops, that means enclose them
in a self-energy insertion. Then, we continue along the first interaction line which is not elim-
inated until we reach a Fermion loop that is not yet eliminated. We follow the Green function
line along this loop and again draw a circle around each self-energy insertion. We proceed to
the next interaction line that has not yet been eliminated and so on. We end up with a diagram
in which all self-energy insertions are inside circles. Replacing the circles by straight lines,
we obviously obtain a skeleton-diagram for the self-energy. It is easy to see that the skeleton
diagram to which a given self-energy diagram is reduced is unique. All self-energy diagrams
thus can be grouped into classes such that all members of one class can be reduced to the same
skeleton diagram. Conversely, all members of one class can be obtained by starting out from
the skeleton-diagram and inserting the full Green function for each Green function line in the
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k+q
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α
β γδ

Fig. 4: Left: A diagram contributing to the Luttinger-Ward functional. Right: the elements of
the diagram.

diagram, which we write as

Σ(k, ω) =
∑
n

Σ(s,n)(k, ω). (30)

Here Σ(s,n) denotes the set of all nth order skeleton diagrams (i.e. diagrams with n interaction
lines) with the Green function lines replaced by the full Green function.
Having defined the diagrams contributing to Φ[G] each diagram is now translated into a mul-
tiple sum according to the standard Feynman rules for the imaginary-time Green function in
momentum space (see section 25 of FW). However, there is one crucial difference: whereas in
a standard Feynman diagram a Green function line corresponds to a factor G0(k, ω) (the non-
interacting Green function), in the Luttinger-Ward functional we replace G0(k, ω) → G(k, ω)

where G(k, ω) is the argument of the functional Φ[G]. As an example, the expression corre-
sponding to the diagram in Figure (4) is(
−1

β~2N

)2

(−1)2
∑
k,k′,q

∑
α,β,γ,δ

∑
α1,β1,γ1,δ1

∑
ν,ν′,µ

Vα,β,δ,γ(k,k
′,q)Vδ1,γ1,α1,β1(k+q,k′−q,−q)

×Gα1,α(k+q, iων+ωµ)Gδ,δ1(k, iων)Gβ1,β(k′−q, ων′−ωµ)Gγ,γ1(k
′, ων′). (31)

The Luttinger-Ward functional Φ[G] thus consists of an infinite sum of multiple sums which
involve the interaction matrix elements V of the Hamiltonian (23) and the function G for which
the functional is to be evaluated.
Let us briefly discuss the scaling with system size, N . By the Feynman rules an nth order dia-
gram has the prefactor (1/N)n. On the other hand, there are n interaction lines, and 2n Green
function lines, so that there are 3n momenta. The n interaction lines give rise to 2n momentum
conservation conditions, one for each end of a line. However, in a closed diagram one of these
momentum conservation conditions is fulfilled trivially so that there remain n+1 momenta to
be summed over (see the above example). Each sum runs over N momenta so that the total
diagram is of order N , as it has to be because Ω is an extensive quantity.
In addition to the factors originating from the Feynman rules, each diagram is multiplied by
−1/(βS) where the positive integer S is the symmetry factor of the diagram. A very de-
tailed discussion of these symmetry factors is given in section 2.3 of Negele-Orland [7]. The
definition is as follows: first, the diagram is drawn such that all interaction lines are in x-
direction. The n interaction lines of a diagram are labeled by integers i ∈ {1 . . . n} and the
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Fig. 5: Determination of the symmetry factor S for a diagram.

