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Brief (and incomplete) history

• 1989: Dynamical mean-field theory (DMFT) 
Metzner & Vollhardt, Müller-Hartmann  

• 1998—2000: Dynamical cluster approximation 
Jarrell et al. 

• 2001: Cellular DMFT 
Kotliar et al. 

• 2000: Cluster perturbation theory (CPT) 
Sénéchal et al., Gros & Valenti ‘93
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Preliminaries

• Hubbard model 

• Dispersion
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• Thermodynamic Green’s function

Preliminaries
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Preliminaries
• Non-interacting (bare) Green’s function 

• Interacting Green’s function and Dyson equation
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• Action 

• Interacting Green’s function
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The Problem
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4N states



The finite size solution

416 states

Determine exact Green’s function/self-energy of L x L  cluster



Dynamic Cluster 
Approximation (DCA)



Dynamic cluster 
approximation

General idea: 
Represent bulk system by a reduced number of cluster 
degrees of freedom, and use coarse-graining to retain 
information about remaining degrees of freedom.



Coarse-graining of 
momentum space

DCA and DCA+ 5.5

…

DMFT: Nc=1 Nc=4 Nc=16A Exact:Nc=∞

K

k

Nc=16BNc=8

Fig. 1: Coarse-graining of momentum space: At the heart of the DCA method is a partitioning
of the first Brillouin zone into N

c

patches over which the Green’s function is coarse-grained
(averaged) to represent the system by a reduced number of N

c

”cluster” degrees of freedom.
The bulk degrees of freedom not included on the cluster are taken into account as a mean-field.
For N

c

= 1, the dynamical mean-field approximation is revovered, while for N
c

! 1, one
obtaines the exact result. For a given cluster size N

c

, one can have different locations and
shapes of the coarse-graining patches, as illustrated for N

c

=16A and 16B.

degrees of freedom, but instead uses coarse-graining to retain information about the degrees
of freedom not contained on the cluster. In the Appendix, we provide a rigorous derivation of
both the DCA and DCA+ algorithms based on approximations of the grand-potential. In the
following, we give a more physically motivated discussion of these algorithms.

2.1 General formalism

To coarse-grain the degrees of freedom, the Brillouin zone is split into N
c

patches of equal size.
As illustrated in Fig. 1, each patch is represented by the cluster momentum K at the center of
the cell and a patch function
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8
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is used to restrict momentum sums over momenta k inside the Kth patch. There can be different
numbers N

c

of patches, with different size and shape. The basic assumption of the DCA then
is that the self-energy is only weakly momentum dependent, so it can be approximated on a
coarse grid of K-points of a finite size cluster
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Since the self-energy describes energy shift and life-time effects due to the interaction of an
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Basic assumption
Self-energy is short-ranged/weakly momentum 
dependent 

and thus is well approximated on a coarse-grid of 
cluster K momenta
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Coarse-graining
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DCA self-consistency
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DCA algorithm

Ḡ (K, i!n) =
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(2) Coarse-graining
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(4) Cluster solver
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DCA vs. finite size
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QMC cluster solver
• Excellent review of continuous-time QMC solvers 

E. Gull et al., Continuous-time Monte Carlo methods for quantum 
impurity models. Rev. Mod. Phys. 83, 349–404 (2011). 

• Interaction expansion, hybridization expansion and 
auxiliary field algorithms  

• Continuous-time auxiliary field (CT-AUX) QMC  
Employs auxiliary field decoupling of interaction term, then 
performs Monte Carlo sampling of expansion in interaction



• Auxiliary field decomposition 

• Partition function 

• Sum over expansion orders 

• Monte Carlo sampling space

CT-AUX QMC
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QMC updates
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Sign problem

A =
1

Z
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• Weights of configurations can be negative 

• Average sign 

• Ratio of Z and Z|p| of “bosonic” system with positive weights 

• Average sign decreases exponentially with system size, 
inverse temperature and U and leads to exponential statistical 
errors.



Fermion sign problem
DCA and DCA+ 5.11

2. Single-particle properties

Much can be learned about the single-particle properties
of the system, especially Fermi-liquid formation, from study-
ing the momentum distribution function n(k), the single-
particle spectra A(k,!) and the single-particle self-energy
"(k,!). For a Fermi liquid, the self-energy "(kF ,!)#(1
!1/Z)!!ib!2 where b"0, 1/Z"1, and kF is a point on
the Fermi surface. The corresponding A(kF ,!) is expected
to display a sharp Lorentzian-like peak, and !$n(k)! is also
expected to become sharply peaked at the Fermi surface. In
each case, these quantities are calculated by first interpolat-
ing the cluster self energy onto the lattice k points.

For example, the gradient of the momentum distribution
function is plotted in Fig. 16 when U#1,%#44,&#0.05 for
different values of Nc 'this temperature would correspond to
roughly room temperature for the cuprates in units where the
bare bandwidth W#2 eV). Apparently, at this temperature,
there are two Fermi surface features, one centered at (
#(0,0) and one centered at M#() ,)). The Fermi surface
centered at (#(0,0) has roughly the volume expected of
non-interacting electrons, so we will call it the electronlike
surface and the other holelike. Note that the holelike Fermi
surface becomes more prevalent, and the peak near
()/2,)/2) diminishes, as Nc increases. We therefore attribute
this behavior to short-ranged correlations.
We can further resolve the different surface features, by

investigating the single-particle spectrum A(k,!) as shown

FIG. 14. The average sign as function of the inverse temperature
% for Nc#8 at &#0.1 for U#1.0,1.5,2.0. In the inset, the average
sign is plotted versus doping & when U#W#2, t!#0, and %
#54.

FIG. 15. A comparison of the average sign for the DCA and FS
simulations30 when U/W#1/2,&#0.2,t!#0.

FIG. 16. !$n(k)! versus k when U#1, %#44, t!#0, and &
#0.05 for Nc#1, 8, and 16.
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FIG. 9. (Color online) Uniform spin χph susceptibilities vs
temperature for different cluster computed in the DCA+ at 5% doping
(U/t = 7 and t ′/t = −0.15).

B. Improved fermionic sign problem

The rapidly increasing capability of computers in conjunc-
tion with the growing sophistication and efficiency of quantum
Monte Carlo solvers has pushed the limits of simulations
to larger cluster sizes and interaction strengths, as well as
lower temperatures. As a result, the only serious barrier for
quantum Monte Carlo calculations at low temperatures and
away from certain parameter regimes (such as half-filling in the
single-band Hubbard model) that remains is the fermionic sign
problem,24 which leads to an exponentially growing statistical
error with increasing system size and interaction strength, and
decreasing temperature.

The sign problem has posed an insurmountable challenge
to quantum Monte Carlo calculations of fermionic systems,
especially for simulations of finite-size systems, and remains
a problem in the DCA approach. The DCA, however, was
shown to have a less severe sign problem than finite-size
calculations,21 which, in the absence of a rigorous mathe-
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FIG. 10. (Color online) T ∗ versus cluster size computed in the
DCA and DCA+ at 5% doping (U/t = 7 and t ′/t = −0.15).
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FIG. 11. (Color online) Temperature dependence of the average
fermionic sign for Nc = 32 at 5% doping (U/t = 7 and t ′/t =
−0.15).

matical justification, was attributed to the action of the mean
field host on the cluster. This has enabled simulations of larger
clusters at lower temperatures than those accessible with finite-
size simulations and thus has opened new possibilities for
gaining insight into low-temperature phenomena in correlated
systems.

The DCA+ approach is different from the DCA in that it
generates a more physical self-energy with smooth momentum
dependence, and the correlations described by this self-energy
are therefore shorter ranged than those in the DCA. Hence,
it is therefore not unreasonable to expect a difference in the
severity of the sign problem between DCA+ and DCA.

In Fig. 11, we compare the fermionic sign σQMC between
the DCA and the DCA+ for a 32-site cluster and U = 7t for
a doping of 5%. At low temperatures, the average sign in the
DCA+ simulation is significantly larger than that of the DCA
simulation. As indicated above, we attribute this improvement
to the smooth momentum dependence of the DCA+ self-
energy as compared to the step-function dependence of the
DCA self-energy. From Fourier analysis, one knows that the
smoothness of a function is related to the rate of decay of
its Fourier coefficients.55 More precisely, if a function f is p
times differentiable, then its Fourier components fn will decay
at least at a rate of 1/np+1:

f ∈ Cp → |fn| � |f (p)|1
np+1

. (30)

Since the DCA+ self-energy has smooth momentum depen-
dence and not the step discontinuities of the DCA, its Fourier
transform to real space is shorter ranged than that of the DCA
and the correlations it describes are shorter ranged. We believe
that it is this removal of unphysical long-range correlations
which reduces the sign problem in the DCA+. In any case, with
this significant reduction in the severity of the sign problem, it
is possible to study the physics of fermionic systems in even
larger clusters and at lower temperatures than accessible with
the DCA.

115101-11

Nc=16, U=4t,  
t’=0,<n> = 0.8

Nc=32, U=7t,  
t’=-0.15t, <n> = 0.95

Fig. 5: DCA reduction of the sign problem: The average QMC sign compared between finite
size calculation (FSS) and DCA for a 16-site cluster with U = 4t and hni = 0.8. The DCA
algorithm reduces the sign problem of finite size QMC significantly. Figure taken from Ref. [11].

finite size QMC calculations, this sign problem is also encountered in DCA and DCA+ calcu-
lations when a QMC algorithm such as the CT-AUX algorithm described in Sec. 2.2 is used to
solve the effective cluster problem.
DCA QMC calculations were shown to have a much less severe sign problem than finite size
QMC calculations (see Fig. 5). Lacking a rigorous mathematical justification, this was at-
tributed to the action of the mean-field host on the cluster [11]. In any case, this significant
reduction of the severity of the sign problem in the DCA has enabled access to much lower
temperatures than those that can be reached in finite size systems.

2.4 Calculation of response functions

Response functions, such as the magnetic susceptibility, provide information on the response
of a system to an external field, as well as on the nature of the dominant fluctuations and pos-
sible instabilities of the system towards spontaneous symmetry breaking. The calculations of
these functions requires extensions to the single-particle formalism described in the previous
sections. They either require an explicit calculation on the single-particle level in the presence
of a symmetry breaking field, or a calculation of two-particle Green’s functions, from which the
susceptibilities can be calculated [1]. Here we discuss the second approach and refer the reader
to Ref. [1] for the first approach.

General formalism

As an illustrative example, let us consider the ”pair-field” susceptibility

P
'

(T ) =

Z
�

0

d⌧h�
'

(⌧)�†
'

(0)i (24)

DCA/QMC has much weaker sign problem



Typical DCA result for  
self-energy

results on momentum space differentiation and sector selec-
tive transitions similar in some aspects to those we have
shown. An extension of the CDMFT results to a wider range
of cluster sizes and dopings and a systematic comparison of
CDMFT results on different size clusters to DCA results
would be very desirable.

Currently, the two main limitations of cluster methods are
the limited momentum-space resolution and the fermionic
sign problem. These limit the accessible cluster sizes and
temperatures and currently prevent us from reaching a defi-
nite conclusion, for example, on the precise nature of the
low-temperature metallic state in the nodal region in the
sector-selective phase at low temperatures or on the quanti-
tative evolution of the Fermi arcs as a function of doping and
temperature. Also while the methods give direct access to
one-electron properties, wide classes of experiments involve
“two-particle” probes whose analysis requires vertex correc-
tions. New theoretical developments are required to over-
come these limitations.
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APPENDIX: ANALYTIC CONTINUATIONS

In this appendix we compare the results of the “poor
man’s” analytical continuation procedure used in the main

text to maximum-entropy analytical continuation results ob-
tained using the methods of Ref. 65. We focus on the 16-site
cluster, where the restriction to high temperatures forced on
us by the limits of our computational resources makes the
continuations most challenging. The solid points in Fig. 13
show !!!K ,0" for the 16-site cluster as a function of density,
obtained by extrapolation from a fit to the three lowest Mat-
subara points as described in the text. The open points show
values obtained by extrapolation from the two lowest Mat-
subara points. The strong divergence associated with the
!0,"" sector is evident, as is the weaker divergence of the
!" /2," /2" sector. We would like to interpret these data as
indicating the presence of a growing scattering rate. How-
ever, we also see that over a wide doping range the !" ," /2"
sector !!!K ,0" is, in fact, larger than the !!!K ,0" of the
!" /2," /2" sector, even though the Fermi surface does not
pass through this sector so that one might expect that low-
energy processes involving this sector are suppressed. Of
course, for this sector it is not correct to interpret !!!K ,0" as
a scattering rate, but the question remains of what is the
meaning of the result and whether it casts doubt on the in-
terpretation of the !!!K ,0" in the sectors that contain the
Fermi surface.

To gain further insight we display in Fig. 14 the full fre-
quency dependence of the real and imaginary parts of the
Matsubara-axis self-energy at hole doping x=0.058 for the
sectors !" /2," /2", !0,"", and !" ," /2". We can see imme-
diately that for all sectors the criterion for Fermi-liquid be-
havior is violated. However, for the !" /2," /2" and !0,""
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FIG. 13. !Color online" Im !!#n=0" as a function of density, for
all sectors of 16-site cluster, at inverse temperature $=7.5 / t. Filled
symbols; extrapolation based on three lowest Matsubara frequen-
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FIG. 7. (Color online) The imaginary part of the lattice self-energy for different clusters at a temperature of T = 0.33 with a hole doping of
5% (U/t = 7 and t ′/t = −0.15). Two key observations can be made. The DCA+ produces for all clusters a lattice self-energy which follows
the lattice symmetry. This is not true in the case of the DCA, which is illustrated in the region of (π,0) to (0,π ) for the clusters 16B, 20,
and 24. One can also observe that the DCA+ converges monotonically. The self-energy increases systematically with increasing cluster size
as longer-range correlations are taken into account. This systematic growth of the self-energy is harder to detect in the DCA. Therefore, we
expect that the DCA+ will lead to a more systematic convergence of other physical quantities, such as the pseudogap transition temperature.

while the fully renormalized two-particle Green’s function
GII

ph is computed as

GII
ph(K,K ′)

=
(

4∏

l=1

∫ β

0
dτl

)

ei ϖ1 (τ1−τ2)ei ϖ2 (τ3−τ4)

×
∑

σ,σ ′=±
⟨c†

σ (K⃗,τ1)cσ (K⃗,τ2)c†
σ ′(K⃗ ′,τ3) cσ ′(K⃗ ′,τ4)⟩.

The irreducible cluster vertex function &ph(Q⃗ = 0,K⃗,K⃗ ′) is
then obtained by inverting the Bethe-Salpeter equation on the
cluster

&ph =
[
GII

0,ph

]−1 −
[
GII

ph

]−1
, (29)

where we used a matrix notation in in the cluster momenta K⃗
and K⃗ ′. The uniform lattice spin susceptibility χph(q = 0) is
then calculated from

χph =
∑

K1,K2

χ0 [1 − & χ0]−1.

