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1 The Hubbard model

The Hubbard model was proposed in the 1960s to describe electrons in 3d transition metals.
In these elements, the radial wave function of the 3d-electrons has a very small spatial extent.
Therefore, when the 3d shell is occupied by several electrons, these are forced to be close to one
another on the average so that the electrostatic energy is large. The energy of a given transition
metal ion therefore varies strongly with the number of electrons it contains. To study the mo-
tion of conduction electrons under the influence of this strong Coulomb repulsion Hubbard [1],
Kanamori [2], and Gutzwiller [3] proposed a simplified model. Thereby both, the five-fold de-
generacy of the 3d-orbital and the presence of other bands in the solid are neglected. Rather, one
considers a lattice of sites – whereby the geometry of the lattice is not really specified – with one
s-like orbital at each site. Orbitals on different sites are assumed to be orthogonal, but for not
too distant sites i and j there are nonvanishing matrix elements ti,j of the Hamiltonian between
the orbitals centered on these sites. The Coulomb interaction between electrons in orbitals on
different sites is neglected, but if two electrons – which then necessarily have opposite spin –
occupy the same orbital the energy is assumed to increase by the large amount U to simulate the
strong dependence of the energy on the occupation number. If we denote the creation operator
for an electron of spin σ in the orbital at lattice site i by c†i,σ the model thus can be written as

H =
∑
i,j

∑
σ

ti,j c
†
i,σcj,σ + U

∑
i

ni,↑ni,↓ = Ht +HU . (1)

Here ni,σ = c†i,σci,σ counts the number of electrons with spin σ in the orbital at site i.
After the discovery of the cuprate superconductors in 1987 and after Zhang and Rice demon-
strated [4] that the CuO2 planes in these compounds can be described by the so-called t-J model
– which is equivalent to the Hubbard model in the limit U/t � 1 – there was renewed interest
in the 2-dimensional Hubbard model. However, the lightly doped Mott-insulator – which most
probably is the system to be understood in order to solve the many puzzles posed by the cuprate
superconductors – is still far from being solved. Accordingly, the purpose of this lecture is to
present some of the basic approximations developed for this model.
We consider (1) for a two-dimensional square lattice with N sites, lattice constant a = 1, and
periodic boundary conditions. For hopping integrals −t between nearest ((1, 0)-like) neighbors
and −t′ between 2nd nearest ((1, 1)-like) neighbors the dispersion relation is

εk = −2t
(
cos(kx) + cos(ky)

)
− 4t′ cos(kx) cos(ky). (2)

The number of electrons with spin σ in the system is denoted by Nσ – whereby we are mostly
interested in the nonmagnetic case N↑ = N↓ – so that the number of electrons is Ne = N↑+N↓.
In the following, densities per site will be denoted n, e.g., n↑ = N↑/N . For ne = 1 we have
N↑ = N↓ = N/2 so that precisely half of the k-points for each spin direction are occupied and
we have a half-filled band, i.e., a metal in conventional band theory. Instead it will be shown
below that for sufficiently large U/t the Hubbard model describes an insulator, the so-called
Mott-insulator. The region of primary interest for cuprate superconductors is ne ≥ 0.8, i.e., the
lightly doped Mott-insulator, and U/t ≈ 10.
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2 Some notation and review of Green functions

We first introduce some notation that will be used frequently and give a brief review of imag-
inary time Green functions. There are numerous excellent textbooks on the use of field theory
for condensed matter physics where more details can be found [5–7].
The thermal average of any operator Ô is given by

〈Ô〉th =
1

Z
Tr
(
e−β(H−µN)Ô

)
(3)

with the grand partition function

Z = Tr
(
e−β(H−µN)

)
. (4)

Introducing the imaginary-time Heisenberg operator (with K = H − µN )

cα(τ) = eτK cα e
−τK ⇒ −∂cα(τ)

∂τ
= [cα(τ), K] (5)

the imaginary time Green function is defined as

Gα,β(τ) = −
〈
T cα(τ) c†β

〉
th

= −Θ(τ)
〈
cα(τ) c†β

〉
th

+Θ(−τ)
〈
c†β cα(τ)

〉
th

(6)

=
1

Z

(
−Θ(τ)

∑
i,j

e−β(Ei−µNi) eτ(Ei−Ej+µ)
〈
i
∣∣ cα∣∣j〉 〈j∣∣ c†β ∣∣i〉

+Θ(−τ)
∑
i,j

e−β(Ei−µNi) eτ(Ej−Ei+µ)
〈
i
∣∣ c†β ∣∣j〉 〈j∣∣ cα∣∣i〉

)
, (7)

where α, β denote some set of quantum numbers, |i〉 are the exact eigenstates of the system
with energies Ei and particle number Ni. Using ∂Θ(τ)

∂τ
= δ(τ) it follows from (5) and (6) that

the Green function obeys the equation of motion

− ∂

∂τ
Gα,β(τ) = δ(τ)

〈{
cα, c

†
β

}〉
th
−
〈
T [cα(τ), K] c†β

〉
th
. (8)

It follows from (7) that G is well-defined only if τ ∈ [−β, β] (the reason is that the Ei − µNi

are unbounded from above [8]) and that for τ ∈ [−β, 0] one has G(τ + β) = −G(τ). It follows
that G(τ) has the Fourier transform (see equation (25.10) in [6] with ~ = 1)

G(τ) =
1

β

∞∑
ν=−∞

e−iωντG(iων), G(iων) =

∫ β

0

dτ eiωντ G(τ), ων =
(2ν + 1)π

β
. (9)

The iων are the (Fermionic) Matsubara frequencies. Inserting (7) into (9) one obtains

Gαβ(iων) =
1

Z

∑
i,j

e−β(Ei−µNi) + e−β(Ej−µNj)

iων + µ− (Ej − Ei)
〈
i
∣∣ cα∣∣j〉〈j∣∣ c†β ∣∣i〉. (10)

We specialize to a single band and assume that the z-component of the spin is a good quantum
number so that the Green function is a scalar and α = β = (k, σ). The function G(k, iων)



6.4 Robert Eder
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Fig. 1: The Green function G(ω) for real ω. The dashed vertical lines give the poles, ωi.

can be analytically continued to the whole complex frequency plane by replacing iων → z

where z is any complex number. As can be seen from (10) the function G(z) is analytic in the
complex z-plane except for the real axis where it has simple poles at z = Ej −Ei−µ. It is this
property on which the usefulness of the imaginary-time Green function is based: the analytic
continuation of its Fourier transform G(z) can be evaluated along a line infinitesimally above
the real axis and then gives the Fourier transform of the retarded real-time Green function –
from which the single-particle spectral function A(k, ω), i.e., the combined photoemission and
inverse photoemission spectrum of a system can be obtained:

A(k, ω) = − 1

π
Im G(k, ω + i0+) .

For this reason the Fourier transform (10) is often called ‘the’ Green function. Equation (10) is
the Lehmann representation of the Green function.
It is shown in textbooks of field theory [5–7] that the imaginary-time Green function can be
expanded in Feynman diagrams (whereas such an expansion is not possible for the real-time
Green function at finite temperature) and the self-energy Σ(k, z) can be introduced as usual:(

z + µ− εk −Σ(k, z)
)
G(k, z) = 1 . (11)

Next we discuss the analytical structure of the Green function and the self energy. It can be seen
from (10) that the Fourier transform of the Green function has the general form

G(z) =
∑
i

αi
z − ωi

,

where the αi and ωi are real numbers. Along the real axis G(ω) therefore looks like in Fig. 1.
This shows that in between any two successive poles ωi and ωi+1 the Green function crosses
zero with a negative slope

G(ω) ≈ −βi(ω − ζi).
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Near the crossing point ζi we thus have

Σ(ω) = −G−1(ω) + ω + µ− εk =
σi

ω − ζi
+ . . .

where σi = 1/βi. The self-energy thus has poles on the real axis as well, and these poles are
‘sandwiched’ in between the poles of the Green function. Luttinger has shown [9] that Σ(ω)

is essentially determined by these poles and their residua in that it can be written in the whole
complex frequency plane as

Σ(z) = VHF +
∑
i

σi
z − ζi

(12)

where VHF is equal to the Hartree-Fock potential (or rather its Fourier coefficient with the
proper momentum).

