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Overview
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• FCIQMC 
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Many-Electron Schrödinger equation

Atomic units 

Electrons are Fermions:

Eh = 27.211 eV
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Quantum Chemical 
Finite basis sets 
Many-body approximations 
!
Hartree-Fock (mean-field theory) 
Many Body Perturbation theory, 
Coupled cluster methods 
                   ↓ 
Full Configuration Interaction. 
!
Systematically improvable. 
Expensive

Density Functional Theory 
!
Exchange Correlation functional ⇒  
Uncontrolled approximation, not 
systematically improvable. 
!
Widely used. 

Quantum Monte Carlo 
Stochastic exploration of the configuration space 
No basis sets 
Fixed Node approximation (in diffusion QMC) due to 
Fermion sign problem 
⇒Uncontrolled error. 

Ab initio strategies to get E0



Full configuration interaction
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Largest FCI calculation to date ~ 1010 determinants (N2 molecule) 
[E. Rossi, GL Bendazzoli, S. Evangelisti, D Meynau, Chem Phys Lett, 310, 530,(1999)] 
!
Hubbard model: 159×109 determinants  [Yamada, Imamure, Machida, on the 
Earth Simulator]

Ground-state eigenvalue problem in an exponentially large space

�Di|H|Dj⇥ can be positive or negative: this is a source of sign problem, 
but is NOT the Fermion sign problem! 

Include all (symmetry-allowed) determinants within  
basis 

Variationally minimise wrt Ci



N↵ = 5, N� = 5,M = 100

! NFCI ⇡ 1016

Slater determinant space: the Hilbert space for fermions
Suppose we have in hand a set of 2M spin-orbitals [e.g. RHF, UHF, pw]

HF determinant D0 
(Fermi Vacuum) 2h,2p 4h,4p
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Hamiltonian matrix elements (Slater-Condon rules)

Since H contains at most 2-body interactions:

Hamiltonian connects only single and double excitations:

Maximum connectivity

Spin selection rule:
Other symmetries may also exist  
translational invariance; 
Molecules:point group symmetry

i  j
a b

for Di,Dj differing by one spin-orbital

for Di,Dj differing by two spin-orbitals



From “amplitudes” to “walkers”

Consider a population of  Nw “walkers” which inhabit Slater determinant space

Each with an associated sign si=+1 or -1

We will define the amplitude on i to be the signed sum of walkers on Di:
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Normalisation

configuration 
space

Pictorial example

Nw =
X

i

|Ni| = 11

=
1pP
i N

2
i

=
1p
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A differential formulation for the CI coefficents

Let:

Consider the set of coupled first-order equations:

If The stationary distribution is the exact ground-state

The distribution is stationary and is an 
eigenstate of K (and hence H)

If

Any arbitrary initial distribution {Ci} will tend to the exact ground-state

However: this is not very useful, as we need the complete of {Cj }to complete 
the force calculation ⇒ the MEMORY BOTTLENECK OF FCI



Kij = Hij � EHF �ij

We want to generate a population dynamics for our set of walkers so that the rate 
of change of walkers on a given determinant satisfies the imaginary-time 
Schrödinger equation:

Reduce/enhance population on i, proportional  
to (Kii-S) and Ci

Reduce/enhance population on i, proportional  

to Kij and Cj 

Reduce if Kij Cj >0  

Enhance if Kij Cj <0 Diagonal Death (or cloning) processes

Spawning processes (child of j on i) 
The sign of the child depends on the sign of Kij

Population Dynamics

Annihilation processes

Let



Overview of FCIQMC algorithm: 
a random Game of Life, death and annihilation

(Diagonal) death/cloning processes

Spawning (birth) processes

Annihilation step

Adjust Shift (in constant N mode)

Start with  N (positive) walkers on D0, an initial value of S, and time-step τ

Booth, Thom and Alavi, J Chem Phys, 131, 054106, (2009)

S ! S � 1

A�
ln

Ncurrent

Nold

Pairwise removal of walkers of 
opposite sign on the same det
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Normalisation

configuration 
space

Pictorial example

Nw =
X

i

|Ni| = 11

=
1pP
i N

2
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=
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configuration 
space

Spawning

spawning event
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configuration 
space

Death

Death event
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configuration 
space

Death
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configuration 
space

Annihilation

annihilation

Hash algorithm: O(Nw)
Booth, Smart, Alavi, Mol. Phys., 112 (14), (2014),1855-1869
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configuration 
space