Here, χ0 is the coarse-grained bare susceptibility of the lattice

χ0(K) =
∫

dk⃗ φK (k⃗) G(k⃗)G(k⃗).

This procedure to compute the uniform lattice spin sus-
ceptibility χph(q⃗ = 0) is the same in the DCA+ as in the
DCA.21 The quantities that enter these equations, however, are
different between both approaches. In the DCA+, for thermo-
dynamic consistency, one should apply the same interpolation
procedure to the vertex function &ph(K,K ′) as is done for the
self-energy. Here, however, for the sake of simplicity and in
order to focus on the effects of the self-energy, we keep the
piecewise constant dependence of &ph(K,K ′) that is naturally
obtained from its extraction from the cluster quantities in
Eq. (29) as in the DCA. In the S = 1 particle-hole channel,
where the leading correlations are antiferromagnetic and have

only weak internal K⃗ dependence,54 we expect this to be a
good approximation.

In Fig. 8, we show results for χph(q⃗ = 0) obtained with
the DCA for different clusters. One observes a strong cluster
size dependence and the results are not converged even for the
largest cluster that can still be simulated before the fermionic
sign problem begins to make the QMC sampling exponentially
difficult. The corresponding DCA+ results are displayed in
Fig. 9. Here, convergence is reached much sooner. The location
of the maximum in temperature dependence T ∗ is essentially
independent of the cluster for Nc � 20, as can be seen from
Fig. 10. As discussed previously, this directly results from the
improved convergence of the self-energy in the DCA+. From
these results, once the effects of cluster geometry are removed
in the DCA+, it becomes clear that the underlying correlations
that lead to the pseudogap formation are short ranged and well
contained in clusters of size 20.
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FIG. 8. (Color online) Uniform spin χph susceptibilities vs
temperature for different cluster computed in the DCA at 5% doping
(U/t = 7 and t ′/t = −0.15).
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Fig. 3: DCA self-energy: DCA results for the imaginary part of the lattice self-energy
⌃(k, ⇡T ) for a Hubbard model with U = 7t, t0 = �0.15t, hni = 0.95 at a temperature
T = 0.33t. The DCA approximation gives a self-energy with jump discontinuities between the
coarse-graining patches and which depends strongly on the location and shape of the patches
(N

c

= 16A vs. 16B).

recent years, however, a number of continuous-time QMC (CT-QMC) methods have been de-
veloped [12], which are free from time discretization errors and which are more efficient than
the Hirsch-Fye algorithm. Of these, we will discuss the continuous-time auxiliary-field (CT-
AUX) QMC algorithm [13], which has been developed specifically for the type of large cluster
DCA calculations we are interested in.

The CT-AUX algorithm is formally similar to the Hirsch-Fye QMC algorithm in that it employs
an auxiliary field decoupling of the interaction term, Hint in Eq. (2). But instead of the time
discretization, it performs a weak-coupling expansion of the interaction term. Monte Carlo
sampling is then performed in the combined space of perturbation expansion order and time-
ordered configurations for a given order. The method yields numerically exact results, which
are continuous in time, since the positions along the imaginary time axis are variable and not
fixed as in Hirsch-Fye. In the following, we sketch the basic idea of this approach and refer the
reader to Refs. [12, 13] for a detailed discussion.

One starts by expanding the partition function, Eq. (16), in powers of Hint to which an arbitrary
constant term �K/� with non-zero K has been added. Then, one applies the auxiliary-field

Jump discontinuities and cluster shape/size dependence

⌃DCA(k, i!n) =
X

K

�K(k)⌃c(K, i!n)



Calculation of response 
functions (susceptibilities)

• Two approaches 
1. Apply symmetry breaking field and calculate “anomalous”  
   Green’s function. E.g. for s-wave superconductivity 

2. Calculate susceptibility from two-particle correlation function 

DCA is “thermodynamically consistent” ⟶ two approaches give 
same result. 
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Calculation of 2-particle 
response functions

• Pair-field susceptibility 

• Two-particle Green’s functon 

• Bethe-Salpeter equation
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DCA approximation of 
irreducible vertex

• Cluster approximation 

• Bethe-Salpeter equation on cluster 

• Determine cluster irreducible vertex
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Fig. 5 – The temperature-doping phase diagram of the 2D Hubbard model calculated with QMC and
DCA for Nc = 4, U = 2. TN and Tc were calculated from the divergences of the antiferromagnetic
and d-wave susceptibilities, respectively. T ∗ was calculated from the peak of the bulk magnetic
susceptibility.

the order of J , so magnetically mediated pairing is possible. For Nc = 4 and δ = 0.05, the
d-wave pair-field susceptibility diverges at Tc ≈ 0.021, with an exponent which is less than
one, indicating that the fluctuations beyond DMFA which suppress the antiferromagnetism
are also responsible for pairing.

The phase diagram of the system is shown in fig. 5. We are determining the phase bound-
aries by the instability of the paramagnetic phase (divergence of the corresponding suscep-
tibility). Therefore, the overlap of d-wave superconducting and antiferromagnetic phase for
dopings δ < 0.05 does not indicate a coexistence of these phases. It merely states that if the
phase with higher transition temperature is suppressed (e.g., due to impurity effects or long-
range interactions not included here) a phase transition at the lower transition temperature
might happen from the paramagnetic state.

We also include T ∗, the pseudogap temperature fixed by the peak bulk susceptibility. At
low temperatures, it serves as a boundary separating the observed Fermi-liquid and non-Fermi-
liquid behavior. For T < T ∗ and δ < 0.2 the self-energy shows non-Fermi-liquid character for
the parts of the Fermi surface closest to k = (π, 0) whereas the low-temperature self-energy
is Fermi-liquid–like for δ >∼ 0.2. The d-wave transition temperature is maximum at δ ≈ 0.05.
The superconductivity persists to large doping, with Tc dropping very slowly. In contrast to
experimental findings, the pairing instability (preceded by an AF instability) persists down
to very low doping. One possible reason for this is that the model remains very compressible
down to very low doping δ ∼ 0.025. This could be due to the lack of long-ranged dynamical
spin correlations or stripe formation which could become more relevant as Nc increases or
when multiple Hubbard planes are coupled together. The effect of such additional non-local
corrections (Nc > 4) is presently unknown. However, we believe that a finite mean-field
coupling between Hubbard planes will stabilize the character of the phase diagram presented
here as Nc increases. A finite interplane coupling will also invalidate the Mermin-Wagner
theorem, preventing a vanishing TN for the AF phase as Nc increases. Such work is currently
in progress.

Example: Phase diagram  
of 2 x 2 clusterM. Jarrell et al.: Phase diagram of the Hubbard model etc. 565

Fig. 1 – Inverse antiferromagnetic susceptibility vs. temperature for U = 2. The lines are fits to the
function 1/χAF(T ) = b(T − TN )γ . For Nc = 1, γ ≈ 1, the mean-field value. For Nc = 4 non-local
fluctuations suppress the transition, so that γ increases and TN decreases (see inset).

low doping at T = TN . This indicates a transition to an antiferromagnetic phase. In the
DMFA for the 2D model, or as we found previously for the infinite-dimensional model [14],
the antiferromagnetism persists to relatively high temperatures and dopings. The non-local
dynamical fluctuations, included in the DCA for Nc > 1, strongly suppress the antiferromag-
netism. Their effect becomes pronounced for low temperatures and dopings. For example,
when δ = 0, the Nc = 1 and Nc = 4 AF susceptibilities are identical at high temperatures
due to the lack of non-local correlations, but separate as the temperature is lowered. The
Nc = 1 susceptibility diverges with mean-field exponent of about one whereas the Nc = 4
result diverges at a much lower temperature with a larger exponent. Consistent with the
Mermin Wagner theorem, TN continues to fall for large values of Nc (not shown).

The pseudogap and non-Fermi-liquid behavior. – The bulk (k = 0) magnetic susceptibil-
ity and single-particle density of states (DOS) display evidence of a pseudogap for low doping
δ < 0.2. We show the bulk magnetic susceptibility in the inset to fig. 2 for three different
dopings. For low to intermediate doping, it develops a peak at low temperatures, defining a
temperature T ∗. T ∗ ∼ TN (Nc = 1), the mean-field transition temperature (see figs. 5 and 1).
For Nc > 1, it defines the temperature where short-ranged spin correlations first emerge. The
underdoped bulk susceptibility data, δ ∼ 0.075, may be scaled onto one curve by plotting vs.
T/T ∗ (not shown). A similar peak or downturn and scaling is seen in the Knight-shift data
of the cuprates [1]. The downturn of the susceptibility is accompanied by a loss of states near
the Fermi energy. For temperatures T < T ∗, a pseudogap begins to develop in the DOS, as
shown in fig. 2. The pseudogap is widest, measured from peak to peak, at low doping, and
vanishes for δ >∼ 0.2. The depth of the pseudogap is greatest when δ ≈ 0.05, and it vanishes
as δ → 0, where it is replaced by a Mott gap of width ≈ U .

The slow fall of T ∗ with doping indicates that the short-ranged spin correlations diminish
slowly upon doping. Thus, even in the region T ∗ > T > TN the antiferromagnetic correlations
still have a significant effect. This is supported by the behavior of the self-energy for temper-
atures T < T ∗. Once the DCA algorithm is converged, the lattice self-energy is calculated
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Fig. 2 – The single-particle density of states N(ω) for U = 2, T = 0.023 and Nc = 4. The inset
shows the bulk susceptibility as a function of temperature. For δ < 0.2 a peak develops at T = T ∗

accompanied by the evolution of a pseudogap in the DOS for T < T ∗.

by interpolating the cluster result on to the full lattice Brillouin zone. Thus the lattice self-
energy at any k is dominated by the cluster self-energy at the nearest cluster momentum. For
a Fermi liquid, the self-energy Σ(k,ω) ∼ (1 − 1/Z)ω − ibω2, where b > 0 and 1/Z > 1. Our
results show that, near half-filling, the self-energy displays non-Fermi-liquid behavior. This is
illustrated in fig. 3, where we plot the low-frequency self-energy at the DCA cluster momenta
for δ = 0.05 and T = 0.023. For momentum points near k = (π, 0), the imaginary part of
the self-energy crosses the Fermi energy almost linearly. Concomitant with this behavior is
a pseudogap of width ≈ |J | ≈ 4t2/U in the single-particle spectra A(k,ω) for momenta near
k = (π, 0) (not shown).

The pseudogap and the anomalies in the self-energy vanish when T ∗ falls to zero. Here,

Fig. 3 – The imaginary part of the single-particle self-energies at the DCA cluster momenta, plotted
vs. frequency ω for U = 2, T = 0.023, Nc = 4 and δ = 0.05 (left) and δ = 0.25 (right). The self-energy
at (π, 0) changes from non-Fermi-liquid–like at doping δ = 0.05 to Fermi-liquid–like at δ = 0.25. The
dashed lines indicate the zero axes.

M. Jarrell et al.: Phase diagram of the Hubbard model etc. 567

Fig. 4 – The s-wave, extended s-wave, and d-wave even-frequency and the odd-frequency s-wave q = 0
susceptibilities vs. temperature for U = 2.0, δ = 0.05, and Nc = 4. Pairing is found only in the even-
frequency q = 0 d-wave channel. In the inset the inverse d-wave pair-field susceptibility is plotted
vs. temperature for two different dopings and cluster sizes. The line is a fit to 1/Pd(T ) = b(T − Tc)

γ

with Tc = 0.021 and γ = 0.72.

as shown on the right of fig. 3, the self-energy becomes Fermi-liquid–like with quasiparticle
weight Z ≈ 1/2. A systematic study of the evolution of the single-particle spectra and the
Fermi surface will be presented elsewhere.

It is important to stress that the pseudogap, the downturn of the bulk magnetic suscep-
tibility and the non-Fermi-liquid behavior in the self-energy are absent when Nc = 1 due to
the lack of non-local fluctuations.

Superconductivity. – We searched for many different types of superconductivity, including
s, extended-s, p and d waves, of both odd and even frequency and we looked for pairing at
both the zone center and corner. Of these, only the odd-frequency s-wave and even-frequency
d-wave pair-field susceptibilities at the zone center were strongly enhanced, and only the d-
wave susceptibility diverged. This is illustrated in fig. 4 where the odd-frequency s-wave and
the even-frequency d-wave q = 0 susceptibilities are plotted vs. temperature for U = 2 and
δ = 0.05. The s-wave and extended s-wave q = 0 even-frequency susceptibilities are also
plotted for comparison.

The behavior of the d-wave pair-field susceptibility as a function of temperature for Nc = 1
and 4 and δ = 0 and 0.05 is shown in the inset to fig. 4. For Nc = 1 there is no tendency
towards pairing. For the DMFA there is no pairing with symmetries lower than the lattice
symmetry (i.e., p-, d-wave, etc.) [16].

d-wave pairing is strongly enhanced for Nc = 4 over the corresponding DMFA results.
However, for δ = 0 the inverse susceptibility rises abruptly as the temperature is lowered and
the Mott gap opens in the DOS. The Mott gap becomes more pronounced as Nc increases [15],
so that for larger clusters the gap prevents superconductivity even for U < W . If charge
excitations are gapped, then pairing is suppressed. At half-filling, for U = 2 the gap is of
order U , and is much larger than the magnetic exchange energy |J | ∼ 4t2/U = 0.125, so that
the opening of the Mott gap will suppress any magnetically mediated pairing. Away from
half-filling the width of the pseudogap in the charge excitation spectrum is much smaller, on

Jarrell, TAM et al., EPL ‘01



Bethe-Salpeter eigenvalues 
and eigenfunctions

• Eigenvalue equation in particle-particle channel 

• Relation to 2-particle Green’s function 

• Coarse-grained eigenvalue equation
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BSE eigenvalues and eigenfunctions:  
2D Hubbard model 5.14 Thomas A. Maier

Fig. 6: Example of the solution of the Bethe-Salpeter equation in the various two-particle
channels for a Hubbard model with U = 4t and hni = 0.85: Left panel: The leading eigen-
value in the Q = (⇡, ⇡), !

m

= 0 particle-hole magnetic channel dominates but saturates at
low temperatures. The leading eigenvalue in the singlet Q = 0, !

m

= 0 particle-particle
channel is found to have d

x

2�y

2 symmetry and increases towards 1 at low temperatures. The
largest eigenvalue in the charge density particle-hole channel remains small. Right panel: The
momentum-dependence of the leading eigenvector �

d

(K, ⇡T ) in the singlet particle-particle
channel shows its d

x

2�y

2 dependence. Its frequency dependence reflects the frequency depen-
dence of the pairing interaction �

pp

. Figures taken from Ref. [21].