ends of each interaction line are labeled by R and L (for ‘right end’ and ‘left end’), see Figure
5(a). Any Green function line in the diagram now can be labeled by the ends of the inter-
action lines where it departs and where it ends: (i, S1) → (j, S2) with i, j ∈ {1 . . . n} and
S1, S2 ∈ {R,L}. Obviously, the diagram is characterized completely by the 2n ‘directed
quadruples’ (i, S1) → (j, S2). Then, we consider the following operations on the diagrams:
a) any permutation of the indices i, b) exchange of the labels R and L on an arbitrary number
of interaction lines, c) any combination of a permutation followed by label exchanges. Such an
operation obviously changes the quadruples which characterize the connectivity of the diagram:
[(i, S1) → (j, S2)] → [(i′, S ′1) → (j′, S ′2)]. The symmetry factor of a diagram then is the num-
ber of symmetry operations—including identity—where the new labels (i′, S ′1) → (j′, S ′2) are
a permutation of the old ones, (i, S1) → (j, S2) (Negele-Orland then call the transformed dia-
gram a deformation of the first one). As an example, consider the diagram in Figure 5(a). Label
exchange on, say, interaction line 2 leads to the diagram shown in 5(b) which, however, is not a
deformation of the original diagram. This can be seen by considering, e.g., the line connecting
the R-end of 1 and the R-end of 2. In 5(a) this line would have the label (2, R) → (1, R),
whereas it would be (1, R)→ (2, R) in 5(b). This means that the direction of momentum flow
along the line would be reversed. On the other hand, the permutation of the labels 1 and 3

followed by label exchange on interaction line 2 leads to the diagram 5(c) which indeed is a
deformation of the original diagram. In Figure 5(d) the Green function lines are numbered by
1 → 6 and Table 1 gives the quadruples corresponding to these lines in Figures 5(a) and 5(c).
Obviously the two sets of quadruples are a permutation of each other.

Line 5(a) 5(c)
1 (1,L)→(3,L) (3,L)→(1,L)
2 (3,L)→(1,L) (1,L)→(3,L)
3 (1,R)→(2,L) (3,R)→(2,R)
4 (2,R)→(1,R) (2,L)→(3,R)
5 (2,L)→(3,R) (2,R)→(1,R)
6 (3,R)→(2,R) (1,R)→(2,L)

Table 1: Quadruples describing the connectivity of the diagrams Figure 5a and Figure 5c. The
numbers of the Green function lines are given in Figure 5d.



Luttinger-Ward functional 12.15

It turns out that this is the only symmetry operation which leaves the diagram invariant, so that,
taking into account the identity operation, the diagram has S = 2. Since a symmetry operation
corresponds to a permutation of the quadruples (i, S1) → (j, S2) which characterize the indi-
vidual Green function lines in a diagram it defines a mapping between these lines whereby each
line is mapped onto the one which gets its label. For example, from Table 1 one reads off the
corresponding mapping for the operation connecting 5a and 5c:

1 2 3 4 5 6
2 1 6 5 4 3

If two Green function lines i and j are mapped onto each other, the lines are equivalent in the
sense that the diagram could be deformed such that the deformed diagram is precisely the same
as the original one but line j now taking the place of line i and vice versa.
Let us now assume that a diagram has the symmetry factor S. This means that all Green function
lines can be grouped into disjunct classes such that the lines belonging to one class are mapped
onto each other by one of the S symmetry operations. For example, the diagram in 5 has the
classes (1, 2), (3, 6), and (4, 5). Since a diagram with n interaction lines has 2n Green function
lines the number of classes is 2n/S which will be of importance later on.
Next, we want to see the meaning of this definition. In fact, the Luttinger-Ward functional is
the generating functional of the self-energy, or, more precisely,

∂Φ

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων) . (32)

To see this, consider an infinitesimal change Gαβ(k, iων)→ Gαβ(k, iων) + δGαβ(k, iων) as in
Figure 6. The initial diagrams correspond to multiple sums over products of Green functions
where all internal frequencies, momenta, and orbital indices are summed over, subject to the
condition of energy/momentum conservation at each interaction vertex, see (31). The first order
change then also can be viewed as a sum of diagrams but with a single missing line—this
corresponds to the variation δG which has been factored out. Another way to state this is to
say that differentiating with respect to an element of G amounts to successively ‘open’ each
of the lines in the initial closed diagram and sum the remaining diagrams. These remaining
diagrams obviously ‘look like’ self-energy diagrams in that they have two entry points. We
now need to show, however, that the diagrams not only ‘look like’ possible contributions to
the skeleton diagram expansion of the self-energy, but that they come with exactly the right
numerical prefactors. At this point, the additional prefactors of −1/βS turn out to be crucial.
We first note that the momentum and frequency which flow into/out of the diagram are fixed
by the momentum and frequency of δG. As regards the orbital indices, we recall that Gαβ

corresponds to a directed line β → α. The resulting self-energy-like diagrams therefore all
have the matrix index α on their incoming entry and β on their outgoing entry, and comparing
with Figure 4 we see that this assignment of indices corresponds to Σβα. Moreover, all internal
momenta, frequencies, and matrix indices in the remaining diagrams are summed over—subject
to the condition of frequency and momentum conservation at the interaction lines—as would
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Fig. 6: Variation of G implies ‘opening’ the lines of a Feynman diagram.