Annihilation



ps = �
|Hij|

pgen(j|i)
pd = � |Hii � EHF � S|

pgen(j|i) � (N2M2 +NM)�1

The rules of the “Game of Life” 
(derived from the underlying imaginary-time S.E.)
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Dabd
ijk

Probability of death
Probability to spawn new walker

If Hij < 0 , child has same sign 
as parent.  
If Hij > 0 child has opposite sign 
of parent

X

j

pgen(j|i) = 1



E =
�D0|H|�⇥
�D0|�⇥

=

P
j �D0|H|Dj⇥�Dj|�⇥

�D0|�⇥

= EHF +
X

j2doubles

�D0|H|Dj⇥
Cj

C0

The projected energy  
(non-variational)

where
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H2O (all electron, cc-pVDZ, 452x106 determinants)

“Annihilation plateau”

Variable shift mode

Coherent exponential growth

Incoherent exponential growth



Comparison with existing FCI



New systems



Hubbard Model
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3√2×3√2, 18 sites (L=3)

0,0

1,00,1

1,1

1,-1-1,1

-1,0 0,-1

-1,-1

b1 =
⇡

L
(1, 1)

b2 =
⇡

L
(�1, 1)

kn,m = nb1 +mb2

T1 = (L,L)

T2 = (�L,L)
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Hilbert space of K=0 sector at half-filling NFCI ⇡ 131⇥ 108

Hubbard model energy levels 



18 site-18 electron U=4 Hubbard model 
        Time evolution of the energy 









How to reduce Nw while maintaining FCI accuracy?
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Overview of initiator-FCIQMC

(Diagonal) death/cloning processes

Spawning (birth) processes

Annihilation step

Adjust Shift (in constant N mode)

Start with N (positive) walkers on D0, an initial value of S, and time-step τ

Survival of the fittest [Cleland, Booth, Alavi, J Chem Phys, 132, 
041103, (2010)]



If D is empty,
child of P spawned onto D survives
only if P is an initiator (NP > nadd)

Survival of the fittest and “initiators”
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DP The value of nadd is not crucial, as long as 
it is sensibly chosen. We typically use 
nadd =2 or 3. 

Initiators can bring to life new 
determinants



Is the initiator method exact?

• In the limit of large walker number, all determinants 
acquire an occupation, and therefore all newly 
spawned walkers survive the test of “survival of the 
fittest”. 

• Therefore the large walker number limit of  “i-FCIQMC” 
is FCIQMC.  

• Since the large walker limit of FCIQMC is FCI, we have 
that the large walker limit of i-FCIQMC is FCI.
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Convergence of i-FCIQMC with walker number.  
N2 in cc-pVDZ     

(NFCI=5.4×108)



The effect of varying nadd 
CO in cc-pVQZ 
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NFCI=4.7 × 1014



Live Demo
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Initiator method  
!

(ninit=3) 
!

18 site-18 electron U=4 Hubbard model 
        



The Be2 (VTZ) with i-FCIQMC: 
a simulation with 2,000 walkers
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Energy, compared with subspace diagonalisations 
(c.f. Stochastic CI)
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The instantaneous i-FCIQMC wavefunction 
is very coarse-grained representation of the exact 

wavefunction 
(Be2-VTZ, NFCI= 346,485, Nw=2,000)
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But the time-averaged i-FCIQMC wavefunction 
with 2,000 walkers (Be2, VTZ, NFCI= 346485) 

is essentially perfect 
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Electron affinities with i−FCIQMC: 
comparison with Expt* (relativistically corrected)

aug-VDZ=[4s3p2d]~23, aug-VTZ=[5s4p3d2f]~46, aug-VQZ=[6s5p4d3f2g]~80, 
  
aug-VXZ~(1/3)(X+1)(X+3/2)(X+2)+(X+1)2

*T Koga, H Aoki, JM Garcia de la Vega, H Tatewaki, Theor. Chim Acta, 96, 248, (1997)

A+e−→A−

aug-V5Z F-

Cleland, Booth, Alavi,J Chem Phys 134 , 024112, (2011).



First-row Diatomics 
!

Size of spaces and required 
Nw’s to accumulate 50,000 walkers  on the HF det.

