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systems and models

In this lecture I adress systems like

• noble metals with (dilute) “magnetic impurities” (e.g. Co in Au)

• mixed valence systems (e.g. Cerium compounds)

• ...

The theoretical description uses models like

• the single impurity Anderson model (SIAM)

• SIAM with an additional core level

• ...



What is the Kondo resonance ?

The existence of what is now usually called “Kondo resonance” was conjectu-
red in 1965 independently by A.A. Abrikosov and H. Suhl (...the singularity is
replaced by a resonant scattering close to the Fermi level...). It is therefore also
called the “Abrikosov-Suhl resonance”.

It is a possible nontrivial many-body feature in the spectral function of the
one-particle Green’s function of the magnetic impurity at “very low temperatu-
res” with interesting experimental manifestations.

No controlled method to actually calculate it was available till the early eighties.

Is there a simple way to understand it ?



Prehistory of the SIAM : localized level coupled to a continuum
(K. O. Friedrichs, Commun. Pure Appl. Math 1, 361 (1948) → Friedrichs model)

The localized d-level |d〉 couples to a a continuum of states |ε〉.

The single particle Hamiltonian h reads

h = εd|d〉〈d|+
∫
ε|ε〉〈ε|dε+

∫
[V (ε)|d〉〈ε|+H.c.] dε

The important resolvent matrix elements gij(z) ≡ 〈i|(z − h)−1|j〉 are easily
calculated multiplying (z − h)g(z)|d〉 = |d〉 from the left with 〈d| and 〈ε|

(z − εd)gdd(z)−
∫
V (ε)gεd(z)dε = 1 , (z − ε)gεd(z)− V (ε)∗gdd(z) = 0 .

Therefore the local diagonal element is given by

gdd(z) =
1

z − εd − Γ(z)
, Γ(z) =

∫
|V (ε)|2

z − ε
dε .



SIAM : the full model (spin-degenerate)

In order to study a single magnetic impurity in simple metals P. W. Anderson
proposed the Hamiltonian

HA =
∑
σ

[
εdndσ +

∑
k

εknkσ +
∑
k

(Vdkψ
†
dσψkσ +H.c.)

]
+ Und↑nd↓ ,

where ψd,σ is the annihilation operator of the localized impurity |d〉-state with
energy εd and the ψk,σ are the annihilation operators of the delocalized band

states |k〉 with energy εk. The ndσ = ψ†dσψdσ (and d→ k) are particle number
operators. In the body of his 1961 paper Anderson used the “physically unrealistic
case” with only spin degeneracy and treated the case of a doubly degenerate “d”-
orbital in an appendix. As a “physically realistic” case the spin-degenerate model
was later used to describe hydrogen chemisorption on metal surfaces (d→ a for
“adsorbate”), where |a〉 corresponds to the hydrogen 1s-level (Newns 1965).

The last term of the Anderson Hamiltonian describes the local “Coulomb”
repulsion U which acts when the d-level is doubly occupied. This two-body
interaction makes the model highly non-trivial.



Technicalities: Green’s functions

One can use either “time”-ordered or retarded (“Zubarev”) Green’s functions.

The retarded ones are generally defined as

〈〈A;B〉〉z ≡ −i
∫ ∞

0

〈[A(t), B]±〉eiztdt ,

where A(t) = eiHtAe−iHt is the operator A in the Heisenberg picture, 〈 〉
denotes the average over the grand canonical ensemble, and z is a complex
variable with Imz > 0 in order to ensure the convergence of the time integral.
For operators A involving products of and odd (even) number of Fermion
field operators the anticommutator [ , ]+ (commutator [ , ]−) is chosen. The
Heisenberg equation of motion (EOM) for A(t) and a partial integration yields
the EOM

z〈〈A;B〉〉z − 〈〈[A,H];B〉〉z = 〈[A,B]±〉 .
This EOM is very useful for discussing the exactly solvable limits of the
Anderson impurity model.