From this it becomes clear that an instability occurs when the leading eigenvalue �
↵

becomes
1, and the momentum and frequency structure of the interaction is then reflected in the structure
of the corresponding eigenvector g

↵

(k). This approach is in many ways more powerful than
calculating the response function directly, because here, one does not have to assume a given
form factor g

↵

(k) and therefore cannot ”miss” the structure of the dominant correlations.

Using the DCA approximation (30) for the lattice vertex �
pp

(k, k0
) and assuming that the eigen-

vectors (as irreducible quantities) only depend on the cluster momenta K, one can then sum
(coarse-grain) over the Green’s function legs to obtain an equation that only depends on coarse-
grained and cluster quantities [21, 22]
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with �0,pp

(K) = N
c

/N
P

k �K(k)G"(k)G#(�k). While this reduces the complexity signifi-
cantly, it also lowers the momentum resolution to the discrete set of cluster momenta K. An
example of the resulting leading eigenvalues and eigenvectors in the singlet particle-particle
and also particle-hole magnetic and charge channels is shown in Fig. 6. These results illustrate
how the calculation and analysis of the eigenvalues and -vectors of the BSE kernel provides
a useful, unbiased method for determining the nature of the leading correlations of interacting
many-body systems.

U=4t, <n>=0.85

The Q=(π,π), S=1 particle-hole channel dominates but saturates at 
low T. The leading eigenvalue in the singlet Q=0 particle-particle 
channel has d-wave symmetry and increases towards 1 at low T.



The DCA+ method



The DCA+ method

General idea: 
Introduce lattice self-energy with continuous  
k-dependence and thus reduce its cluster shape and 
size dependence. 



DCA+ self-energy
• DCA self-energy 

• Identity 

• DCA+ relation for lattice self-energy
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DCA+ algorithm
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⇥
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(3) Bare cluster propagator
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From cluster to lattice
• Interpolation  

• Generalized coarse-graining 

• Expansion of lattice self-energy 

• Projection 
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Eigenvalues of  
projection operator
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momentum space

!(k⃗) =
∑

k⃗i

σk⃗i
H(k⃗ − k⃗i) with !(k⃗i) = σk⃗i

. (A1)

It has to be stressed that choosing Hermite splines as a basis
will not influence the conclusions we obtain here and thus does
not reduce the generality of our arguments. It just simplifies the
discussion since the expansion index i can now be identified
with a lattice momentum k⃗i in the fine lattice mesh and the
expansion coefficient σi with the lattice self-energy at that
lattice momentum k⃗i . Next, we generalize the cluster mapping
in Eq. (20) by replacing the cluster momentum points {K⃗i}
by the fine lattice {k⃗i}. The coarse graining then becomes a
convolution of the lattice self-energy with the patches and we
obtain

!̄k⃗i
=
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j

σk⃗j

∫
dk⃗ φ0(k⃗ − k⃗i) H(k⃗ − k⃗j )

︸ ︷︷ ︸
=Pk⃗i ,k⃗j

. (A2)

The projection matrix Pk⃗i ,k⃗j
has now become a symmetric,

square matrix. The latter allows us to do a spectral decomposi-
tion of Pk⃗i ,k⃗j

into its eigenspace. If we represent its eigenvalues
by λ and its corresponding eigenvector by eλ, we obtain

!̄k⃗i
=

∑

j

σk⃗j

∑

λ

λ eλ(k⃗i) × eT
λ (k⃗j ). (A3)

In terms of the eigenspace of the projection operator, the
cluster and lattice mappings can now be written as

cluster mapping: !̄k⃗i
=

∑

λ

λ
〈
σk⃗j

,eλ(k⃗j )
〉
eλ(k⃗i),

(A4)
lattice mapping: σk⃗i

=
∑

λ

λ−1 〈
!̄k⃗j

,eλ(k⃗j )
〉
eλ(k⃗i).

Here, the inner product ⟨a⃗,b⃗⟩ is represented by a simple dot
product between the two vectors a⃗ and b⃗. From Eqs. (A4), it is
clear that the spectrum {λ} of the projection operator Pij plays
a central role in the cluster and lattice mappings. In Fig. 12, we
show the leading eigenvalues (i.e., having the largest absolute
value) of Pi,j for various clusters. One can clearly observe that
all eigenvalues are smaller or equal than one and decay rapidly
for small clusters (Nc ! 8) and slowly for large clusters
(Nc " 32). This can be easily understood from the form factor
of the patches. The latter are very similar to box-car filters,
which are one of the most common low-pass filters used in
the field of signal processing. Since the coarse graining of the
lattice self-energy in Eq. (A2) can be rewritten as a convolution
with the patches, the projection operator Pi,j will in fact reduce
all the Fourier components during the convolution, ensuring
that the L2 norm of any function in the eigenspace never grows.
Consequently, this is also true for all eigenvectors, which leads
us to conclude that the eigenvalues have to be less or equal
to 1.

With the spectral decomposition of the projection matrix
we can split the representation space of the continuous lattice
self-energy into the image space I and the kernel space K of
the projection operator Pi,j . Since our projection operator does
not follow the strict mathematical definition of a projection
operator (a projection operator should satisfy the relationship
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FIG. 12. (Color online) The leading eigenvalues of various
clusters on a fine mesh of 512 points. We can clearly observe a strong
decay of the leading eigenvalues for small clusters, which becomes
weaker with increasing the cluster size. This observation explains the
intuitive notion that large clusters can describe finer features in the
self-energy since the image space of larger clusters contains more
eigenvectors.

P 2 = P ; the eigenvalues of such an operation can only be 0
and 1), we define the image Iϵ as the space spanned by the
eigenvectors that have an eigenvalue larger than ϵ. Here, ϵ is
a small, positive cutoff parameter. The kernel Kϵ contains the
remainder of the space and is thus spanned by the eigenvectors
with an eigenvalue smaller than ϵ. Due to the inversion of the
eigenvalue in Eq. (A4), the lattice mapping is only well defined
on the image space Iϵ . This brings us to the first important
observation. In order to do a self-consistent DCA+ calculation,
the coarse-grained lattice self-energy should always be entirely
defined on the image space Iϵ of our projection operator.
Otherwise, there exists no well-defined transformation that
maps the cluster self-energy back into the lattice self-energy,
which in turn breaks the DCA+ self-consistency loop. Notice
that this requirement holds trivially in the case of the traditional
DCA since in that case the projection matrix is simply the
identity matrix of size Nc, and all eigenvalues are equal to
one.

Equation (A3) can also explain how the geometry of the
patches will influence the results obtained with the DCA+.
In Fig. 13, we plot the union space of the image spaces IA

λi

and IB
λi

versus eigenvalue index i for different clusters. The
plot shows very clearly that the first leading eigenvectors are
equal to each other, and gradually diverge as eigenvectors with
smaller eigenvalues are added. This brings us to the second
observation. If one wants to carry out a DCA calculation with
results that are independent of cluster shape, the cluster self-
energy has to be representable on the intersection of the image
spaces Iϵ of both clusters.

So far, we have only discussed and introduced strict
geometrical criteria on the lattice and cluster self-energy,
which indicate when a DCA+ cluster calculation is feasible. In
order to link geometrical criteria to physics, we show in Fig. 14
the delocalization of the leading eigenvectors ⟨r2⟩. Formally,
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both equal i, any deviation of
the rank for the space IA
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∪ IB
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from i indicates that the projection

operators of clusters A and B span different image spaces. One
can clearly observe that the differentiation of the 16A-site cluster
eigenspace with smaller clusters occurs faster.

we define the delocalization as

⟨r2⟩λ =

√∑
r⃗ eT

λ (r⃗) r2 eλ(r⃗)
∑

r⃗ eT
λ (r⃗) eλ(r⃗)

. (A5)

At close inspection, we can see a clear correlation between
the absolute value of the leading eigenvalues λ and the
delocalization of its corresponding eigenvector for all cluster
sizes. This correlation shows that the space Iϵ is actually
spanned by the eigenvectors with a small delocalization. As a
result, satisfying the geometric criteria to do a self-consistent
DCA+ calculation is essentially equivalent to satisfying the
DCA assumption of locality for the lattice self-energy. Another
important conclusion that can be drawn from Fig. 14 is that
the number of vectors that span the space Iϵ=0.25 becomes
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FIG. 14. (Color online) The correlation between the magnitude of
the leading eigenvalue and the delocalization of the its corresponding
eigenvector for various clusters.

larger with increasing cluster size. This correlation reflects the
intuitive notion in the DCA that larger clusters can describe
finer features of the lattice self-energy.

APPENDIX B: A MATHEMATICAL BASIS FOR
THE INTERPOLATION PROCEDURE

In this Appendix, we want to demonstrate that the interpo-
lation procedure presented in this paper is independent of the
proposed transformation function T , as long as the latter is
analytical and injective. To accomplish this goal, we construct
a function g(k), defined by the transformed real-space Fourier
components of an arbitrary function F that fall within a
cutoff parameter Rc. The goal is now to show that g(k) can
approximate the function F with arbitrary precision, given a
big enough cutoff parameter Rc. In other words, pointwise
convergence of g(k) towards F is thus guaranteed. The rate of
convergence will depend crucially on the rate of convergence
of T [F ]R versus the radius |R|.

Pointwise convergence. Consider a function F in the
Brillouin zone B and an injective, continuous transformation
T , such that the Fourier components T [F ]R fulfill

∀ϵ > 0,∃ Rc ∈ R :
∑

|R|!Rc

|T [F ]R| " ϵ

with T [F ]R =
∫

B
dk⃗ e−ikRT [F (k⃗)], (B1)

then

∀k⃗ ∈ B,∀ ϵ > 0, ∃ Rc ∈ R : |g(k) − F(k)| < ϵ

with g(k) = T −1

[
∑

R<Rc

exp(ıRk)T [F ]R

]

. (B2)

Choose a positive small number ϵ. Since T is a continuous
and invertible function, we know that the T −1 is also
continuous. Hence, by definition of the this continuity, there
exists a δ ∈ R+

0 for this ϵ, such that

|T [g(k)] − T [F (k)]| < δ → |g(k) − F(k)| < ϵ.

Using the property in Eq. (B1), we can find a radius Rc > 0,
such that

∑

|R|!Rc

|T [F ]R| < δ. (B3)

By the definition of g(k), we have

|T [g(k)] − T [F (k)]| =
∣∣∣∣∣

∑

R!|Rc

exp(ıRk)T [F ]R

∣∣∣∣∣

"
∑

R!Rc

|T [F ]R| " δ. (B4)

APPENDIX C: RICHARDSON-LUCY ALGORITHM

One of the most common deconvolution algorithms is the
Richardson-Lucy algorithm,57,58 which is based on a Bayesian
inference scheme. Since the patches are strictly positive and
integrate to unity, we can interpret them as a probability

115101-14

Inversion only possible if self-energy  
contained within the cluster



PETER STAAR, THOMAS MAIER, AND THOMAS C. SCHULTHESS PHYSICAL REVIEW B 88, 115101 (2013)

(0
, 0

)

(π
,π

)
(π

, 0
)

(0
, π

)
(0
, 0

)

−10

−5

0

5

Σ

(a)

0 2 4 6 8 10
|r|

−3

−2

−1

0

1 (c)

(0
, 0

)

(π
,π

)
(π

, 0
)

(0
, π

)
(0
, 0

)
−0.4

−0.2

0.0

0.2

0.4

T
[Σ

]

(b)

0 1 2 3 4 5
|r|

−0.1

0.0

0.1

0.2
(d)

FIG. 5. (Color online) Interpolation procedure for the self-energy !K at the lowest Matsubara frequency for a 100-site cluster at a temperature
T = 0.2, U/t = 7, and t ′ = 0 at half-filling. (a) The interpolated function !(k⃗) is a smooth function through the results !K obtained from
the QMC cluster solution, where the circles and diamonds represent, respectively, the real and imaginary parts. (b) The transformed function
T [!] smoothes the self-energy function, making it suitable for a cubic-harmonics expansion. (c) The Fourier transform of the interpolated
function !(k). Notice that the tails expand much further than the cluster radius Rc = 5. (d) The Fourier transform of the function T [!K ]. The
convergence is reached at Rc = 3.

3. Interpolation on small clusters

For certain parameter sets, the fermionic sign problem
prevents the investigation of large enough clusters, for which
T [!] will converge. In this case, we recommend to interpolate
the T [!] using cubic splines instead of interpolating the
latter with the earlier proposed Wannier interpolation. Since
T [!] is a much smoother function, cubic splines can still
perform reasonably well, even in the case of small clusters.
The self-energy on the other hand will not be smooth, and a
straightforward spline interpolation will lead to overshoots or
ringing, which in turn might lead to an acausal self-energy.
This particular phenomenon has been studied extensively by
Okamoto et al.38 The ringing might be cured by the use
of tension splines,43 in which case a tension parameter is
introduced. It is, however, important to keep in mind that the
splines might add extra information into the system, and thus
bias the physics. This problem does not occur with Wannier
interpolation, as long as the Fourier coefficients of T [!K⃗ ]
converge on the real-space cluster.

4. Lattice symmetry

Most of the clusters used in the DCA do generally not
obey the same symmetry operations as the infinite lattice. As
a consequence, the lattice self-energy in the DCA breaks the
symmetry of the lattice due to its strict parametrization with
the coarse-grained patches. The only way to resolve this issue
in the DCA is to restrict to the few clusters that obey the cluster

symmetry. In order to remove this undesirable feature in the
DCA+, we symmetrize the self-energy after the interpolation.
The interpolated cluster self-energy obeys thus by construction
the symmetry operations of the lattice.

B. Cluster deconvolution

The goal of this section is to present a practical implemen-
tation of the lattice mapping. As mentioned in the theoretical
section of this paper, the lattice mapping is in essence the
inversion of the cluster mapping defined in Eq. (20). In a
common DCA+ calculation, we will have many more basis
functions than Monte Carlo cluster points. As a consequence,
we need to determine more lattice expansion coefficients
than cluster points that are given by the cluster solver.
The inversion problem is thus seemingly underdetermined.
Therefore, we do not attempt to invert Eq. (20) directly, but
first generalize the coarse-graining equation of the self-energy.
This is accomplished by rewriting each coarse-graining patch
as a translation of the patch around the origin, i.e., φK⃗ (k⃗) =
φ0⃗(k⃗ − K⃗). Next, we generalize the cluster-momentum vector
K⃗ to an arbitrary momentum vector. Using the interpolated
cluster self-energy !̄K⃗ as a substitute for the cluster self-energy
!K⃗ in Eq. (19), we obtain

!̄(k⃗) = Nc

V

∫
dk⃗′ φ0⃗(k⃗ − k⃗′) !(k⃗′). (28)
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Any solution of Eq. (28) is thus also a solution of Eq. (20).
We should stress that with the exception of the continuity of the
self-energy, this generalization does not introduce any new in-
formation as long as the Wannier interpolation converges! With
Eq. (28), we have now rephrased the lattice mapping into a
deconvolution problem. These types of problems are regularly
encountered in the field of signal theory and image processing
and various algorithms have been successfully developed to
address the ill-conditioned deconvolution problem.44

In this work, we are using a deconvolution algorithm that
is based on Bayesian inference, which we discuss in detail in
Appendix C. In Fig. 6, we show the lattice self-energy for a
32-site cluster by means of this method. We can clearly observe
that the cluster and coarse-grained lattice self-energy coincide
very well.