3 The Hubbard dimer: solution by exact diagonalization

As a first example we consider the Hubbard model on a dimer

H = −t
∑
σ

(
c†1,σc2,σ + c†2,σc1,σ

)
+

2∑
i=1

ni,↑ni,↓. (13)

This can be solved by exact diagonalization , i.e., by constructing a basis of the entire Hilbert
space, setting up the Hamilton matrix in this basis and diagonalizing it. The Hamiltonian (13)
is invariant under the exchange of the site indices, 1 ↔ 2, so that we can classify eigenstates
by their parity P under this operation. Alternatively, we might view (13) as describing a ‘2-site
ring with periodic boundary conditions’ and hopping integral t/2. Such a 2-site ring has two
allowed momenta, k = 0 and k = π. The exchange of sites is equivalent to a translation by one
lattice site, and since the definition of a Bloch state ψk with momentum k is TR ψk = eikR ψk it
follows that P = 1 is equivalent to k = 0, whereas P = −1 means k = π. In the following we
will always consider parity and momentum as interchangeable.
The Hilbert space can be decomposed into sectors with fixed electron number Ne, z-component
of spin Sz, and parity P . We first consider the sector withNe = 2 and Sz = 0, i.e., two electrons
with opposite spin, which is equivalent to ‘half filling’. The basis states with P = ±1 are:

|1±〉 =
1√
2

(
c†1,↑c

†
2,↓ ± c

†
2,↑c
†
1,↓

)
|0〉,

|2±〉 =
1√
2

(
c†1,↑c

†
1,↓ ± c

†
2,↑c
†
2,↓

)
|0〉. (14)

For the ground state with P = +1 we make the ansatz |ψ0〉 = u|1+〉 + v|2+〉. The relevant
matrix elements are 〈1+|H|2+〉 = −2t, 〈1+|H|1+〉 = 0 and 〈2+|H|2+〉 = U , so that the ground
state energy E0 and the coefficients u and v can be obtained by solving the eigenvalue problem(

0 −2t

−2t U

)(
u

v

)
= E0

(
u

v

)
.
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We find E0 = U
2
−W with W =

√(
U
2

)2
+ 4t2 and

u = −

√
W + U

2

2W
, v =

−2t√
2W (W + U

2
)
. (15)

Both |1+〉 and |2+〉 are spin singlets so that |ψ0〉 is a singlet as well. For the states with P = −1

we have 〈1−|H|2−〉 = 0, whence the eigenstates are |1−〉with energy 0 and |2−〉with energy U .
|1−〉 is a spin triplet and the remaining two members of the triplet are c†1,↑c

†
2,↑|0〉 and c†1,↓c

†
2,↓|0〉.

Both states are in fact the only basis states in the sectors Ne = 2, Sz = ±1 and P = −1

and hence are eigenstates by construction with energy 0. In the limit U/t → ∞ we have
W → U

2
+ 4t2

U
. The low energy spectrum of the dimer with two electrons then consists of four

states: the spin singlet with energy −4t2

U
and the three members of the triplet with energy 0. We

can thus describe the dimer by an effective low energy Hamiltonian of the form

H = J
(
S1 · S2 −

n1n2

4

)
where ni =

∑
σ c
†
i,σci,σ is the operator of electron number and Si = 1

2

∑
σ,σ′ c

†
i,στσ,σ′ci,σ the

operator of electron spin at site i (τ denotes the vector of Pauli matrices) and J = 4t2

U
– this is

nothing but the Heisenberg antiferromagnet.
We can also construct states with Ne = 1, 3 and given parity and z-spin σ = ±1

2
:

|3±, σ〉 =
1√
2

(
c†1,σ ± c

†
2,σ

)
|0〉,

|4±, σ〉 =
1√
2

(
c†1,σc

†
2,↑c
†
2,↓ ± c

†
2,σc

†
1,↑c
†
1,↓

)
|0〉.

Since these states are the only ones in their respective (Ne, Sz, P ) sector they are again eigen-
states by construction and indeed H|3±, σ〉 = ∓t|3±, σ〉 and H|4±, σ〉 = (U ± t)|4±, σ〉. The
energies of the single-electron states can be written in the familiar form εk = 2 t

2
cos(k) ex-

pected for a two-site ring with periodic boundary conditions and hopping integral t
2
. Having

found all eigenstates |j〉 and their energies Ej we can write down the Green function G(k, ω)

using the Lehmann representation (10). Thereby we simplify matters by taking the limit of
low temperature and assuming that the chemical potential µ has been chosen such that the
thermal occupation factor e−βEj/Z is unity for |j〉 = |ψ0〉 and zero for all other states (this
can be achieved by setting, e.g., µ = U

2
). Defining electron operators with definite parity by

c±,σ = 1√
2
(c1,σ ± c2,σ) we find

c±,σ|ψ0〉 =
1

2

(
c†1,σ ± c

†
2,σ

)(
u
(
c†1,↑c

†
2,↓ + c†2,↑c

†
1,↓

)
+ v

(
c†1,↑c

†
1,↓ + c†2,↑c

†
2,↓

))
|0〉

=
±u+ v√

2
|3±, σ̄〉,

c†±,σ|ψ0〉 =
∓u+ v√

2
|4±, σ〉,
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Fig. 2: Single particle spectral function and imaginary part of the self-energy for the Hubbard
model with U/t = 10, δ-functions have been replaced by Lorentzians. Left: for the dimer, right
for the 16 and 18-site cluster with periodic boundary conditions (reprinted with permission
from [10], Copyright 2011 by the American Physical society). The dots correspond to ζk =
U
2
− µ− εk.

and using (15) for u and v we find the squared matrix elements

|〈3±, σ̄|c±,σ|ψ0〉|2 =
1

2
± t

W
, |〈4±, σ|c†±,σ|ψ0〉|2 =

1

2
∓ t

W
.

Using (10) the Fourier transform of the Green function G±(ω) = −
〈
T c±(τ)c†±

〉
is

G±(ω) =
1
2
± t

W

ω + µ− (E0 ± t)
+

1
2
∓ t

W

ω + µ− (U ± t− E0)
.

Here the first term corresponds to |j〉 = |ψ0〉, whereas the second term corresponds to |i〉 = |ψ0〉
in (10). Equating G−1

± (ω) = ω + µ± t−Σ±(ω) we can now solve for the self energy:

Σ±(ω) =
U

2
+

(
U
2

)2

ω + µ∓ 3t− U
2

.

Σ±(ω) is indeed consistent with the general form (12) and the additive constant U/2 is indeed
the Hartree-Fock potential. For the dimer Σ±(ω) has only a single pole of strength (U/2)2

which does have a substantial dispersion, in that its positions for k = 0 and k = π differ by
a full 6t. Plots of A(k, ω) and the imaginary part of Σ(k, ω) are given in Figure 2. The part
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of A(k, ω) for ω < 0 gives the photoemission spectrum (PES) whereas the part for ω > 0

is the inverse photoemission spectrum (IPES). PES and IPES form two ‘bands’ separated by
an energy gap of ≈ U – these are the lower and upper Hubbard band. The pole of the self
energy is within the Hubbard gap and its dispersion is downward as one goes from k = 0 to
k = π, that means ‘inverted’ as compared to that of the energy εk. Interestingly, some of the
features observed in the dimer generalize to larger systems. Figure 2 also showsA(k, ω) and the
imaginary part of Σ(k, ω) for the allowed momenta of the 16- and 18-site cluster which were
obtained by Lanczos diagonalization [10]. In A(k, ω) one can again recognize the lower and
upper Hubbard band – for the larger clusters these ‘bands’ consist not only of sharp peaks but
contain extended incoherent continua. As was the case for the dimer, Σ(k, ω) has an isolated
peak of strength ∝ (U/2)2 within the Hubbard gap. Over a large part of the Brillouin zone this
peak has a smooth dispersion which closely follows the ‘inverted’ band dispersion, ζk = U

2
−εk.