One-particle Green’s function of the interacting model

For interacting systems in the groundstate experimentally relevant spectral
functions are obtained from the (retarded) one-particle Green’s functions

defined as G
(r)
iσ,jσ(z) ≡ 〈〈ψiσ;ψ†jσ〉〉z. It can be written in terms of many-body

resolvents operators as (i, j → d)

G
(r)
dσ,dσ(z) = 〈E0(N)|

[
ψ†dσ

1

z +H − E0(N)
ψdσ + ψdσ

1

z −H + E0(N)
ψ†dσ

]
|E0(N)〉

The first term is relevant for photoemission and the second for inverse photo-
emission. At finite temperatures one has to average over the initial eigenstates
with the appropriate Boltzmann factors. The spectral functions are obtained as

ρ<dd(ε) = −1

π
f(ε)ImG

(r)
dσ,dσ(ε+ i0) , ρ>dd(ε) = −1

π
(1− f(ε))ImG

(r)
dσ,dσ(ε+ i0)

with f(ε) = (eβε + 1)−1 the Fermi function. This leads to

ρ>dd(ε) = eβερ<dd(ε) “photoemission determines inverse photoemmision′′,

which unfortunately is practically not very useful (see later).



Exactly solvable limits of the SIAM

For U = 0 the Anderson impurity model describes noninteracting electrons. For
V = 0 (no coupling to the host) one is in the atomic limit which allows an
exact solution for arbitrary values of U . The Green’s functions of both limits can
easily be obtained using the equations of motion (EOMs). The beginning of the
infinite hierarchy of EOMs reads (upper index (r) suppressed)

(z − εd)Gdσ,dσ(z)− U〈〈ψdσnd−σ;ψ†dσ〉〉z −
∑
k

VdkGkσ,dσ(z) = 1 .

This requires to write down the EOMs for the two new funtions appearing

(z − (εd + U))〈〈ψdσnd−σ;ψ†dσ〉〉z − 〈〈[ψdσnd−σ, V ];ψ†dσ〉〉z = 〈nd−σ〉 ,

where V is the coupling part of the Hamiltonian. The EOM for Gkσ,dσ reads

(z − εk)Gkσ,dσ(z)− V ∗dkGdσ,dσ(z) = 0 .



For U = 0 these equations close and one obtains

GU=0
dσ,dσ(z) =

1

z − εd − Γ(z)
, with Γ(z) =

∑
k

|Vdk|2

z − εk
.

Also for V = 0 these equations close and one obtains

GV=0
dσ,dσ(z) =

1− 〈nd−σ〉
z − εd

+
〈nd−σ〉

z − (εd + U)

The corresponding spectral function in this atomic limit has sharp atomic peaks
at εd and εd+U . The most interesting case is when εd is below the Fermi energy
and εd + U is above it. An important special case is particle-hole symmetry

εd +
U

2
= µ = εF (= 0)

and a band symmetric around the Fermi energy εF . In this case

GV=0
dσ,dσ(z) =

1/2

z − εd
+

1/2

z − (εd + U)

holds for all temperatures.



Finite V and U : Historical remarks

Reviewing the attempts to find a proper solution to the SIAM is like following
the progress in the quantum many body problem in general. Here I cannot
list them all:

• Hartree-Fock (only a starting point)

• equations of motion (truncation, factorization) uncontrolled

• perturbation theory in U

• perturbation theory in V (no Wick theorem)

• phenomenological Fermi liquid theory

• various renormalization group approaches

• numerical renormalization group (NRG) (“exact” numerical results )

• Bethe ansatz (exact analytical solution, but (so far) no spectral functions)

• 1/Nf methods: NCA, “intermediate states method”: details will be pre-
sented as suggested by the organizers

• quantum Monte Carlo

There is still no “quick and easy” method to obtain the “exact” spectral function
for all ε.