IV. APPLICATION

A. Convergence of the self-energy and the pseudogap

One of the most distinctive features of the hole-doped
cuprates is the emergence of a pseudogap,45 i.e., a partial
suppression of the density of states at the Fermi energy at the
antinodal points (π,0) and (0,π) in the Brillouin zone. This
state appears below a temperature T ∗, which rises with de-
creasing hole doping as the Mott-insulating half-filled state is
approached. The detailed relation between the pseudogap and
superconductivity remains controversial. Since superconduc-
tivity arises from the pseudogap state, it is generally believed
that understanding this unusual phenomenon is an important
prerequisite to understanding the pairing mechanism. Recent
debate has been centered around the question of whether the
pseudogap is a signature of superconducting fluctuations above
Tc (Refs. 46 and 47) or whether it is a competing phase.48,49

Cluster dynamical mean field studies of the single-band
Hubbard model have found a similar pseudogap opening
up at the antinodal points at low temperatures in the low-
doping regime.19,28,50–53 In these calculations, the pseudogap

originates from a strong momentum-space variation of the
single-particle self-energy, which, as shown in recent DCA
calculations by Gull et al.,28 gives rise to a momentum-sector-
selective metal-insulator transition. The DCA+ improves upon
the DCA algorithm in that it gives a self-energy with smooth
and therefore more physical momentum dependence, and can
therefore provide new insight into this problem. In addition,
since previous studies were limited to relatively small clusters
up to 16 sites, it is important to explore whether the self-energy
and pseudogap physics is converged on such clusters.

In Fig. 7, we plot the imaginary part of the lattice
self-energy at the smallest Matsubara frequency ω0 = πT
for various clusters, computed with the DCA (left panel)
and the DCA+ (right panel). One immediately observes the
much more physical smooth momentum dependence of the
DCA+ results versus the step-function-like nature of the DCA
results for the self-energy. At closer inspection, one notices a
much more systematic convergence of the DCA+ results with
different cluster size and geometry. While the DCA results
for Im!(K⃗) show smaller spread at a given K⃗ point [e.g.,
at K⃗ = (π,0)], their cluster dependence is nonmonotonic. In
DCA+, in contrast, |Im!(K⃗)| monotonically increases with
cluster size, a sensible result as longer-ranged correlations are
systematically taken into account.

Another striking feature of the DCA results is the asym-
metry for clusters that do not have the full lattice symmetry
such as the 16B-, 20-, and 24-site clusters. For example, in
the 16B cluster, the asymmetry around (π/2,π/2) as one
moves along the line from (π,0) to (0,π) is apparent and the
results in these regions are significantly different from those
for the symmetric 16A cluster. This asymmetry results from
the asymmetric arrangement of the two cluster K points closest
to (π/2,π/2) with respect to (π/2,π/2) (see right-hand side of
Fig. 1). This asymmetry is completely removed in the DCA+.

In addition, with the exception of a small region around
(π,π ), the DCA+ results for the asymmetric 16B cluster are
almost identical to the results of the fully symmetric 16A
cluster. The DCA+ algorithm restores the full lattice symmetry
in the results obtained from clusters that do not have the full
symmetry and thus makes studies on these clusters much more
useful. This, combined with the improved convergence as a
function of cluster size allows for much more systematic and
precise extrapolations to the exact infinite cluster size.

To further illustrate this point, we now turn to a study
of the temperature T ∗ below which the pseudogap starts to
form. Here, we define T ∗ as the maximum in the temperature
dependence of the bulk (q = 0) magnetic (particle-hole, spin
S = 1) susceptibility χph(q = 0,T ). The downturn in this
quantity below T ∗ with decreasing temperature signals the
suppression of low-energy spin excitations, which is also
observed in experiments to accompany the opening of the
pseudogap in the single-particle spectral weight. In the DCA
and DCA+ algorithms, χph is computed from the single- and
two-particle Green’s function GII

ph obtained from the cluster
solver. Using the notation K = (K⃗,ϖ ), the bare two-particle
Green’s function GII

0,ph is constructed from a pair of interacting
cluster Green’s functions (for q⃗ = 0)

GII
0,ph(K) = G(K) G(K),
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Fig. 9: Richardson-Lucy deconvolution of lattice self-energy: DCA+ calculation for a 32-
site cluster with t0 = �0.15t and U = 7t at a filling of hni = 0.95 and T = 0.33. Shown are real
(black) and imaginary (red) parts of the continuous lattice self-energy ⌃(k), its coarse-grained
result ¯⌃(K) = N

c

/N
P

k �K(k)⌃(k) and the cluster self-energy ⌃
c

(K) for the lowest Mat-
subara frequency !0 = ⇡T for a high-symmetry path in the Brillouin zone. The coarse-grained
lattice self-energy ¯⌃(K) agrees very well with the cluster self-energy ⌃

c

(K).

procedure [5]

⌃
i+1(k) ⌃

i

(k)

Z
dk0 �0(k � k0

) ⌃
c

(k0
)R

dk00 �0(k0 � k00
) ⌃

i

(k00
)

. (44)

This procedure is carried out separately for the real and imaginary parts of the self-energy. As
discussed in Ref. [5], this algorithm converges well when correlations are short-ranged and con-
tained within the cluster. When the range of the correlations exceeds the cluster, one generally
finds that this algorithms coverges slowly and gives estimates for the lattice self-energy ⌃(k),
which, after coarse-graining, deviates considerably from the cluster self-energy ⌃

c

(K) and thus
does not satisfy the DCA+ constraint in Eq. (37). Fig. 9 shows the result of this procedure for a
calculation of a 32-site cluster, for which the cluster self-energy does not exceed the cluster size
and thus the Richardson-Lucy procedure converges quickly and well. In this case, one sees that
the coarse-grained lattice self-energy ¯⌃(K) = N

c

/N
P

k �K(k)⌃(k) agrees very well with
the cluster self-energy ⌃

c

(K).

Nc=32; t’=-0.15t, U=7t,  
<n>=0.95, T=0.33
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distribution function

∀ k⃗,k⃗′ : φ0⃗(k⃗ − k⃗′) ! 0, 1 = Nc

VBZ

∫

BZ
dk⃗ φ0⃗(k⃗ − k⃗′).

As such, we can apply Bayes theorem and construct a
conditional probability Q for any given lattice self-energy
"(K⃗):

Q(k⃗|k⃗′) = φ0(k⃗′ − k⃗) "t
l (k⃗)

∫
BZ dk⃗′′ φ0(k⃗′ − k⃗′′) "(k⃗′′)

. (C1)

We should stress at this point that conditional probability Q
is computed separately for the real and imaginary parts of the
self-energy. The conditional probability Q(k⃗|K⃗) is then used
to construct a lattice self-energy "′(k⃗), given a continuous
cluster self-energy "̄(k⃗′):

"′(k⃗) =
∫

BZ
dk⃗′ Qt (k⃗|k⃗′)"̄(k⃗′). (C2)

The idea of the Richardson-Lucy algorithm is now to use
Eqs. (C1) and (C2) in an iterative way. After plugging both
equations together, we end up with a fixed-point problem

"(k⃗) ← "(k⃗)
∫

dk⃗′ φ0(k⃗ − k⃗′) "̄(k⃗′)
∫

dk⃗′′ φ0(k⃗′ − k⃗′′) "(k⃗′′)
. (C3)

If the interpolated function "̄(k⃗) is now used as our initial
guess for the lattice self-energy "(k⃗), Eq. (C3) provides us
with a simple implementation for the lattice mapping. In light
of the DCA+ algorithm, the Richardson-Lucy deconvolution
algorithm has many interesting properties that make it an ideal
algorithm to be used for the deconvolution. First of all, it
is a straightforward algorithm that does not need any extra,
nonphysical input. Other deconvolution algorithms, such as
total variation,59,60 introduce nonphysical penalty factors to
ensure smoothness of the result. Second, the Richardson-
Lucy algorithm conserves the sign of strictly positive and
negative functions. This property can be easily proven in
Eq. (C3) since φ0(k⃗) is strictly positive. Hence, if the initial
guess for "(k⃗) and "̄(k⃗′) are both positive (negative) for
all momenta k⃗, the resulting "(k⃗) will also be positive
(negative). Therefore, if the interpolated cluster self-energy
"̄(k⃗) is causal, the lattice self-energy will also be a causal
function. Third, it has been proven that the solution of this
iterative scheme converges to the maximum of the likelihood
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FIG. 15. (Color online) Relative error between the cluster self-
energy "K⃗ and the integrated lattice self-energy "̄(K⃗) for the real
(open symbols) and imaginary (solid symbols) parts at 5% doping
and T = 0.2.

function.58 Hence, of all lattice self-energies that generate the
same cluster self-energy after the convolution (coarse grain-
ing), the Richardson-Lucy algorithm will produce the lattice
self-energy that is the most likely to reproduce the cluster
self-energy.

Like all other deconvolution algorithms, the Richardson-
Lucy algorithm is an approximate algorithm, meaning that
the convergence to the exact solution is not guaranteed up to
an arbitrary precision. This is not surprising since we know
that the convolution is invertible as long as the expansion
coefficients of the cluster self-energy in Eq. (A4) decay faster
than the eigenvalues of the projection operator. Consequently,
the smaller the cluster, the slower the Richardson-Lucy
algorithm will converge to a solution and the bigger the
discrepancy between the coarse-grained lattice self-energy
"̄(K⃗) and the cluster self-energy "K⃗ obtained from the cluster
solver. This phenomenon is illustrated in Fig. 15, where we
show the relative error in the L2 norm between "̄(K⃗) and
"K⃗ . The figure clearly shows that the larger cluster converges
faster and that the residual error between the cluster and
coarse-grained self-energy decreases with increasing cluster
size.
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FIG. 7. The imaginary part of the lattice self-energy for di↵erent clusters at a temperature of T = 0.33 with a hole-doping of
5% (U/t = 7 and t0/t = �0.15). Two key observations can be made. The DCA+ produces for all clusters a lattice self-energy
which follows the lattice symmetry. This is not true in the case of the DCA, which is illustrated in the region of (⇡, 0) to
(0,⇡) for the clusters 16B, 20 and 24. One can also observe that the DCA+ converges monotonically. The self-energy increases
systematically with increasing cluster size as longer range correlations are taken into account. This systematic growth of the
self-energy is harder to detect in the DCA. Therefore, we expect that the DCA+ will lead to a more systematic convergence of
other physical quantities, such as the pseudo gap transition temperature.

16 sites, it is important to explore whether the self-energy
and pseudogap physics is converged on such clusters.

In Fig. 7, we plot the imaginary part of the lattice self-
energy at the smallest Matsubara frequency !0 = ⇡T for
various clusters, computed with the DCA (left panel) and
the DCA+ (right panel). One immediately observes the
much more physical smooth momentum dependence of
the DCA+ results versus the step-function-like nature of
the DCA results for the self-energy. At closer inspection,
one notices a much more systematic convergence of the
DCA+ results with di↵erent cluster size and geometry.
While the DCA results for Im⌃( ~K) show smaller spread
at a given ~K-point (e.g. at ~K = (⇡, 0)), their cluster
dependence is non-monotonic. In DCA+ , in contrast,
|Im⌃( ~K)| monotonically increases with cluster size – a
sensible result as longer ranged correlations are system-
atically taken into account.

Another striking feature of the DCA results is the
asymmetry for clusters that do not have the full lattice
symmetry such as the 16B, 20 and 24 site clusters. E.g.,
in the 16B cluster, the asymmetry around (⇡/2, ⇡/2) as
one moves along the line from (⇡, 0) to (0, ⇡) is apparent
and the results in these regions are significantly di↵erent
from those for the symmetric 16A cluster. This asym-
metry results from the asymmetric arrangement of the
two cluster K-points closest to (⇡/2, ⇡/2) with respect to
(⇡/2, ⇡/2) (see right hand side of Fig. 1). This asymme-
try is completely removed in the DCA+ .

In addition, with the exception of a small region
around (⇡, ⇡), the DCA+ results for the asymmetric 16B
cluster are almost identical to the results of the fully sym-

metric 16A cluster. The DCA+ algorithm restores the
full lattice symmetry in the results obtained from clus-
ters that do not have the full symmetry and thus makes
studies on these clusters much more useful. This, com-
bined with the improved convergence as a function of
cluster size allows for much more systematic and precise
extrapolations to the exact infinite cluster size.

To further illustrate this point, we now turn to a
study of the temperature T ⇤ below which the pseudo-
gap starts to form. Here, we define T ⇤ as the maxi-
mum in the temperature dependence of the bulk (q =
0) magnetic (particle-hole, spin S = 1) susceptibility
�ph(q = 0, T ). The downturn in this quantity below
T ⇤ with decreasing temperature signals the suppression
of low-energy spin excitations, which is also observed in
experiments to accompany the opening of the pseudo-
gap in the single-particle spectral weight. In the DCA
and DCA+ algorithms, �ph is computed from the single
and two-particle Greens-function GII

ph obtained from the

cluster-solver. Using the notation K = ( ~K, $), the bare
two-particle Greens-function GII

0,ph is constructed from a
pair of interacting cluster Greens functions (for ~q = 0)

GII
0,ph(K) = G(K) G(K) ,

while the fully renormalized two-particle Green’s func-
tion GII

ph is computed as
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5% (U/t = 7 and t0/t = �0.15). Two key observations can be made. The DCA+ produces for all clusters a lattice self-energy
which follows the lattice symmetry. This is not true in the case of the DCA, which is illustrated in the region of (⇡, 0) to
(0,⇡) for the clusters 16B, 20 and 24. One can also observe that the DCA+ converges monotonically. The self-energy increases
systematically with increasing cluster size as longer range correlations are taken into account. This systematic growth of the
self-energy is harder to detect in the DCA. Therefore, we expect that the DCA+ will lead to a more systematic convergence of
other physical quantities, such as the pseudo gap transition temperature.

16 sites, it is important to explore whether the self-energy
and pseudogap physics is converged on such clusters.