4 Spin density wave theory

Next, we discuss spin density wave theory which is a mean-field theory and which is reasonably
successful in describing the antiferromagnetic phase of the Hubbard model. By comparing the
result of applying both sides to the four possible states of a single atom – |0〉, | ↑〉, | ↓〉 and | ↑↓〉
– it is easy to verify that

U ni,↑ni,↓ =
niU

2
− 2U

3
S2
i .

This equation shows that the system can lower its Coulomb energy by forming magnetic mo-
ments, 〈S2

i 〉 6= 0, where 〈. . . 〉 denotes the expectation value. These magnetic moments may
be either static – so that 〈Si〉 6= 0 – or fluctuating, i.e., 〈Si〉 = 0. An example for fluctuating
moments is provided by the Hubbard dimer discussed above. Namely for the ground state |ψ0〉
of the dimer

Sz1 |ψ0〉 = Sz1

(
u√
2

(
c†1,↑c

†
2,↓ + c†2,↑c

†
1,↓

)
+

v√
2

(
c†1,↑c

†
1,↓ + c†2,↑c

†
2,↓

))
=

u

2
√

2

(
c†1,↑c

†
2,↓ − c

†
2,↑c
†
1,↓

)
S2

1 |ψ0〉 =
3u

4
√

2

(
c†1,↑c

†
2,↓ + c†2,↑c

†
1,↓

)
,

so that indeed 〈ψ0|Sz1 |ψ0〉 = 0 but 〈ψ0|S2
1 |ψ0〉 = 3u2

4
(it is easy to shows that 〈ψ0|Sx1 |ψ0〉 =

〈ψ0|Sy1 |ψ0〉 = 0 as well and everything also holds true for site 2).
Spin density wave theory, on the other hand, assumes static moments, 〈Si〉 6= 0. Based on the
results for the Hubbard dimer, which showed that the spins have antiferromagnetic correlations,
we expect that these static magnetic moments prefer to be antiparallel on neighboring sites. For
a 2D square lattice this requirement defines the Néel state: we choose

〈ni,↑〉 =
ne
2

+
m

2
eiQ·Ri

〈ni,↓〉 =
ne
2
− m

2
eiQ·Ri

⇒ 〈ni〉 = ne and 〈Szi 〉 =
m

2
eiQ·Ri .
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HereQ = (π, π) and the exponential eiQ·Ri is +1 (−1) if the sum of x- and y-component of the
site i is even (odd) which defines the sublattices A (with eiQ·Ri = 1) and B (with eiQ·Ri = −1).
We consider the trivial decomposition ni,σ = 〈ni,σ〉+ δni,σ, where the operator δni,σ = ni,σ −
〈ni,σ〉 describes fluctuations of ni around its mean value The basic assumption of all mean-field
theories is that these fluctuations are ‘small’. Accordingly, when forming the product Uni,↑ni,↓
the ‘2nd order term’ δni,↑ · δni,↓ is discarded, so that the interaction term becomes

U
∑
i

ni,↑ni,↓ → U
∑
i

(
ni,↑ 〈ni,↓〉+ ni,↓〈ni,↑〉 − 〈ni,↑〉〈ni,↓〉

)
=

neU

2

∑
i,σ

ni,σ −
mU

2

∑
i

eiQ·Ri(ni,↑ − ni,↓)−NU
n2
e −m2

4
.

Switching to Fourier transformed operators the mean-field Hamiltonian KMF = HMF − µN
becomes

KMF =
∑
k,σ

ε̃k c
†
k,σck,σ −∆

∑
k

(
c†k+Q,↑ck,↑ − c

†
k+Q,↓ck,↓

)
−NU n2 −m2

4
, (16)

where ε̃k = εk + neU
2
− µ and ∆ = mU

2
. The term ∝ ∆ appears to be non-Hermitian at first

glance. However, by shifting the summation variable k→ k + Q and noting that k + 2Q = k

one can see that the term is in fact its own Hermitian conjugate.
The Hamiltonian (16) is quadratic in the Fermion operators and thus can be diagonalized by a
unitary transformation. In a second step, the value of m is determined by recomputing 〈ni,σ〉
from this solution and demanding self-consistency. We will now carry out this program thereby
following Gorkov’s re-derivation of BCS theory [11] in terms of the imaginary time Green
functions introduced in the first section.
We define the Green function Gσ(k, τ) = −〈T ck,σ(τ)c†k,σ〉 and with the Hamiltonian (16) its
equation of motion is

− ∂

∂τ
Gσ(k, τ) = δ(τ)〈{c†k,σ, ck,σ}〉 − 〈T [ck,σ(τ), KMF ]c†k,σ〉

= δ(τ) + ε̃k Gσ(k, τ)∓∆ G̃σ(k, τ) ,

where the upper sign holds for σ =↑ and we have introduced the anomalous Green function
G̃σ(k, τ) = −〈T ck+Q,σ(τ)c†k,σ〉. In a nonmagnetic system G̃σ(k, τ) would be zero due to
momentum conservation but in a magnetic system it can be different from zero. Its equation of
motion is

− ∂

∂τ
G̃σ(k, τ) = δ(τ)〈{c†k,σ, ck+Q,σ}〉 − 〈T [ck+Q,σ(τ), KMF ]c†k,σ〉

= ε̃k+Q G̃σ(k, τ)∓∆ Gσ(k, τ) .

The system of equations of motion therefore closes and upon Fourier transformation with re-
spect to τ – whereby −∂τ → iων – and becomes(

iων − ε̃k ±∆
±∆ iων − ε̃k+Q

) (
Gσ(k, iων)

G̃σ(k, iων)

)
=

(
1

0

)
. (17)
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Next we recall [12] that for any complex number a and any complex vector b:

(a1 + b · τ )(a1− b · τ ) = a2 − b2 ⇒ (a1 + b · τ )−1 =
a1− b · τ
a2 − b2

.

Defining

ζk =
1

2
(ε̃k + ε̃k+Q) , ηk =

1

2
(ε̃k − ε̃k+Q) , (18)

the 2×2 coefficient matrix H on the left hand side of (17) can be brought to the form a1+b ·τ
with a = iων − ζk and b = (±∆, 0,−ηk). Multiplying both sides of (17) by H−1 we obtain

Gσ(k, iων) =
iων − ε̃k+Q

(iων − ζk)2 −W 2
k

=
Z

(−)
k

iων − E(−)
k

+
Z

(+)
k

iων − E(+)
k

,

G̃σ(k, iων) =
∓∆

(iων − ζk)2 −W 2
k

=
∓∆

(iων − E(−)
k )(iων − E(+)

k )
, (19)

where W 2
k = η2

k +∆2 and we have introduced the quasiparticle energies and weights

E
(±)
k = ζk ±Wk Z

(±)
k =

1

2

(
1± ηk

Wk

)
. (20)

From the expression for G we obtain the single particle spectral function

A(k, ω) = Z
(−)
k δ(ω − E(−)

k ) + Z
(+)
k δ(ω − E(+)

k ).

Rather than a single band with dispersion εk and weight 1, SDW theory thus predicts two bands
with a reduced and k-dependent spectral weight. Figure (3) shows A(k, ω) obtained by evalu-
ating (19) for different values of ∆. Increasing ∆ opens a gap in the original band. For small
∆ the spectral weight of the bands has a substantial k-dependence and for the photoemission
spectrum (ω < 0) drops sharply upon crossing the noninteracting Fermi surface at (π

2
, π

2
). So

far we have carried out the first step, the solution of the mean-field Hamiltonian. In the second
step we have to recompute 〈Si〉 from this solution. We note that for any site i

ne = 〈ni,↑ + ni,↓〉 and m = 〈ni,↑ − ni,↓〉 eiQ·Ri .

We sum this over i, divide by N , and switch to Fourier transformed c-operators:

ne =
1

N

∑
k

〈
c†k,↑ck,↑ + c†k,↓ck,↓

〉
=

1

N

∑
k

(
G↑(k, τ = 0−) +G↓(k, τ = 0−)

)
=

2

N

∑
k

G↑(k, τ = 0−)

m =
1

N

∑
k

〈
c†k+Q,↑ck,↑ − c

†
k+Q,↓ck,↓

〉
=

1

N

∑
k

(
G̃↑(k, τ = 0−)− G̃↓(k, τ = 0−)

)
=

2

N

∑
k

G̃↑(k, τ = 0−) , (21)
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Fig. 3: Single particle spectral function A(k, ω) along (0, 0) → (π, π) as obtained by spin
density wave mean-field theory for different values of ∆ = mU

2
and half-filling. The original

band dispersion is that of eqn. (2) with t = 1 and t′ = 0. The part for ω < 0 (ω > 0) gives the
photoemission (inverse photoemission) spectrum.

where we shifted the summation variable k → k + Q and used (19) in the equation for m.
Inserting the Fourier expansion (9) and using (19) for the Green functions we obtain

ne =
2

N

∑
k

(
− 1

β

)∑
ν

eiων0+

(
−Z(−)

k

iων − E(−)
k

+
−Z(+)

k

iων − E(+)
k

)
,

m =
2

N

∑
k

(
− 1

β

)∑
ν

eiων0+ ∆

(iων − E(−)
k )(iων − E(+)

k )
.