The Hartree-Fock approximation (HF)

In his 1961-paper Anderson used the HF-approximation. It can be obtained in
various ways

• mean field approximation:

Und↑nd↓ → U
(
nd↑〈nd↓〉HF + nd↓〈nd↑〉HF − 〈nd↑〉HF 〈nd↓〉HF

)
,

• diagramatically (see below)

• simple factorization

〈〈ψdσnd−σ;ψ†dσ〉〉z → 〈nd−σ〉〈〈ψdσ;ψ†dσ〉〉z .

One always obtains

GHFdσ,dσ(z) =
1

z − εd − U〈nd−σ〉 − Γ(z)
.

with 〈nd−σ〉 to be determined self-consistently.



In the ph-symmetric case

〈nd−σ〉RHF = 1/2 = 〈nd−σ〉exact

and the R(estriced)HF resonance is at the chemical potential. The shape and
position of this RHF-spectral function is independent of the value of U in this
particle-hole symmetric case.

As discussed by Anderson in his 1961 paper, for U larger than the critical value
Uc = πΓ solutions of the HF-equations occur where the occupancies of the impu-
rity level for spin-up and spin-down differ. These “unrestricted Hartree-Fock”
(UHF) solutions are an artefact of the approximation as no spontaneous sym-
metry breaking can occur when the interaction acts in a zero dimensional system.

Therefore the spin variable in the Green’s function is suppressed in (most of)
the following (e.g. dσ → d).



Perturbation theory in U: Fermi liquid property

The perturbation theory (to all orders) in U can be done with usual Feynman
diagrams as used by Landau to give a microscopic “proof” of his phenomenolo-
gical Fermi liquid theory. An important step is to introduce the selfenergy Σ(ε)

Gdd(z) =
1

z − εd − Γ(z)− Σ(z)
.

The first order contribution to Σ in U is just the HF-term U〈nd,−σ〉.
In the ph-symmetric case and a constant Γ(ε+ i0) = −iΓ (“wide band limit”)
the spectral function takes the form (Σ̃ ≡ Σ− U〈nd,−σ〉 )

ρdd(ε) =
1

π

Γ + |ImΣ̃(ε+ i0)|
(ε− ReΣ̃(ε))2 + (Γ + |ImΣ̃(ε+ i0)|)2

with ReΣ̃(ε) an even function of ε and the zero temperature Fermi liquid
property ImΣ̃(ε+ i0) ∼ ε2 for ε→ 0 holds. This implies the exact result

T = 0 : ρdd(0) = ρ
(RHF )
dd (0) =

1

πΓ

For U/πΓ� 1 the exact ρdd(ε) differs only slightly from RHF-solution for ε 6= 0.
What happens for U/πΓ� 1?



Perturbation theory in V: no Wick’s theorem

Now the starting point is the atomic limit. Due to the Coulomb interaction
term in the corresponding zeroth order Hamiltonian a straightforward diagramatic
analysis using Wick’s theorem is not possible.

One possible approach is to introduce the two modified annihilation operators

ψ+,σ ≡ ψaσna−σ ψ−,σ ≡ ψaσ(1− na−σ)

and introduce a 2× 2 matrix self-energy (W. Brenig, K.S., Z. Phys. 267, 201
(1974)). Using the EOMs this self-energy is easily calculated to second order in
V . In the ph-symmetric case this approximately yields

Gdd(z) ≈
1/2

z − U/2− 2Γ(z)
+

1/2

z + U/2− 2Γ(z)
.

If an electron is removed from the impurity level the empty impurity state created
can decay by tunneling back in of a spin-up or spin-down electron which gives
the “atomic peaks” a width twice as large as the width of the RHF-Lorentzian.



We now have two (naive!?) approximate solutions
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What is the exact result for the spectral function?

For U/πΓ � 1 almost all weight is in the “atomic resonances”. This implies a
very narrow resonance at the chemical potential ε = 0.



It was only in the second half of the eighties that a (numerically) exact solution
for the spectral function was available (NRG, see later)
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What is the exact position of this Kondo resonance away form the
ph-symmetric case?

