Resonant Inelastic X-ray Scattering on elementary excitations

Jeroen van den Brink

Leibniz Institute for Solid State and Materials Research Dresden

Ament, van Veenendaal, Devereaux, Hill & JvdB Rev. Mod. Phys. 83, 705 (2011) Autumn School in Correlated Electrons Jülich 13.09.2016

1. Introducing RIXS

2. Magnetic RIXS on low dimensional magnets

1. Introducing RIXS

Basic Scattering Process

Direct & Indirect RIXS

5 features of RIXS

Elementary Excitations Accessible to RIXS

Progress in past decade

2. Magnetic RIXS on low dimensional magnets

Quasi 2D cuprates

Quasi 1D cuprates

Quasi 2D iron pnictide

Quasi 2D iridate

Doped Cu & Fe systems

2. Magnetic RIXS on low dimensional magnets

Quasi 2D cuprates

Some theory

Some experiments

A (big) open problem

Basic Scattering Process

Direct and Indirect RIXS

Direct and Indirect RIXS

Universal effective low energy (magnetic) behavior

RIXS amplitude *F* and intensity *|*

RIXS amplitude *F* and intensity /

2nd Order: Resonant Scattering

RIXS

$$\begin{array}{l} \textit{RIXS} \\ \textit{amplitude} \end{array} \mathcal{F}_{fg}(\mathbf{k},\mathbf{k}',\boldsymbol{\epsilon},\boldsymbol{\epsilon}',\omega_{\mathbf{k}},\omega_{\mathbf{k}'}) = \sum_{n} \frac{\langle f | \mathcal{D}'^{\dagger} | n \rangle \langle n | \mathcal{D} | g \rangle}{E_{g} + \hbar \omega_{\mathbf{k}} - E_{n} + i\Gamma_{n}} \end{array}$$

Kramers-Heisenberg expression

$$\begin{array}{l} \textit{RIXS} \\ \textit{transition} \\ \textit{operator} \end{array} \qquad \qquad \mathcal{D} = \frac{1}{im\omega_{\mathbf{k}}} \sum_{i=1}^{N} e^{i\mathbf{k}\cdot\mathbf{r}_{i}} \boldsymbol{\epsilon}\cdot\mathbf{p}_{i}, \end{array}$$

H.A. Kramers and W. Heisenberg, Z. Phys. 31, 681 (1925)

Greens function expression for RIXS amplitude

$$\begin{array}{l} \textit{RIXS} \\ \textit{amplitude} \end{array} \mathcal{F}_{fg}(\mathbf{k},\mathbf{k}',\boldsymbol{\epsilon},\boldsymbol{\epsilon}',\omega_{\mathbf{k}},\omega_{\mathbf{k}'}) = \sum_{n} \frac{\langle f | \mathcal{D}'^{\dagger} | n \rangle \langle n | \mathcal{D} | g \rangle}{E_{g} + \hbar \omega_{\mathbf{k}} - E_{n} + i\Gamma_{n}} \end{array}$$

Greens function
$$G(z_{\mathbf{k}}) = \frac{1}{z_{\mathbf{k}} - H} = \sum_{n} \frac{|n\rangle \langle n|}{z_{\mathbf{k}} - E_{n}}$$

=intermediate state propagator

with
$$z_{\mathbf{k}} = E_g + \hbar \omega_{\mathbf{k}} + i\Gamma$$

so that:

$$\mathcal{F}_{fg} = raket{f} \mathcal{D}'^{\dagger} G(z_{\mathbf{k}}) \mathcal{D} \ket{g}$$

5 distinguishing features of RIXS

1. RIXS exploits both the energy and momentum dependence of the photon scattering cross-section. Comparing the energies of a neutron, electron, and photon, each with a wavelength on the order of the relevant length scale in a solid, *i.e.* the interatomic lattice spacing, which is on the order of a few Angstroms, it is obvious that an x-ray photon has much more energy than an equivalent neutron or electron.

2. RIXS can utilize the *polarization* of the photon: the nature of the excitations created in the material can be disentangled through polarization analysis of the incident and scattered photons, which allows one, through the use of various selection rules, to characterize the symmetry and nature of the excitations. To date, no experimental facility allows the polarization of the scattered photon to be measured, though the incident photon polarization is frequently varied. It is important to note that a polarization change of a photon is necessarily related to an angular momentum change. Conservation of angular momentum means that any angular momentum lost by the scattered photons has been transferred to elementary excitations in the solid.

Tunable X-ray sources

synchrotron

Tunable X-ray sources

synchrotron

LCLS, Stanford

X-ray spectrometers

Soft RIXS: TM L-edges

3. RIXS is *element and orbital specific*: Chemical sensitivity arises by tuning the incident photon energy to specific atomic transitions of the different types of atoms in a material. Such transitions are called absorption edges. RIXS can even differentiate between the same chemical element at sites with inequivalent chemical bondings, with different valencies or at inequivalent crystallographic positions if the absorption edges in these cases are distinguishable.