We now replace the sum over Matsubara frequencies by a contour integration, which is a stan-
dard technique in field theory (see, e.g., section 25 of [6]). Namely for any function F (ω) which
is analytic along the imaginary axis we have

− 1

β

∑
ν

F (iων) =
1

2πi

∮
C
dω f(ω) F (ω)

where
f(ω) =

1

eβω + 1
,

is the Fermi function and the contour C encircles the imaginary axis in counterclockwise fash-
ion, see Fig. 4(a). This replacement makes use of the theorem of residues and the easily verified
fact that the Fermi function f(ω) has simple poles with residuum −1/β at all Matsubara fre-
quencies iων . Next we note that the integrals along the two clover-shaped contours in Fig. 4(b)
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(c)(b)(a)

Fig. 4: Since the integrals along the two contours in (b) are zero and the contributions from the
circular arcs vanish, the integral along the contour in (a) is equal to that over contour (c).

are zero, provided the integrand is analytic in the interior of the two curves. Since the Fermi
function f(ω) has all of its poles along the imaginary axis, whereas the Green function has its
poles on the real axis, both of which are outside of the curves in Fig. 4(b), this is certainly true.
Next, Jordan’s lemma can be invoked to establish that the integrals along the large semicircles
vanish. Here the Fermi function f(ω) guarantees that the contribution from the semicircle with
Re(ω) > 0 vanishes, whereas the factor eω0+ does the same for the semicircle with Re(ω) < 0

(which also shows that it was necessary to keep this factor). It follows that the integral along
the contour C in Fig. 4(a) is equal to that along the contour C ′ in Fig. 4(c) (note the inverted di-
rection of the curves in (c) as compared to (b)!). The contour in Fig. 4(c) encircles the real axis
clockwise – it follows from the theorem of residues that the contour integral is (−2πi) times
the sum of the residua of the respective f(ω)F (ω) at its two poles at E(±)

k . Using the definition
∆ = mU

2
we thus obtain

ne =
2

N

∑
k

(
Z

(−)
k f(E

(−)
k ) + Z

(+)
k f(E

(+)
k )
)

1 =
U

N

∑
k

1

2Wk

(
f(E−k )− f(E+

k )
)
.

It follows from (2) that ζk = 4t′ cos(kx) cos(ky) + U
2
− µ and ηk = −2t (cos(kx) + cos(ky)).

Moreover, ζk+Q = ζk and ηk+Q = −ηk, so that Wk+Q = Wk. Next, (20) shows that Z(±)
k+Q =

Z
(∓)
k , Z(±)

k+Q +Z
(±)
k = 1 and E(±)

k+Q = E
(±)
k . These relations makes it possible to restrict the sum

over momenta in (22) and (23) to the antiferromagnetic Brillouin zone (AFBZ) and we obtain

ne =
2

N

∑
k∈AFBZ

(
f(E

(−)
k ) + f(E

(+)
k )
)
, (22)

1 =
U

N

∑
k∈AFBZ

1

Wk

(
f(E−k )− f(E+

k )
)
. (23)

For given εk, U and ne we now have a complete description of the system. For a qualitative
discussion, let us assume that the lower band is completely occupied (i.e. f(E

(−)
k ) = 1) and the
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upper one completely empty (i.e. f(E
(+)
k ) = 0). Since the number of momenta in the AFBZ is

N
2

this implies ne = 1 – or ‘half-filling’. In the paramagnetic phase ne = 1 would correspond
to a half-filled band whereas SDW theory gives an antiferromagnetic insulator. Since ∆ = mU

2

we expect ∆/t→∞ as U/t→∞. It follows that Wk → ∆ so from (23) we obtain m→ 1 in
this limit, which means the fully polarized Néel state. For an electron density ne = 1− δ and in
the limit T → 0 the fraction of momenta in the AFBZ which are occupied is 1− δ as well – put
another way, we have hole pockets which cover a fraction of δ of the AFBZ, and consequently,
in the original zone scheme, also a fraction of δ of the full Brillouin zone. Interestingly, in a
doped semiconductor – with electron density ne = 2− δ – the hole pockets would cover only a
fraction of δ/2 of the Brillouin zone.
The equation for the temperature where m starts to deviate from zero – the so-called Néel
temperature TN – can be obtained by taking the limit m→ 0 whence Wk → |ηk|. Inserting this
one finds that TN is determined by the equation

1 = −U
N

∑
k

f(εk+Q)− f(εk)

εk+Q − εk
.

Note that the left hand side is guaranteed to be positive because f(ω) is a monotonously decreas-
ing function of its argument and that the temperature appears implicitly in the Fermi functions.
Let us assume that we keep the temperature constant and increase U starting from zero. We ask
under what conditions ordering sets in for an as low U as possible. In order for the k-sum to
be large, there must be many pairs (k,k +Q) such that their energies are close to one another
and such that both momenta are close to the Fermi surface – because only then the difference of
Fermi functions can be appreciable. This gives us the condition of Fermi surface nesting: the
ordering vectorQ must connect as long sections of the Fermi surface as possible.
For the general case the system of equations (22) and (23) can be solved by starting with some
value min, determining µ such that (22) gives the correct electron density, and then evaluating
mout from (23). By scanning min one can then determine the value where mout = min. Fig. 5
shows some results obtained in this way. A detailed discussion of the resulting phase diagram
of the Hubbard model for various band fillings and values of the hopping integrals t and t′ can
be found, e.g., in Refs. [14] – here we do not discuss this in detail.
As already mentioned the above derivation was originally invented by Gorkov to re-derive the
BCS theory of superconductivity [11] and can be easily generalized to any mean-field theory.
The formulation in terms of Green functions makes it easy to include the effects of disorder
or spatial variations and the various techniques applied above – such as the use of equations
of motion, expressing the order parameter in terms of the anomalous Green function and the
evaluation of sums by contour integration – are applied again and again in many papers on
advanced problems in superconductivity.
SDW theory describes some features of undoped cuprate superconductors and related com-
pounds correctly, but fails even qualitatively in many aspects. For example, the ‘parent com-
pound’ compounds La2CuO4 indeed is an antiferromagnetic insulator with a Néel temperature
of around 300 K. SDW theory also qualitatively reproduces the phenomenon of the ‘remnant
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Fermi surface’ [13]. The phrase describes the experimental observation that the intensity of
the quasiparticle band observed in ARPES experiments on undoped CuO-compounds such as
Sr2CuO2Cl2 drops sharply when crossing the noninteracting Fermi surface, precisely as seen
in the spectra in Fig. 3. However, to reproduce the sharpness of the drop seen in experiment
would require values of ∆ which would be much too small to reproduce the magnitude of the
insulating gap.
Moreover, contrary to the predictions of SDW theory the insulating gap does not go to zero at
the Néel temperature but is essentially temperature independent - which is the hallmark of a
true Mott-insulator. Moreover, for doped compounds such as La2−xBaxCuO4 static antiferro-
magnetic order disappears already for hole concentrations of a few percent whereby again the
Hubbard gap observed in the insulator persists with practically unchanged magnitude. What we
therefore really need to describe is a paramagnetic system with a Hubbard gap and this will be
the objective of the next section.

5 The Hubbard-I approximation

This is the ‘defining approximation’ of the Mott-insulator by which Hubbard for the first time
introduced central concepts of strongly correlated electron systems such as the two Hubbard
bands [1]. In the following we first give a sloppy re-derivation which is meant to clarify the
physical content of the Hubbard-I approximation and then present Hubbard’s rigorous deriva-
tion in terms of Green functions.
We consider the limit of finite U and ti,j = 0, N↑ = N↓ = N/2 so that Ne = N . The ground
state has one electron per lattice site and the energy is E = 0. Since the spin of the electron at
any given site is arbitrary this ground state is highly degenerate. We ignore this degeneracy and
assume that there is a unique state |Ψ0〉 which may be thought of as a suitable superposition of
all these degenerate states and which we assume to be ‘disordered’ – it will become clear in a
moment what this means.
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Next we assume that a small but finite ti,j is switched on. Then, an electron of spin σ can be
transferred from a site j to another site i resulting in an empty site at j and a double occupancy
at site i. The energy thereby increases by U . The hopping process is possible only if the electron
which was originally at the site i has the spin −σ and since our initial state |Ψ0〉 is ‘disordered’
the probability for this to be the case is 1/2 – which is the definition of ‘disordered’. We
now interpret the original state |Ψ0〉 as the vacuum – denoted by |0〉 – of our theory and the
state created by the hopping process as containing a Fermionic hole-like particle at j and a
Fermionic double-occupancy-like particle at site i: d†i,σh

†
j,−σ|0〉. The order of the Fermionic

operators in this state is due to the fact that in the original hopping term the annihilation operator
cj,σ which creates the hole stands to the right of the creation operator c†i,σ which creates the
double occupancy. Moreover we assign the negative spin to the operator which creates the hole
because replacement of, e.g., an ↑-electron by a hole decreases the z-spin by 1/2. We obtain
the following Hamiltonian to describe the holes and double occupancies:

Heff,1 =
1

2

∑
i,j

∑
σ

(
ti,j d

†
i,σh

†
j,−σ +H.c.