Before addressing this question systems (models) with an additional core level
are discussed.



Impurity models involving a core level

X-ray photoemission spectroscopy (XPS) of core levels of an impurity as well
as X-ray absorption spectroscopy are useful tools to obtain information about
the properties of the valence electrons.

In a minimal model a single nondegenerate core level of the impurity with
energy εc is considered which is filled in the initial state. The creation of the
core hole in the photoemission process leads to an additional attractive
potential for the valence level of the impurity which lowers it by an amount
Udc.

The corresponding model Hamiltonian reads

Htot = HA + εcnc − Udc(1− nc)
∑
σ

ndσ .

For the spinless SIAM this the famous X-ray edge problem.

The model including spin and cannot be solved exactly for finite Coulomb
interaction U and various approximations were proposed. A treatment within
the large degeneracy limit is discussed later.



Creation of the core hole: a quantum quench

As the ground state of the combined system has the form

ψ†c|E0(N)〉

with |E0(N)〉 the ground state of the valence system with the core electron
present, the time development of the remaining pure valence system after
removing the core electron is described by the modified Anderson Hamil-
tonian H̃A with the energy εd of the impurity level replaced by εd − Udc. The
creation of the core hole acts as a quantum quench.

The core spectral function is given by

ρcc(ε) = 〈E0(N)|δ(ε− εc − E0(N) + H̃A)|E0(N)〉 .

For the case of noninteracting valence electrons, i.e. U = 0 this problem falls
into the class of the famous X-ray edge singularity problem (Nozières and de
Dominicis, 1969). The sharp core level spectrum without the presence of the
valence electrons is replaced by a continuum with a power law singularity at
the high energy edge.



Core spectral function: “high energy” features

The core level spectrum can show satellite peaks corresponding to higher
energy eigenstates of H̃A due to physical processes that occur on a finite
time scale (M. Combescot and P. Nozières, 1971; A. Kotani and Y. Toyozawa,
1974; K. S. and O. Gunnarsson, 1977)

This has been addressed in detail e.g. for core levels of adsorbates at metal
surfaces. For small coupling Γ a high energy resonance dominates the core level
spectrum if the adsorbate level initially well above the chemical potential is
pulled well below it when the core hole is created (spinless model).

(K.S., O. Gunnarsson, Solid State Comm. 18, 691 (1977))



Infinite U SIAM with spin and orbital degeneracy

For an f-orbital the total degeneracy is Nf = 14 when spin-orbit and crystal-field
splitting are neglected. Expressing V as

V =
Ṽ√
Nf

with Ṽ fixed, the model can be solved exactly in the limit Nf → ∞ and for
large but finite Nf a systematic approximation scheme can be set up at zero
temperature : (O. Gunnarsson and K.S. (1982, 1983)):

At finite temperatures the “noncrossing approximation” (NCA) also uses 1/Nf
as a small parameter.

• Y. Kuramoto, Self-Consistent Perturbation Theory for the Dynamics of
Valence Fluctuations , Z.Phys. B, 37 (1983)
(Earlier work: Keiter and Kimball (1970) ): no Wick’s theorem
• P. Coleman, New approach to the mixed-valence problem, Phys. Rev. B29,

3035 (1984)
With the help of a slave boson Wick’s theorem can be used



GS papers referred to in the following

• GS I: O. Gunnarsson and K.S., Photoemission from Ce Compounds: Exact
Model Calculation in the Limit of Large Degeneracy, Phys. Rev. Lett. 50,
604, (1982)

• GS II: O. Gunnarsson and K.S., Electron spectroscopies for Ce compounds
in the impurity model, Phys. Rev. B28, 4315 (1983)

• GS III: O. Gunnarsson and K.S., Double occupancy for the f orbital in the
Anderson model for Ce compounds , Phys. Rev. B31, 4815 (1985)

• GS IV: O. Gunnarsson and K.S., Many body formulation of spectra of mixed
valence systems in “Handbook of the Physics and Chemistry of Rare Earths”
Vol. 10, p.103-163, Elsevier (1987)



SIAM with large degeneracy

The Nf -fold degenerate single impurity Anderson Hamiltonian used in the
following reads

H =

Nf∑
ν=1

[
εfψ
†
νψν +

∫
εψ†νεψνεdε+

∫ [
V (ε)ψ†νψνε +H.c.