be the case in the true self-energy diagrams. Second, the order n of a diagram—that means
the number of interaction lines—is not changed by opening a Green function line, so that the
prefactor −1/(β~2N)n of the closed diagram is also the correct prefactor for the resulting self-
energy diagram. Third, opening a Green function line reduces the number of closed Fermion
loops by 1 and the factor (−1) in (− 1

βS
) takes care of this. And, lastly, we need to discuss the

symmetry factor S. Let us consider a diagram with n interaction lines, which accordingly has
2n Green function lines and moreover assume that the diagram has the symmetry factor S. As
we saw above, the 2n Green function lines can be divided into classes of S members which are
mapped into each other by the symmetry operations and the number of these classes is 2n/S. A
symmetry operation maps a Green function line i onto an equivalent one j, so that it is possible
to deform the diagram such that it looks exactly the same as the original one, but with line j
in place of line i. This means, however, that ’opening’ the line i also gives exactly the same
self-energy diagram as opening line j. Accordingly, from the single closed diagram of degree
n with symmetry factor S we obtain 2n/S different skeleton diagrams for the self-energy, and
each is produced S times, see also Figure 7. This factor of S, however, precisely cancels the
prefactor 1/S. It follows, that each skeleton-diagram for the self-energy is produced with same
prefactor 1/β. Differentiating Φ[G] with respect to Gαbeta(k, iων) thus gives 1/β times the sum
of all skeleton diagrams for Σβα(k, iων), with the noninteracting Green function replaced by
the full one, and this is exactly Σβα(k, iων) itself, see (30), so that (32) is proved.

We have just seen, that all skeleton-diagrams for the self-energy can be obtained by differenti-
ating the Luttinger-Ward functional with respect to G, whereby the differentiation corresponds
to ‘opening’ one line in a closed diagram. We then may ask if this operation can be reversed,
namely if the Luttinger-Ward functional can be obtained by starting from the skeleton-diagram
expansion of the self-energy and ‘close’ the diagrams by ‘reconnecting’ the entry-points of the
self-energy by a Green function. More precisely, we consider

1

β

∑
ν,k

∑
α,β

Gα,β(k, iων) Σ
(s,n)
β,α (k, iων). (33)
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1

12

23

3

Fig. 7: The diagram on the left has n = 3 and S = 2 and accordingly 3 classes of symmetry-
equivalent Green function lines. The lines are labeled by the number of the classes, compare
Figure 5 and Table 1. Successively opening the lines of the diagram produces the three different
self-energy diagrams in the center column and each of them is produced S = 2 times. The right
column shows the diagrams redrawn to more look like self-energy diagrams.

We have seen that an nth order diagram contributing to Φ[G] with symmetry factor S produces
2n/S different skeleton-self-energy diagrams, and each of them S times and with a factor of
(−1), so that the remaining prefactor was 1/β. Upon closing the Fermion line again, according
to (33), each of these diagrams produces the original closed diagram (it is easy to see that for
each self-energy diagram there is exactly one closed diagram from which it can be obtained).
Since there are 2n/S self-energy diagrams originating from the original closed diagram the
latter is produced 2n/S times and thus has the additional prefactor−2n/Sβ (the factor of (−1)

is due to the additional Fermion loop in the closed diagram). In the expansion of Φ[G], however,
the diagram would have had the prefactor −1/Sβ, or, put another way, closing the sum of all
nth order skeleton diagrams for Σ, according to (33), produces the nth order contribution to
Φ[G] with an additional prefactor of 2n so that

Φ(n) =
1

2nβ

∑
ν,k

Tr G(k, iων) Σ(s,n)(k, iων). (34)
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Lastly, we give one more comment on the symmetry factors. Readers who wish to study the
original paper of Luttinger and Ward, which is highly recommended, will realize that no sym-
metry factors appear in this work. The reason is that LW carry out their derivation using what
Negele-Orland (NO) call ‘labeled Feynman diagrams’. For example, LW’s equation (17) cor-
responds precisely to NO’s equation (2.96). The derivation in the present notes, however, uses
what NO call ‘unlabeled Feynman diagrams’. The transition between these two types of dia-
grams and the emergence of the symmetry factors thereby is discussed in detail in section 2.3
of NO [7].