)
+ U

∑
i,σ

d†i,σdi,σ . (24)

Once a hole and a double occupancy have been created, each of these particles may be trans-
ported further by the hopping term. If we assume that the surplus or missing electron retains its
spin – which means that the double occupancies and holes propagate without ‘leaving a trace’
of inverted spins – for example a surplus ↑-electron can hop from site i to site j only if the spin
at site j is ↓ – we again have the probability 1/2 for this process. We therefore can write down
the second term terms for the effective Hamiltonian

Heff,2 =
1

2

∑
i,j

∑
σ

ti,j

(
d†i,σdj,σ − h

†
i,−σhj,−σ

)
. (25)

The negative sign of the hopping term for holes is due to the fact that the original hopping term
has to be rewritten as −ti,jcj,σc

†
i,σ to describe the propagation of a hole. Addition of (24) and

(25) and Fourier transformation gives

Heff =
∑
k,σ

((εk
2

+ U
)
d†k,σdk,σ −

εk
2
h†k,σhk,σ

)
+
∑
k,σ

εk
2

(
d†k,σh

†
−k,−σ +H.c.

)
, (26)

where εk is the Fourier transform of ti,j . Note that this now is a quadratic form where the
Coulomb interaction is described by the extra energy of U for the double-occupancy-like ‘par-
ticle’. Via the unitary transformation

γ−,k,σ = uk dk,σ + vk h
†
−k,−σ

γ+,k,σ = −vk dk,σ + uk h
†
−k,−σ (27)

this can be solved, resulting in the dispersion relations for the lower and upper Hubbard band

E
(±)
k =

1

2

(
εk + U ±

√
ε2
k + U2

)
. (28)
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In the limit U/t� 1 this simplifies to Ek,− = εk
2

, Ek,+ = εk
2

+U so that the original band with
dispersion εk is split into two bands, separated by a gap of U and each having half of the original
width. Qualitatively this is similar to the exact result for the Hubbard dimer. For the case of
particle-hole symmetry the chemical potential is U/2 so that the lower band is completely filled,
the upper one completely empty. Rather than being a metal – as expected for the situation of
a half-filled band – the presence of the Coulomb interaction turns the system into an insulator.
From the above we can see that this is the consequence of ‘expanding around’ the hypothetical
‘vacuum state’ |Ψ0〉 with one electron per site so that we obtain a dilute gas of hole-like and
double-occupancy-like particles which are created in pairs and propagate, whereby the double-
occupancies have a large ‘energy of formation’ of U .
Next, we derive these results in a more rigorous fashion thereby following Hubbard’s original
paper [1]. We split the electron operator into two components

ci,σ = ci,σni,−σ + ci,σ(1− ni,−σ) = d̂i,σ + ĉi,σ, (29)

which obey [d̂i,σ, HU ] = Ud̂i,σ and [ĉi,σ, HU ] = 0. Next we define the four Green functions

Gα,β(k, τ) = −
〈
T αk,σ(τ)β†k,σ

〉
, (30)

where α, β ∈ {ĉ, d̂}. These obey the equations of motion

− ∂

∂τ
Gα,β(~k, τ) = δ(τ)

〈{
β†k,σ, αk,σ

}〉
−
〈
T [αk,σ(τ), H] β†k,σ

〉
.

The commutators [αk,σ, HU ] are trivial but the commutators with the kinetic term Ht are in-
volved. After some algebra – thereby using the identity ni,σ=ni

2
+ σSzi - we find:

[ĉi,↑, Ht] =
∑
j

tij

[(
1− ne

2

)
cj,↑ + (cj,↑S

z
i + cj,↓S

−
i )− 1

2
cj,↑(ni − ne) + c†j,↓ci,↓ci,↑

]
,

[d̂i,↑, Ht] =
∑
j

tij

[
ne
2
cj,↑ − (cj,↑S

z
i + cj,↓S

−
i ) +

1

2
cj,↑(ni − ne)− c†j,↓ci,↓ci,↑

]
. (31)

The first term on the r.h.s describes the ‘simple’ propagation of the hole. The second term is
the contraction of the spin-1 operator Si and the spinor cj,σ into a spin-1/2 object. It describes
how a hole moves to site j but leaves behind a spin-excitation at site the i. Similarly, the third
term describes hopping combined with the creation of a density excitation at site j whereas the
last term describes the coupling of a pair-excitation (this would be important for negative U ).
The Hubbard-I approximation is obtained by keeping only the first term in each of the square
brackets on the respective right hand side – obviously a rather crude approximation. After
Fourier transformation we obtain

[ĉk,↑, H] ≈
(

1− ne
2

)
εk (ĉk,↑ + d̂k,↑) − µ ĉk,↑

[d̂k,↑, H] ≈ ne
2

εk (ĉk,↑ + d̂k,↑) + Ud̂k,↑ − µ d̂k,↑ .
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Using the anticommutation relations {d̂†i,σ, d̂i,σ} = ni−σ, {ĉ†i,σ, ĉi,σ} = (1−ni−σ), {d̂†i,σ, ĉi,σ} =

{ĉ†i,σ, d̂i,σ} = 0 and putting 〈ni,σ〉 = ne
2

we obtain the Fourier transformed equations of motion:(
iων + µ− (1− ne

2
)εk −(1− ne

2
)εk

−ne
2
εk iων + µ− ne

2
εk − U

)(
Gĉ,ĉ Gĉ,d̂

Gd̂,ĉ Gd̂,d̂

)
=

(
1− ne

2
0

0 ne
2

)
.

We now use the identity (which holds for any 2× 2 matrix)(
a b

c d

)−1

=
1

ad− bc

(
d −b
−c a

)

to solve for the Green function matrix G(k, ω). Since ck,σ = ĉk,σ + d̂k,σ the usual electron
Green function G(k, ω) is G = Gĉ,ĉ +Gĉ,d̂ +Gd̂,ĉ +Gd̂,d̂, which can be brought to the form

G(k, ω) =
Z

(−)
k

ω − E(−)
k

+
Z

(+)
k

ω − E(+)
k

=
1

ω + µ− εk −Σ(ω)
(32)

whereby (with Wk =
√
U2 + ε2

k − 2(1− ne)εkU ):

E
(±)
k =

1

2
(U + εk ±Wk)− µ , Z

(±)
k =

1

2

(
1± εk − (1− ne)U

W

)
,

and the self-energy in Hubbard-I approximation is given by

Σ(ω) =
ne
2
U +

ne
2

(
1− ne

2

) U2

ω + µ− (1− ne
2

)U
.

The additive constant ne
2
U indeed is the Hartree-Fock potential and there is a single dispersion-

less pole whose strength is
(
U
2

)2 at half-filling, ne = 1
2
. The pole strength thus agrees with the

exact solution for the dimer but the lack of dispersion shows that the Hubbard-I approximation
would fail already for the Hubbard dimer.
If we specialize to half-filling and put ne = 1 the quasiparticle energies become

E
(±)
k =

1

2

(
U + εk ±

√
ε2
k + U2

)
− µ.

This is (up to the term µ) consistent with the result (28) obtained from the heuristic Hamiltonian
(26), thus demonstrating the equivalence of this simple picture with the Hubbard-I approxima-
tion. In order to fix the chemical potential for electron densities ne < 1 we write the operator
of electron number as

N̂e = 2
∑
i

ni,↑ni,↓ +
∑
i

(
ni,↑(1− ni,↓) + ni,↓(1− ni,↑)

)
=
∑
i,σ

(
d̂†i,σd̂i,σ + ĉ†i,σ ĉi,σ

)
.