]]
+ U

∑
ν<µ

nνnµ .

As V (ε) enters in the combinations NfV (ε)2 and V (ε)2 it is useful to define

Ṽ (ε) ≡
√
NfV (ε)

and require that Ṽ (ε) is independent of the degeneracy Nf . This simplifies
the discussion of the large degeneracy limit Nf →∞.

In the following the ground state calculation as well a the “intermediate
states method” for the calculation of spectra is discussed in some detail.
Already the leading order analytical calculations provide insight about the
behaviour of the Kondo resonance in the large degeneracy limit.



Many-electron basis states for the ground state

Solid circles show electrons and open circles show holes.

The hatched part indicates the filled conduction bands and the horizontal lines
the f -level. The arrows show which states couple to each other.

A solid line indicates the strength Ṽ and a dashed line the strength Ṽ /
√
Nf .

In the infinite U case the last column is missing.



The ground state calculation is performed variationally using these many-
electron basis states. We consider the infinite U limit.

In the state |0〉 all conduction states below the Fermi energy are filled and the
f -level is empty. This state couples via H to the states “a”. They are of the
form

|ε〉 =
1√
Nf

∑
ν

ψ†νψεν

in which a conduction electron has hopped into the f -level. They couple to
states the “c”-states with a conduction electron-conduction hole pair

|Eε〉 =
1√
Nf

∑
ν

ψ†Eνψεν ,

where E refers to a conduction electron state above the Fermi level (E > εF ),
etc.

The matrix elements coupling these states are given by

〈ε|H|0〉 = Ṽ (ε) , 〈Eε|H|ε′〉 = Ṽ (E)/
√
Nfδ(ε− ε′) .



As 〈Eε|H|ε′〉 ∼ 1/
√
Nf the ground state for U = ∞ to lowest order in

1/Nf reads

|E0〉(0) = A

[
|0〉+

∫ 0

−B
dεa(ε)|ε〉

]
.

For the corresponding ground state energy E
(0)
0 difference ∆E0 ≡ E(0)

0 −〈0|H|0〉
is finite also in the thermodynamic limit.

Using the coupling matrix element 〈ε|H|0〉 = Ṽ (ε) the Schrödinger equation
leads to

∆E0 =

∫ 0

−B
Ṽ (ε)a(ε)dε, (∆E0 − εf + ε)a(ε) = Ṽ (ε) .

Therefore ∆E0 obeys the implicit equation

∆E0 = −
∫ 0

−B

Ṽ (ε)2

εf −∆E0 − ε
dε ≡ −Γ̃(εf −∆E0) → Ṽ 2 ln

εf −∆E0

εf −∆E0 +B
,

where the energy integration was performed for an energy independent Ṽ .
Defining the (positive) δ ≡ εf−∆E0, ∆̃ ≡ πṼ 2, and ε̃f ≡ εf+(∆̃/π) ln (πB/∆̃)

the equation for δ simplifies in the “Kondo-limit” limit −ε̃f � ∆̃

δ = (∆̃/π)eπ(ε̃f−δ)/∆̃ → δ ≈ (∆̃/π)eπε̃f/∆̃ .



The coefficient a(ε) which determines the hole distribution is given by

a(ε)2 = (∆̃/π)/(ε− δ)2 .

It grows on the energy scale δ as the Fermi energy is approched from below.

The total f -occupancy is determined by
∫
a(ε)2dε. For the case of an energy

independent Ṽ one obtains nf = ∆̃/(∆̃ + πδ).