In Fig. 7, we plot the imaginary part of the lattice self-
energy at the smallest Matsubara frequency !0 = ⇡T for
various clusters, computed with the DCA (left panel) and
the DCA+ (right panel). One immediately observes the
much more physical smooth momentum dependence of
the DCA+ results versus the step-function-like nature of
the DCA results for the self-energy. At closer inspection,
one notices a much more systematic convergence of the
DCA+ results with di↵erent cluster size and geometry.
While the DCA results for Im⌃( ~K) show smaller spread
at a given ~K-point (e.g. at ~K = (⇡, 0)), their cluster
dependence is non-monotonic. In DCA+ , in contrast,
|Im⌃( ~K)| monotonically increases with cluster size – a
sensible result as longer ranged correlations are system-
atically taken into account.

Another striking feature of the DCA results is the
asymmetry for clusters that do not have the full lattice
symmetry such as the 16B, 20 and 24 site clusters. E.g.,
in the 16B cluster, the asymmetry around (⇡/2, ⇡/2) as
one moves along the line from (⇡, 0) to (0, ⇡) is apparent
and the results in these regions are significantly di↵erent
from those for the symmetric 16A cluster. This asym-
metry results from the asymmetric arrangement of the
two cluster K-points closest to (⇡/2, ⇡/2) with respect to
(⇡/2, ⇡/2) (see right hand side of Fig. 1). This asymme-
try is completely removed in the DCA+ .

In addition, with the exception of a small region
around (⇡, ⇡), the DCA+ results for the asymmetric 16B
cluster are almost identical to the results of the fully sym-

metric 16A cluster. The DCA+ algorithm restores the
full lattice symmetry in the results obtained from clus-
ters that do not have the full symmetry and thus makes
studies on these clusters much more useful. This, com-
bined with the improved convergence as a function of
cluster size allows for much more systematic and precise
extrapolations to the exact infinite cluster size.

To further illustrate this point, we now turn to a
study of the temperature T ⇤ below which the pseudo-
gap starts to form. Here, we define T ⇤ as the maxi-
mum in the temperature dependence of the bulk (q =
0) magnetic (particle-hole, spin S = 1) susceptibility
�ph(q = 0, T ). The downturn in this quantity below
T ⇤ with decreasing temperature signals the suppression
of low-energy spin excitations, which is also observed in
experiments to accompany the opening of the pseudo-
gap in the single-particle spectral weight. In the DCA
and DCA+ algorithms, �ph is computed from the single
and two-particle Greens-function GII

ph obtained from the

cluster-solver. Using the notation K = ( ~K, $), the bare
two-particle Greens-function GII

0,ph is constructed from a
pair of interacting cluster Greens functions (for ~q = 0)

GII
0,ph(K) = G(K) G(K) ,

while the fully renormalized two-particle Green’s func-
tion GII

ph is computed as

DCA+ gives smooth momentum dependence  
and mitigates cluster shape/size dependence



Lattice irreducible vertex 
function

• DCA vertex  

• DCA+ relation for lattice vertex 

• Use interpolation, then inversion to determine lattice 
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Also shown as light lines in Fig. 2 are the Fermi surfaces

of the noninteracting model for carrier concentrations corre-
sponding to half filling and 10%, 20%, and 30% hole doping.
The Fermi surface lines show a deficiency of the standard
4-site cluster: for hole dopings near to half filling the Fermi
surface is almost entirely contained in the !0,!" / !! ,0"
sectors; thus this cluster has a difficult time capturing
momentum-space differentiation along the Fermi surface.
The alternative 4! patching shown in the middle panel of Fig.
2 offers the possibility of capturing some of the zone-
diagonal region of the Fermi surface within a different sector.

The essential computational task is the solution of the
quantum impurity model. To accomplish this we use
continuous-time quantum Monte Carlo methods in the aux-
iliary field formulation !CT-AUX" !Ref. 48". This method is
an imaginary time method which yields the particle densities
in each sector, along with the sector Green’s function GK and
the sector self-energy "K. From GK we obtain the sector
occupancy nK via

nK = GK!# → 0−" =
1
$
#

n
GK!i%n"ei%n0+

. !4"

Note that the sector Green’s functions are normalized in such
a way that for nK=2 all k states in a sector are occupied by
two electrons. The total density is n=2!#KnK" /N !the two is
for spin".

In our analysis we work for the most part with sector
quantities GK, "K, and nK. We prefer to avoid the “periodiza-
tion” or interpolation schemes which attempt to reconstruct
continuous functions of momentum from the coarse-grained
quantities which are the direct output of the calculation.

Important quantities for the following discussion are the
parameters &k

!, Zk, and "!!k ,0"$"!!k ,%=0". These are de-
fined generally for a Fermi liquid in terms of the low-
frequency limit of the real !""" and imaginary !"!" parts of
the retarded electron self-energy "!k ,%" as

"!k,%" % &k
! − & + i"!!k,0" + %!1 − Zk

−1" + ¯ , !5a"

&k
! $ & + ""!k,0" , !5b"

Zk
−1 $ 1 − !%""!k,%"&%=0. !5c"

It will also be useful to consider

'k $ Zk&"!!k,0"& . !6"

In the DCA approximation we use here these become piece-
wise constant functions of momentum; we denote the value
appropriate to sector K by suppressing the momentum argu-
ment and adding a subscript K.

In the Fermi-liquid regime, these parameters express im-
portant aspects of electronic physics. For completeness we
briefly recall their meaning here. At low frequencies %→0,
the spectral function A!k ,%"=− 1

! Im G!k ,%" becomes

A!k,%" %
1
!

Zk'k

'% + Zk!&k
! − (k"(2 + 'k

2 . !7"

&k
! determines the location of the renormalized Fermi surface

!which is the locus of points kF for which (kF
=&kF

! ". Thus a
momentum dependence of &k

! signals a change in shape of
the Fermi surface and more generally a shift in the mean
energy of one momentum sector relative to the others. 'k is
the width of the quasiparticle peak. For a fixed k on the
Fermi surface, A!kF ,%" is peaked at %=0 and the width in
frequency is set by 'k. A necessary condition for Fermi-
liquid behavior is that 'k be small, in which case A!k ,%" is
characterized by a reasonably well-defined quasiparticle peak
with frequency width given by 'k and area given by the
quasiparticle weight Zk. The criterion 'k)!T is the math-
ematical expression of the condition that the width of a ther-
mally excited quasiparticle is less than its energy. In a Fermi
liquid "!!k ,0")T2 as T→0 so ' is parametrically less than
T. In this paper, however, since we cannot reach very low
temperatures, it will be useful to relax this definition and
consider as a quasi-Fermi liquid any system where !i" the
Luttinger theorem is reasonably well obeyed, !ii" 'k de-
creases as T decreases at all points along the renormalized
Fermi surface, and !iii" at all points along the Fermi surface
'k)!T.

Defining the bare velocity v!k=!(k /!k!, the dispersion
away from the Fermi surface is determined by the renormal-
ized velocity

FIG. 2. !Color online" Momentum-space tiling used to define cluster approximations studied here: 2 site !leftmost panel", 4 site with
standard patching !second from left", 4 site with alternative patching !4!", !central panel", 8 site !second from right", and 16 site !rightmost
panel". Momentum-space patches indicated by shaded regions; electron self-energy is independent of momentum within a patch but may
vary from patch to patch. Dots !red" represent the K points in reciprocal space associated to the patches in the DCA construction !see text".
Thin lines: Fermi surfaces for the noninteracting system with t"=−0.15t for half filling and hole dopings of 10%, 20%, and 30%. All clusters
have an inner patch around !0,0" !yellow" and an outer patch around !! ,!" !green". Clusters with four or more sites also have an antinodal
patch at !! ,0" and symmetry-related points !blue", clusters with eight or more sites have a nodal patch '!! /2,! /2", red(. The 16-site cluster
has two additional independent momentum sectors, around !! /2,0" !orange" and around !3! /2,! /2" !cyan". All clusters have the full
point-group symmetry of the lattice.
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Also shown as light lines in Fig. 2 are the Fermi surfaces
of the noninteracting model for carrier concentrations corre-
sponding to half filling and 10%, 20%, and 30% hole doping.
The Fermi surface lines show a deficiency of the standard
4-site cluster: for hole dopings near to half filling the Fermi
surface is almost entirely contained in the !0,!" / !! ,0"
sectors; thus this cluster has a difficult time capturing
momentum-space differentiation along the Fermi surface.
The alternative 4! patching shown in the middle panel of Fig.
2 offers the possibility of capturing some of the zone-
diagonal region of the Fermi surface within a different sector.

The essential computational task is the solution of the
quantum impurity model. To accomplish this we use
continuous-time quantum Monte Carlo methods in the aux-
iliary field formulation !CT-AUX" !Ref. 48". This method is
an imaginary time method which yields the particle densities
in each sector, along with the sector Green’s function GK and
the sector self-energy "K. From GK we obtain the sector
occupancy nK via

nK = GK!# → 0−" =
1
$
#

n
GK!i%n"ei%n0+

. !4"

Note that the sector Green’s functions are normalized in such
a way that for nK=2 all k states in a sector are occupied by
two electrons. The total density is n=2!#KnK" /N !the two is
for spin".

In our analysis we work for the most part with sector
quantities GK, "K, and nK. We prefer to avoid the “periodiza-
tion” or interpolation schemes which attempt to reconstruct
continuous functions of momentum from the coarse-grained
quantities which are the direct output of the calculation.

Important quantities for the following discussion are the
parameters &k

!, Zk, and "!!k ,0"$"!!k ,%=0". These are de-
fined generally for a Fermi liquid in terms of the low-
frequency limit of the real !""" and imaginary !"!" parts of
the retarded electron self-energy "!k ,%" as

"!k,%" % &k
! − & + i"!!k,0" + %!1 − Zk

−1" + ¯ , !5a"

&k
! $ & + ""!k,0" , !5b"

Zk
−1 $ 1 − !%""!k,%"&%=0. !5c"

It will also be useful to consider

'k $ Zk&"!!k,0"& . !6"

In the DCA approximation we use here these become piece-
wise constant functions of momentum; we denote the value
appropriate to sector K by suppressing the momentum argu-
ment and adding a subscript K.

In the Fermi-liquid regime, these parameters express im-
portant aspects of electronic physics. For completeness we
briefly recall their meaning here. At low frequencies %→0,
the spectral function A!k ,%"=− 1

! Im G!k ,%" becomes

A!k,%" %
1
!

Zk'k

'% + Zk!&k
! − (k"(2 + 'k

2 . !7"

&k
! determines the location of the renormalized Fermi surface

!which is the locus of points kF for which (kF
=&kF

! ". Thus a
momentum dependence of &k

! signals a change in shape of
the Fermi surface and more generally a shift in the mean
energy of one momentum sector relative to the others. 'k is
the width of the quasiparticle peak. For a fixed k on the
Fermi surface, A!kF ,%" is peaked at %=0 and the width in
frequency is set by 'k. A necessary condition for Fermi-
liquid behavior is that 'k be small, in which case A!k ,%" is
characterized by a reasonably well-defined quasiparticle peak
with frequency width given by 'k and area given by the
quasiparticle weight Zk. The criterion 'k)!T is the math-
ematical expression of the condition that the width of a ther-
mally excited quasiparticle is less than its energy. In a Fermi
liquid "!!k ,0")T2 as T→0 so ' is parametrically less than
T. In this paper, however, since we cannot reach very low
temperatures, it will be useful to relax this definition and
consider as a quasi-Fermi liquid any system where !i" the
Luttinger theorem is reasonably well obeyed, !ii" 'k de-
creases as T decreases at all points along the renormalized
Fermi surface, and !iii" at all points along the Fermi surface
'k)!T.

Defining the bare velocity v!k=!(k /!k!, the dispersion
away from the Fermi surface is determined by the renormal-
ized velocity

FIG. 2. !Color online" Momentum-space tiling used to define cluster approximations studied here: 2 site !leftmost panel", 4 site with
standard patching !second from left", 4 site with alternative patching !4!", !central panel", 8 site !second from right", and 16 site !rightmost
panel". Momentum-space patches indicated by shaded regions; electron self-energy is independent of momentum within a patch but may
vary from patch to patch. Dots !red" represent the K points in reciprocal space associated to the patches in the DCA construction !see text".
Thin lines: Fermi surfaces for the noninteracting system with t"=−0.15t for half filling and hole dopings of 10%, 20%, and 30%. All clusters
have an inner patch around !0,0" !yellow" and an outer patch around !! ,!" !green". Clusters with four or more sites also have an antinodal
patch at !! ,0" and symmetry-related points !blue", clusters with eight or more sites have a nodal patch '!! /2,! /2", red(. The 16-site cluster
has two additional independent momentum sectors, around !! /2,0" !orange" and around !3! /2,! /2" !cyan". All clusters have the full
point-group symmetry of the lattice.
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Partial occupancies

nature of the sector-selective regime discussed in previous
work.40,41 We see that the phenomenon is robust, occurring
in 4!-, 8-, and 16-site clusters. It is also interesting to note
that while !for the parameters we studied" the conventionally
patched 4-site cluster does not have a sector-selective re-
gime, the change in momentum-space patching involved in
going from 4 to 4! gives the cluster the possibility of distin-
guishing nodal and antinodal excitations, and the transition
reappears. This, along with the similar behavior of the 8- and
16-site clusters, is strong evidence that the sector-selective
transition !SST" is a generic phenomenon that appears wher-
ever the momentum patching allows it. It reveals strong mo-
mentum differentiation and the formation of an antinodal
pseudogap at low hole doping.

A different perspective on the !0,!" sector gap is pro-
vided by the plots as a function of the total density shown in
Fig. 5. We see that in the 4!-, 8-, and 16-site clusters the
partial density in the !0,!" sector remains locked at n!0,!"
=1 /2 for a range of densities while the density in other sec-
tors changes. This behavior, that for some range of doping
the antinodal patch remains incompressible while the other
patches accommodate the dopants, is observed only on the
hole-doped side !for the parameters U / t , t! / t studied here"
and defines the sector-selective regime. The boundary, n
=nSST

h , of the density range over which the !0,!" sector is
incompressible is a true T=0 phase transition of the self-
consistent DCA equations associated with a specific cluster.
For concreteness we define nSST

h as the value of the total
density n, where #n!0,!"−0.5#=0.005 and we report these val-
ues in Table I.