3.5 Calculation of ∂Ω̃/∂λ

We proceed to the final step of the proof and compute ∂Ω̃/∂λ. If we vary the interaction
strength λ, there are two places in the expression for Ω′, eqn. (25), where this makes it self felt.
Namely the self-energy Σ will change and moreover the interaction matrix elements V in the
Luttinger-Ward functional (see, e.g., eqn. (31)) which have a prefactor of λ will also contribute
to the variation. Let us first consider the variation of Σ and compute

∂Ω′

∂Σα,β(k, iων)
.

There are three terms in (25) and we consider them one after the other. The first two terms
involve a sum over momentum and frequency and obviously only those terms with momen-
tum k and frequency ων will contribute. Accordingly, in the following equations we omit the
arguments (k, iων) for brevity. Then we find by using the chain rule for differentiation

∂

∂Σα,β

(
− 1

β
ln det

(
−G−1

))
= − 1

β

∑
µ,ν

(
∂

∂(−G−1µ,ν)
ln det

(
−G−1

)) ∂(−G−1µ,ν)
∂Σα,β

= − 1

β

∑
µ,ν

(−Gν,µ) δµ,α δν,β

=
1

β
Gβ,α.

In going to the 2nd line we used the identity from Appendix B and the Dyson equation

−G−1 = −ω − µ+ Σ

from which it follows that
∂(−G−1µ,ν)
∂Σα,β

= δµ,α δν,β.

We proceed to the second term,

∂

∂Σα,β

(
− 1

β
Tr Σ G

)
=

∂

∂Σα,β

(
− 1

β

∑
µ,ν

Σν,µ Gµ,ν

)
= − 1

β

(
Gβ,α +

∑
µ,ν

Σν,µ
∂Gµ,ν

∂Σα,β

)
.
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Lastly we consider the Luttinger-Ward functional. Using again the chain rule we find

∂Φ[G]

∂Σα,β

=
∑
µ,ν

∂Φ[G]

∂Gµ,ν

∂Gµ,ν

∂Σα,β

=
1

β

∑
µ,ν

Σν,µ
∂Gµ,ν

∂Σα,β

.

Adding up the three terms we thus obtain the important result

∂Ω′

∂Σα,β(k, iων)
= 0 . (35)

In other words: the expression Ω′, which will be seen to be equal to the grand potential Ω in
a moment, is stationary with respect to variations of the self-energy! This is the stationarity
condition for Σ which is the basis of the VCA.
First, however, we have to complete the proof and evaluate λ ∂

∂λ
Ω′(λ). Since there is no variation

of Ω′ due to a variation of Σ, the only remaining source of variation are the interaction lines in
the Luttinger-Ward functional. Namely any nth order diagram has the prefactor of λn so that

λ
∂

∂λ
Φ(n) = n Φ(n)

Using (34) we thus obtain

λ
dΩ′

dλ
=
∑
n

n Φ(n) =
∑
n

1

2β

∑
ν,k

Tr Gλ(k, iων)Σ
(s,n)
λ (k, iων)

=
1

2β

∑
ν,k

Tr Gλ(k, iων)

(∑
n

Σ
(s,n)
λ (k, iων)

)

=
1

2β

∑
ν,k

Tr Gλ(k, iων) Σλ(k, iων).

Comparing with (29) we see that this is equal to λ ∂
∂λ
Ω(λ) which completes the proof.