In the Kondo limit the energy scale δ depends exponentially on πε̃f/∆̃, which
suggests that it can be, apart from a factor given by the Boltzmann constant
kB, interpreted as the Kondo temperature: TK = kBδ. This will be further
examined by calcualting the one-particle Green’s function to leading order in
1/Nf .

The infinite U lowest order calculation presented above can be extended to
the case when the spin-orbit splitting ∆εf is taken into account. The single
f -level (with Nf = 14) is replaced by two levels (with Nf1 = 6 and Nf2 = 8 for
j = 5/2 and j = 7/2) at εf and εf + ∆εf . For the descrption of high-resolution
experimental spectra of Ce compounds it is important to include the spin-orbit
splitting.

Numerically performed ground state calculations of higher order in 1/Nf using
the states in the figure quickly converge for Nf = 14.



The “intermediate state method” for spectra

The theoretical description of photoemission simplifies considerably when
the emitted electron is assumed to have no interaction with the remaining
(N −1)-electron system. In this “sudden approximation” the photoemmision
current is directly related to the spectral functions of one-particle Green’s
functions (see e.g. GS IV).

As shown the zero temperature local one-particle Green’s functions G< and
G> can be expressed as an expectation value of the resolvent of the many
body Hamiltonian H. One obtains the well known Lehmann representation
by inserting the complete set of (N ∓ 1)-electron eigenstates of H. For G<

one can alternatively use the resolution of unity made of an arbitrary complete
set {|i〉} of (N − 1)-electron basis states

G<νν(z) =
∑
ij

〈E0(N)|ψ†ν|i〉〈i|(z +H − E0(N))−1|j〉〈j|ψν|E0(N)〉 .



The inversion of the matrix H̃(z)ij ≡ 〈i|(z +H − E0(N))|j〉 would lead to the
exact result for G<νν(z)

G<νν(z) =
∑
ij

〈E0(N)|ψ†ν|i〉(H̃(z)−1)ij〈j|ψν|E0(N)〉

if the procedure could be actually carried out for a complete set of states.

Approximations can be obtained by truncating the set {|i〉} of intermediate
states (GS). Useful results can be obtained again using a classification of the
states according to their contribution in orders of 1/Nf .



Valence photoemission spectrum to leading order in 1/Nf

We consider the U = ∞ case and work to lowest order in 1/Nf , for which
the corresponding ground state was discussed. This yields

ψν|E0〉(0) =
A√
Nf

∫
dε′a(ε′)ψε′ν|0〉 .

The (intermediate) basis states

|ε′ν〉 ≡ ψε′ν|0〉, |ε, ε′ν〉 ≡ 1√
Nf

∑
ν′

ψ†ν′ψεν′ψε′ν|0〉

couple to leading order in 1/
√
Nf as

〈ε′ν|H|ε, ε′′ν〉 = Ṽ (ε)δ(ε′ − ε′′) .

Therefore for each fixed value of ε′ the leading order calculation of the many-
body resolvent is mathematically equivalent to a “Friedrichs problem” of
coupling a “localized” level (here |ε′ν〉) to a continuum (here |ε, ε′ν〉 with
−B ≤ ε ≤ 0).



This leads to

G<νν(z) =
A2

Nf

∫ 0

−B
a(ε′)2g̃(z −∆E0 + εf − ε′)dε′

where

g̃(z) =
1

z − εf − Γ̃(z)
, with Γ̃(z) =

∫ 0

−B

Ṽ (ε)2

z − ε
dε .

In addition to a continuum part for −B ≤ ε ≤ 0 the function g̃(z) has pole at
z = δ = εf −∆E0 as the ground state energy is obtained from

∆E0 = −Γ̃(δ).

The pole has the strength (1− dΓ̃/dz)−1|δ = 1− nf .

The total f spectral function ρ<f (ε) ≡
∑
ν ImG<νν(ε− i0)/π therefore has the

pole contribution



ρ<f (ε) =
(1− nf)2Ṽ (ε)2

(δ − ε)2
, for − δ ≤ ε ≤ 0 .