Unlike the 4!-, 8-, and 16-site clusters, the conventionally
patched 4-site cluster does not display a sector-selective re-
gime. However, we see from Table I that the insulating gap
for the conventionally patched 4-site cluster has a magnitude
very similar to the !0,!" sector gap found in the 4!-, 8-, and

16-site clusters. This makes the origin of the difficulties of
the 4-site cluster clear: in this cluster the !0,!" patch must
fill two roles. First, this patch contains the !0,!" point so
that its behavior must represent the physics of the
pseudogap. Second, the patch contains essentially all of the
Fermi surface, and therefore must represent the behavior of
the gapless nodal quasiparticles. The modified 4! patching
avoids this problem because the !0,0" sector contains the
nodal portion of the Fermi surface so that in this cluster the
!0,!" sector does not have two roles. We also note that the
critical density for the onset of the sector-selective regime is
about 0.92 for the 8- and 16-site clusters, but closer to n=1
for the 4! cluster. We believe the difference arises because,
while the 4! cluster does allow some nodal/antinodal differ-
entiation, the portion of noninteracting Fermi surface which
is outside of the !0,!" sector remains comparatively small.

The 2-site cluster is also different: neither of the two mo-
mentum sectors exhibits a plateau outside of the insulating
regime although previous studies of the two-patch cluster
using a larger t! !Refs. 37 and 39" have revealed a sector-
selective regime for a range of hole dopings. We shall see in
Sec. V that the difference arises from a difference in the
nature of the sector-selective transition in this cluster.

IV. MOMENTUM-SPACE DIFFERENTIATION

In this section we analyze in more detail the momentum-
space differentiated regime introduced in the previous sec-
tion. We begin our discussion with "K

! , Eq. !5b", shown as a
function of total density n in Fig. 6. For sufficiently high
levels of electron or hole doping, "K

! becomes almost inde-
pendent of momentum sector within a cluster and indeed
takes the same value independent of cluster. As the doping is
decreased toward half filling the traces separate, indicating
that the self-energy begins to depend on momentum. The
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nature of the sector-selective regime discussed in previous
work.40,41 We see that the phenomenon is robust, occurring
in 4!-, 8-, and 16-site clusters. It is also interesting to note
that while !for the parameters we studied" the conventionally
patched 4-site cluster does not have a sector-selective re-
gime, the change in momentum-space patching involved in
going from 4 to 4! gives the cluster the possibility of distin-
guishing nodal and antinodal excitations, and the transition
reappears. This, along with the similar behavior of the 8- and
16-site clusters, is strong evidence that the sector-selective
transition !SST" is a generic phenomenon that appears wher-
ever the momentum patching allows it. It reveals strong mo-
mentum differentiation and the formation of an antinodal
pseudogap at low hole doping.

A different perspective on the !0,!" sector gap is pro-
vided by the plots as a function of the total density shown in
Fig. 5. We see that in the 4!-, 8-, and 16-site clusters the
partial density in the !0,!" sector remains locked at n!0,!"
=1 /2 for a range of densities while the density in other sec-
tors changes. This behavior, that for some range of doping
the antinodal patch remains incompressible while the other
patches accommodate the dopants, is observed only on the
hole-doped side !for the parameters U / t , t! / t studied here"
and defines the sector-selective regime. The boundary, n
=nSST

h , of the density range over which the !0,!" sector is
incompressible is a true T=0 phase transition of the self-
consistent DCA equations associated with a specific cluster.
For concreteness we define nSST

h as the value of the total
density n, where #n!0,!"−0.5#=0.005 and we report these val-
ues in Table I.

Unlike the 4!-, 8-, and 16-site clusters, the conventionally
patched 4-site cluster does not display a sector-selective re-
gime. However, we see from Table I that the insulating gap
for the conventionally patched 4-site cluster has a magnitude
very similar to the !0,!" sector gap found in the 4!-, 8-, and

16-site clusters. This makes the origin of the difficulties of
the 4-site cluster clear: in this cluster the !0,!" patch must
fill two roles. First, this patch contains the !0,!" point so
that its behavior must represent the physics of the
pseudogap. Second, the patch contains essentially all of the
Fermi surface, and therefore must represent the behavior of
the gapless nodal quasiparticles. The modified 4! patching
avoids this problem because the !0,0" sector contains the
nodal portion of the Fermi surface so that in this cluster the
!0,!" sector does not have two roles. We also note that the
critical density for the onset of the sector-selective regime is
about 0.92 for the 8- and 16-site clusters, but closer to n=1
for the 4! cluster. We believe the difference arises because,
while the 4! cluster does allow some nodal/antinodal differ-
entiation, the portion of noninteracting Fermi surface which
is outside of the !0,!" sector remains comparatively small.

The 2-site cluster is also different: neither of the two mo-
mentum sectors exhibits a plateau outside of the insulating
regime although previous studies of the two-patch cluster
using a larger t! !Refs. 37 and 39" have revealed a sector-
selective regime for a range of hole dopings. We shall see in
Sec. V that the difference arises from a difference in the
nature of the sector-selective transition in this cluster.

IV. MOMENTUM-SPACE DIFFERENTIATION

In this section we analyze in more detail the momentum-
space differentiated regime introduced in the previous sec-
tion. We begin our discussion with "K

! , Eq. !5b", shown as a
function of total density n in Fig. 6. For sufficiently high
levels of electron or hole doping, "K

! becomes almost inde-
pendent of momentum sector within a cluster and indeed
takes the same value independent of cluster. As the doping is
decreased toward half filling the traces separate, indicating
that the self-energy begins to depend on momentum. The
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Star-like patching



“Interleaved” coarse-graining
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FIG. 1. The position of the cluster points { ~K} and shape of
the patches for a 16 site DCA-cluster.

lattice self-energy and Greens-function over patches of
the Brillouin zone of equal size. Using the mathemat-
ical description of the patches in Eq. [??], the cluster-
mapping in the DCA becomes,

⌃ ~Ki
($m) =

Nc

VBZ

Z

BZ
d~k � ~Ki

(~k) ⌃(~k,$m),

G ~Ki
($m) =

Nc
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� ~Ki
(~k) = (2)

restrictions on phi: It is important to understand that
the patches defined in Eq. [??] have several properties.
These properties insure that the cluster-solver will gener-
ate a physically relevant solution to the cluster-impurity
problem. First of all, all patches must have an equal
surface (or volume in three dimensions). This insures
that the algebra of the e↵ective operators in the clus-
ter will obey the well-known fermionic anti-commutation
relations. Second, the patches of two di↵erent momen-
tum cluster-points should not overlap, meaning that the
product of two di↵erent patches is zero at all k-points in
the Brillouin zone. This property insures that the DCA
obeys the conservation laws of Ward[] and Baym[], as was
shown by Hettler et al[10]. Furthermore, the null-overlap
will conserve the Baym-Kadano↵ function �, and thus
insure that the DCA is a thermodynamically consistent
approximation[11, 12].
unwritten restrictions on phi: On top of these restric-

tions, there are several unwritten rules, which are purely
motivated by the physics of the problem. The most
straightforward one is that the center of mass of the patch
must be equal to a cluster-point in momentum-space. In
this way, the Fourier transformation to real space be-
comes an injective and well-defined operation. Another
important property of the patches is that they should
have the same symmetry-group as the real-space clus-
ter. In this way, we insure that the cluster self-energy
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and Greens-function will obey the symmetry-operations
of the cluster. Last but not least, we demand that the
localization of the patches will decrease with increasing
cluster-size. The localization can be formally defined as,

L ~K =
Nc

VBZ

Z

BZ
d~k � ~K(~k0 � ~K) (~k0 � ~K)2 (3)

The localization requirement is extremely important
and is motivated by the Nyquist theorem. It insures that
the DCA will reproduce the exact solution of the lattice
problem in the limit of infinite cluster-size.

cluster-mapping in the DCA+: With the recent intro-
duction of the DCA+ algorithm[? ], the cluster-mapping
in Eq. [2] got a new interpretation. In the DCA+, the
cluster-mapping is not seen as an averaging procedure
anymore, but rather interpreted as a convolution of the
lattice quantities with the patch �~0(

~k)

⌃cl(~k
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Z

BZ
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~k � ~k0) G(~k). (4)

By rewriting the cluster-mapping as a convolution, we
get a new insight into the cluster-mapping. Intuitively,
we know that the cluster-mapping in the DCA reduces
sharp features from the lattice-quantities and thus re-
duces the non-local correlations in the cluster. In the
DCA+, this intuitive notion can be easily explained, since
the patch �~0(

~k) is in essence a low-pass filter due to
its particular box-car shape. Consequently, the cluster-
mapping in the DCA and DCA+ acts as a low-pass filter
on the lattice self-energy and lattice Greens-function.
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Staar, Jiang, Hähner, 
TAM, Schulthess, in 

preparation

for L=6:


Gbar(1) = Phi(1)G(1) + Phi(-5)G(-5)

Gbar(5) = Phi(5)G(5) + Phi(-1)G(-1)


-> Gbar(1) = Gbar(5) (with inv. symmetry)



Coarse-graining and cluster size

Effects of coarse-graining gradually diminish 
with increasing cluster size



Reduction of QMC sign 
problem
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Antiferromagnetism
5.24 Thomas A. Maier

Fig. 11: DCA calculation of the Neél temperature TN versus cluster size in a half-filled
Hubbard model with U = 8t: TN ! 0 for N

c

! 1 as required by the Mermin-Wagner
theorem. The solid line represents a fit to the function A/[B + ln(N

c

)/2] obtained from the
scaling ansatz ⇠(TN) =

p
N

c

. For N
c

= 2 and 4 local singlets form in the cluster that suppress
the AF state. Figure reproduced from Ref. [31].

temperature T dependence of the q = 0 spin susceptibility �
s

. The DCA and DCA+ results
both display similar behavior for �

s

(q = 0, T ) with a peak at T ⇤
(N

c

) and a decrease below T ⇤,
reflecting the opening of the pseudogap. For the DCA, however, one observes a strong cluster
size dependence and poor convergence even for the largest clusters that can still be simulated
before the QMC sign problem makes calculations impossible. In the DCA+ results, one sees
that convergence is reached much sooner. And in addition, because of the reduced sign problem,
larger clusters can be reached, for which one sees that T ⇤ is converged.

4.3 Superconductivity

DCA methods have also been used extensively to investigate the possibility and nature of su-
perconductivity in the 2D Hubbard model [1, 21, 29, 31], because of its relevance to the cuprate
high-temperature superconductors [35, 36]. Early DCA calculations used a 2 ⇥ 2 cluster to
map out the temperature versus doping phase diagram for U = 8t and found d

x

2�y

2-wave
superconductivity over a large finite doping region with a maximum T

c

⇠ 0.08t at a filling
hni = 0.95 [33]. A DCA study of larger clusters up to 26 sites was then carried out for U = 4t

and found a superconducting transition at T
c

⇡ 0.023t for hni = 0.9 [31]. But convergence was
poor due to the cluster shape and size dependence of the standard DCA. Recent DCA+ calcu-
lations for the same parameters could reach clusters up to 52 sites, for which the results were
asymptotically converged, and a finite size scaling analysis similar to that discussed in Sec. 4.1

�s(q) =
Z �

0
d⌧hT⌧S

z(q, ⌧)Sz(�q, 0)i

Sz(q) = 1/N
X

k

(c†k+q"ck" � c†k+q#ck#)

⇠(TN) =
p

Nc

From scaling analysis: Logarithmic decrease of TN with Nc

A/(B+lnNc/2)

⇠(T ) ⇠ eA/T

! TN(Nc) ⇠
A

B + ln(Nc)/2



Pseudogap at T=T*
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FIG. 7. (Color online) The imaginary part of the lattice self-energy for different clusters at a temperature of T = 0.33 with a hole doping of
5% (U/t = 7 and t ′/t = −0.15). Two key observations can be made. The DCA+ produces for all clusters a lattice self-energy which follows
the lattice symmetry. This is not true in the case of the DCA, which is illustrated in the region of (π,0) to (0,π ) for the clusters 16B, 20,
and 24. One can also observe that the DCA+ converges monotonically. The self-energy increases systematically with increasing cluster size
as longer-range correlations are taken into account. This systematic growth of the self-energy is harder to detect in the DCA. Therefore, we
expect that the DCA+ will lead to a more systematic convergence of other physical quantities, such as the pseudogap transition temperature.

while the fully renormalized two-particle Green’s function
GII

ph is computed as

GII
ph(K,K ′)

=
(

4∏

l=1

∫ β

0
dτl

)

ei ϖ1 (τ1−τ2)ei ϖ2 (τ3−τ4)

×
∑

σ,σ ′=±
⟨c†

σ (K⃗,τ1)cσ (K⃗,τ2)c†
σ ′(K⃗ ′,τ3) cσ ′(K⃗ ′,τ4)⟩.

The irreducible cluster vertex function &ph(Q⃗ = 0,K⃗,K⃗ ′) is
then obtained by inverting the Bethe-Salpeter equation on the
cluster

&ph =
[
GII

0,ph

]−1 −
[
GII

ph

]−1
, (29)

where we used a matrix notation in in the cluster momenta K⃗
and K⃗ ′. The uniform lattice spin susceptibility χph(q = 0) is
then calculated from

χph =
∑

K1,K2

χ0 [1 − & χ0]−1.

Here, χ0 is the coarse-grained bare susceptibility of the lattice

χ0(K) =
∫

dk⃗ φK (k⃗) G(k⃗)G(k⃗).

This procedure to compute the uniform lattice spin sus-
ceptibility χph(q⃗ = 0) is the same in the DCA+ as in the
DCA.21 The quantities that enter these equations, however, are
different between both approaches. In the DCA+, for thermo-
dynamic consistency, one should apply the same interpolation
procedure to the vertex function &ph(K,K ′) as is done for the
self-energy. Here, however, for the sake of simplicity and in
order to focus on the effects of the self-energy, we keep the
piecewise constant dependence of &ph(K,K ′) that is naturally
obtained from its extraction from the cluster quantities in
Eq. (29) as in the DCA. In the S = 1 particle-hole channel,
where the leading correlations are antiferromagnetic and have

only weak internal K⃗ dependence,54 we expect this to be a
good approximation.

In Fig. 8, we show results for χph(q⃗ = 0) obtained with
the DCA for different clusters. One observes a strong cluster
size dependence and the results are not converged even for the
largest cluster that can still be simulated before the fermionic
sign problem begins to make the QMC sampling exponentially
difficult. The corresponding DCA+ results are displayed in
Fig. 9. Here, convergence is reached much sooner. The location
of the maximum in temperature dependence T ∗ is essentially
independent of the cluster for Nc � 20, as can be seen from
Fig. 10. As discussed previously, this directly results from the
improved convergence of the self-energy in the DCA+. From
these results, once the effects of cluster geometry are removed
in the DCA+, it becomes clear that the underlying correlations
that lead to the pseudogap formation are short ranged and well
contained in clusters of size 20.
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FIG. 8. (Color online) Uniform spin χph susceptibilities vs
temperature for different cluster computed in the DCA at 5% doping
(U/t = 7 and t ′/t = −0.15).
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FIG. 9. (Color online) Uniform spin χph susceptibilities vs
temperature for different cluster computed in the DCA+ at 5% doping
(U/t = 7 and t ′/t = −0.15).