45

  Diatomic    Basis             N, 2M         N_FCI               N_w	
    C2          VQZ             8, 216      6.1 x 10^11         2.6 x 10^6	
    CN          VQZ             9, 216      4.8 x 10^13         7.6 x 10^7	
    N2          VQZ             10, 216     2.4 x 10^14         3.0 x 10^7	
    CO          VQZ             10, 216     4.7 x 10^14         6.0 x 10^7	
    NO          VQZ             11, 216     1.5 x 10^16         1.1 x 10^8	
    O2          VQZ             12, 216     6.4 x 10^16         5.9 x 10^7	
    F2          VQZ             14, 216     1.3 x 10^19         5.0 x 10^7

eg. note that the 14-electron F2 is ~20% cheaper than the 10-electron CO, despite 
the fact that the space is 5 orders of magnitude larger!
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i-FCIQMC Diatomic dissociation energies in kcal mol-1 



Dissociation energies of some strongly correlated first-row molecules
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(F12 correction added to VQZ)

Cleland, Booth, Overy, Alavi, J. Chem. Theory Comput. 2012, 8, 4138−4152
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Errors (kcal mol-1) in the De and comparison to other methods

(a) D. Feller and J. Sordo, J Chem Phys 2000, 113, 485 
(b) L. Bytautas and  K.Ruedenberg, J Chem Phys 2005, 122, 154110 
(c) J.C. Grossman, J Chem Phys, 2002, 117, 1434



�dNi

d�
= (Hii � S)Ni +

�X

j⇥D
HijNj +

�X

j⇥D0

HijNj

Semi-Stochastic i-FCIQMC 
Petruzielo, Holmes, Changlani, Nightingale, Umrigar, PRL, 109, 230201, (2012)
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Select a small subset of determinants  D (called the deterministic space) 
Do part of the force update deterministically

Sum computed exactly 
for given Nj in D 

Spawning step as 
per i-FCIQMC

Death step as 
per FCIQMC

We have parallel implementation of the SS method in the NECI code. 
On the fly selection of D    |D|=106	

N.S. Blunt, S.D. Smart, J.A.F. Kersten, J.S. Spencer, G.H. Booth, and A. Alavi 
The Journal of Chemical Physics 142, 184107 (2015) 



Relative Efficiency of the Semi-Stochastic method

50



�T =
X

i�T
ci|Di�

E =
��|H|�T ⇥
��|�T ⇥

=

P
i�CT ,j�T CicjHijP

i�T Cici

=

P
i�CT CihiP
i�T Cici

hi =
X

j�T
Hijcj , i � CT

CT is space of determinants connected to T

ci are a set of fixed coe�cients obtained by diagonalising H � T

Projected energy via a multi-determinant trial 
wavefunction
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Select a subset of determinants T (need not be the same as D)
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Petruzielo, Holmes, Changlani, Nightingale, Umrigar, PRL, 109, 230201, (2012)





Parallel scaling
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Time-step in a.u. for N2 in cc-pVXZ basis sets
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tau (N2)

1E-05

1E-04

1E-03

1E-02

1E-01

VDZ VTZ VQZ

standard

⌧ ⇠ (N2M2)�1

M ⇠ X3
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I A

B

C

D
0.001

0.001 0.001

0.1

p(to spawn) = (3/4) ⇤ .01 + (1/4) ⇤ 1 = 0.2575

Uniform Generation Scheme

pgen(A|I) = pgen(B|I) = .. =
1

4

The largest allowable ⌧ is set by ps  1

! ⌧ =
1

0.4
= 2.5

! ps(A|I) = 1

ps(B|I) = 0.01, etc

ps(A|I) = ⌧
0.1
1
4

= 0.4⌧

ps(B|I) = ⌧
0.001

1
4

= 0.004⌧

Rejection ratio is high



Construct an algorithm to select j from i so that

To do this exactly costs O(N2M2)

ps = � ⇤ const

Hamiltonian-Weighted Excitation Generation
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Pgen(j|i) � |Hij|⇠
In the ideal case (where proportionality is exact), the spawning 
rate is constant:

⌧ can then be maximised with the condition
ps  1 (and pd  2)1
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I A

B

C

D
0.001

0.001 0.001

0.1

Weighted Generation Scheme

largest allowable ⌧ = 1/0.103 = 9.71

ps(A|I) = ps(B|I) = ps(C|I) = ps(D|I) = 1

p(to spawn) = 1

Two advantages: allows larger timesteps, and minimises rejections 

pgen(A|I) = 0.1

0.103
= 0.971

pgen(B|I) = 0.001

0.103
= 0.00971

ps(A|I) = ps(B|I) = 0.103⌧

X

A

|HAI | = 0.103



However, it is possible to devise a determinant selection algorithm based on
a Cauchy-Schwarz decomposition of Hij which costs only O(M) to
compute!
In practice this allows � to scale substantially better with system size,
as well as lead to significant overall e�ciency.