This “low energy” spectral weight rises sharply as ε approaches εF = 0
from below. It is the tail of the Kondo resonance present at ε ≈ δ in the
spectral function ρ>f (ε) describing inverse photoemission (BIS), discussed in the
following.

The total weight of ρ<f from the pole contribution is given by nf(1 − nf). It
becomes very small in the Kondo limit nf ≈ 1. Then most of the spectral
weight (for −ε� δ) is well approximated by

ρ<f (ε) ≈ Img̃(ε− i0)/π .

The “ionization peak” near εf dominates the spectrum.

Its width is given by Nf∆ = ∆̃:

there are Nf channels to fill the empty f-level.



Comparison of the leading order result for ρ<f (ε) (full lines) with the “broadened

atomic limit” approximation ρ<f (ε) ≈ g̃(ε− i0)/π.

Compare the εf = −1.5 figure to the ε < 0 part of
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Inverse photoemission (BIS)

In inverse photoemission, earlier called Bremsstrahlung isochromat spec-
troscopy (BIS), the sample is bombarded by electrons which make radiative
transitions into lower-lying (N + 1)-electron states. Here we discuss transitions
into the f -level. The theoretical description is in terms of

G>νν(z) = 〈E0(N)|ψν
1

z −H + E0(N)
ψ†ν|E0(N)〉 .

The intermediate basis states are



As the integrated weight of the total spectral function ρνν = ρ<νν + ρ>νν is
unity and

∫
ρ<νν(ε)dε = nf/Nf holds, with nf ≤ 1 in the infinite U case, the

integrated weight of ρ>νν is given by 1 − nf/Nf , i.e. it is larger by a factor
Nf than the integrated weight of ρ<νν.

In order to fulfill ρ<νν(0) = ρ>νν(0) expected for an exact description at any finite
Nf requires to treat G>νν differently from the of calculation G<νν.

As the leading order ground state is used one has to calculate the expectation
value of the resolvent of the many body Hamiltonian with

ψ†ν|E0〉(0) = A

ψ†ν|0〉+
1√
Nf

∑
ν′(6=ν)

∫
dεa(ε)ψ†νψ

†
ν′ψεν′|0〉

 .

In the first state on the rhs the f -level is singly occupied (“f1”) while in the
second term it is doubly occupied (“f2”).

In a first attempt one would take the states on the rhs as the intermediate states
to calculate G>νν. If one focusses on the f1-peak in the U → ∞ limit, only
the state |ν〉 = ψ†ν|0〉 plays a role and one obtains



G>νν(z) ≈
1− nf

z + ∆E0 − εf
=

1− nf
z − δ

.

The corresponding peak has zero width and in the Kondo limit the small weight
1− nf � 1. In order to fullfill ρ<νν(0) = ρ>νν(0) one has to go one order higher
in 1/Nf , i.e to include the states c) and d) in the infinite U limit. This leads to

G>νν(z) =
1− nf

z + ∆E0 − εf − µ(z)
,

with

µ(z) =

∫ B

0

V (E)2

z + ∆E0 − E + Γ̃(−z −∆E0 + E + εf)
dE .

In the Kondo limit this leads to

ρ>f (ε) =
(1− nf)2Ṽ (ε)2

(ε− δ − Reµ(ε))2 + ((1− nf)πV (ε))2
, for 0 ≤ ε ≤ δ

Now the Kondo peak has a half width (1 − nf)πV (δ)2 ≈ πδ/Nf and in a
strict 1/Nf expansion ρ>f (ε) joins smoothly to the presented low energy
result for ρ<f (ε).



Let us summarize the behaviour of the total spectral function ρf = ρ<f + ρ>f in

the Kondo regime −εf � ∆̃ for large values of U :

The ionization peak near εf has the weight nf ≈ 1.