Let us summarize the results which we have obtained:

1. The grand canonical potential Ω of an interacting Fermi system is given by (25).

2. The Luttinger-Ward functional is the generating functional of Σ(k, iων), see eqn. (32).

3. The Luttinger-Ward functional depends only on the interaction matrix elements Vαβδγ in
the Hamiltonian and the Green function G which is the argument of the functional.

4. Ω is stationary under variations of Σ(k, iων) see (35).

Looking at the above proof one might worry about the fact that it assumes a continuous evolu-
tion of the system with increasing interaction strength λ, whereas we are also interested, e.g.,
in Mott-insulators where we have reason to believe that a phase transition occurs as a function
of λ. However, Potthoff has recently given a nonperturbative proof of the theorem [12, 11] that
means all of the above properties of the grand potential, the Luttinger-Ward functional and the
self-energy remain valid in a strongly correlated electron system where a Feynman-diagram ex-
pansion of the Green function and the adiabatic continuity with the noninteracting system can
no longer be assumed valid.
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4 Conserving approximations

An important application of the Luttinger-Ward functional is the construction of conserving ap-
proximations. To discuss these, we will use a special form of the Hamiltonian for the remainder
of this section. We assume that the set of quantum numbers reduces to α = r that means we ne-
glect spin for simplicity. To follow the notation common in the literature we denote the electron
creation operator by Ψ †(r) instead of a†α. The Hamiltonian for a homogeneous system is

H =
~2

2m

∫
dr∇Ψ †(r) · ∇Ψ (r) +

1

2

∫
dr

∫
dr′ Ψ †(r)Ψ †(r′)V (r−r′)Ψ (r′)Ψ (r).

We assume that we can always perform a partial integration and drop the surface terms. In this
way the first term in H can be brought to either of the two forms − ~2

2m

∫
drΨ †(r)(∇2Ψ (r)) or

− ~2
2m

∫
dr(∇2Ψ †(r))Ψ (r). Since the system is homogeneous the electron density is n0, indepen-

dent of position. We now assume that the system is acted upon by a perturbation of the form
Hp =

∫
drU(r, t)n(r), i.e., a time dependent real potential U which couples to the electron

density n(r) = Ψ †(r)Ψ (r). Thereby we demand that
∫
drU(r, t) = 0 for all t because a con-

stant component would merely shift the zero of energy and not induce any response. As we
have seen—or rather: quoted from FW—in the first section, the change of the expectation value
of any operator A(r) to first order in U is given by

δ 〈A(r)〉(t) =
1

~

∫
dr′
∫ ∞
−∞

dt′GR
A,n(rt, r′t′)U(r′, t′),

GR
A,n(rt, r′t′) = −iΘ(t− t′)〈[A(r, t), n(r′, t′)]〉th.

Now we may choose A(r) to be the operator n(r) of electron density or the operator of electron
current j(r) = i~

2m

(
(∇Ψ †(r))Ψ (r) − Ψ †(r)∇Ψ (r)

)
. Assuming that in the unperturbed state of

the system there is no current and that the electron density is time independent, the induced
changes must fulfill certain conservation laws:

∂δn(r)

∂t
+∇ · δj(r) = 0,

d

dt

∫
drmδj(r) =

∫
dr
(
−∇U(r, t)

)
δn(r, t)

d

dt
〈H〉 =

∫
dr
(
−∇U(r, t)

)
· δj(r)

The first line is the continuity equation, the second line states that the total momentum of the
electron system changes according to Newton’s law and the third equation states that the change
of the total energy of the system is equal to the work done by the external force (in the sec-
ond equation we have used that by partial integration the right hand side can be converted to∫
drU(r)(∇n(r)) so that the constant component of n does not contribute). Since in general we

have to make some approximation to compute the retarded Green function, however, it is not
a priori clear that these equations are fulfilled. The imaginary time Green functions Gn,n and
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Gj,n can be expressed as limits of the two-particle Green function G2 and the self-energy also
is related to G2, so that approximating Σ by a functional of the Green function gives us also an
approximation for the response function. Building on the work of Luttinger and Ward, Baym
has given a prescription to construct approximations for Σ which guarantee that the resulting
response functions obey all conservation laws and we want to outline his ideas. To simplify the
notation we introduce the ‘compound coordinate’ x = (rτ) and it is understood that operators
such as n(x) which have x as an argument are imaginary-time Heisenberg operators. Moreover
we denote ∫

dx · · · =

∫ β~

0

dτ

∫
dr · · ·

We first generalize the definition of the imaginary-time single particle Green function