4. RIXS is *bulk sensitive*: the penetration depth of resonant x-ray photons is material and scattering geometry-specific, but typically is on the order of a few μ m in the hard x-ray regime (for example at transition metal K-edges) and on the order of 0.1 μ m in the soft x-ray regime (e.g transition metal L-edges).

5. RIXS needs only *small sample volumes*: the photon-matter interaction is relatively strong, compared to for instance the neutron-matter interaction strength. In addition, photon sources deliver many orders of magnitude more particles per second, in a much smaller spot, than do neutron sources. These facts make RIXS possible on very small volume samples, thin films, surfaces and nano-objects, in addition to bulk single crystal or powder samples.

Elementary Excitations

accessible to RIXS

Elementary Excitations in TMO: Schematic

Direct RIXS @ TM L-edges

In principle RIXS can probe a very broad class of intrinsic excitations of the system under study – as long as these excitations are overall charge neutral. This constraint arises from the fact that in RIXS the scattered photons do not add or remove charge from the system under study.

Progress in the Past Decades

Progress @ Cu L-edge resolution

RIXS spectra of La₂CuO₄ at Cu L₃-edge

Progress in soft x-ray RIXS resolution at the Cu Ledge at 931 eV (a) (Ichikawa *et al.*, 1996), BLBB @ Photon Factory (b) I511-3 @ MAX II (Duda *et al.*, 2000b), (c) AXES @ ID08, ESRF(Ghiringhelli *et al.*, 2004) (d) AXES @ ID08, ESRF(Braicovich *et al.*, 2009), (e) SAXES @ SLS (Ghiringhelli *et al.*, 2010). Courtesy of G. Ghiringhelli and L. Braicovich.

Summary part I

- •Direct and Indirect RIXS
- •RIXS measures excitation energy & momentum
- •Polarization in/out dependence can be studied
- •Element and orbital sensitive
- •Bulk sensitive & needs small sample volumes
- •Measures charge neutral elementary excitations

spin, orbital, lattice, charge excitons

•Great progress in resolution in the past decade

2. Magnetic RIXS on low dimensional magnets

Quasi 2D cuprates

Quasi 1D cuprates

Quasi 2D iron pnictide

Quasi 2D iridate

Doped Cu & Fe systems

Quasi 2D cuprates

La₂CuO₄ crystal structure

La₂CuO₄ magnetic structure

Atomic Model: Local d-d orbital splitting: Cu²⁺

Ultra-short Core-hole Life-time expansion

short life-time au of the high energy core-hole

large core-hole broadening $\Gamma=\hbar/\tau$

RIXS amplitude $\mathcal{F}_{fg} = \langle f | \mathcal{D}'^{\dagger} G(z_{\mathbf{k}}) \mathcal{D} | g \rangle$

$$z_{\mathbf{k}} = E_g + \hbar \omega_{\mathbf{k}} + i\Gamma$$
 large

$$G(z_{\mathbf{k}}) = \frac{1}{z_{\mathbf{k}} - H} = \sum_{n} \frac{|n\rangle \langle n|}{z_{\mathbf{k}} - E_{n}} \simeq constant$$

RIXS response governed by (dipole) transition operators

PRL 103, 117003 (2009)

PRL 109, 117401 (2012)

Orbital excitations by direct RIXS on La₂CuO₄

Moretti, Bisogni, Aruta, Balestrino, Berger, Brookes, Luca, Castro, Grioni, Guarise, Medaglia, Miletto, Minola, Perna, Radovic, Salluzzo, Schmitt, Zhou, Braicovich & Ghiringhelli, NJP 13, 043026 (2011)

PRL 103, 117003 (2009)

PRL 103, 117003 (2009)

Marra, Wohlfeld & JvdB, PRL 109, 117401 (2012)

Braicovich & JvdB, PRL 103, 117003 (2009) Marra, Wohlfeld & JvdB, PRL 109, 117401 (2012)

Magnetic RIXS on La₂CuO₄ @ Cu L-edge

In special cases direct spin-flip scattering is allowed at Cu L-edge

CuO's are such special cases...

Magnetic direct RIXS on La₂CuO₄ @ Cu L-edge

Braicovich, JvdB *et al.*, PRL 104, 077002 (2010)

RIXS magnon dispersion of Sr₂CuO₂Cl₂

nature physics

ARTICLES PUBLISHED ONLINE: 10 JULY 2011 | DOI: 10.1038/NPHYS2041

Intense paramagnon excitations in a large family of high-temperature superconductors

M. Le Tacon¹*, G. Ghiringhelli², J. Chaloupka¹, M. Moretti Sala², V. Hinkov^{1,3}, M. W. Haverkort¹, M. Minola², M. Bakr¹, K. J. Zhou⁴, S. Blanco-Canosa¹, C. Monney⁴, Y. T. Song¹, G. L. Sun¹, C. T. Lin¹, G. M. De Luca⁵, M. Salluzzo⁵, G. Khaliullin¹, T. Schmitt⁴, L. Braicovich² and B. Keimer¹*