The electron density ne thus can be expressed in terms of the Green functions (30) as

ne =
2

N

∑
k

(
Gd̂,d̂(k, τ = 0−) +Gĉ,ĉ(k, τ = 0−)

)
, (33)
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Fig. 6: Left: Single particle spectral function obtained from the Greens function (32) for two
different electron densities. The Fermi energy is zero. Right: X-ray luminescence spectra
for La2−xSrxCuO4 show the unoccupied part of the lower Hubbard-band (A) and the upper
Hubbard-band (B). With decreasing ne ≈ 1− x the upper Hubbard-band rapidly looses inten-
sity. Reprinted with permission from [15], Copyright 1991 by the American Physical society.

which is analogous to the expression (21) and can be evaluated by the same procedure. To
simplify matters we specialize to the limit t/U � 1 and close to half-filling, ne = 1 − δ with
δ � 1. The dispersion relation of the lower band then is

E
(−)
k ≈ 1 + δ

2
εk −

ε2
k

4U
+ . . .

where . . . denotes terms of higher order in the small quantities. For not too large t′ this has
its maximum at (π, π). Assuming that the upper band is high above the chemical potential, the
electron density becomes

ne =
2

N

∑
k

f(E
(−)
k )

(
1 + δ

2
− δε2

k

4U2
+ . . .

)
.

To discuss the Fermi surface we consider the limit T → 0. For half-filling ne = 1 so that
δ = 0 and the lower band must be completely filled – as one would expect for an insulator.
Neglecting the term ∝ U−2 we find that for δ > 0 the fraction of the Brillouin zone where the
lower Hubbard band is occupied is 1 − 2δ, or, put another way, there are hole pockets around
(π, π) whose volume is a fraction 2δ of the Brillouin zone. As a quantitative example, Figure
6 shows the spectral density obtained from the Green function (32) for U/t = 8 and different
band fillings, whereas Figure 7 shows the resulting Fermi surfaces and the dependence of the
Fermi surface volume on electron density. In Fig. 6 one can recognize the two Hubbard bands
separated by an appreciable energy gap. For ne = 0.9 – i.e. close to half-filling – the Fermi
energy intersects the lower Hubbard band close to (π, π) resulting in the hole pocket around
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Fig. 7: Left: Fermi surface for different electron densities. Right: Fermi surface volume as a
function of electron density ne.

X = (π, π) discussed above. An interesting feature seen in Fig. 6 is the transfer of spectral
weight from the upper to the lower Hubbard band upon hole doping: as the electron density ne
decreases the upper Hubbard band persists but looses weight, whereas the lower Hubbard band
becomes more intense. To understand this we note first that for ne ≤ 1 the upper Hubbard band
always belongs to the inverse photoemission or electron addition spectrum. Also, we have seen
in the simplified derivation that the upper band mainly has double-occupancy character.

As electrons are removed from the system, however, the probability that an added electron is
placed at an occupied site to create a double occupancy becomes smaller and consequently the
weight of the upper band diminishes. This doping dependent intensity of what would be the
conduction band in an ordinary semiconductor or insulator is one of the fingerprints of strong
correlations and can be observed experimentally in cuprate superconductors – an example is
shown in Fig. 6 [15]. It should be noted, however, that the Hubbard-I approximation consid-
erably underestimates the decrease of the intensity of the upper Hubbard band with doping.

Figure 7 also shows the dependence of the Fermi surface volume VFermi on electron density
ne. More precisely, this is the fraction of the Brillouin zone where the lower Hubbard band is
below EF , i.e. ‘occupied’. Also shown is VFermi for free electrons – where VFermi = ne/2. The
Hubbard-I approximation gives VFermi → 1 – that means a completely filled band – as ne → 1,
predicts VFermi = 1− 2δ = 2ne − 1 for ne slightly less than 1 and approaches the free electron
behavior for small ne. This leads to a peculiar nonlinear dependence VFermi(ne) which most
probably is unphysical.

Let us now compare the Hubbard-I approximation to numerical simulations. As we saw in our
simplified derivation, an important assumption of the Hubbard-I approximation is the ‘disor-
dered’ ground state. This is best realized at high temperatures, more precisely at a temperature
much higher than the characteristic energy of spin excitations, J = 4t2/U . Figure 8 shows the
result of a Quantum Monte-Carlo calculation of the spectral density for an 8 × 8 cluster at the
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Fig. 8: Right: Single particle spectral function A(k, ω) obtained by Quantum Monte-Carlo
simulations on an 8 × 8 cluster at kBT = t. Left: Fermi surface volume (34) deduced from
A(k, ω) versus electron density. The dashed line corresponds to free electrons. Reprinted with
permission from [16], Copyright 2000 by the American Physical society.

rather high temperature kBT = t. The 8 × 8 cluster has the allowed momenta (nπ
4
, mπ

4
) with

integer m and n and Fig. 8 shows the part of the spectral density near the chemical potential
µ for all allowed momenta in the irreducible wedge of the Brillouin zone for electron densities
close to ne = 1. Close to (π, π) a relatively well-defined peak passes through µ as (π, π) is
approached and forms a relatively small hole pocket around (π, π) – similar to the prediction of
the Hubbard-I approximation in Fig. 6 for ne = 0.9. To study VFermi an ‘occupation number’
nk of 1, 0.5 or 0 was assigned to each momentum k, depending of whether the dispersive peak
is below, more or less on, or above the chemical potential at k. The fractional Fermi surface
volume then is

VFermi =
1

64

∑
k

nk, (34)

where 64 is the number of momenta in the 8 × 8 cluster. The obtained estimate for VFermi is
also shown in Figure 8 as a function of electron density and indeed has a rough similarity to the
result for the Hubbard-I approximation.

6 The Gutzwiller wave function

This is the second ‘classic’ approximation for the Hubbard model. It starts from the Fermi sea
|FS〉 – i.e. the ground state forU = 0 – and reduces the number of double occupancies by acting
with a suitable projecting operator. More precisely the Gutzwiller wave function reads [3]

|ΦG〉 =
N∏
i=1

(1− λni,↑ni,↓) |FS〉,
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where λ is a variational parameter to be determined by minimizing the energy EG. To see what
this means, let us go back to the Hubbard dimer. There, the ground state for U = 0 is

‘|FS〉′ = c†+,↑c
†
+,↓ |0〉 =

1

2

[(
c†1,↑c

†
2,↓ + c†2,↑c

†
1,↓

)
+
(
c†1,↑c

†
1,↓ + c†2,↑c

†
2,↓

)]
|0〉.

The first term in the square bracket does not contain any double occupancy, so that this term is
annihilated by acting with ni,↑ni,↓ – this term therefore is simply reproduced by the Gutzwiller
projector. On the other hand, each contribution in the second term has one double occupancy
and thus gets a factor of 1 · (1− λ). The Gutzwiller wave function therefore is

|ΦG〉 =
1√
2
|1+〉+

1− λ√
2
|2+〉,

with |1+〉 and |2+〉 as defined in (14). Therefore, if we choose (with u, v in (15))

1− λ =
v

u
⇒ λ = 1− 2t

W + U
2

,

the Gutzwiller wave function is – up to a normalization factor – identical to the exact ground
state wave function of the dimer! From the above it also becomes apparent that the Gutzwiller
projector reduces the weight of states containing double occupancies.
We proceed to the infinite lattice and first rewrite the Fermi sea as a superposition of real space
configurations. Suppressing the spin index (and denoting permutations by σ) we have

M∏
j=1

c†kj |0〉 =
1

√
N
M

∑
i1,i2,i3,...iM

exp

(
i
M∑
j=1

kj ·Rij

)
M∏
j=1

c†ij |0〉

=
1

√
N
M

∑
i1>i2>i3···>iM

∑
σ

exp

(
i
M∑
j=1

kj ·Riσ(j)

)
M∏
j=1

c†iσ(j) |0〉

In the second line we used the fact that instead of summing over allM -tuples of indices we may
as well sum only over ordered M -tuples of indices and then sum over all M ! permutations σ of
the M indices.
Next, in each of the products

∏M
j=1 c

†
iσ(j)

we permute the c†i operators back to the ordered se-

quence c†i1c
†
i2
. . . c†iM . The permutation which brings σ(i) → i obviously is σ−1 and since the

Fermi sign of σ−1 is equal to that of σ we obtain

1
√
N
M

∑
i1>i2>i3···>iM

∑
σ

(−1)σ exp

(
i

M∑
j=1

kj ·Riσ(j)