B. Improved fermionic sign problem

The rapidly increasing capability of computers in conjunc-
tion with the growing sophistication and efficiency of quantum
Monte Carlo solvers has pushed the limits of simulations
to larger cluster sizes and interaction strengths, as well as
lower temperatures. As a result, the only serious barrier for
quantum Monte Carlo calculations at low temperatures and
away from certain parameter regimes (such as half-filling in the
single-band Hubbard model) that remains is the fermionic sign
problem,24 which leads to an exponentially growing statistical
error with increasing system size and interaction strength, and
decreasing temperature.

The sign problem has posed an insurmountable challenge
to quantum Monte Carlo calculations of fermionic systems,
especially for simulations of finite-size systems, and remains
a problem in the DCA approach. The DCA, however, was
shown to have a less severe sign problem than finite-size
calculations,21 which, in the absence of a rigorous mathe-
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FIG. 10. (Color online) T ∗ versus cluster size computed in the
DCA and DCA+ at 5% doping (U/t = 7 and t ′/t = −0.15).
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FIG. 11. (Color online) Temperature dependence of the average
fermionic sign for Nc = 32 at 5% doping (U/t = 7 and t ′/t =
−0.15).

matical justification, was attributed to the action of the mean
field host on the cluster. This has enabled simulations of larger
clusters at lower temperatures than those accessible with finite-
size simulations and thus has opened new possibilities for
gaining insight into low-temperature phenomena in correlated
systems.

The DCA+ approach is different from the DCA in that it
generates a more physical self-energy with smooth momentum
dependence, and the correlations described by this self-energy
are therefore shorter ranged than those in the DCA. Hence,
it is therefore not unreasonable to expect a difference in the
severity of the sign problem between DCA+ and DCA.

In Fig. 11, we compare the fermionic sign σQMC between
the DCA and the DCA+ for a 32-site cluster and U = 7t for
a doping of 5%. At low temperatures, the average sign in the
DCA+ simulation is significantly larger than that of the DCA
simulation. As indicated above, we attribute this improvement
to the smooth momentum dependence of the DCA+ self-
energy as compared to the step-function dependence of the
DCA self-energy. From Fourier analysis, one knows that the
smoothness of a function is related to the rate of decay of
its Fourier coefficients.55 More precisely, if a function f is p
times differentiable, then its Fourier components fn will decay
at least at a rate of 1/np+1:

f ∈ Cp → |fn| � |f (p)|1
np+1

. (30)

Since the DCA+ self-energy has smooth momentum depen-
dence and not the step discontinuities of the DCA, its Fourier
transform to real space is shorter ranged than that of the DCA
and the correlations it describes are shorter ranged. We believe
that it is this removal of unphysical long-range correlations
which reduces the sign problem in the DCA+. In any case, with
this significant reduction in the severity of the sign problem, it
is possible to study the physics of fermionic systems in even
larger clusters and at lower temperatures than accessible with
the DCA.
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Fig. 12: Pseudogap in the uniform spin susceptibility: DCA (left panel) and DCA+ (right
panel) results for the uniform spin susceptibility �

s

(q = 0, T ) versus temperature for a Hubbard
model with U = 7t, t0 = �0.15t and hni = 0.95. �
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(q = 0, T ) peaks at a temperature T ⇤
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and decreases at lower temperatures as the pseudogap opens. The DCA+ converges T ⇤
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)

more rapidly and its reduced sign problem enables calculations at lower temperatures. Figures
reproduced from Ref. [5].

gave a T
c

= 0.02t [6].
As an illustration of recent progress on this issue, Fig. 13 shows the results of standard DCA
and DCA+ calculations for a more realistic U = 7t and hni = 0.9 taken from Ref. [6]. The
DCA+ results in this figure were obtained by using a different coarse-graining [37], in which the
patch function �K(k) for a given K is finite over several intervals instead of just a single one.
This leads to a further reduction of the sign problem, which is also reflected in the difference in
the maximum cluster size between the DCA and DCA+ results in Fig. 13. The standard DCA
calculations with the usual coarse-graining are limited to only 12 sites or less, for this value
of U , and T

c

is clearly not converged. The DCA+ calculations with modified coarse-graining,
however, are able to reach clusters of up to 28 sites. In particular, one sees that for clusters
between 12 and 26 sites, T

c

changes by only 10% between different N
c

, and one can estimate
T

c

⇡ 0.052t. For N
c

= 24 and T = 0.05, the right panel of Fig. 13 displays the momentum
dependence of the leading eigenvector �

d

(k, ⇡T ) of the BSE along the diagonal from (⇡, 0) to
(0, ⇡). Compared to the coarse K-dependence of the DCA result in Fig. 6, the DCA+ provides
information with much higher resolution in k, and thus allows one to estimate deviations from
the simple d-wave cos k

x

� cos k
y

form factor with higher precision.

5 General discussion and concluding remarks

We have seen that the DCA approximation and its DCA+ extension are quantum cluster meth-
ods which map the bulk lattice problem onto a finite size cluster embedded in a mean-field
host that is designed to represent the remaining degrees of freedom. This is achieved through

U=7t, t’=-0.15t, <n>=0.95

DCA+ converges T*(Nc) faster 
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FIG. 4. The leading eigenvalue at 10% doping for U/t = 4.
The critical temperature T

c

is converges to T
c

⇡ 0.024 for
clusters larger than 36.

ter size. For the smallest cluster sizes N
c

< 36, one also
sees that at a fixed temperature, �

d

increases monoton-
ically with cluster size, as does T

c

. We believe that in
this regime of large N

c

dependence, the superconduct-
ing coherence length is larger than the cluster so that
spatial phase fluctuations are neglected. Since pairs are
correlated over longer distances than those within the
cluster size, increasing the cluster size takes into account
longer-ranged pair-field correlations and therefore �

d

(T )
and also T

c

increase with N
c

. This is similar to what one
sees in finite size calculations for the cluster pair-field
correlations, which increase monotonically with cluster
size (see e.g. Fig. 1 in Ref.? ).

In order to show the N
c

dependence of T
c

more clearly,
we plot in Fig. 5 T

c

versus N
c

as determined from
�
d

(T
c

) = 1 (black circles) together with the previous
DCA results (red squares). Here one clearly observes
the monotonic rise of T

c

(N
c

) of the DCA+ results for
N

c

< 36. The previous DCA calculations were also able
to cover most of this range in N

c

, although the results for
T
c

were much more erratic as can be seen from the red
squares. With the new DCA+ results, it now becomes
clear that the cluster sizes that could be accessed with
the DCA are in a regime where the coherence length is
larger than the largest length scale covered by the clus-
ters. The DCA+ algorithm, however, due to the larger
average QMC sign, can go to significantly larger cluster
sizes. Most importantly, it can access a regime in which
T
c

(N
c

) appears to remain roughly constant with N
c

or
just weakly decreases. We believe that in this regime, the
linear cluster sizes are larger than the coherence length.
In this case, just as we have found for the attractive
model in Sec. IIA, T

c

should display a weak logarithmic
decrease with cluster size according to the KT scaling
behavior in Eq. (26) since spatial phase fluctuations are
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FIG. 5. The superconducting transition temperature T
c

ver-
sus cluster-size computed with the DCA (red squares) and the
DCA+ (black circles). Due to a more favorable sign-problem
in the DCA+ , we can observe a consistent growth of T

c

to-
wards the extrapolated value of the DCA.

increasingly taken into account.
Although the range of cluster sizes for which this

behavior is observed is very small (36 < N
c

< 56),
it is interesting to see whether these results are con-
sistent with the KT scaling behavior in Eq. (26) and
whether one can extract a reliable infinite cluster size
limit T

c

(N
c

! 1) ⌘ TKT. To this end we first need to
determine error bars for T

c

(N
c

). There are two sources of
errors in the DCA+ (and in the DCA) algorithm: (1) The
statistical error arising from the Monte Carlo sampling,
and (2) the error associated with di↵erences in the results
from di↵erent cluster shapes. While the cluster shape de-
pendence is significantly reduced in the DCA+ , we still
assume that the statistical Monte Carlo error is smaller
than the spread in results arising from di↵erent cluster
shapes. Thus, for each cluster size N

c

, we calculate T
c

for four di↵erent cluster shapes. The mean and standard
deviation of these results is shown in Fig. 6 as circles and
dashed lines. For this calculation, we have used a very
small deconvolution cut-o↵ �� = 0.1 (typically we use
�� = 0.5), which amplifies the cluster-shape dependen-
cies to a great extent. In order to obtain an estimate for
TKT and its error, we now generate for each cluster size
a Gaussian distribution of 10000 transition temperatures
around the mean and within the confidence interval. For
each of this generated set of transition temperatures, we
perform a fit with Eq. (26) in order to obtain an estimate
for TKT. This results in a distribution of TKT, which we
show in the inset of Fig. 6. From a Gaussian fit of this
distribution we obtain a mean of TKT = 0.0199± 0.0019.
The average fit to the data is shown in Fig. 6 with the
red line.

As mentioned before and demonstrated in Fig. 5, the
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in Eq. (??) as outlined in Section (IC) and then obtain
an estimate of TKT by fitting T

c

(N
c

) with the expected
KT form. We will show that both procedures result in
the same estimate for TKT.

We start with a finite size scaling analysis of the s-wave
cluster pair-field susceptibility

P
s

=

Z
�

0
d⌧ h�†(⌧)�(0)i (22)

with

�† =
1p
N

c

X

~

K

c†
~

K"
c†
� ~

K#
. (23)

Note that P
s

can be obtained directly from the Q = 0
cluster two-particle Green’s function GQ,II

pp

(K, K 0) and is
defined as

P
s

=
T 2

N2
c

X

K,K

0

GQ=0,II
pp

(K, K 0) (24)

where the sum over K (and K 0) implicitly contains a
sum over momenta ~K and Matsubara frequencies !

n

.
If one assumes that the transition to the superconduct-

ing phase takes place when the correlation length reaches
the linear cluster size L

c

=
p

N
c

, one expects from finite
size scaling for a Kosterlitz-Thouless transition that?

P
s

L�7/4
c

= L
c

exp


�↵p

T � T
c

�
. (25)

In Fig. 2, we have plotted the best data-collapse for
this equation at 50% doping. The critical temperature
TKT = 0.13 obtained by the data-collapse is equal to
the value obtained by Paiva et. al. We believe that
the discrepancy on the ↵ parameter (0.3 versus 0.1) can
most likely be attributed to the mean-field character of
the DCA algorithm.

Next, we use the new DCA+two-particle formalism de-
scribed in Section I C to calculate the lattice irreducible
vertex in the particle-particle channel, �pp(k, k0), with
continuous momentum dependence. We then compute
the leading eigenvalue �

s

(T ) (the corresponding eigen-
vector has s-wave symmetry) of the pairing matrix �pp�0

that enters the lattice Bethe-Salpeter equation. This al-
lows us to determine the transition temperature T

c

(N
c

)
for a given cluster size N

c

from �
s

(T
c

) = 1. The exact
infinite cluster size result T

c

(N
c

! 1) ⌘ TKT is then
obtained from fitting the T

c

(N
c

) data with the expected
KT behavior?

T
c

(N
c

) = TKT
c

+
A

[B + log(
p

N
c

)]2
. (26)

As one sees from the inset of Fig. 3, the fits of the
data for electron densities hni = 0.1, 0.5 and 0.8 with the

form in Eq. (26) are excellent. The resulting estimates for
TKT(hni) are shown as symbols in the main figure. The
error bars are obtained by omitting each data-point once
in the corresponding T

c

(N
c

) curves, which results in 6
di↵erent estimates for TKT for each density and thus the
standard deviation represented by the error bars. We can
clearly observe that the obtained transition temperatures
lie within the error-bars of Paiva et. al (red dashed lines
in Fig. 2).

From these results one can draw two important conclu-
sions: First, the transition temperature we obtain from
the data-collapse of the cluster-susceptibility is in ex-
cellent agreement with the transition temperature ob-
tained from the lattice Bethe-Salpeter equation. The
first procedure is based entirely on the two-particle clus-
ter Greens function and thus does not involve the new
procedure for determining the lattice irreducible vertex.
The second method, in contrast, uses the new DCA+two-
particle framework (inversion of Eq. (16) for the lattice
vertex. This provides evidence that the algorithm we use
to invert the coarse-graining of the lattice vertex func-
tion in Eq. (16) provides accurate estimates of transition
temperatures for a given cluster size N

c

, which lead to
the same inifite cluster size limit as the results obtained
from finite size scaling of the cluster susceptibility. Sec-
ond, the DCA+ calculations reproduce the temperature
versus doping phase-diagram of the attractive Hubbard
model with an interaction of U/t = �4 previously deter-
mined by Paiva et al.. From this we conclude that the
DCA+algorithm provides a reliable method to accurately
determine phase transition temperatures.

B. 2D repulsive Hubbard model

We will start the DCA+ study of the 2D repulsive Hub-
bard model by re-investigating d-wave superconductivity
in the weak-coupling U = 4t regime for which previous
DCA results are already available? . We will then move
on to the intermediate-coupling U = 7t regime, which has
been di�cult to access with standard DCA. In particular,
we will show results for antiferromagnetism at half-filling
and d-wave superconductivity in the doped model.

1. Superconductivity at weak coupling

As for the attractive model, we calculate the temper-
ature dependence of the leading eigenvalues and eigen-
vectors of the pairing matrix �pp�0 that enters the lat-
tice Bethe-Salpeter equation for di↵erent cluster sizes.
At low temperatures, the leading eigenvector has d-wave
symmetry. In Fig. 4 we show DCA+ results for the lead-
ing d-wave eigenvalue �

d

(T ) versus temperature for clus-
ter sizes ranging from 16 to 52 sites for U = 4t and
hni = 0.9. One sees that �

d

(T ) monotonically increases
with decreasing temperature and eventually crosses one,
which defines the transition temperature for a given clus-

9

TKT
c (Nc = 1) =0.0199±0.00187

FIG. 6. DCA+ results for T
c

versus cluster size N
c

in the
2D Hubbard model with U = 4t and hni = 0.9. The symbols
indicate the mean and the error bars the standard deviation
of T

c

of four di↵erent cluster shapes with the same N
c

. The
red line shows the average fit of the Kosterlitz Thouless scal-
ing law, Eq. (27). Inset: By generating random transition
temperatures for a given N

c

, which are Gaussian distributed
around the mean value and lie within the standard-deviation,
we generate a distribution function for TKT

c

. This distribution
is then used to obtain an estimate for the lattice transition
temperature TKT

c

(N
c

= 1) = 0.0199± 0.002.

from di↵erent cluster shapes. Thus, for each cluster size
N

c

, we calculate T
c

for four di↵erent cluster shapes. The
mean and standard deviation of these results is shown in
Fig. 6 as circles and dashed lines. For this calculation,
we have used a very small deconvolution cut-o↵ �� = 0.1
(typically we use �� = 0.5), which amplifies the cluster-
shape dependence to a great extent. In order to obtain
an estimate for TKT and its error, we now generate for
each cluster size a Gaussian distribution of 10000 transi-
tion temperatures around the mean and within the confi-
dence interval. For each of this generated set of transition
temperatures, we perform a fit with Eq. (27) in order to
obtain an estimate for TKT. This results in a distribu-
tion of TKT, which we show in the inset of Fig. 6. From
a Gaussian fit of this distribution we obtain a mean of
TKT = 0.0199 ± 0.0019. The average fit to the data is
shown in Fig. 6 by the red line.