M. Le Tacon¹*, G. Ghiringhelli², J. Chaloupka¹, M. Moretti Sala², V. Hinkov^{1,3}, M. W. Haverkort¹, M. Minola², M. Bakr¹, K. J. Zhou⁴, S. Blanco-Canosa¹, C. Monney⁴, Y. T. Song¹, G. L. Sun¹, C. T. Lin¹, G. M. De Luca⁵, M. Salluzzo⁵, G. Khaliullin¹, T. Schmitt⁴, L. Braicovich² and B. Keimer¹*

Dynamical structure factor Hubbard model, QMC

Jia, Nowadnick, Wohlfeld, Kung, Chen, Johnston, Tohyama, Moritz & Devereaux Nat. Comm. 5, 3314 (2014)

•RIXS sensitive to magnetic excitations of e.g.

low D cuprates, iron pnictides and iridates

•Magnons, spinons and paramagnons are observed

•Dispersion of these modes can be determined

•Observed paramagnons are challenge for theory

•It can reasonably be assumed that the future of

RIXS is even brighter than its past

•More and better experiments, instruments, theory

RIXS amplitude/intensity

Interaction light & matter

RIXS amplitude *F* and intensity /

RIXS amplitude *F* and intensity /

Interaction of light and matter: Hamiltonian

Lowest order perturbing Hamiltonian: small A

Fermi Golden Rule, to second order:

transition rate

$$\begin{split} w &= \frac{2\pi}{\hbar} \sum_{\mathbf{f}} \left| \langle \mathbf{f} | H' | \mathbf{g} \rangle \right. \\ &+ \sum_{n} \frac{\langle \mathbf{f} | H' | n \rangle \langle n | H' | \mathbf{g} \rangle}{E_{\mathbf{g}} - E_{n}} \right|^{2} \delta(E_{\mathbf{f}} - E_{\mathbf{g}}) \end{split}$$
2nd Order...

$$H' = \sum_{i=1}^{N} rac{e}{m} \mathbf{A}(\mathbf{r}_i) \cdot \mathbf{p}_i + rac{e^2}{2m} \mathbf{A}^2(\mathbf{r}_i) + rac{e\hbar}{2m} \boldsymbol{\sigma}_i \cdot
abla imes \mathbf{A}(\mathbf{r}_i)$$

Fermi Golden Rule, to second order:

transition rate

$$w = \frac{2\pi}{\hbar} \sum_{\mathbf{f}} \left| \langle \mathbf{f} | H' | \mathbf{g} \rangle \right|$$
$$+ \sum_{n} \frac{\langle \mathbf{f} | H' | n \rangle \langle n | H' | \mathbf{g} \rangle}{E_{\mathbf{g}} - E_{n}} \right|^{2} \delta(E_{\mathbf{f}} - E_{\mathbf{g}})$$

2nd Order...

 $H' = \sum_{i=1}^{N} \;\; rac{e}{m} \mathbf{A}(\mathbf{r}_i) \cdot \mathbf{p}_i +$

 $\frac{e\hbar}{2m} \boldsymbol{\sigma}_i \cdot \nabla imes \mathbf{A}(\mathbf{r}_i)$

Fermi Golden Rule, to second order:

transition rate

$$w = \frac{2\pi}{\hbar} \sum_{\mathbf{f}} \left| \langle \mathbf{f} | H' | \mathbf{g} \rangle + \sum_{n} \frac{\langle \mathbf{f} | H' | n \rangle \langle n | H' | \mathbf{g} \rangle}{E_{\mathbf{g}} - E_{n}} \right|^{2} \delta(E_{\mathbf{f}} - E_{\mathbf{g}})$$

2nd Order: Resonant Scattering I

2nd Order: Resonant Scattering II

$$\begin{array}{l} \textit{RIXS} \\ \textit{amplitude} \end{array} \mathcal{F}_{fg}(\mathbf{k},\mathbf{k}',\boldsymbol{\epsilon},\boldsymbol{\epsilon}',\omega_{\mathbf{k}},\omega_{\mathbf{k}'}) = \sum_{n} \frac{\langle f | \mathcal{D}'^{\dagger} | n \rangle \langle n | \mathcal{D} | g \rangle}{E_{g} + \hbar \omega_{\mathbf{k}} - E_{n} + i\Gamma_{n}} \end{array}$$

RIXS intensity:

$$\begin{split} I(\omega, \mathbf{k}, \mathbf{k}', \boldsymbol{\epsilon}, \boldsymbol{\epsilon}') &= r_e^2 m^2 \omega_{\mathbf{k}'}^3 \omega_{\mathbf{k}} \sum_{\mathbf{f}} |\mathcal{F}_{fg}(\mathbf{k}, \mathbf{k}', \boldsymbol{\epsilon}, \boldsymbol{\epsilon}', \omega_{\mathbf{k}}, \omega_{\mathbf{k}'})|^2 \\ &\times \delta(E_g - E_f + \hbar \omega), \end{split}$$

This expression is essentially exact (non-relativistic limit)