G(x, x′)[U ] = − 1

Z[U ]

〈
T

[
Ψ (x)Ψ †(x′) exp

{
1

~

∫
dx1 U(x1)n(x1)

}]〉
th

,

Z[U ] =

〈
T

[
exp

{
1

~

∫
dx1 U(x1)n(x1)

}]〉
th

. (36)

This modified Green function is a functional of the real and time dependent potential U(x) and
depends on τ and τ ′ separately. It is obvious that as U → 0 it reduces to the ordinary Green
function discussed so far. Moreover, using the cyclic property of the trace it can again be shown
that this Green function obeys the same boundary condition G(β~) = −G(0) as the ordinary
Green functions and thus has a Fourier expansion of the type (6). It should be stressed, that this
Green function is defined for imaginary times and has no direct physical interpretation.
We now consider the functional derivative of G with respect to U(x1). This is defined as the
change of G[U ] under an infinitesimal ‘δ-spike’, U(x) → U(x) + εδ(x−x1). One may also
think of the integrals in (36) as the limit of sums over grid points xi, the functional derivative
then is the limit of the derivative with respect to the value of U at the grid point closest to x1.
Using the fact that in the argument of the time-ordering operator T the operators H or n can be
commuted with each other and with both, Ψ and Ψ †, one finds

~
δG(x, x′)[U ]

δU(x1)
|U=0 = −

〈
T [Ψ (x)Ψ †(x′)n(x1)]

〉
th

+G(x, x′)n0.

Taking now the limit x′ → x+ = rτ+ we find

lim
x′→x+

~
δG(x, x′)[U ]

δU(x1)
|U=0 = −

〈
T [n(x)n(x1)]

〉
th

+ n2
0,

lim
x′→x+

~
i~
2m

(∇′−∇)
δG(x, x′)[U ]

δU(x1)
|U=0 = −

〈
T [j(x)n(x1)]

〉
th

+
〈
j(x)

〉
th
n0.

It should be noted that for U = 0 we have 〈j(x)〉th = 0 so that the second term in the second
equation could have been omitted. The extra terms involving n0 can be absorbed by re-defining
n(x)→ n(x)− n0, i.e., the operator of density fluctuations. We will assume that this has been
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done from now on. The above shows that the time-ordered Green function of the operators
A = n(r) or A = j(r) and B = n(r1) (which gives us the physical response function when
continued analytically to above the real axis) can be obtained by functional differentiation of
the modified Green function (36). In fact the only requirement is that A be quadratic in the field
operators or its derivatives, moreover n(r) can be replaced by any other operator. On the other
hand, the Green function involves the self-energy Σ, which we assume to be approximated as
a functional of the Green function itself: Σ = Σ[G]. The functional derivative—and hence
the response functions—therefore depend on the form of Σ[G]. The question then is if it is
possible to choose the functionalΣ = Σ[G] such, that the resulting response functions obey the
conservation laws. Baym has shown that the answer to this question is affirmative and in fact
the general prescription is to define an approximate Luttinger-Ward functional, which contains
only a subset of all possible diagrams and to then construct Σ according to (32):

Σα,β[G] =
1

KBT

δΦ[G]

δGβ,α

⇒ δΦ[G] = kBT
∑
α,β

Σα,β[G] δGβ,α. (37)

We show that a self-energy constructed in this way obeys the continuity equation: The equation
of motion obeyed by the modified Green function is (we suppress the [U ] on all quantities)(
−~ ∂

∂τ
+

~2∇2

2m
+ µ+ U(r, τ)

)
G(rτ, r′τ ′) = ~ δ(r−r′) δ(τ−τ ′) (38)

+

∫
dr1 V (r−r1)G2(rτ, r1τ, r

′τ ′, r1τ
+).