As mentioned before and demonstrated in Fig. 5, the
reduced cluster shape dependence of the DCA+ in con-
junction with the ability to access larger clusters allows
us to identify two di↵erent regimes in the cluster size de-
pendence of T

c

(N
c

) separated by the superconducting co-
herence length ⇠: For a linear cluster size L

c

< ⇠, T
c

(N
c

)
monotonically increases, while for L

c

> ⇠, it weakly de-
creases according to the KT scaling behavior. This allows
us to estimate the coherence length. For the parameters
in Fig. 5, i.e. U = 4t and hni = 0.9, we estimate a

FIG. 7. DCA+ results for the Neél temperature T
N

versus
cluster-size for U/t = 7 at half-filling. The red curve shows
the logarithmic decay of the Neél temperature according to
Eq. (28).

coherence length of ⇠ ⇠
p

32 ⇡ 6 lattice spacings.

2. Antiferromagnetism and superconductivity at
intermediate coupling

We start our investigation of the intermediate coupling
regime U = 7t by studying magnetism in the half-filled
model, which is known to become antiferromagnetic at
T = 0. Mean-field methods such as the DMFT or DCA,
however, due to their mean-field character at a finite clus-
ter size, find an antiferromagnetic state at a temperature
TN > 0, which goes to zero for N

c

! 1 as observed in
previous DCA calculations8. This problem therefore pro-
vides another interesting test-bed to examine the cluster
size dependence of the DCA+ algorithm.

In two dimensions, the antiferromagnetic correlation
length develops exponentially as the temperature is low-
ered, i.e. ⇠ ⇠ ↵ exp(�/T ). Then, by assuming that a
transition occurs when the correlation length becomes
equal to the linear cluster L

c

=
p

N
c

at T = TN(N
c

), one
obtains

p
N

c

⇡ L
c

⇡ ↵ e�/TN ! TN(N
c

) ⇡ �

log(↵�1
p

N
c

)
.

(28)

Fig. 7 shows that the DCA+ results indeed fit this log-
arithmic decrease of TN with

p
N

c

. Here we have de-
termined TN from �(TN) = 1, where � is the leading
eigenvector of the lattice Bethe-Salpeter equation in the
spin S = 1 particle-hole channel for Q = (⇡, ⇡). The
frequency dependence of the corresponding eigenvector
�(~k,$) is shown in Fig. 8 for a selected set of momenta
~k. The weak momentum dependence of �(~k,$) indicates

U=4t, <n>=0.9
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FIG. 8. (Color online) Frequency and momentum dependence of
the leading eigenvector in the spin S = 1 particle-hole channel for
U/t = 7, Nc = 144 at half-filling for a temperature close to TN(Nc).
The inset shows the momentum dependence of !(k,πT ) along the
diagonal from k⃗ = (0,π ) to (π,0).

also has a retarded component for this strength of the Coulomb
interaction.

We now turn to the doped model at U = 7t and study
the superconducting transition for a filling of ⟨n⟩ = 0.9. For
these parameters, the standard DCA algorithm can only access
clusters as large as 12 sites because of the fermion sign
problem. The DCA+ algorithm, however, significantly delays
the sign problem and allows us to access clusters as large as
28 sites.

Figure 9 shows the DCA+ results for the superconducting
transition temperature Tc versus cluster size (black circles)
in addition to the DCA results (red squares). The DCA data
for Tc have significant cluster size dependence and irregular
behavior and it is impossible to determine an estimate of
Tc based on these results. In contrast, the DCA+ results
are much more systematic: similar to the weak coupling
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FIG. 9. (Color online) DCA (red squares) and DCA+ (black cir-
cles) results for the superconducting transition temperature Tc versus
cluster size for U/t = 7 and 10% doping.
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FIG. 10. (Color online) k dependence of the leading eigenvector
at the first Matsubara frequency in the particle-particle channel
for U/t = 7, β = 20, Nc = 24, and 10% doping. One can clearly
observe the dx2−y2 cos kx − cos ky structure (red line). Inset: the ϖ

dependence of !(k = {π,0},ϖ ).

U/t = 4 case, one observes a small cluster regime in which Tc

increases with Nc, followed by a regime where Tc(Nc) appears
approximately constant. Interestingly, the second regime of
constant Tc is reached already for a significantly smaller
cluster size than for the weak coupling case. From this we
estimate the coherence length ξ ≈

√
12 ≈ 3.5 lattice spacings

for U = 7t and ⟨n⟩ = 0.9. This is about half of the estimate we
obtained for U = 4t and indicates that the coherence length
decreases with increasing interaction strength U in the regime
of moderate values of U .

The k⃗ dependence of the leading d-wave eigenvector
!(k⃗,ϖ0 = πT ) obtained for the Nc = 28 site cluster is plotted
in Fig. 10. Its d-wave cos kx − cos ky structure is obvious
from this plot. A detailed analysis of the contribution of
higher d-wave harmonics will be published elsewhere. The
ϖ dependence of !(k⃗,ϖ ) reflects the frequency dependence
of the pairing interaction [9] and is shown for k⃗ = (π,0) in the
inset. From this one sees that !(k⃗,ϖ ) falls off with ϖ on a
scale set by J = 4t2/U ≈ 0.57. This reflects a retarded pairing
interaction with similar dynamics as the spin fluctuations [9].

IV. CONCLUSION

In this paper, we have presented an extension of the recently
introduced DCA+ algorithm to the calculation of two-particle
correlation functions. The DCA+ extends the dynamic cluster
approximation with a continuous self-energy and thereby
reduces its cluster shape dependencies and the fermion sign
problem of the underlying QMC solver. The DCA+ two-
particle framework is derived from the requirement of thermo-
dynamic consistency, which assures that quantities calculated
from the two-particle Green’s functions are identical to those
calculated from the single-particle Green’s function. We have
shown that this requirement is satisfied if the coarse-grained
vertex function &̄α(K,K ′) =

∫
dk⃗ dk⃗′φK⃗ (k⃗)&α(k,k′)φK⃗ ′(k⃗′) is

equal to the corresponding vertex function calculated on the
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U/t = 7, Nc = 144 at half-filling for a temperature close to TN(Nc).
The inset shows the momentum dependence of !(k,πT ) along the
diagonal from k⃗ = (0,π ) to (π,0).

also has a retarded component for this strength of the Coulomb
interaction.

We now turn to the doped model at U = 7t and study
the superconducting transition for a filling of ⟨n⟩ = 0.9. For
these parameters, the standard DCA algorithm can only access
clusters as large as 12 sites because of the fermion sign
problem. The DCA+ algorithm, however, significantly delays
the sign problem and allows us to access clusters as large as
28 sites.

Figure 9 shows the DCA+ results for the superconducting
transition temperature Tc versus cluster size (black circles)
in addition to the DCA results (red squares). The DCA data
for Tc have significant cluster size dependence and irregular
behavior and it is impossible to determine an estimate of
Tc based on these results. In contrast, the DCA+ results
are much more systematic: similar to the weak coupling
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FIG. 9. (Color online) DCA (red squares) and DCA+ (black cir-
cles) results for the superconducting transition temperature Tc versus
cluster size for U/t = 7 and 10% doping.
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for U/t = 7, β = 20, Nc = 24, and 10% doping. One can clearly
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dependence of !(k = {π,0},ϖ ).

U/t = 4 case, one observes a small cluster regime in which Tc

increases with Nc, followed by a regime where Tc(Nc) appears
approximately constant. Interestingly, the second regime of
constant Tc is reached already for a significantly smaller
cluster size than for the weak coupling case. From this we
estimate the coherence length ξ ≈

√
12 ≈ 3.5 lattice spacings

for U = 7t and ⟨n⟩ = 0.9. This is about half of the estimate we
obtained for U = 4t and indicates that the coherence length
decreases with increasing interaction strength U in the regime
of moderate values of U .

The k⃗ dependence of the leading d-wave eigenvector
!(k⃗,ϖ0 = πT ) obtained for the Nc = 28 site cluster is plotted
in Fig. 10. Its d-wave cos kx − cos ky structure is obvious
from this plot. A detailed analysis of the contribution of
higher d-wave harmonics will be published elsewhere. The
ϖ dependence of !(k⃗,ϖ ) reflects the frequency dependence
of the pairing interaction [9] and is shown for k⃗ = (π,0) in the
inset. From this one sees that !(k⃗,ϖ ) falls off with ϖ on a
scale set by J = 4t2/U ≈ 0.57. This reflects a retarded pairing
interaction with similar dynamics as the spin fluctuations [9].

IV. CONCLUSION

In this paper, we have presented an extension of the recently
introduced DCA+ algorithm to the calculation of two-particle
correlation functions. The DCA+ extends the dynamic cluster
approximation with a continuous self-energy and thereby
reduces its cluster shape dependencies and the fermion sign
problem of the underlying QMC solver. The DCA+ two-
particle framework is derived from the requirement of thermo-
dynamic consistency, which assures that quantities calculated
from the two-particle Green’s functions are identical to those
calculated from the single-particle Green’s function. We have
shown that this requirement is satisfied if the coarse-grained
vertex function &̄α(K,K ′) =

∫
dk⃗ dk⃗′φK⃗ (k⃗)&α(k,k′)φK⃗ ′(k⃗′) is

equal to the corresponding vertex function calculated on the
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Fig. 13: Superconducting transition temperature Tc and BSE leading eigenvector of a
Hubbard model with U = 7t and hni = 0.9: (Left panel) The QMC sign problem limits the
largest accessible cluster size. DCA results (red squares) for T

c

are not converged. The DCA+

with modified coarse-graining (see text) allows calculations for larger clusters, for which T
c

hardly changes (black circles). (Right panel) The k-dependence of the leading eigenvector
�

d

(k, ⇡T ) of the particle-particle BSE for T = 0.05 and N
c

= 24 is close to cos k
x

� cos k
y

and its frequency dependence is plotted in the inset. Figures reproduced from Ref. [6].

a coarse-graining of the momentum space, which effectively reduces the degrees of freedom
to those of a cluster, while retaining the effects of the remaining bulk degrees of freedom as a
mean-field, which the cluster is coupled to. Correlations on the cluster are treated accurately us-
ing, for example, quantum Monte Carlo methods, while longer-range correlations are described
on the mean-field level. Because of translational invariance of the bulk lattice, the properties of
the mean-field host are calculated from the effective cluster problem in a self-consistent manner.
In the DCA, the mean-field host reflects the correlations described by the cluster self-energy di-
rectly. In the DCA+ , in contrast, the mean-field is calculated using a lattice self-energy with
continuous bulk momentum dependence that is generated from the cluster self-energy. This
leads to an improved cluster shape and size dependence, and to a reduction of the sign problem
in the underlying QMC cluster solver. In what follows, we give a brief discussion of several
other fundamental features that are common to both the DCA and DCA+ algorithms.

Nature of approximation and limitations

The basic assumption of the coarse-graining approximation in both the DCA and DCA+ meth-
ods is that correlations are short-ranged so that the k-dependence of the self-energy ⌃(k, i!

n

)

and irreducible vertex functions �
↵

(k, i!
n

,k0, !
n

0
) is well approximated by a coarse grid of

cluster K momenta at intervals �K = 2⇡/L
c

, where L
c

is the linear cluster size. Obvi-
ously, this approximation assumes a self-energy and irreducible vertex functions that are only
weakly k-dependent, or equivalently, correlations that are short-ranged and do not extend be-
yond a length of L

c

/2. This type of approximation is therefore expected to be appropriate for
cases with significant screening, where correlations are short-ranged. It is clear that such an

U=7t, <n>=0.9



General remarks



Nature of approximation
• DCA and DCA+ are cluster dynamical mean-field theories 

that map the bulk lattice problem onto a finite size, 
periodic cluster embedded in a self-consistent dynamic 
mean-field 

• Correlations on the cluster are treated accurately, those 
beyond the cluster at a mean-field level 

• Approximation assumes short-ranged correlations that do 
not extend beyond Lc/2 

• Breaks down near classical or quantum phase transition, 
where mean-field behavior is generated, but finite size 
scaling can give exact results



Causality
• Causality requires that  

• Causality was a particular challenge in the early 
attempts to develop of cluster extensions of DMFT 

• The DCA can be proven to be causal 

• Simple interpolations of the cluster self-energy in the 
coarse-graining are likely to lead to acausal results 

• The DCA+ cannot be proven to be causal, but 
causality violations have not been observed

Im⌃(k,! + i0+) < 0



Thermodynamic consistency
• Thermodynamic consistency implies that a quantity 

calculated from the single-particle Green’s function is 
identical to the respective quantity calculated from the 
two-particle Green’s function 

• An algorithm is thermodynamically consistent if it is 
self-consistent and if  

• Both the DCA and DCA+ are thermodynamically 
consistent
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Grand potential 

Self-energy from Baym-Kadanoff functional 

and Dyson equation 

imply stationarity

DCA and DCA+ as self-energy 
functional approximations

⌦[G] = Tr ln[�G]� Tr
⇥
(G�1

0 � G�1)G
⇤
+ �[G,U]
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Grand potential 

Legendre transform 

Green’s function 

Dyson equation 

imply stationarity

Self-energy functional

⌦[⌃] = Tr ln
⇥
�(G�1

0 �⌃)
⇤
� (L�)[⌃]

(L�)[⌃] = �� Tr[⌃G]

G = ��(L�)[⌃]/�⌃
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G =
⇥
G�1
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DCA self-energy 

reduces degrees of freedom in functional 

with cluster Green’s function 

DCA grand potential 

is stationary

DCA approximation 
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DCA+ grand potential 

Self-energy relation between cluster and lattice 

At stationarity 

one obtains 

Multiplying both sides with                        gives

DCA+
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Summary & Outlook
• DCA and DCA+ enable insightful and often 

controlled studies of correlated systems 

• They allow for the calculation of various single-
particle and two-particle observables to make 
contact with experiments 

• Studies have been mainly based on single-band 
models. Multi-orbital models are challenging but 
possible in the near future.