59



60

i  j
a b

hij|abi 
p
hia|iaihjb|jbi

For opposite-spin excitations
�i = �a 6= �j = �b

Select hole a according to:

[For same-spin, include exchange term]

 O(M)

p(ijab) = p(ab|ij)p(ij)

p(ab|ij) = p(a|i)p(b|j)

p(a|i) /
p
hai|aii

p(a|i) =

p
hai|aii

P
a

p
hai|aii
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tau for N2 with 
VXZ basis-sets

1E-05

1E-04

1E-03

1E-02

1E-01

VDZ VTZ VQZ

standard newexcitgen

cost per walker per successful 
spawn per unit time

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

VDZ VTZ VQZ



3-Band Hubbard Model of a Cuprate
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O O O O O

O Cu O Cu O Cu O Cu O Cu O

O O O O O

O Cu O Cu O Cu O Cu O Cu O

O O O O O

O Cu O Cu O Cu O Cu O Cu O

O O O O O

O Cu O Cu O Cu O Cu O Cu O

O O O O O

O Cu O Cu O Cu O Cu O Cu O

O O O O O

10 (Cu) sites with 10 holes (half-filling)



3-Band Hubbard model energies
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  RHF:  -9.5206318541964!
  UHF: -15.2905361816484!
Exact: -15.817 (5)

NFCI =

✓
30

5

◆2

⇡ 20⇥ 109

Nw ⇡ 109(UHF basis)

Nw ⇡ 108(RHF basis)



Which orbitals to use: RHF or UHF?
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RHF



Which orbitals to use: RHF or UHF?
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UHF



Natural Orbitals: RNO or UNO?
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RNO



Natural Orbitals: RNO or UNO?
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UNO



�rs
pq = �⇥|a†ra†saqap|⇥⇥

�p
q = ��|a†paq|�⇥

Reduced density matrices
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The 1- and 2-electron RDMs are defined in the orbital basis as:

The 1-RDM can be obtained from the 2-RDM by tracing out an electron

Normalisation conditions:

�q
p =

1

N � 1

X

r

�qr
pr

X

pq

�pq
pq =

✓
N

2

◆

X

p

�p
p = N
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E = hq
p�

p
q +

1

2
grspq�

pq
rsEnergy

hS2i = 3

4
N +

1

4

X

ij

X

⇤

�i⇤j⇤
i⇤j⇤ � 1

2

X

ij

�i�j⇥
i�j⇥ �

X

ij

�j�i⇥
i�j⇥ (1)Spin

Properties such as E, S2, electron density, forces, etc 
can be calculated via the 1 and 2-RDMs

Ô =
X

ij

ôij

h |Ô| i = �rspqopqrs

Nuclear gradients 
Hellmann-Feynman+Pulay

@E

@R
= �q

p

@hp
q

@R
+

1

2
�rs
pq
@gpqrs
@R



�rs
pq =

X

i

C�
i Cj where |j� = a†ra

†
saqap|i�

Calculation of the RDMs
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This is very expensive, because for each occupied determinant, i, need to  
search over all its double excitations. 
!
Instead, use the fact that in FCIQMC, we sample all double-excitations according to 
the Hamiltonian matrix elements.  
!
Therefore, we can use the spawning step to stochastically sample the  
contributions to the 2-RDM!

�rs
pq =

X

i2pq

CiCj

p[j|i] ⇥ p[j|i] Spawning probability
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�rs
pq /

X

i2pq

hNiNji⌧
p[j|i] ⇥ p[j|i]

In practice, replace the product of the Ci coefficients with the  
time-average of the products of the walker populations

Normalisation is fixed by:

X

pq

�pq
pq =

✓
N

2

◆



When we do this, the result is not good!
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What is wrong?
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The diagonal matrix elements have a bias

Ni = Nex
i + �Ni

hN2
i i⌧ = (Nex

i )2 + h(�Ni)
2i⌧

h�Nii⌧ = 0

The instantaneous populations fluctuate about their exact value:

But the time-average of the square shows a positive bias:

�pq
pq /

X

i2pq

hN2
i i⌧



The solution: replica trick
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Run two independent simulations in parallel and use the instantaneous 
populations on the two replicas to compute the RDM!

Since the two populations are strictly uncorrelated, it is easy to show

h�N (1)
i �N (2)

i i⌧ = 0

�pq
pq /

X

i2pq

hN (1)
i N

(2)
i i⌧

�pq
pq /

X

i2pq

hN (1)
i i⌧ hN (2)

i i⌧
Therefore: 
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Overy, Booth, Blunt,Shepherd, Cleland, Alavi, JCP, 141, 244117 (2014)
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Nuclear gradients
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|
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N2 in 6-31G H2O in 6-31G and VTZ