Here the modified G2 in the presence of U is defined in a completely analogous way as G,
see (36). We now assume that G2 is approximated as a functional of G and replace the approx-
imate G2 by an approximate Σ. Equation (38) then becomes(

−~ ∂
∂τ

+
~2∇2

2m
+ µ+ U(x)

)
G(x, x′) = ~ δ(x−x′) + ~

∫
dx1Σ(x, x1)G(x1, x

′). (39)

Next we form
∫
dx
∫
dx′G(x2, x) · · ·G−1(x′, x3) where · · · stands for either the right or left

side of (39). We use partial integration to convert, e.g.∫
dxG(x2, x)

(
−~∂τ +

~2∇2

2m

)
G(x, x′) =

∫
dx

[(
+~∂τ +

~2∇2

2m

)
G(x2, x)

]
G(x, x′)

(here the property G(β~) = −G(0) of the modified Green function is essential!) and exchange
x2 → x and x3 → x′ in the resulting equation. In this way we obtain(

+~
∂

∂τ ′
+

~2∇′2

2m
+ µ+ U(x′)

)
G(x, x′) = ~δ(x−x′) + ~

∫
dx1G(x, x1)Σ(x1, x

′). (40)

Now we consider the change (with a real function Γ (x))

G(x, x′)[U ]→ eiΓ (x) G(x, x′)[U ] e−iΓ (x
′).
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In other words, if we represent the Green function G(x, x′)[U ] by a directed line from x′→x

it is multiplied by e−iΓ (x′) for the initial point and by eiΓ (x) for the endpoint. In a closed dia-
gram, however, there is one incoming and one outgoing Green function line at every end of an
interaction line V (x−x′) so that the two factors cancel and the value of the diagram remains
unchanged whence δΦ = 0. The crucial point is, that this holds true for each closed diagram
individually, so that δΦ = 0 remains true also for an approximate Luttinger-Ward functional in
which only a subset of diagrams is kept. On the other hand, if we switch to an infinitesimal Γ we
have δΦ = ΣδG and for infinitesimal Γ we have δG(x, x′)[U ] = i(Γ (x)−Γ (x′))G(x, x′)[U ].
It follows that (with [U ] again omitted)

Σ δG = i

∫
dx dx1

(
Γ (x1)− Γ (x)

)
Σ(x, x1)G(x1, x) = 0 .

We now interchange integration variables x↔ x1 in the term containing Γ (x1) and find∫
dx dx1 Γ (x)

(
Σ(x, x1)G(x1, x)−Σ(x1, x)G(x, x1)

)
= 0

Since Γ (x) is infinitesimal but arbitrary the x1 integral must vanish:∫
dx1

(
Σ(x, x1)G(x1, x)−G(x, x1)Σ(x1, x)

)
= 0

We now subtract (39) from (40), let again x′ → x+:

lim
x′→x+

{(
~
∂

∂τ
+ ~

∂

∂τ ′

)
G(x, x′)[U ] +

~2

2m

(
∇′2 −∇2

)
G(x, x′)[U ]

}
= 0,

or, using ∇′2 −∇2 = (∇′ +∇)(∇′ −∇)

∂

∂τ
G(x, x+)[U ]− i∇ ·

[
lim
x′→x+

i~
2m

(∇′ −∇)G(x, x′)[U ]

]
= 0.

Since G(x, x+) = n(x) is the electron density, and the expression in square brackets is the
current density at j(x), the Green function obeys a kind of continuity equation. Now we take
the functional derivative of both sides with respect to U(x′) and let U → 0. This generates a
relation between time-ordered Green functions:

∂

∂τ
Gn,n(rτ, r′τ ′) = i∇ ·Gj,n(rτ, r′τ ′) ⇒ iωνGn,n(k, iων) = k ·Gj,n(k, iων),

and after performing the analytic continuation iων → ω + iε+ we obtain a relation between the
physical response functions

iωG(R)
n,n(k, ω)− ik ·G(R)

j,n (k, ω) = 0 ⇒ ∂

∂t
G(R)
n,n(r, t) +∇ ·G(R)

j,n (r, t) = 0.