)
c†i1c

†
i2
· · · c†iM |0〉

=
1

√
N
M

∑
i1>i2>i3···>iM

D(k1,k2, . . . ,kM |i1, i2, . . . iM) c†i1c
†
i2
· · · c†iM |0〉 ,

where the second line is the definition of the symbol D(kj|ij). From the above we see that the
Fermi sea may be thought of as a superposition of real space configurations

c†i1,↑c
†
i2,↑c

†
i3,↑ . . . c

†
iN↑ ,↑

c†j1,↓c
†
j2,↓c

†
j3,↓ . . . c

†
jN↓,↓

|0〉
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which are multiplied by two determinants D, one for each spin direction. Each of these real
space configurations has a certain number Nd of doubly occupied sites and therefore gets an
additional factor of (1 − λ)Nd < 1 in the Gutzwiller wave function so that states with a larger
number of double occupancies have a smaller weight as compared to the original Fermi sea.
Next, the Gutzwiller function can be decomposed into components with fixed Nd:

|ΦG〉 =
∑
Nd

|Φ(Nd)〉

where |Φ(Nd)〉 is the sum over all real-space configurations with Nd double occupancies, each
multiplied by its proper prefactor. The total norm 〈ΦG|ΦG〉 can be rewritten as the sum over Nd

terms of the form W (Nd) = 〈Φ(Nd)|Φ(Nd)〉 and we now consider which Nd gives the largest
contribution in this sum. To compute norms, we need to evaluate expressions such as

D∗(kj|ij) D(kj|ij) =
∑
σ,σ′

(−1)σ(−1)σ
′
exp

(
i
M∑
j=1

kj · (Riσ(j) −Riσ′(j)
)

)

= M ! +
∑
σ 6=σ′

(−1)σ(−1)σ
′
exp

(
i
M∑
j=1

kj · (Riσ(j) −Riσ′(j)
)

)
. (35)

where in the first term we have collected the M ! terms with σ = σ′. At this point, we make
an important approximation: (35) still has to be summed over i1, i2, i3 . . . iM . The terms for
σ 6= σ′ thereby have a rapidly oscillating phase and a large degree of cancellation will occur in
the summation. Accordingly we retain only the first term, i.e., we replace

D∗(kj|ij) D(kj|ij) ≈M !.

With this approximation the contribution of the states with Nd double occupancies becomes

W (Nd) =
N↑! N↓!

NN↑+N↓
(1− λ)2Nd C(N↑, N↓, Nd) ,

where C(N↑, N↓, Nd) is the number of ways in whichN↑ electrons with spin ↑ andN↓ electrons
with spin ↓ can be distributed over theN lattice sites such as to generateNd double occupancies.
This is a straightforward combinatorical problem with the result

C(N↑, N↓, Nd) =
N !

Nd!(N↑ −Nd)! (N↓ −Nd)! (N −N↑ −N↓ +Nd)!
.

Next, we take the logarithm of W (Nd), use the Stirling formula log(N !) ≈ N log(N)−N and
differentiate with respect to Nd. Introducing the densities nd = Nd/N etc. we obtain

d

dNd

log (W (Nd)) = log

(
(1− λ)2 (n↑ − nd) (n↓ − nd)

nd (1− n↑ − n↓ + nd)

)
,

d2

dN2
d

log (W (Nd)) = − 1

N

(
1

nd
+

1

n↑ − nd
+

1

n↓ − nd
+

1

1− n↑ − n↓ + nd

)
= − c

N
,
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where c > 0 in the last line is of order unity. The first of these equations gives us the nd
where the contribution to the norm, W (Nd) is a maximum. For the general case the formula is
somewhat involved, so we specialize to the case n↑ = n↓ = 1

2
where

nd,0 =
1− λ

2(2− λ)
. (36)

For the noninteracting case λ → 0 this gives nd,0 = 1/4 as it has to be. From the second
equation we find

log (W (Nd)) = log (W (Nd,0))− c

2N
(N −Nd,0)2 + . . .

W (Nd) = W (Nd,0) exp
(
− c

2N
(Nd −Nd,0)2

)
= W (Nd,0) exp

(
−Nc

2
(nd − nd,0)2

)
,

which shows that as a function of nd the weight W (Nd) is a Gaussian of width ∝ N−1/2.
This means, however, that in the thermodynamical limit only states with nd = nd,0 have an
appreciable weight in the Gutzwiller wave function and variation of λ simply shifts this sharp
peak of W (Nd) to a different nd,0 An immediate consequence is that the computation of the
expectation value of the interaction Hamiltonian becomes trivial, namely 〈HU〉 = N U nd,0.
The expectation value of the kinetic energy and is more involved. The above discussion showed
that the Gutzwiller wave function is composed of real-space configurations for which the num-
ber of double occupancies is close to a certain value Nd,0 which is smaller than for the nonin-
teracting Fermi sea. This means, however, that the expectation value of the kinetic energy is
smaller as well. Namely using again the operators d̂ and ĉ we have

c†i,σcj,σ = d̂†i,σd̂j,σ + ĉ†i,σd̂j,σ + d̂†i,σ ĉj,σ + ĉ†i,σ ĉj,σ .

If the number of double occupancies is decreased, the expectation value of the first term on
the r.h.s. clearly must decrease. Second, since the number of electrons is constant, reducing the
number of double occupancies necessarily results in a reduction of the number of empty sites by
the same number so that the expectation value of the last term on the r.h.s. also must decrease.
The Gutzwiller approximation assumes, that these effects can be taken into account by reducing
the expectation value of the kinetic energy of the uncorrelated Fermi sea by suitable renormal-
ization factors η:

〈ΦG|Ht|ΦG〉
〈ΦG|ΦG〉

=
∑
σ

ησ〈FS, σ|Ht|FS, σ〉

where |FS, σ〉 is the Fermi sea for σ-electrons (if N↑ = N↓ the two terms are of course iden-
tical). These renormalization factors ησ thereby are evaluated for an ‘auxiliary wave function’
in which the determinants D(k1,k2, . . . ,kM |i1, i2, . . . iM) are replaced by a constant (which
would have to be

√
M ! if the auxiliary wave function is supposed to have the same norm as

the Gutzwiller wave function) and where the Fermi sign is ignored in the calculation of all ma-
trix elements of the hopping term (this is because the Fermi sign is supposed to be taken care
of already by the filling of the uncorrelated Fermi sea according to the Pauli principle!). The
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evaluation of the η by combinatorical considerations is discussed in a very transparent way by
Ogawa, Kanda, and Matsubara [17]. Here we use an even simpler way of calculating η by intro-
ducing four ‘book-keeping kets’ for every site i: |i, 0〉, |i, ↑〉, |i, ↓〉 and |i, ↑↓〉. They represent
in an obvious way the four possible configurations of the site i. Then we define

Bi =
|i, 0〉+ α↑|i, ↑〉+ α↓|i, ↓〉+ β|i, ↑↓〉√

1 + α2
↑ + α2

↓ + β2
and |Ψ〉 =

∏
i

Bi |0〉

with real ασ and β. The state |Ψ〉 has norm 1 and if it were translated into a true state of
electrons, the numbers of electrons and double occupancies would be

〈Nσ〉 = N
α2
σ + β2

1 + α2
↑ + α2

↓ + β2
,

〈Nd〉 = N
β2

1 + α2
↑ + α2

↓ + β2
. (37)

These equations can be reverted to give

ασ =

√
nσ − nd

1− n↑ − n↓ + nd
and β =

√
nd

1− n↑ − n↓ + nd
. (38)

On the other hand |Ψ〉 does not correspond to a state with a fixed number of electrons so we
introduce

|Ψ ′〉 = P(N↑, N↓, Nd) |Ψ〉,

where the projection operator P projects onto the component of |Ψ〉 which has precisely 〈N↑〉
↑-electrons etc. Next, the representation of the electron annihilation operator ci,σ is

c̃i,σ = |i, 0〉 〈i, σ|+ |i,−σ〉 〈i, ↑↓ |.