The weight of the f1 Kondo peak slightly above εF is (1− nf)Nf , and the f2

peak near εf + U has a weight nf(Nf − 1) ≈ Nf − 1.

Therfore even for nf = 0.9 and Nf = 14 the weight of the Kondo peak is
higher than the weight of the ionization peak:

Despite the fact that that there is a small chance, 1 − nf , to find the f -level
empty, there are Nf different ways to put the electron.

The weight of the Kondo peak in the BIS specrum is a factor Nf larger than
the part seen in photoemission.



Photoemission spectrum of CeCu2Si2: Reinert et al. PRL 87, 106401 (2001)

T = 11K:

ρff(ε) =
ρ<ff(ε)

f(ε)



Spectra involving core holes

Core level XPS and X-ray absorption spectroscopy provide additional
information about the valence electrons. In the XPS-case the core spectral
function is given by

ρc(ε) = 〈E0(N)|δ(ε− εc − E0(N) + H̃)|E0(N)〉 ,

where in H̃ the f-level has the energy εf − Ufc.

In the infinite U case to order (1/Nf)0 the ground state is expressed in terms
of the states |0〉 and |ε〉. They are also used as intermediate states in the
leading order calculation of G<cc = Gcc. This is again a “Friedrichs problem”
and the 00, 0ε, ε0 and εε′ matrix elements of the corresponding resolvent are all
needed. The straightforward calculation yields

ρc(ε+ εc) = (1− nf)

(
Ufc

ε− Ufc

)2

ρ̃f(ε−∆E0 + εf − Ufc) ,

where

ρ̃f(ε) = −1

π
Im

1

ε+ i0− εf + Ufc − Γ̃(ε+ i0)
.



In this leading order approximation the core spectrum is directly related to the
“valence spectrum” ρ̃f . This clearly shows that core level spectroscopy
gives information about properties of the valence electrons, like nf , εf and
∆.

To test the accuracy of the 1/Nf method one can study the limit Nf = 1 ,
where the exact solution can be obtained by solving the Nozierès-de Dominicis
integral equation numerically.

A comparison of the 1/Nf result including the state 0, a, c, and d is shown on
the next page



The exact result has an infrared singularity at threshold which is not present
in the 1/Nf calculation. This is not very prominent in the figure as a Lorentzian
“life time” broadening was introduced.

X-ray absorption spectroscopy of 3d→ 4f transitions has formal similarities
with inverse photoemission , as an electron is added to the f -level. The
difference is that the final state has the core hole present. The theoretical
description therefore, as in core-hole XPS, has to use the Hamiltonian H̃.



Comparison with experimental spectra

The model calculations for spectra using the impurity model are used frequently
for a comparison with experimental data of lanthanide materials.

An example for systems with essentially zero f -occupancy in the ground state are
La compounds. In Ce systems the f0 and f1 configurations play the important
role.

Even in dense systems spectra calaculated by the intermediate states method
for the Anderson impurity model are often in good agreement with experiment
(see e.g. GS IV).

Using different spectroscopies a part of the data may suffice to determine
the model parameters by fitting to the peak positions and their widths. Then
the additional data can be used as a consistency check or for predicting
results of further measurements.



CeNi2 spectra :

(J. Allen et al. Advances in Physics 35, 37 (1986) )

The two components of the XAS (and XPS) spectrum in the figure are due to
transitions from the spin-orbit split 3d 3/2 and 3d 5/2 levels.
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Outlook

There were many theoretical developments in the last thirty years which go
beyond the 1/Nf method presented here in some detail. The intermediate states
method nevertheless has remained a valuable tool in the hands of experi-
mentalists.

Presently a hot subject is to find controlled approximations for the fate of the
Kondo resonance in systems far from equilibrium (like quantum dots).

When I was a postdoc with H. Suhl at UCSD in 1975/76 we often talked about
the open problems in Kondo physics (at the time in connection with adsorbates).

He used to say
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“Like South America the Kondo problem will always have a great future”