The last relation between the response functions, however, does guarantee the validity of the
continuity equation for the fluctuations generated by an arbitrary perturbing potential.
Baym and Kadanaoff [3] have investigated under which conditions the momentum conservation
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Fig. 8: Approximate Luttinger-Ward functional for the GW approximation.

law and the energy conservation law are obeyed as well, and Baym [4] has shown that this is
always true for a self-energy derived from an approximate Luttinger-Ward functional according
to (37). These derivations are more involved, however, so we do not present them here. A
famous example of a conserving approximation is the GW-approximation [13]. This can be
derived from an approximate Luttinger-Ward functional which contains only ‘bubble-diagrams,’
see Figure 8. As discussed by Negele-Orland, the symmetry factor of a bubble-diagram with n
bubbles is 2n, which explains the prefactors. Another famous conserving approximation is the
fluctuation-exchange approximation (or FLEX) [14], which uses a Luttinger-Ward functional
comprising bubbles and ladders and has been frequently applied to the Hubbard model.

5 Conclusion

To summarize, Luttinger and Ward found an expression for the grand canonical potential of
interacting Fermi systems, whereby a key step was the introduction of the Luttinger-Ward func-
tional. This turned out to have additional significance in that it allows the construction of con-
serving approximations. One issue that we did not touch upon in these notes is the relation
to cluster methods which are widely used today. Potthoff has shown [12] that a wide vari-
ety of these cluster methods, such as Dynamical Mean-Field Theory or the Dynamical Cluster
Approximation can be derived by making use of the stationarity of Ω under variation of Σ,
equation (35). All of this shows that the Luttinger-Ward functional is a concept of central im-
portance in many-body theory.
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A A theorem on Fourier transforms

Let f(t) be some function and f(ω) its Fourier transform. Then the Fourier transform of the
function g(t) = −iΘ(±t)f(t) is

g(ω) = ± 1

2π

∫ ∞
−∞

dω′
f(ω′)

ω − ω′ ± i0+
.

To see this we Fourier back-transform g(ω):

1

2π

∫ ∞
−∞

dω e−iωt g(ω) = ± 1

4π2

∫ ∞
−∞

dω e−iωt
∫ ∞
−∞

dω′
f(ω′)

ω − ω′ ± i0+
(41)

We first perform the integral over ω and use the trick of closing the integration path by an
infinitely large semicircle and use the theorem of residues. We denote ω = ω1 + iω2 so that
e−iωt = eω2te−iω1t. For t > 0 (t < 0) we therefore have to close in the lower (upper) half-
plane to guarantee that the semicircle gives no contribution to the integral. Let us for simplicity
consider the upper sign in (41). Then, as a function of ω the integrand has a pole at ω = ω′−i0+

and if we close in the upper half-plane, the integration path does not enclose this pole so that
the ω-integral vanishes. This happens for t < 0 so that the result will be proportional to Θ(t). If
we close along the lower half-plane the integration path encloses the pole in clock-wise fashion
so we get −2πi times the residue:

−iΘ(t)
1

2π

∫ ∞
−∞

dω′ e−iω
′tf(ω′) = −iΘ(t)f(t),

which proves the theorem.



12.26 Robert Eder

B A theorem on determinants

Here we prove the identity
∂ ln(detA)

∂Aij
= A−1ji .

We use Laplace’s formula and expand det(A) in terms of minors

det(A) =
∑
l=1,n

(−1)i+l AilMil .

Since none of the minors Mil contains the element Aij , we find

∂ ln(detA)

∂Aij
=

(−1)i+jMij

det(A)

Next, the ith column of A−1 is the solution of the equation system

Ac = ei

where ei is the ith column of the unit matrix. This has all elements equal to zero, except for the
ith, which is one. We use Cramer’s rule and find for the jth element of the ith column

A−1ji =
det(Āj)

det(A)
,

where Āj is the matrix where the jth column has been replaced by ei. Now we use again
Laplace’s formula for det(Āj) and obtain

A−1ji =
(−1)i+jMij

det(A)

which proves the theorem.
As an application we assume that the matrix elements of A are functions of some parameter α.
Then we find

∂ ln(detA)

∂α
=
∑
i,j

∂ ln(detA)

∂Aij

∂Aij
∂α

=
∑
i,j

A−1ji
∂Aij
∂α

= Tr

(
A−1

∂A

∂α

)
.
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