Here a subtle detail should be noted: in the expression on the r.h.s. it is assumed that a double
occupancy always is converted into the state |i,−σ〉 with a positive sign. This would not be
the case for the true Fermion operator, where the sign would depend on the sequence of the
two electron creation operators on the doubly occupied site. This is precisely the neglect of the
Fermi sign that was mentioned above. Then, to estimate the reduction of the kinetic energy due
to the reduction of the number of doubly occupied and empty sites we evaluate

r(σ, n↑, n↓, nd) =
〈Ψ ′|c̃†i,σ c̃j,σ|Ψ ′〉
〈Ψ ′|Ψ ′〉

. (39)

So far our auxiliary wave function has not brought about much simplification because the pres-
ence of the projection operator P makes the computation of r very tedious. It is straightforward
to see, however, that if |〈Ψ〉 is decomposed into components of fixed N↑, N↓ and Nd only those
components with values of N↑, N↓ and Nd which deviate by at most N−1/2 from the average
values (37) have an appreciable weight. This means, however, that P simply can be dropped so
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that we replace |Ψ ′〉 → |Ψ〉 in (39). Then, since |Ψ〉 is normalized the denominator in (39) can
be dropped. Moreover, since |Ψ〉 is a product state the expectation value of the two operators
factorizes and since all sites are equivalent and the coefficients ασ and β are real the expectation
values of c̃†i,σ and c̃j,σ are identical so that

r(σ, n↑, n↓, nd) = 〈Ψ |c̃†i,σ|Ψ〉2 =

(
ασ + α−σβ

1 + α2
↑ + α2

↓ + β2

)2

=
(√

nσ − nd
√

1− n↑ − n↓ + nd +
√
nd
√
n−σ − nd

)2

,

where the second line has been obtained by inserting (38). In this way we have expressed
r(nσ, nd) in terms of nd which in turn is given as a function of λ by (36). Lastly, we divide r by
its value for U → 0, where nd = n↑ · n↓, so as to obtain the proper limiting value of η = 1 for
U = 0, and finally get

η(σ, n↑, n↓, nd) =

(√
nσ − nd

√
1− n↑ − n↓ + nd +

√
nd
√
n−σ − nd√

nσ(1− nσ)

)2

. (40)

In varying the energy it is actually easier to switch from λ to nd as variational parameter. Spe-
cializing to the paramagnetic case n↑ = n↓ the energy per site thus becomes

eG = η(nσ, nd) t0 + nd U, (41)

where eG = EG/N and t0 is the (kinetic) energy of the Fermi sea per site. Using (40) this is
now readily minimized with respect to nd.
The Gutzwiller wave function gives us, strictly speaking, only the ground state energies and
some ground state expectation values, but not a band structure. However, we may consider
states like

|ΦG(k)〉 =
∏
i

(1− λni,↑ni,↓)ck,↑ |FS〉,

i.e., a state with one hole in the Fermi sea (it is understood that k is an occupied momentum).
The Fermi sea with a hole has energy EFS − εk. It thus might seem plausible that the energy
of |ΦG(k)〉 is EG − ε̃k i.e., the energy of the Gutzwiller wave function minus the ‘quasiparticle
energy’. Performing the variational procedure for |ΦG(k)〉 amounts to replacing eG → eG− 1

N
ε̃k

t0 → t0 − 1
N
εk, n↑ → n↑ − 1

N
, and nd → nd + 1

N
δnd where δnd is the as yet unknown shift of

nd. Inserting into (41) and expanding we find

e− 1

N
ε̃k =

(
η − 1

N

∂η

∂n↑
+

1

N

∂η

∂nd
δnd

)(
t0 −

1

N
εk

)
+ nd U +

1

N
δnd U.

The terms of zeroth order in 1/N cancel due to (41) and collecting the first order terms gives

ε̃k = ηεk + t0
∂η

∂n↑
−
(
∂η

∂nd
t0 + U

)
δnd.
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Fig. 9: Dispersion relation (left) and momentum distribution function (middle) obtained from
the Gutzwiller wave function compared to the free electron case. The right part shows the
dependence η(ne) for the half-filled two-dimensional Hubbard model with U/t = 16.

The last term on the r.h.s. vanishes because the expression in the bracket is deG
dnd

. The second
term on the r.h.s. gives the change of the kinetic energy of all other electrons due to removal
of the single electron. This is a k-independent shift which can be absorbed into a shift of EF .
The quasiparticle dispersion ε̃k therefore follows the original dispersion, but renormalized by
the factor η < 1. This is an effect known as ‘correlation narrowing’.
Next we consider the ground state momentum distribution function, i.e., the ground state ex-
pectation value nk = 2〈c†k,↑ck,↑〉. This can be obtained from the ground state energy by means
of the Hellmann-Feynman theorem: nk = ∂EG

∂εk
. More generally, it is the functional derivative

of the ground state energy with respect to εk, that means under a change tij → tij + δtij so that
εk → εk + δεk the change of the ground state energy is

eG → eG + 2
∑
k

nk δεk .

From (41) we obtain the variation of eG as

δeG = 2η
∑
k

n
(0)
k δεk + δnd

(
∂η

∂nd
t0 + U

)
.

where n(0)
k = Θ(EF − εk) is the momentum distribution of the Fermi sea. Again, the second

term on the r.h.s. vanishes due to the extremum condition for nd so that nk = η n
(0)
k . This

cannot be entirely correct, however, because we have the sum-rule 2
∑

k nk = Ne and since
this is fulfilled by n(0)

k and η < 1 it cannot be fulfilled for nk. The solution is that the ‘missing
nk’ takes the form of a k-independent additive constant which then has to be (1− η)ne

2
. In fact,

for any εk which can be represented by hopping integrals ti,j one has
∑

k εk = 0 so that such
a k-independent additive constant would not contribute to the variation of eG. The momentum
distribution obtained by the Gutzwiller approximation thus has a step of magnitude η at the
position of the original Fermi surface. Let us now consider in some more detail the case nσ = 1

2

where the Mott-insulator should be realized for large U/t. We find from (40)

η(nd) = 16nd

(
1

2
− nd

)
.



Introduction to the Hubbard Model 6.27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

V
F

e
rm

i

n
e

Hubbard-I

Gutzwiller

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

V
F

e
rm

i

n
e

AF

Gutzwiller

Hole doped insulator

With phase transition

Fig. 10: Left: Comparison of the Fermi surface volume as obtained from the Hubbard-I ap-
proximation and the Gutzwiller wave function. Right: a possible compromise with a phase
transition between two phases with different VFermi(ne).

Minimizing (41) this gives

nd =
1

4
− U

32|t0|
,

whereby we have taken into account that t0 < 0 for a half-filled band. Starting from the
noninteracting value 1

4
, nd decreases linearly with U and reaches zero at the critical value Uc =

8|t0|. For nd = 0 we have η = 0, so that the bandwidth of the quasiparticles becomes zero,
i.e., the band mass diverges, and the step in the momentum distribution vanishes as well. This
is commonly interpreted as a metal-to-insulator transition as a function of increasing U , the
so-called Brinkman-Rice transition [18]. Brinkman and Rice also could show that the magnetic
susceptibility diverges at the transition as one would expect it for a diverging effective mass.
Let us now consider the two-dimensional model with nearest neighbor hopping −t. Then,
t0 = −1.621 t so that the critical Uc = 12.969 t. Figure 9 then shows the dependence of η on
ne for U/t = 16 i.e., for U > Uc. As ne → 1 the renormalization factor η → 0 so that both, the
bandwidth and the step in nk vanish for the half-filled band. The Hubbard-I approximation and
the Gutzwiller wave function thus give completely different predictions about what happens
when the half-filled band case is approached by increasing the electron density for constant
U/t: whereas the Hubbard-I approximation predicts the lower Hubbard band with (almost)
constant bandwidth and a hole-pocket-like Fermi surface with a volume ∝ (1− ne) so that the
Fermi surface vanishes at ne → 1, the Gutzwiller wave function predicts a Fermi surface with
a volume equal to that obtained for free electrons, but with a vanishing bandwidth and spectral
weight as ne → 1.

7 Summary and discussion

Since a generally accepted theory of the lightly doped 2-dimensional Hubbard model does not
seem to exist so far so that also the cuprate superconductors are not really understood as yet,
maybe the best one can do at present is to outline the problems that would have to be resolved.
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The first one of these is the Fermi surface close to half-filling. As we have seen the Hubbard-I
approximation and the Gutzwiller wave function predict completely different behavior close to
half-filling: a hole-like Fermi surface with a volume ∝ nh = 1− ne in the lower Hubbard-band
whose volume tends to zero as ne → 1 versus a free-electron-like Fermi surface with volume
ne
2

formed by a band whose mass diverges as ne → 1. A possible compromise between the two
approximations could be as shown in Figure 10: near ne = 1 there are hole pockets with a vol-
ume that is strictly proportional to the hole number nh = 1− ne – i.e. the doped Hubbard-band
– and then at some critical density a phase transition occurs to a phase where the Fermi surface
volume is ne/2. This might be the true behavior which Hubbard-I approximation ‘tries to re-
produce’. Viewed this way, the ‘pseudogap phase’ of cuprate superconductors actually should
be identified with the hole-pocket phase and the quantum critical point which is surrounded
by the superconducting dome corresponds to the transition to the free-electron-like Fermi sur-
face. A theory which is supposed to describe this, first of all, must reproduce the two Hubbard
bands – otherwise the hole-doped lower Hubbard band cannot be captured. Next, the two dif-
ferent phases would have to be reproduced which is a considerable problem because there is no
obvious order parameter for the transition between a paramagnetic small Fermi surface and a
paramagnetic large Fermi surface.
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